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The Physics of Sound 
  
 Sound lies at the very center of speech communication. A sound wave is both the end product of the speech 
production mechanism and the primary source of raw material used by the listener to recover the speaker's message. 
Because of the central role played by sound in speech communication, it is important to have a good understanding 
of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic 
principles underlying the physics of sound, with a particular focus on two ideas that play an especially important 
role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production 
mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of 
various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine 
adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the 
receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the 
same way that a prism breaks white light into components of different optical frequencies. Before getting into these 
ideas it is first necessary to cover the basic principles of vibration and sound propagation.  
 
Sound and Vibration 
 
 A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning 
fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a 
radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in 
a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans). The two 
conditions that are required for the generation of a sound wave are a vibratory disturbance and an elastic medium, 
the most familiar of which is air. We will begin by describing the characteristics of vibrating objects, and then see 
what happens when vibratory motion occurs in an elastic medium such as air. We can begin by examining a simple 
vibrating object such as the one shown in Figure 3-1. If we set this object into vibration by tapping it from the 
bottom, the bar will begin an upward and downward oscillation until the internal resistance of the bar causes the 
vibration to cease. 
 
  The graph to the right of Figure 3-1 is a visual representation of the upward and downward motion of the bar. 
To see how this graph is created, imagine that we use a strobe light to take a series of snapshots of the bar as it 
vibrates up and down. For each snapshot, we measure the instantaneous displacement of the bar, which is the 
difference between the position of the bar at the split second that the snapshot is taken and the position of the bar at 
rest. The rest position of the bar is arbitrarily given a displacement of zero; positive numbers are used for 
displacements above the rest position, and negative numbers are used for displacements below the rest position. So, 
the first snapshot, taken just as the bar is struck, will show an instantaneous displacement of zero; the next snapshot 
will show a small positive displacement, the next will show a somewhat larger positive displacement, and so on. The 
pattern that is traced out has a very specific shape to it. The type of vibratory motion that is produced by a simple 
vibratory system of this kind is called simple harmonic motion or uniform circular motion , and the pattern that is 
traced out in the graph is called a sine wave or a sinusoid.  
 
 

 
 

Figure 3-1. A bar is fixed at one and is set into vibration by tapping it from the bottom. Imagine that 
a strobe light is used to take a series of snapshots of the bar as it vibrates up and down. At each 
snapshot the instantaneous displacement of the bar is measured. Instantaneous displacement is the 
distance between the rest position of the bar (defined as zero displacement) and its position at any 
particular instant in time. Positive numbers signify displacements that are above the rest position, 
while negative numbers signify displacements that are below the rest position. The vibratory pattern 
that is traced out when the sequence of displacements is graphed is called a sinusoid. 
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Basic Terminology 
 
 We are now in a position to define some of the basic terminology that applies to sinusoidal vibration. 
 
periodic: The vibratory pattern in Figure 3-1, and the waveform that is shown in the graph, are examples of 
periodic vibration, which simply means that there is a pattern that repeats itself over time.  
 
cycle: Cycle refers to one repetition of the pattern. The instantaneous displacement waveform in  Figure 3-1 shows 
four cycles, or four repetitions of the pattern. 
 
period: Period is the time required to complete one cycle of vibration. For example, if 20 cycles are completed in 1 
second, the period is 1/20th of a second (s), or 0.05 s. For speech applications, the most commonly used unit of 
measurement for period is the millisecond (ms): 
 
 1 ms = 1/1,000 s = 0.001 s = 10-3 s 
 
A somewhat less commonly used unit is the microsecond (µs): 
 
 1 µs = 1/1,000,000 s = 0.000001 s =  10-6 s 
 
frequency: Frequency is defined as the number of cycles completed in one second. The unit of measurement for 
frequency is hertz (Hz), and it is fully synonymous the older and more straightforward term cycles per second 
(cps). Conceptually, frequency is simply the rate of vibration. The most crucial function of the auditory system is to 
serve as a frequency analyzer – a system that determines how much energy is present at different signal frequencies. 
Consequently, frequency is the single most important concept in hearing science. The formula for frequency is: 
 
 f = 1/t, where: f = frequency in Hz 
   t = period in seconds 
So, for a period 0.05 s: 
 
 f = 1/t = 1/0.05 = 20 Hz 
 
It is important to note that period must be represented in seconds in order to get the answer to come out in cycles per 
second, or Hz. If the period is represented in milliseconds, which is very often the case, the period first has to be 
converted from milliseconds into seconds by shifting the decimal point three places to the left. For example, for a 
period of 10 ms: 
 
 f = 1/10 ms = 1/0.01 s = 100 Hz 
 
Similarly, for a period of 100 µs: 
 
 f = 1/100 µs = 1/0.0001 s = 10,000 Hz 
 
 The period can also be calculated if the frequency is known. Since period and frequency are inversely related, t 
= 1/f. So, for a 200 Hz frequency, t = 1/200 = 0.005 s = 5 ms. 
 
Characteristics of Simple Vibratory Systems 
 
 Simple vibratory systems of this kind can differ from one another in just three dimensions: frequency, 
amplitude, and phase. Figure 3-2 shows examples of signals that differ in frequency. The term amplitude is a bit 
different from the other terms that have been discussed thus far, such as force and pressure. As we saw in the last 
chapter, terms such as force and pressure have quite specific definitions as various combinations of the basic 
dimensions of mass, time, and distance. Amplitude, on the other hand, will be used in this text as a generic term 
meaning "how much." How much what? The term amplitude can be used to refer to the magnitude of displacement, 
the magnitude of an air pressure disturbance, the magnitude of a force, the magnitude of power, and so on. In the 
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present context, the term amplitude refers to the magnitude of the displacement pattern. Figure 3-3 shows two 
displacement waveforms that differ in amplitude. Although the concept of amplitude is as straightforward as the two 
waveforms shown in the figure suggest, measuring amplitude is not as simple as it might seem. The reason is that 
the instantaneous amplitude of the waveform (in this case, the displacement of the object at a particular split 
second in time) is constantly changing. There are many ways to measure amplitude, but a very simple method called 
peak-to-peak amplitude will serve our purposes well enough. Peak-to-peak amplitude is simply the difference in 
amplitude between the maximum positive and maximum negative peaks in the signal. For example, the bottom 
panel in Figure 3-3 has a peak-to-peak amplitude of 10 cm, and the top panel has a peak-to-peak amplitude of 20 
cm. Figure 3-4 shows several signals that are identical in frequency and amplitude, but differ from one another in 
phase. The waveform labeled 0o phase would be produced if the bar were set into vibration by tapping it from the 
bottom. The waveform labeled 180o phase would be produced if the bar were set into vibration by tapping it from 
the top, so that the initial movement of the bar was downward rather than upward. The waveforms labeled 90o phase 
and 270o phase would be produced if the bar were set into vibration by pulling the bar to maximum displacement 
and letting go -- beginning at maximum positive displacement for 90o phase, and beginning at maximum negative 
displacement for 270o phase. So, the various vibratory patterns shown in Figure 3-4 are identical except with respect 
to phase; that is, they begin at different points in the vibratory cycle. As can be seen in Figure 3-5, the system for 
representing phase in degrees treats one cycle of the waveform as a circle; that is, one cycle equals 360o. For 
example, a waveform that begins at zero displacement and shows its initial movement upward has a phase of 0o, a  
waveform that begins at maximum positive displacement and shows its initial movement downward has a phase of 
90o, and so on. 

Figure 3-2. Two vibratory patterns that differ in frequency. The panel on top is higher in frequency 
than the panel on bottom. 
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Figure 3-3. Two vibratory patterns that differ in amplitude. The panel on top is higher in amplitude than the 
panel on bottom. 

