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Equilibrio Líquido-Vapor

Diagramas isopléticos
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Equilibrio Líquido-Vapor
Diagrama isoplético (a xA cte)
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Equilibrio Líquido-Vapor
Diagrama isoplético (a xA cte)
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Equilibrio Líquido-Vapor
Línea o locus crítico



Equilibrio Líquido-Vapor
Línea o locus crítico



Equilibrio Líquido-Vapor
Línea o locus crítico



Equilibrio Líquido-Vapor
Diagrama y-x



Equilibrio Líquido-Vapor
Diagrama Pxy con mayor atracción
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Equilibrio Líquido-Vapor
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tipo I con azeotropía positiva
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Equilibrio Líquido-Vapor
Diagrama Pxy con menor atracción
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Equilibrio Líquido-Vapor
Diagrama Txy con menor atracción
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tipo I con azeotropía negativa
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Fugacidad

Para un mol de un componente puro i: dTSdPVdG iii 

A temperatura constante: dPVdG ii 

Si el componente i es un gas ideal: PlnRTddGgi
i 

Para una condición distinta de la de gas ideal, se define la función
fugacidad fi del compuesto puro i:

ii flnRTddG  temperatura constante

En el limite de bajas presiones: Pflim i
0P




La fugacidad tiene unidades de presión y puede considerarse una “presión
corregida”. El factor de corrección se denomina coeficiente de fugacidad i

P

fi
i 

En el limite de bajas presiones: 1lim i
0P






PlnRTddGgi
i 

ii flnRTddG 
)P/fln(RTddGdG i

gi
ii  i

R
i lnRTddG  T cte.

La función lni es una propiedad molar.

Integrando entre la condición de gas ideal (i=1 y Gi
R=0) y la condición de

sustancia real:




 i
R
i

1 i
G

0
R
i lndRTdG i

R
i lnRTG 

RT

G
ln

R
i

i 

Similarmente se puede definir la fugacidad f y el coeficiente de
fugacidad  de una mezcla de composición constante.

 lnRTddGR

RT

G
ln

R





Analizamos ahora una mezcla de gases ideales. Para cada componente i de
la mezcla:

i

gi

i

gi

ii ylnRTGG  )ylnRT(ddGGd i

gi

i

gi

i 

A T constante: i
gi
i ylnRTdPlnRTdGd   i

gi

i PylnRTdGd 

if̂En base a esta ecuación diferencial, se define la fugacidad de un
componente i en una mezcla, a condiciones distintas de la de gas ideal:

ii f̂lnRTdGd  T cte

)Py/f̂ln(RTdGdGd ii
gi
ii 

ii f̂lnRTdGd 

 i
gi
i PylnRTdGd 

T cte

Se define coeficiente de fugacidad del componente i en la mezcla:i̂
Py

f̂ˆ

i

i
i 

i
R
i

ˆlnRTdGd 
RT

G
ˆln

R

i

i

 1ˆlim i
0P






ijn,P,Ti
i

n

lnnˆln



















  i ii
ˆlnxln

 lnRT/GM R

La función ln es una propiedad molar parciali̂

i
R

i
ˆlnRT/GM i 

A T y P ctes.: (Gibbs-Duhem)0ˆlndxi ii 



Condición de equilibrio entre fases en términos de fugacidades

Sean dos fases  y  en equilibrio:   ii
  ii GG

De la definición de fugacidad :if̂

ii f̂lnRTdGd  (T cte) )T(Cf̂lnRTG ii 

Reemplazamos en la condición de equilibrio:    
 Cf̂lnRTCf̂lnRT ii

Como la temperatura es igual en ambas fases C(T) se cancela

También podemos plantear la condición de equilibrio en términos de los
coeficientes de fugacidad:

   
 PyˆPyˆ iiii    

 iiii yˆyˆ

La condición de equilibrio entre fases queda planteada en términos del
criterio de isofugacidad (igualdad de fugacidades en ambas fases)

  ii f̂lnf̂ln
  ii f̂f̂ i=1,2…N



Si aplicamos la ecuación anterior al calculo del equilibrio liquido-vapor,
designando yi a las composiciones en fase vapor y xi a las fracciones
molares en la fase liquida:

i
L
ii

V
i xˆyˆ 

V
i

L
i

i ˆ

ˆ
K






Por esta razón Ki es función de T, P, xi e yi.

Como ln es una propiedad molar parcial, es función de T, P y la
composición de la fase respectiva.

i̂

Sólo en casos particulares (por ejemplo cuando en el equilibrio participan
soluciones ideales y/o mezclas de gases ideales) la dependencia de Ki con
la composición desaparece.