Phase: 0

Phase: 90

Phase: 180

Phase: 270

Figure 3-4. Four vibratory patterns that differ in phase. Shown above are vibratory patterns with phases of 00, 900, 
1800, and 2700.  
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Springs and Masses 
 
 We have noted that objects can vibrate at different frequencies, but so far have not discussed the physical 
characteristics that are responsible for variations in frequency. There are many factors that affect the natural 
vibrating frequency of an object, but among the most important are the mass and stiffness of the object. The effects 
of mass and stiffness on natural vibrating frequency can be illustrated with the simple spring-and-mass systems 
shown in Figure 3-6. In the pair of spring-and-mass systems to the left, the masses are identical but one spring is 
stiffer than the other. If these two spring-and-mass systems are set into vibration, the system with the stiffer spring 
will vibrate at a higher frequency than the system with the looser spring. This effect is similar to the changes in 
frequency that occur when a guitarist turns the tuning key clockwise or counterclockwise to tune a guitar string by 
altering its stiffness.1 
 
 The spring-and-mass systems to the right have identical springs but different masses. When these systems are 
set into vibration, the system with the greater mass will show a lower natural vibrating frequency. The reason is that 
the larger mass shows greater inertia and, consequently, shows greater opposition to changes in direction. Anyone 
who has tried to push a car out of mud or snow by rocking it back and forth knows that this is much easier with a 
light car than a heavy car. The reason is that the more massive car shows greater opposition to changes in direction. 
 
 In summary, the natural vibrating frequency of a spring-and-mass system is controlled by mass and stiffness. 
Frequency is directly proportional to stiffness (S↑F↑) and inversely proportional to mass (M↑F↓). It is important to 
recognize that these rules apply to all objects, and not just simple spring-and-mass systems. For example, we will 
see that the frequency of vibration of the vocal folds is controlled to a very large extent by muscular forces that act 
to alter the mass and stiffness of the folds. We will also see that the frequency analysis that is carried out by the 
inner ear depends to a large extent on a tuned membrane whose stiffness varies systematically from one end of the 
cochlea to the other. 
 
Sound Propagation 
 
 As was mentioned at the beginning of this chapter, the generation of a sound wave requires not only vibration, 
but also an elastic medium in which the disturbance created by that vibration can be transmitted (see Box 3-1 [bell 
jar experiment described in Patrick's science book - not yet written]). To say that air is an elastic medium means that 
air, like all other matter, tends to return to its original shape after it is deformed through the application of a force. 
                                                           

1The example of tuning a guitar string is imperfect since the mass of the vibrating portion of the string decreases slightly as the string is 
tightened. This occurs because a portion of the string is wound onto the tuning key as it is tightened. 
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Figure 3-5. The system for representing phase treats one cycle of the vibratory pattern as a circle, 
consisting of 3600. A pattern that begins at zero amplitude heading toward positive values (i.e., heading 
upward) is designated 00 phase; a waveform that begins at maximum positive displacement and shows 
its initial movement downward has a phase of 90o; a waveform that begins at zero and heads 
downward has a phase of 180o; and a waveform that begins at maximum negative displacement and 
shows its initial movement upward has a phase of 270o. . The four phase angles that are shown above 
are just examples. An infinite variety of phase angles are possible. 
 



The Physics of Sound           6 

 

The prototypical example of an object that exhibits this kind of restoring force is a spring. To understand the 
mechanism underlying sound propagation, it is useful to think of air as consisting of collection of particles that are 
connected to one another by springs, with the springs representing the restoring forces associated with the elasticity 
of the medium. Air pressure is related to particle density. When a volume of air is undisturbed, the individual 
particles of air distribute themselves more-or-less evenly, and the elastic forces are at their resting state. A volume of 
air that is in this undisturbed state it is said to be at atmospheric pressure. For our purposes, atmospheric pressure 
can be defined in terms of two interrelated conditions: (1) the air molecules are approximately evenly spaced, and 
(2) the elastic forces, represented by the interconnecting springs, are neither compressed nor stretched beyond their 
resting state. When a vibratory disturbance causes the air particles to crowd together (i.e., producing an increase in 
particle density), air pressure is higher than atmospheric, and the elastic forces are in a compressed state. 
Conversely, when particle spacing is relatively large, air pressure is lower than atmospheric.  
 

 When a vibrating object is placed in an elastic medium, an air pressure disturbance is created through a chain 
reaction similar to that illustrated in Figure 3-7. As the vibrating object (a tuning fork in this case) moves to the 
right, particle a, which is immediately adjacent to the tuning fork, is displaced to the right. The elastic force 
generated between particles a and b (not shown in the figure) has the effect a split second later of displacing particle 
b to the right. This disturbance will eventually reach particles c, d, e, and so on, and in each case the particles will be 
momentarily crowded together. This crowding effect is called compression or condensation, and  it is characterized 
by dense particle spacing and, consequently, air pressure that is slightly higher than atmospheric pressure. The 
propagation of the disturbance is analogous to the chain reaction that occurs when an arrangement of dominos is 
toppled over. Figure 3-7 also shows that at some close distance to the left of a point of compression, particle spacing 
will be greater than average, and the elastic forces will be in a stretched state. This effect is called rarefaction, and  
it is characterized by relatively wide particle spacing and, consequently, air pressure that is slightly lower than 
atmospheric pressure. 
 
 The compression wave, along with the rarefaction wave that immediately follows it, will be propagated outward 
at the speed of sound. The speed of sound varies depending on the average elasticity and density of the medium in 
which the sound is propagated, but a good working figure for air is about 35,000 centimeters per second, or 
approximately 783 miles per hour. Although Figure 3-7 gives a reasonably good idea of how sound propagation 
works, it is misleading in two respects. First, the scale is inaccurate to an absurd degree: a single cubic inch of air 
contains approximately 400 billion molecules, and not the handful of particles shown in the figure. Consequently, 
the compression and rarefaction effects are statistical rather than strictly deterministic as shown in Figure 3-7. 
Second, although Figure 3-7 makes it appear that the air pressure disturbance is propagated in a simple straight line 
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Figure 3-7. Shown above is a highly schematic illustration of the chain reaction that 
results in the propagation of a sound wave (modeled after Denes and Pinson, 1963). 
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from the vibrating object, it actually travels in all directions from the source. This idea is captured somewhat better 
in Figure 3-8, which shows sound propagation in two of the three dimensions in which the disturbance will be 
transmitted. The figure shows rod and piston connected to a wheel spinning at a constant speed. Connected to the 
piston is a balloon that expands and contracts as the piston moves in and out of the cylinder. As the balloon expands 
the air particles are compressed; i.e., air pressure is momentarily higher than atmospheric. Conversely, when the 
balloon contracts the air particles are sucked inward, resulting in rarefaction. The alternating compression and 
rarefaction waves are propagated outward in all directions form the source. Only two of the three dimensions are 
shown here; that is, the shape of the pressure disturbance is actually spherical rather than the circular pattern that is 
shown here. Superimposed on the figure, in the graph labeled “one line of propagation,” is the resulting air pressure 
waveform. Note that the pressure waveform takes on a high value during instants of compression and a low value 
during instants of rarefaction. The figure also gives some idea of where the term uniform circular motion  comes 
from. If one were to make a graph plotting the height of the connecting rod on the rotating wheel as a function of 
time it would trace out a perfect sinusoid; i.e., with exactly the shape of the pressure waveform that is superimposed 
on the figure. 

 
The Sound Pressure Waveform 
 
 Returning to Figure 3-7 for a moment, imagine that we chose some specific distance from the tuning fork to 
observe how the movement and density of air particles varied with time. We would see individual air particles 
oscillating small distances back and forth, and if we monitored particle density we would find that high particle 
density (high air pressure) would be followed a moment later by relatively even particle spacing (atmospheric 
pressure), which would be followed by a moment later by wide particle spacing (low air pressure), and so on. 
Therefore, for an object that is vibrating sinusoidally, a graph showing variations in instantaneous air pressure 
over time would also be sinusoidal. This is illustrated in Figure 3-9.  
 