Por lo tanto, en términos generales, el cálculo de la condiciones de
equilibrio líquido-vapor resulta iterativo.



Relación entre propiedades de exceso y propiedades residuales

donde  iiM MxMM

Para una propiedad termodinámica extensiva M, se define la propiedad de
exceso como:

id

MM

idE MMMMM  (1)

La propiedad M de la mezcla y las propiedades Mi de los componentes puros
incluyen una contribución de gases ideales y una contribución residual. Por lo
tanto:

     R

i

gi

ii

Rgi

M MMxMMM

  gi

M

R

ii

Rgi

ii

giR

ii

R

M MMxMMxMMxMM (2)

Combinando (1), (2) y (3):  R

ii

RE MxMM

Una solución ideal verifica los mismos cambios de propiedades de mezclado
que los gases ideales. Por lo tanto:

gi
M

id
M MM  (3)



Aplicamos la ecuación a la propiedad R

ii

RE MxMM RT/G

  ii

E lnxRT/G (2)

Sabemos que la función es la propiedad molar parcial deiln  RT/GE

 RT/GxRT/GRT/G R

ii

RE
(1)

RT/GR
Por otra parte es la propiedad molar parcial dei

ˆln 

(3)  ii

R ˆlnxRT/G

RT/Gln R

ii Para cada componente puro: (4)

Combinando las ecuaciones (1) a (4):    iiiiii lnxˆlnxlnx

i

i
i

ˆ








Cálculo de coeficientes de fugacidad de compuestos puros

De la definición de fugacidad fi, a T = cte: ii flnRTddG 

De la relación fundamental, a T = cte: dPVdG ii 

P

dP
lndPlndlnd)Pln(dflnd iiii 

dP
RT

V

P

dP
lnd i

i  dP
P

1

RT

V
lnd i

i 







 T = cte

Integrando entre P=0 y P:  









P

0
i

i dP
P

1

RT

V
ln T = cte

Para calcular i se requiere conocer el comportamiento PVT o
comportamiento volumétrico de la materia.

Integrando distintos modelos PVT, se obtienen ecuaciones específicas
para cada uno de esos modelos.

dP
RT

V
flnd i
i  T = cte



Coeficientes de fugacidad de compuestos puros

Ecuación virial

 
r

r10

r

r

C

C
i

T

P
BB

T

P

RT

BP

RT

BP
ln 












Ecuación de Redlich-Kwong

  



































z

B
1ln

B

A
Bzln1z

V

b
1ln

bRT

a

V

b
1zln1zln

5.1i

Ecuación de Soave-Redlich-Kwong

  






































z

B
1ln

B

A
Bzln1z

V

b
1ln

bRT

a

V

b
1zln1zln i

Ecuación de Peng-Robinson

  













B414.0z

B414.2z
ln

B22

A
Bzln1zln i

Ecuación de van der Waals

z

A
)Bzln(1z

RTV

a

V

b
1zln1zln i 


















r

r

T

P

8

1
B 

2

r

r

T

P

64

27
A 

Tablas de Lee-Kesler

10

i lnlnln  )P,T(f rr
0  )P,T(f rr

1   10

i



Ejemplo: Calcular la fugacidad del vapor de agua a 200ºC y 10 bar.

a) Utilizando las tablas de vapor de agua

ii flnRTddG  T = cte

Integramos esta ecuación a T = 200ºC, entre un estado de referencia (*)
a baja presión en el que f* = P, y la presión P = 10 bar






























P

f
lnRT

f

f
lnRTGG i

i

i
ii 












 





RT

GG
expPf ii

i

Elegimos como estado de referencia la presión mas baja a la que haya
datos en la tabla de vapor, para la temperatura de 200ºC

T = 200ºC

P* = 1 kPa

H* =2880.1 kJ/kg

S* =9.9679 kJ/kg K
G* =-1836.21 kJ/kg

T = 200ºC

P = 1000 kPa

H =2826.8 kJ/kg

S =6.6922 kJ/kg K
G =-339.61 kJ/kg















 