 The vibratory patterns that have been discussed so far have all been sinusoidal. The concept of a sinusoid has 
not been formally defined, but for our purposes it is enough to know that a sinusoid has precisely the smooth shape 
that is shown in Figures such as 3-4 and 3-5. While sinusoids, also known as pure tones,  have a very special place 
in acoustic theory, they are rarely encountered in nature. The sound produced by a tuning fork comes quite close to a 
sinusoidal shape, as do the simple tones that are used in hearing tests. Much more common in both speech and music 
are more complex, nonsinusoidal patterns, to be discussed below. As will be seen in later chapters, these complex 
vibratory patterns play a very important role in speech. 
 
The Frequency Domain 
 

Figure 3-8. Illustration of the propagation of a sound wave in two dimensions. 
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 We now arrive at what is probably the single most important concept for understanding both hearing and speech 
acoustics.  The graphs that we have used up to this point for representing either vibratory motion or the air pressure 
disturbance created by this motion are called time domain representations. These graphs show how instantaneous 
displacement (or instantaneous air pressure) varies over time. Another method for representing either sound or 
vibration is called a frequency domain representation, also known as a spectrum. There are, in fact, two kinds of 
frequency domain representations that are used to characterize sound. One is called an amplitude spectrum (also 
known as a magnitude spectrum or a power spectrum, depending on how the level of the signal is represented) 
and the other is called a phase spectrum. For reasons that will become clear soon, the amplitude spectrum is by far 
the more important of the two. An amplitude spectrum is simply a graph showing what frequencies are present with 
what amplitudes. Frequency is given along the x axis and some measure of amplitude is given on the y axis. A phase 
spectrum is a graph showing what frequencies are present with what phases. 
  
 Figure 3-10 shows examples of the amplitude and phase spectra for several sinusoidal signals. The top panel 
shows a time-domain representation of a sinusoid with a period of 10 ms and, consequently, a frequency of 100 Hz 
(f = 1/t = 1/0.01 sec = 100 Hz). The peak-to-peak amplitude for this signal is 400 µPa, and the signal has a phase of 
90o.  Since the amplitude spectrum is a graph showing what frequencies are present with what amplitudes, the 
amplitude spectrum for this signal will show a single line at 100 Hz with a height of 400 µPa. The phase spectrum is 
a graph showing what frequencies are present with what phases, so the phase spectrum for this signal will show a 
single line at 100 Hz with a height of 90o. The second panel in Figure 3-10 shows a 200 Hz sinusoid with a peak-to-
peak amplitude of 200 µPa and a phase of 180o. Consequently, the amplitude spectrum will show a single line at 200 
Hz with a height of 100 µPa, while the phase spectrum will show a line at 200 Hz with a height of 180o.  
 
Complex Periodic Sounds 
 
 Sinusoids are sometimes referred to as simple periodic signals. The term "periodic" means that there is a 
pattern that repeats itself, and the term "simple" means that there is only one frequency component present. This is 
confirmed in the frequency domain representations in Figure 3-10, which all show a single frequency component in 
both the amplitude and phase spectra. Complex periodic signals involve the repetition of a nonsinusoidal pattern, 
and in all cases, complex periodic signals consist of more than a single frequency component. All nonsinusoidal 
periodic signals are considered complex periodic. 

Figure 3-8. Figure not yet drawn. The picture above is just a place holder. 
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 Figure 3-11 shows several examples of complex periodic signals, along with the amplitude spectra for these 
signals. The time required to complete one cycle of the complex pattern is called the fundamental period. This is 
precisely the same concept as the term period that was introduced earlier. The only reason for using the term 
"fundamental period" instead of the simpler term "period" for complex periodic signals is to differentiate the 
fundamental period (the time required to complete one cycle of the pattern as a whole) from other periods that may 
be present in the signal (e.g., more rapid oscillations that might be observed within each cycle). The symbol for 
fundamental period is to. Fundamental frequency (fo) is calculated from fundamental period using the same kind of 
formula that we used earlier for sinusoids: 
 
 fo = 1/to 
 
The signal in the top panel of Figure 3-11 has a fundamental period of 5 ms, so  fo = 1/0.005 = 200 Hz. 
 
 Examination of the amplitude spectra of the signals in Figure 3-11 confirms that they do, in fact, consist of 
more than a single frequency. In fact, complex periodic signals show a very particular kind of amplitude spectrum 
called a harmonic spectrum. A harmonic spectrum shows energy at the fundamental frequency and at whole 
number multiples of the fundamental frequency.  For example, the signal in the top panel of Figure 3-11 has energy 
present at 200 Hz, 400 Hz, 600 Hz, 800 Hz, 1,000 Hz, 1200 Hz, and so on. Each frequency component in the  
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Figure 3-10. Time and frequency domain representations of three sinusoids. The frequency domain 
consists of two graphs: an amplitude spectrum and a phase spectrum. An amplitude spectrum is a 
graph showing what frequencies are present with what amplitudes, and a phase spectrum is a graph 
showing the phases of each frequency component. 
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amplitude spectrum of a complex periodic signal is called a harmonic (also known as a partial ). The fundamental 
frequency, in this case 200 Hz, is also called the first harmonic, the 400 Hz component (2 ⋅ fo) is called the second 
harmonic,  the 600 Hz component (3 ⋅ fo) is called the third harmonic, and so on. 
 
 The second panel in Figure 3-11 shows a complex periodic signal with a fundamental period of 10 ms and, 
consequently, a fundamental frequency of 100 Hz. The harmonic spectrum that is associated with this signal will 
therefore show energy at 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, and so on. The bottom panel of Figure 3-11 
shows a complex periodic signal with a fundamental period of 2.5 ms, a fundamental frequency of 400 Hz, and 
harmonics at 400, 800, 1200, 1600, and so on. Notice that there two completely interchangeable ways to define the 
term fundamental frequency. In the time domain, the fundamental frequency is the number of cycles of the complex 
pattern that are completed in one second. In the frequency domain, except in the case of certain special signals, the 
fundamental frequency is the lowest harmonic in the harmonic spectrum. Also, the fundamental frequency defines 
the harmonic spacing; that is, when the fundamental frequency is 100 Hz, harmonics will be spaced at 100 Hz 

Figure 3-11. Time and frequency domain representations of three complex periodic signals. 
Complex periodic signals have harmonic spectra, with energy at the fundamental frequency (f0) and 
at whole number multiples of f0 (f0

. 2, f0
. 3, f0

. 4, etc.) For example, the signal in the upper left, with a 
fundamental frequency of 200 Hz, shows energy at 200 Hz, 400 Hz, 600 Hz, etc. In the spectra on 
the right, amplitude is measured in arbitrary units. The main point being made in this figure is the 
distribution of harmonic frequencies at whole number multiples of f0 for complex periodic signals. 
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intervals (i.e., 100, 200, 300 ...), when the fundamental frequency is 125 Hz, harmonics will be spaced at 125 Hz 
intervals (i.e., 125, 250, 375...), and when the fundamental frequency is 200 Hz, harmonics will be spaced at 200 Hz  
intervals (i.e., 200, 400, 600 ...). (For some special signals this will not be the case.2) So, when fo is low, harmonics 
will be closely spaced, and when fo is high, harmonics will be widely spaced. This is clearly seen in Figure 3-11: the 
signal with the lowest f0 (100 Hz, the middle signal) shows the narrowest harmonic spacing, while the signal with 
the highest f0 (400 Hz, the bottom signal) shows the widest harmonic spacing.  
 
  

 

There are certain characteristics of the spectra of complex periodic sounds that can be determined by making simple 
measurements of the time domain signal, and there are certain other characteristics that require a more complex 
analysis. For example, simply by examining the signal in the bottom panel of Figure 3-11 we can determine that it is 
complex periodic (i.e., it is periodic but not sinusoidal) and therefore it will show a harmonic spectrum with energy 
at whole number multiples of the fundamental frequency. Further, by measuring the fundamental period (2.5 ms)  

                                                           
2There are some complex periodic signals that have energy at odd multiples of  the fundamental frequency only. A square wave, for 

example, is a signal that alternates between maximum positive amplitude and maximum negative amplitude. The spectrum of square wave shows 
energy at odd multiples of the fundamental frequency only. Also, a variety of simple signal processing tricks can be used to create signals with 
harmonics at any arbitrary set of frequencies. For example, it is a simple matter to create a signal with energy at 400, 500, and 600 Hz only. 
While these kinds of signals can be quite useful for conducting auditory perception experiments, it remains true that most naturally occurring 
complex periodic signals have energy at all whole number multiples of the fundamental frequency. 

Figure 3-12. Time and frequency domain representations of three non-transient complex aperiodic 
signals. Unlike complex periodic signals, complex aperiodic signals show energy that is spread 
across the spectrum. This type of spectrum is called dense or continuous. These spectra have a very 
different appearance from the “picket fence” look that is associated with the discrete, harmonic 
spectra of complex periodic signals.  
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and converting it into fundamental frequency (400 Hz), we are able to determine that the signal will have energy at 
400, 800, 1200, 1600, etc. But how do we know the amplitude of each of these frequency components? And how do 
we know the phase of each component? The answer is that you cannot determine harmonic amplitudes or phases 
simply by inspecting the signal or by making simple measurements of the time domain signals with a ruler.  We will 
see soon that a technique called Fourier analysis is able to determine both the amplitude spectrum and the phase 
spectrum of any signal. We will also see that the inner ears of humans and many other animals have developed a 
trick that is able to produce a neural representation that is comparable in some respects to an amplitude spectrum. 
We will also see that the ear has no comparable trick for deriving a representation that is equivalent to a phase 
spectrum. This explains why the amplitude spectrum is far more important for speech and hearing applications than 
the phase spectrum. We will return to this point later. 
 
 To summarize: (1) a complex periodic signal is any periodic signal that is not sinusoidal, (2) complex periodic 
signals have energy at the fundamental frequency (fo) and at whole number multiples of the fundamental frequency 
(2 ⋅ fo, 3 ⋅ fo, 4 ⋅ fo ...), and (3) although measuring the fundamental frequency allows us to determine the frequency 
locations of harmonics, there is no simple measurement that can tell us harmonic amplitudes or phases. For this, 
Fourier analysis or some other spectrum analysis technique is needed. 
 
Aperiodic Sounds 
 

Figure 3-13. Time and frequency domain representations of three transients. Transients are complex 
aperiodic signals that are defined by their brief duration. Pops, clicks, and the sound gun fire are 
examples of transients.  In common with longer duration complex aperiodic signals, transients show 
dense or continuous spectra, very unlike the discrete, harmonic spectra associated with complex periodic 
sounds.  
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 An aperiodic sound is any sound that does not show a repeating pattern in its time domain representation. 
There are many aperiodic sounds in speech. Examples include the hissy sounds associated with fricatives such as /f/ 
and /s/, and the various hisses and pops associated with articulatory release for the stop consonants /b,d,g,p,t,k/. 
Examples of non-speech aperiodic sounds include a drummer's cymbal or snare drum, the hiss produced by a 
radiator, and static sound produced by a poorly tuned radio. There are two types of aperiodic sounds: (1) continuous 
aperiodic sounds (also known as noise) and (2) transients. Although there is no sharp cutoff, the distinction 
between continuous aperiodic sounds and transients is based on duration. Transients (also "pops" and "clicks") are 
defined by their very brief duration, and continuous aperiodic sounds are of longer duration. Figure 3-12 shows 
several examples of time domain representations and amplitude spectra for continuous aperiodic sounds. The lack of 
periodicity in the time domain is quite evident; that is, unlike the periodic sounds we have seen, there is no pattern 
that repeats itself over time.  
 

Figure 3-14. Illustration of the principle underlying Fourier analysis. The complex periodic signal 
shown in panel e was derived by point-for-point summation of the sinusoidal signals shown in 
panels a-d. Point-for-point summation simply means beginning at time zero (i.e., the start of the 
signal) and adding the instantaneous amplitude of signal a to the instantaneous amplitude of signal b 
at time zero, then adding that sum to the instantaneous amplitude of signal c, also at time zero, then 
adding that sum to instantaneous amplitude of signal d at time zero. The sum of instantaneous 
amplitudes at time zero of signals a-d is the instantaneous amplitude of the composite signal e at 
time zero. For example, at time zero the amplitudes of sinusoids a-d are 0, +100, -200, and 0, 
respectively, producing a sum of -100. This agrees with the instantaneous amplitude at the very 
beginning of composite signal e. The same summation procedure is followed for all time points.  
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 All aperiodic sounds -- both continuous and transient -- are complex in the sense that they always consist of 
energy at more than one frequency. The characteristic feature of aperiodic sounds in the frequency domain is a 
dense or continuous spectrum, which stands in contrast to the harmonic spectrum that is associated with complex 
periodic sounds. In a harmonic spectrum, there is energy at the fundamental frequency, followed by a gap with little 
or no energy, followed by energy at the second harmonic, followed by another gap, and so on. The spectra of 
aperiodic sounds do not share this "picket fence" appearance. Instead, energy is smeared more-or-less continuously 
across the spectrum. The top panel in Figure 3-12 shows a specific type of continuous aperiodic sound called white 
noise. By analogy to white light, white noise has a flat amplitude spectrum; that is, approximately equal amplitude at 
all frequencies. The middle panel in Figure 3-12 shows the sound /s/, and the bottom panel shows sound /f/. Notice 
that the spectra for all three sounds are dense; that is, they do not show the "picket fence" look that reveals harmonic 
structure. As was the case for complex periodic sounds, there is no way to tell how much energy there will be at 
different frequencies by inspecting the time domain signal or by making any simple measures with a ruler. Likewise, 
there is no simple way to determine the phase spectrum. So, after inspecting a time-domain signal and determining 
that it is aperiodic, all we know for sure is that it will have a dense spectrum rather than a harmonic spectrum. 
 
 Figure 3-13 shows time domain representations and amplitude spectra for three transients. The transient in the 
top panel was produced by rapping on a wooden desk, the second is a single clap of the hands, and the third was 
produced by holding the mouth in position for the vowel /o/, and tapping the cheek with an index finger. Note the 
brief durations of the signals. Also, as with continuous aperiodic sounds, the spectra associated with transients are 
dense; that is, there is no evidence of harmonic organization. In speech, transients occur at the instant of articulatory 
release for stop consonants. There are also some languages, such as the South African languages Zulu, Hottentot, 
and Xhosa, that contain mouth clicks as part of their phonemic inventory (MacKay, 1986). Fourier Analysis 
 
 Fourier analysis is an extremely powerful tool that has widespread applications in nearly every major branch 
of physics and engineering. The method was developed by the 19th century mathematician Joseph Fourier, and 
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Figure 3-15. A signal enters a Fourier analyzer in the time domain and exits in the frequency domain. 
As outputs, the Fourier analyzer produces two frequency-domain representations: an amplitude 
spectrum that shows the amplitude of each sinusoidal component that is present in the input signal, and 
a phase spectrum that shows the phase of each of the sinusoids. The input signal can be reconstructed 
perfectly by summing sinusoids at frequencies, amplitudes, and phase that are shown in the Fourier 
amplitude and phase spectra, using the summing method that is illustrated in Figure 3-14.. 
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although Fourier was studying thermal waves at the time, the technique can be applied to the frequency analysis of 
any kind of wave. Fourier's great insight was the discovery that all complex waves can be derived by adding   
sinusoids together, so long as the sinusoids are of the appropriate frequencies, amplitudes, and phases. For example, 
the complex periodic signal at the bottom of Figure 3-14 can be derived by summing sinusoids at 100, 200, 300, and 
400 Hz, with each sinusoidal component having the amplitude and phase that is shown in the figure (see the caption 
of Figure 3-14 for an explanation of what is meant by summing the sinusoidal components). The assumption that all 
complex waves can be derived by adding sinusoids together is called Fourier's theorem, and the analysis technique 
that Fourier developed from this theorem is called Fourier analysis. Fourier analysis is a mathematical technique that 
takes a time domain signal as its input and determines: (1) the amplitude of each sinusoidal component that is 
present in the input signal, and (2) the phase of each sinusoidal component that is present in the input signal. 
Another way of stating this is that Fourier analysis takes a time domain signal as its input and produces two 
frequency domain representations as output: (1) an amplitude spectrum, and (2) a phase spectrum. 
 