RT

GG
expPf ii

i














15.473314.8

18*)21.183661.339(
expkPa1fi

bar42.9kPa942fi 

b) Utilizando la ecuación del virial

 
r

r10

r

r

C

C
i

T

P
BB

T

P

RT

BP

RT

BP
ln 












Para el agua: K3.647TC  bar3.220PC  345.0

 
7309.0

04535.0
50247.0345.061376.0ln i 

2
i 10884.4ln 

952.0i  bar52.9fi 

7309.0Tr 

04535.0Pr 

61376.0T/422.0083.0B 6.2

r

0 

50247.0T/172.0139.0B 2.4

r

1 



c) Utilizando las tablas de Lee-Kesler

De tablas, interpolando: 9621.00 
7309.0Tr 

04535.0Pr 
9659.01 

  345.0
9659.09621.0 9506.0 bar506.9f 

10

i lnlnln    10

i

d) Utilizando la ecuación de van der Waals

z

A
)Bzln(1zln i 

Debemos resolver primero la ecuación cúbica en Z

3

r

r 107558.7
T

P

8

1
B 2

2
r

r 105813.3
T

P

64

27
A 

z

A

Bz

z
z 


 9712.0z 

2
i 10843.2

9712.0

035813.0
)0077558.09712.0ln(19712.0ln 

972.0i  bar72.9fi 



Fugacidades de sólidos y líquidos puros

S L

T

P Queremos evaluar la fugacidad fi de
un líquido que se encuentra a
temperatura T y presión P

T

P

Pvap A la temperatura T el líquido tendrá
una presión de vapor Pvap

Para evaluar la fugacidad fi del líquido podemos seguir el siguiente camino:

donde sat se evalúa a la temperatura T y la presión Pvap del componente

vapsatVsatLsat Pff 

1. Evaluamos la fugacidad fi del líquido saturado a T y Pvap El criterio de
isofugacidad establece que la fugacidad del líquido saturado debe ser
igual a la del vapor saturado a las mismas condiciones

El cálculo de sat puede hacerse utilizando un modelo PVT de fase vapor



2. Corregimos el valor de fLsat teniendo en cuenta cómo varía la fugacidad
con la presión

dPVflnRTddG iii Para ello partimos de

e integramos entre Pvap y P  
P

P

i
f

f
i vapsat

dP
RT

V
flnd











 P

P

i
sat
i

i
vap

dP
RT

V

f

f
ln

donde Vi es el volumen molar del líquido. Suponiendo que el líquido es
incompresible (Vi constante):

 







 vap

i
isat

ii PP
RT

V
expff

El término exponencial se denomina corrección de Poynting POY

 







 vap

i
i

i PP
RT

V
expPOY



La fugacidad del líquido a temperatura T y presión P resulta entonces:

i
vap
i

sat
ii

sat
ii POYPPOYff 

El tratamiento es similar para calcular las fugacidades de sólidos. En este
caso la presión de referencia es la presión de sublimación del sólido. El
sat se evalúa a T y a la presión de sublimación. El volumen en la
corrección de Poynting corresponde al volumen de un sólido

S L

T

P

T

P

Psub

i
sub
i

sat
ii

sat
ii POYPPOYff 

sat se calcula a la presión de sublimación
del sólido a la temperatura T



Ejemplo: Calcular la fugacidad del agua líquida a 200ºC y 40 bar

Utilizamos las tablas de vapor de agua para calcular primero la fugacidad
del agua líquida saturada a 200ºC (Pvap = 1554.9 kPa)

T = 200ºC

P* = 1 kPa

H* =2880.1 kJ/kg

S* =9.9679 kJ/kg K
G* =-1836.21 kJ/kg

G =-250.4 kJ/kg
T = 200ºC

P = 1554.9 kPa

H =2790.9 kJ/kg

S =6.4278 kJ/kg K















15.473314.8

18*)21.18364.250(
expkPa1f sat

i bar17.14kPa1417fsat
i 

Para el cálculo de la corrección de Poynting suponemos que el volumen del
líquido se mantiene constante con la presión y que es numéricamente igual
al volumen del agua líquida saturada a 200ºC

 










 549.1540

15.473146.83

808.20
expPOYi 013.1POYi 



Vemos que el valor de f se mantiene prácticamente constante con la
presión, ya que POY  1

013.1bar17.14POYff i
sat
ii  bar35.14fi 

Calculamos el valor del coeficiente de fugacidad del agua líquida a 200ºC y
40 bar:

40

35.14

P

fi
i  359.0i 

Vemos que el coeficiente de fugacidad de un líquido es apreciablemente
inferior a la unidad.