 The basic concept is illustrated in Figure 3-15, which shows a time domain signal entering the Fourier analyzer. 
Emerging at the output of the Fourier analyzer is an amplitude spectrum (a graph showing the amplitude of each 
sinusoid that is present in the input signal)  and a phase spectrum (a graph showing the phase of each sinusoid that is 
present in the input signal). The amplitude spectrum tells us that the input signal contains: (1) 200 Hz sinusoid with 
an amplitude of 100 µPa, a 400 Hz sinusoid with an amplitude of 200 µPa, and a 600 Hz sinusoid with an amplitude 
of 50 µPa. Similarly, the phase spectrum tells us that the 200 Hz sinusoid has a phase of 90o, the 400 Hz sinusoid 
has a phase of 180o, and the 600 Hz sinusoid has a phase of 270o. If Fourier's theorem is correct, we should be able 
to reconstruct the input signal by summing sinusoids at 200, 400, and 600 Hz, using the amplitudes and phases that  
are shown. In fact, summing these three sinusoids in this way would precisely reproduce the original time domain 
signal; that is, we would get back an exact replica of our original signal, and not just a rough approximation to it. 
 
 For our purposes it is not important to understand how Fourier analysis works. The most important point about 
Fourier's idea is that, visual appearances aside, all complex waves consist of sinusoids of varying frequencies, 
amplitudes, and phases. In fact, Fourier analysis applies not only to periodic signals such as those shown in Figure 
3-15, but also to noise and transients. In fact, the amplitude spectra of the aperiodic signals shown in Figure 3-13 
were calculated using Fourier analysis. In later chapters we will see that the auditory system is able to derive a 
neural representation that is roughly comparable to a Fourier amplitude spectrum. However, as was mentioned 
earlier, the auditory system does not derive a representation comparable to a Fourier phase spectrum. As a result, 
listeners are very sensitive to changes in the amplitude spectrum but are relatively insensitive to changes in phase. 
 
Some Additional Terminology 
 
Overtones vs. Harmonics: The term overtone and the term harmonic refer to the same concept; they are just 
counted differently. As we have seen, in a harmonic series such as 100, 200, 300, 400, etc., the 100 Hz component 
can be referred to as either the fundamental frequency or the first harmonic; the 200 Hz component is the second 
harmonic, the 300 Hz component is the third harmonic, and so on. An alternative set of terminology would refer to 
the 100 Hz component as the fundamental frequency, the 200 Hz component as the first overtone, the 300 Hz 
component as the second overtone, and so on. Use of the term overtone tends to be favored by those interested in 
musical acoustics, while most other acousticians tend to use the term harmonic. 
 
Octaves vs. Harmonics: An octave refers to a doubling of frequency. So, if we begin at 100 Hz, the next octave up 
would 200 Hz, the next would be 400 Hz, the next would be 800 Hz, and so on. Note that this is quite different from 
a harmonic progression. A harmonic progression beginning at 300 Hz would be 300, 600, 900, 1200, 1500, etc., 
while an octave progression would be 300, 600, 1200, 2400, 4800, etc. There is something auditorilly natural about 
octave spacing, and octaves play a very important role in the organization of musical scales. For example, on a piano 
keyboard, middle A (A5) is 440 Hz, A above middle A (A6) is 880 Hz, A7 is 1,760 and so on. (See Box 3-2). 
 
Wavelength: The concept of wavelength is best illustrated with an example given by Small (1973). Small asks us 
to imagine dipping a finger repeatedly into a puddle of water at a perfectly regular interval. Each time the finger hits 
the water, a wave is propagated outward, and we would see a pattern formed consisting of a series of concentric 
circles (see Figure 3-16). Wavelength is simply the distance between the adjacent waves. Precisely the same concept 
can be applied to sound waves: wavelength is simply the distance between one compression wave and the next (or 
one rarefaction wave and the next or, more generally, the distance between any two corresponding points in adjacent 
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waves). For our purposes, the most important point to be made about wavelength is that there is a simple 
relationship between frequency and wavelength. Using the puddle example, imagine that we begin by dipping our 
finger into the puddle at a very slow rate; that is, with a low "dipping frequency." Since the waves have a long 
period of time to travel from one dip to the next, the wavelength will be large. By the same reasoning, the 
wavelength becomes smaller as the "dipping frequency" is increased; that is, the time allowed for the wave to travel 
at high "dipping frequency" is small, so the wavelength is small. Wavelength is a measure of distance, and the 
formula for calculating wavelength is a straightforward algebraic rearrangement of the familiar "distance = rate ⋅ 
time" formula from junior high school. 
 
 λ = c/f, where: λ = wavelength 
   c = the speed of sound 
   f = frequency 
 
By rearranging the formula, frequency can be calculated if wavelength and the speed of sound are known: 
 
 f = c/λ 
 
Spectrum Envelope: The term spectrum envelope refers to an imaginary smooth line drawn to enclose an 
amplitude spectrum. Figure 3-17 shows several examples. This is a rather simple concept that will play a very 
important role in understanding certain aspects of auditory perception. For example, we will see that our perception 
of a perceptual attribute called timbre  (also called sound quality) is controlled primarily by the shape of the 

Lower Frequency
(Longer Wavelength)

Higher Frequency
(Shorter Wavelength)

λ λ

Figure 3-16. Wavelength is a measure of the distance between the crest of one cycle of a wave and the 
crest of the next cycle (or trough to trough or, in fact, the distance between any two corresponding 
points in the wave). Wavelength and frequency are related to one another. Because the wave has only a 
short time to travel from one cycle to the next, high frequencies produce short wavelengths. 
Conversely, because of the longer travel times, low frequencies produce long wavelengths.  
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spectrum envelope, and not by the fine details of the amplitude spectrum. The examples in Figure 3-17 show how 
differences in spectrum envelope play a role in signaling differences in one specific example of timbre called  
vowel quality (i.e., whether a vowel sounds like /i/ vs. /a/ vs. /u/, etc.).  For example, panels a and b in Figure 3-17 
show the vowel /å/ produced at two different fundamental frequencies. (We know that the fundamental frequencies 
are different because one spectrum shows wide harmonic spacing and the other shows narrow harmonic spacing.) 
The fact that the two vowels are heard as /a/ despite the difference in fundamental frequency can be attributed to the 
fact that these two signals have similar spectrum envelopes. Panels c and d in Figure 3-17 show the spectra of two 
signals with different spectrum envelopes but the same fundamental frequency (i.e., with the same harmonic 
spacing). As we will see in the chapter on auditory perception, differences in fundamental frequency are perceived 
as differences in pitch. So, for signals (a) and (b) in Figure 3-17, the listener will hear the same vowel produced at 
two different pitches. Conversely, for signals (c) and (d) in Figure 3-17, the listener will hear two different vowels 
produced at the same pitch. We will return to the concept of spectrum envelope in the chapter on auditory 
perception. 
 
Amplitude Envelope: The term amplitude envelope refers to an imaginary smooth line that is drawn on top of a 
time domain signal. Figure 3-18 shows sinusoids that are identical except for their amplitude envelopes. It can be 
seen that the different amplitude envelopes reflect differences in the way the sounds are turned on and off. For 
example, panel a shows a signal that is turned on abruptly and turned off abruptly; panel b shows a signal that is 
turned on gradually and turned off abruptly; and so on. Differences in amplitude envelope have an important effect 
on the quality of a sound. As we will see in the chapter on auditory perception, amplitude envelope, along with 
spectrum envelope discussed above, is another physical parameter that affects timbre or sound quality. For 
example, piano players know that a given note will sound different depending on whether or not the damping pedal 
is used. Similarly, notes played on a stringed instrument such as a violin or cello will sound different depending on 
whether the note is plucked or bowed. In both cases, the underlying acoustic difference is amplitude envelope. 
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Vowel: /a/, f0: 100 Hz
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(b)
Vowel: /a/, f0: 200 Hz
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(c)
Vowel: /i/, f0: 150 Hz
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(d)
Vowel: /u/, f0: 150 Hz

Figure 3-17. A spectrum envelope is an imaginary smooth line drawn to enclose an amplitude 
spectrum. Panels a and b show the spectra of two signals (the vowel /å/) with different fundamental 
frequencies (note the differences in harmonic spacing) but very similar spectrum envelopes. Panels c 
and d show the spectra of two signals with different spectrum envelopes (the vowels /i/ and /u/ in this 
case) but the same fundamental frequencies (i.e., the same harmonic spacing).  
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Acoustic Filters 
 
 As will be seen in subsequent chapters, acoustic filtering plays a central role in the processing of sound by the 
inner ear. The human vocal tract also serves as an acoustic filter that modifies and shapes the sounds that are created 
by the larynx and other articulators. For this reason, it is quite important to understand how acoustic filters work. In 
the most general sense, the term filter refers to a device or system that is selective about the kinds of things that are 
allowed to pass through versus the kinds of things that are blocked. An oil filter, for example, is designed to allow 
oil to pass through while blocking particles of dirt. Of special interest to speech and hearing science are frequency 
selective filters. These are devices that allow some frequencies to pass through while blocking or attenuating other 
frequencies. (The term attenuate means to weaken or reduce in amplitude). 
 
 A simple example of a frequency selective filter from the world of optics is a pair of tinted sunglasses. A piece 
of white paper that is viewed through red tinted sunglasses will appear red. Since the original piece of paper is 
white, and since we know that white light consists of all of the visible optical frequencies mixed in equal amounts, 
the reason that the paper appears red through the red tinted glasses is that optical frequencies other than those 
corresponding to red are being blocked or attenuated by the optical filter. As a result, it is primarily the red light that 
is being allowed to pass through. (Starting at the lowest optical frequency and going to the highest, light will appear 
red, orange, yellow, green, blue, indigo, and violet.) 
 
 A graph called a frequency response curve is used to describe how a frequency selective filter will behave. A 
frequency response curve is a graph showing how energy at different frequencies will be affected by the filter. 
Specifically, a frequency response curve plots a variable called "gain" as a function of variations in the frequency of 
the input signal. Gain is the amount of amplification provided by the filter at different signal frequencies. Gains are 
interpreted as amplitude multipliers; for example, suppose that the gain of a filter at 100 Hz is 1.3. If a 100 Hz 
sinusoid enters the filter measuring 10 uPa, the amplitude at the output of the filter at 100 Hz will measure 13 µPa  
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Figure 3-18. Amplitude envelope is an imaginary smooth line drawn to enclose a time-domain signal. 
This feature describes how a sound is turned on and turned off; for example, whether the sound is 
turned on abruptly and turned off abruptly (panel a), turned on gradually and turned off abruptly (panel 
b), turned on abruptly and turned off gradually (panel c), or turned on and off gradually (panel d). 
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(10 µPa x 1.3 = 13 µPa). The only catch in this scheme is that gains can and very frequently are less than 1, meaning 
that the effect of the filter will be to attenuate the signal. For example, if the gain at 100 Hz is 0.5, a 10 µPa input 
signal at 100 Hz will measure 5 µPa at the output of the filter. When the filter gain is 1.0, the signal is unaffected by 
the filter; i.e., a 10 µPa input signal will measure 10 µPa at the output of the filter. 
 
 Figure 3-19 shows frequency response curves for several optical filters. Panel a shows a frequency response 
curve for the red optical filter discussed in the example above. If we put white light into the filter in panel a, the 
signal amplitude at the output of the filter will be high only when the frequency of the input signal is low.  This is 
because the gain of the filter is high only in the low-frequency portion of the frequency-response curve. This is an 
example of a lowpass filter; that is, a filter that allows low frequencies to pass through. Panel b shows an optical 
filter that has precisely the reverse effect on an input signal; that is, this filter will allow high frequencies to pass 
through while attenuating low- and mid-frequency signals. A white surface viewed through this filter would 
therefore appear violet. This is an example of a highpass filter. Panel c shows the frequency response curve for a 
filter that allows a band of energy in the center of the spectrum to pass through while attenuating signal components 
of higher and lower frequency. A white surface viewed through this filter would appear green. This is called a 
bandpass filter. 
  
 Acoustic filters do for sound exactly what optical filters do for light; that is, they allow some frequencies to pass 
through while attenuating other frequencies. To get a better idea of how a frequency response curve is measured, 
imagine that we ask a singer to attempt to shatter a crystal wine glass with a voice signal alone. To see how the 
frequency response curve is created we have to make two rather unrealistic assumptions: (1) we need to assume that 
the singer is able to produce a series of pure tones of various frequencies (the larynx, in fact, produces a complex 
periodic sound and not a sinusoid), and (2) the amplitudes of these pure tones are always exactly the same. The wine 
glass will serve as the filter whose frequency response curve we wish to measure. As shown in Figure 3-20, we 
attach a vibration meter to the wine glass, and the reading on this meter will serve as our measure of output 
amplitude for the filter. For the purpose of this example, will assume that the signal frequency needed to break the 
glass is 500 Hz. We now ask the singer to produce a  low frequency signal, say 50 Hz. Since this frequency is quite 
remote from the 500 Hz needed to break the glass, the output amplitude measured  by the vibration meter will be 
quite low. As the singer gets closer and closer to the required 500 Hz, the measured output amplitude will increase 
systematically until the glass finally breaks. If we assume that the glass does not break but rather reaches a 
maximum amplitude just short of that required to shatter the glass, we can continue our measurement of the 
frequency response curve by asking the singer to produce signals that are increasingly high in frequency. We would  

Figure 3-19. Frequency response curves for three optical filters. The lowpass filter on the left allows 
low frequencies to pass through, while attenuating or blocking optical energy at higher frequencies. 
The highpass filter in the middle has the opposite effect, allowing high frequencies to pass through, 
while attenuating or blocking optical energy at lower frequencies. The bandpass filter on the right 
allows a band of optical frequencies in the center of the spectrum to pass through, while attenuating or 
blocking energy at higher and lower frequencies. 
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find that the output amplitude would become lower and lower the further we got from the 500 Hz natural vibrating 
frequency of the wine glass. The pattern that is traced by our measures of output amplitude at each signal frequency 
would resemble the frequency response curve we saw earlier for green sunglasses; that is, we would see the 
frequency response curve for a bandpass filter. 
 
Additional Comments on Filters 
 
Cutoff Frequency, Center Frequency, Bandwidth. The top panel of Figure 3-21 shows frequency response curves 
for two lowpass filters that differ in a parameter called cutoff frequency. Both filters allow low frequencies to pass 
through while attenuating high frequencies; the filters differ only in the frequency at which the attenuation begins. 
The bottom panel of Figure 3-21 shows two highpass filters that differ in cutoff frequency. There are two additional 
terms that apply only to bandpass filters. In our wineglass example above, the natural vibrating frequency of the 
wine glass was 300 Hz. For this reason, when the frequency response curve is measured, we find that the wine glass 
reaches its maximum output amplitude at 300 Hz. This is called the center frequency or resonance of the filter. It 
is possible for two bandpass filters to have the same center frequency but differ with respect to a property called 
bandwidth. Figure 3-22 shows two filters that differ in bandwidth. The tall, thin frequency response curve describes 
a narrow band filter. For this type of filter, output amplitude reaches a very sharp peak at the center frequency and 
drops off abruptly on either side of the peak. The other frequency response curve describes a wide band filter (also 
called broad band). For the wide band filter, the peak that occurs at the resonance of the filter is less sharp and the 
drop in output amplitude on either side of the center frequency is more gradual. 
 