Cálculo de coeficientes de fugacidad en mezclas

Recordemos que         es la propiedad molar parcial correspondiente a  la propiedad 
molar ln

iln




ijn,P,Ti
i n

lnn
ln



















De aquí surge que el valor de      depende de la composición de la mezcla. Por ende, 
depende de la forma en que el modelo PVT cuantifica la variación de las propiedades 
con la composición

i





Cálculo de     con la ecuación viriali





Para un componente puro vimos que                  donde Bi es el segundo coeficiente 
de fugacidad del componente i puro RT

PB
ln i

i 

Para una mezcla                  donde B representa el segundo coeficiente virial de la 
mezcla RT

PB
ln 

Debemos saber cómo calcular el segundo coeficiente virial de una mezcla.



Para una mezcla binaria de componentes 1 y 2: 22
2
2122111

2
1 ByByy2ByB 

La Termodinámica Estadística demuestra que el segundo coeficiente virial de una 
mezcla es una función cuadrática en composición, calculada a través de una doble 
sumatoria:

 
 

N

1i

N

1j
ijji ByyB yi e yj son las fracciones molares de los componentes i y j

Recordemos que los segundos coeficientes viriales cuantifican interacciones entre 
pares de moléculas. En una mezcla binaria  de compuestos 1 y 2, habrá tres tipos de 
pares de interacción: 1-1, 2-2 y 1-2

1

1

2

2

2

1

B11 es el segundo coeficiente virial del compuesto 1 puro

B22 es el segundo coeficiente virial del compuesto 2 puro

B12 es el segundo coeficiente virial cruzado

(interacción entre una molécula 1 y una molécula 2) 

B12 = B21



22
2
2122111

2
1 ByByy2ByB Otra forma de escribir la ecuación                                            es:

1221222111 yyByByB  22111212 BBB2 donde

Obtenemos la expresión de           derivando respecto de ni: i
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Los coeficientes de fugacidad en una mezcla binaria son:
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22111212 BBB2 con:



Ecuación de Soave-Redlich-Kwong
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kij es un parámetro de interacción binaria que se obtiene ajustando datos 
experimentales del equilibrio entre fases de mezclas binarias

En el caso de las ecuaciones de estado cúbicas, se plantean las siguientes 
ecuaciones para calcular los parámetros a y b de la mezcla

donde iibyb  ijji ayya )k1(aaa ijjiij 

 ii ayaSi kij = 0 el parámetro a de la mezcla resulta:
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Para la ecuación de van der Waals

Cálculo de     con ecuaciones de estado cúbicasi
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Fugacidades     en soluciones ideales if̂

Al analizar la relación entre propiedades de exceso y propiedades
residuales vimos que:

i

i
i

ˆ






P

f

Px

f̂ i

i

id
i 

i
id
i
ˆ 

En una solución ideal i = 1 en todo el rango de composiciones. Por lo tanto el
coeficiente de fugacidad del componente i en la mezcla ideal es igual al
coeficiente de fugacidad del componente puro a la misma T y P:
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En una solución ideal la fugacidad de cada componente en la mezcla varía
linealmente con la composición.



En una mezcla binaria ideal:
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Fugacidades      en soluciones no-ideales if̂

Si el sistema presenta desviaciones positivas a la ley de Raoult id
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De la relación
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Si el sistema presenta desviaciones negativas a la ley de Raoult id
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ideal

real

Acetona + Metanol  y  Acetona + Cloroformo a P = 1 bar y T = 323K

En Acetona + Metanol:
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acac f̂f̂  En Acetona + Cloroformo:
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En los límites de concentración se observan los siguientes comportamientos:
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Ley de Lewis-Randall

Se lo define como el límite de comportamiento ideal de Lewis- Randall (LR)

Este límite de idealidad se define como ley de Henry. La constante de
proporcionalidad se denomina constante de Henry kHi del compuesto i en la
solución.
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Ley de Henry

En el límite xi  1 i  1 varía linealmente con la composiciónif̂

En el límite xi  0 tiende linealmente al valor cero, con una
constante de proporcionalidad distinta de fi, que depende del sistema.
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Ejemplo: El siguiente polinomio expresa la variación de la fugacidad de una
mezcla binaria con la composición, a temperatura y presión constantes:

A partir de esta expresión calcular:

donde A, B y C son función de T y P y donde f esta expresada en bar.

a) Fugacidad del componente 1:

Para x1 = 1 CBAfln 1   CBAexpf1 

b) Fugacidad del componente 2:

Para x2 = 1 Afln 2   Aexpf2 

c) Coeficientes de actividad de los componentes en la mezcla:
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e) Constantes de Henry del componente 1 en 2 y del 2 en 1:

d) Expresión de GE/RT en función de la composición de la mezcla
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El modelo corresponde a la ecuación de Porter
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