 
 

Figure 3-20. Illustration of how the frequency response curve of a crystal wine glass  
might be measured. Our singer produces a series of sinusoids that are identical in 
amplitude but cover a wide range of frequencies. (This part of the example is 
unrealistic: the human larynx produces a complex sound rather than a sinusoid.) The 
gain of the wine glass filter can be traced out by measuring the amplitude of 
vibration at the different signal frequencies.) 
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Fixed vs. Variable Filters. A fixed filter is a filter whose frequency response curve cannot be altered. For example, 

an engineer might design a lowpass filter that attenuates at frequencies above 500 Hz, or a bandpass filter that passes 
with a center frequency of 1,000 Hz. It is also possible to create a filter whose characteristics can be varied. For 
example, the tuning dial on a radio controls the center frequency of a narrow bandpass filter that allows a single 
radio channel to pass through while blocking channels at all other frequencies. The human vocal tract is an example 
of a variable filter of the most spectacular sort. For example: (1) during  the occlusion interval that occurs in the 
production of a sound like /b/, the vocal tract behaves like a lowpass filter; (2) in the articulatory posture for sounds 
like /s/ and /sh/ the vocal tract behaves like a highpass filter; and (3) in the production of vowels, the vocal tract 
behaves like a series of bandpass filters connected to one another, and the center frequencies of these filters can be 
adjusted by changing the positions of the tongue, lips, and jaw. To a very great extent, the production of speech 
involves making adjustments to the articulators that have the effect of setting the vocal tract filter in differ modes to 
produce the desired sound quality. We will have much more to say about this in later chapters. 
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Figure 3-21. Lowpass and highpass filters differing in cutoff frequency. 
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Figure 3-22. Frequency response curves for two bandpass filters with identical center 
frequencies but different bandwidths. Both filters pass a band of energy centered around 
2000 Hz, but the narrow band filter is more selective than the wide band filter; that is, 
gain decreases at a higher rate above and below the center frequency for the narrow band 
filter than for the wide band filter 
. 
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Frequency Response Curves vs. Amplitude Spectra. It is not uncommon for students to confuse a frequency 
response curve with an amplitude spectrum. The axis labels are rather similar: an amplitude spectrum plots 
amplitude on the y axis and frequency on the x axis, while a frequency response curve plots gain on the y axis and 
frequency on the x axis. The apparent similarities are deceiving, however, since a frequency response curve and an 
amplitude spectrum display very different kinds of information. The difference is that an amplitude spectrum 
describes a sound while a frequency response curve describes a filter. For any given sound wave, an amplitude 
spectrum tells us what frequencies are present with what amplitudes. A frequency response curve, on the other hand, 
describes a filter, and for that filter, it tells us what frequencies will be allowed to pass through and what frequencies 
will be attenuated. Keeping these two ideas separate will be quite important for understanding the key role played by 
filters in both hearing and speech science. 
 
Resonance 
 
 The concept of resonance has been alluded to on several occasions but has not been formally defined. The term 
resonance is used in two different but very closely related ways. The term resonance refers to: (1) the phenomenon 
of forced vibration, and (2) natural vibrating frequency (also resonant frequency or resonance frequency)  To 
gain an appreciation for both uses of this term, imagine the following experiment. We begin with two identical 
tuning forks, each tuned to 435 Hz. Tuning fork A is set into vibration and placed one centimeter from tuning fork 
B, but not touching it. If we now hold tuning fork B to a healthy ear, we will find that it is producing a 435 Hz tone 
that is faint but quite audible, despite the fact that it was not struck and did not come into physical contact with 
tuning fork A. The explanation for this "action-at-a-distance" phenomenon is that the sound wave generated by 
tuning fork A forces tuning fork B into vibration; that is, the series of compression and rarefaction waves will 
alternately push and pull the tuning fork, resulting in vibration at the frequency being generated by tuning fork A. 
The phenomenon of forced vibration is not restricted to this "action-at-a-distance" case. The same effect can be 
demonstrated by placing a vibrating tuning fork in contact with a desk or some other hard surface. The intensity of 
the signal will increase dramatically because the tuning fork is forcing the desk to vibrate, resulting in a larger 
volume of air being compressed and rarefied.3 
 
 Returning to our original tuning fork experiment, suppose that we repeat this test using two mismatched tuning 
forks; for example, tuning fork A with a natural frequency of 256 Hz and tuning fork B with a natural vibrating 
frequency of 435 Hz. If we repeat the experiment – setting tuning fork A into vibration and holding it one centimeter 
from tuning fork B –  we will find that tuning fork B does not produce an audible tone. The reason is that forced 
vibration is most efficient when the frequency of the driving force is closest to the natural vibration frequency of the 
object that is being forced to vibrate. Another way to think about this is that tuning fork B in these experiments is 
behaving like a filter that is being driven by the signal produced by tuning fork A. Tuning forks, in fact, behave like 
rather narrow bandpass filters. In the experiment with matched tuning forks, the filter was being driven by a signal 
frequency corresponding to the peak in the filter's frequency response curve. Consequently, the filter produced a 
great deal of energy at its output. In the experiment with mismatched tuning forks, the filter is being driven by a 
signal that is remote from the peak in the filter's frequency response curve, producing a low amplitude output signal. 
 
 To summarize, resonance refers to the ability of one vibrating system to force another system into vibration. 
Further, the amplitude of this forced vibration will be greater as the frequency of the driving force approaches the 
natural vibrating frequency (resonance) of the system that is being forced into vibration. 
 
Cavity Resonators 
 
 An air-filled cavity exhibits frequency selective properties and should be considered a filter in precisely the way 
that the tuning forks and wine glasses mentioned above are filters. The human vocal tract is an air-filled cavity that 
behaves like a filter whose frequency response curve varies depending on the positions of the articulators. Tuning 
forks and other simple filters have a single resonant frequency. (Note that we will be using the terms "natural 
vibrating frequency" and "resonant frequency" interchangeably.) Cavity resonators, on the other hand, can have an 
infinite number of resonant frequencies. 

                                                           
3The increase in intensity that would occur as the tuning fork is placed in contact with a hard surface does not mean that additional energy is 

created. The increase in intensity would be offset by a decrease in the duration of the tone, so the total amount of energy would not increase 
relative to a freely vibrating tuning fork. 
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 A simple but very important cavity resonator is the uniform tube . This is a tube whose cross-sectional area is 
the same (uniform) at all points along its length. A simple water glass is an example of a uniform tube. The method 
for determining the resonant frequency pattern for a uniform tube will vary depending on whether the tube is closed 
at both ends, open at both ends, or closed at just one end. The configuration that is most directly applicable to 
problems in speech and hearing is the uniform tube that is closed at one end and open at the other end. The ear canal, 
for example, is approximately uniform in cross-sectional area and is closed medially by the ear drum and open 
laterally. Also, in certain configurations the vocal tract is approximately uniform in cross-sectional area and is 
effectively closed from below by the vocal folds and open at the lips. The resonant frequencies for a uniform tube 
closed at one end are determined by its length. The lowest resonant frequency (F1) for this kind of tube is given by: 
 
 F1 =  c/4L, where: c = the speed of sound 
   L = the length of the tube 
 
For example, for a 17.5 cm tube, F1 = c/4L = 35000/70 = 500 Hz. This tube will also have an infinite number of 
higher frequency resonances at odd multiples of the lowest resonance: 
 
 F1 = F1 . 1 =  500 Hz 
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Figure 3-23. Frequency response curves for three uniform tubes open at one end and closed at the 
other. These kinds of tubes have an infinite number of resonances at odd multiples of the lowest 
resonance. As the figure shows, shortening the tube shifts all resonances to higher frequencies while 
lengthening the tube shifts all resonances to lower frequencies. 
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 F2 = F1 ⋅ 3 =  1,500 Hz 
 F3 = F1 . 5 =  2,500 Hz 
 F4 = F1 ⋅ 7 =  3,500 Hz 
  
 The frequency response curve for this tube for frequencies below 4000 Hz is shown in the solid curve in Figure 
3-23. Notice that the frequency response curve shows peaks at 500, 1500, 2500, and 3500 Hz, and valleys in 
between these peaks. The frequency response curve, in fact, looks like a number of bandpass filters connected in 
series with one another. It is important to appreciate that what we have calculated here is a series of natural vibrating 
frequencies of a tube. What this means is that the tube will respond best to forced vibration if the tube is driven by 
signals with frequencies at or near 500 Hz, 1500 Hz, 2500 Hz, and so on. Also, the resonant frequencies that were 
just calculated should not be confused with harmonics. Harmonics are frequency components that are present in the 
amplitude spectra of complex periodic sounds; resonant frequencies are peaks in the frequency response curve of 
filters. 
 
 We next need to see what will happen to the resonant frequency pattern of the tube when the tube length 
changes. If the tube is lengthened to 20 cm: 
 
 F1 =  c/4L = 35,000/80 = 437.5 Hz 
 F2 =  F1 ⋅ 3 = 1,312.5 Hz 
 F3 =  F1 ⋅ 5 = 2,187.5 Hz 
 F4 =  F1 ⋅ 7 = 3,062.5 Hz 
 
 It can be seen that lengthening the tube from 17.5 cm to 20 cm has the effect of shifting all of the resonant 
frequencies downward (see Figure 3-23). Similarly, shortening the tube has the effect of shifting all of the resonant 
frequencies upward. For example, the resonant frequency pattern for a 15 cm tube would be: 
 
 F1 =  c/4L = 35,000/60 = 583.3 Hz 
 F2 =  F1⋅ 3 = 1,750 Hz 
 F3 =  F1 ⋅ 5 = 2,916.7 Hz 
 F4 =  F1 ⋅ 7 = 4,083.3 Hz 
 
 The general rule is quite simple: all else being equal, long tubes have low resonant frequencies and short tubes 
have high resonant frequencies. This can be demonstrated easily by blowing into bottles of various lengths. The 
longer bottles will produce lower tones than shorter bottles. This effect is also demonstrated every time a water glass 
is filled. The increase in the frequency of the sound that is produced as the glass is filled occurs because the 
resonating cavity becomes shorter and shorter as more air is displaced by water. This simple rule will be quite  
useful. For example, it can be applied directly to the differences that are observed in the acoustic properties of 
speech produced by men, women, and children, who have vocal tracts that are quite different in length. 
 
Resonant Frequencies and Formant Frequencies 
 
 The term "resonant frequency" refers to natural vibrating frequency or, equivalently, to a peak in a frequency 
response curve. For reasons that are entirely historical, if the filter that is being described happens to be a human 
vocal tract, the term formant  frequency is generally used. So, one typically refers to the formant frequencies of the 
vocal tract but to the resonant frequencies of a plastic tube, the body of a guitar, the diaphragm of a loudspeaker, or 
most any other type of filter other than the vocal tract. This is unfortunate since it is possible to get the mistaken idea 
that formant frequencies and resonant frequencies are different sorts of things. The two terms are, in fact, fully 
synonymous. 
 
The Decibel Scale 
 
 The final topic that we need to address in this chapter is the representation of signal amplitude using the decibel 
scale. The decibel scale is a powerful and immensely flexible scale for representing the amplitude of a sound wave. 
The scale can sometimes cause students difficulty because it differs from most other measurement scales in not just 
one but two ways. Most of the measurement scales with which we are familiar are absolute and linear. The decibel 
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scale, however, is relative rather than absolute, and logarithmic rather than linear. Neither of these characteristics is 
terribly complicated, but in combination they can make the decibel scale appear far more obscure than it is. We will 
examine these features one at a time, and then see how they are put together in building the decibel scale. 
 
Linear  vs. Logarithmic Measurement Scales 
 
 Most measurement scales are linear. To say that a measurement scale is linear means that it is based on equal 
additive distances. This is such a common feature of measurement scales that we do not give it much thought. For 
example, on a centigrade (or Fahrenheit) scale for measuring temperature, going from a temperature of 90o to a 
temperature of 91o involves adding one 1o. One rather obvious consequence of this simple additivity rule is that the 
difference in temperature between 10o and 11o is the same as the difference in temperature between 90o and 91o. 
However, there are scales for which this additivity rule does not apply. One of the best known examples is the 
Richter scale that is used for measuring seismic intensity. The difference in seismic intensity between Richter values 
of 4.0 and 5.0, 5.0 and 6.0, 6.0 and 7.0 is not some constant amount of seismic intensity, but rather a constant 
multiple. Specifically, a 7.0 on the Richter scale indicates an earthquake that is 10 times greater in intensity than an 
earthquake that measures 6.0 on the Richter scale. Similarly, an 8.0 on the Richter scale is 10 times greater in 
intensity than a 7.0. Whenever jumping from one scale value to the next involves multiplying by a constant rather 
than adding a constant, the scale is called logarithmic. (The multiplicative constant need not be 10. See Box 3-2 for 
an example of a logarithmic scale – an octave progression – that uses 2 as the constant.) Another way of making the 
same point is to note that the values along the Richter scale are exponents rather than ordinary numbers; for 
example, a Richter value of 6 indicates a seismic intensity of 106, a Richter value of 7 indicates a seismic intensity of 
107, etc. The Richter values can, of course, just as well be referred to as powers or logarithms since both of these 
terms are synonyms for exponent. The decibel scale is an example of a logarithmic scale, meaning that it is based on 
equal multiples rather than equal additive distances. 
 
Absolute vs. Relative Measurement Scales 
 
 A simple example of a relative measurement scale is the Mach scale that is used by rocket scientists to measure 
speed. The Mach scale measures speed not in absolute terms but in relation to the speed of sound. For example, a 
missile at Mach 2.0 is traveling at twice the speed of sound, while a missile at Mach 0.9 is traveling at 90% of the 
speed of sound. So, the Mach scale does not represent a measured speed (Sm) in absolute terms, but rather, 
represents a measured speed in relation to a reference speed (Sm/Sr). The reference that is used for the Mach scale is 
the speed of sound, so a measured absolute speed can be converted to a relative speed on the Mach scale by simple 
division. For example, taking 783 mph as the speed of sound, 1,200 mph = 1200/783 = Mach 1.53. The decibel scale 
also exploits this relative measurement scheme. The decibel scale does not represent a measured intensity (Im) in 
absolute terms, but rather, represents the ratio of a measured intensity to a reference intensity (Im/Ir). 
 
 The decibel scale is trickier than the Mach scale in one important respect. For the Mach scale, the reference is 
always the speed of sound, but for the decibel scale, many different references can be used. In explaining how the 
decibel scale works, we will begin with the commonly used intensity reference of 10-12 w/m2  (watts per square 
meter), which is approximately the intensity that is required for an average normal hearing listener to barely detect a 
1,000 Hz pure tone. So, for our initial pass through the decibel scale, 10-12 w/m2 will serve as Ir, and will perform the 
same function that the speed of sound does for the Mach scale. Table 3-1 lists several sounds that cover a very broad 
range of intensities. The second column shows the measured intensities of those sounds, and the third column shows 
the ratio of those intensities to our reference intensity. Whispered speech, for example, measures approximately 10-8 
w/m2, which is 10,000 times more intense than the reference intensity (10-8/10-12 = 104 = 10,000). The main point to 
be made about column 3 is that the ratios become very large very soon. Even a moderately intense sound like 
conversational speech is 1,000,000 times more intense than the reference intensity. The awkwardness of dealing 
with these very large ratios has a very simple solution. Column 4 shows the ratios written in exponential notation, 
and column 5 simplifies the situation even further by recording the exponent only. The term exponent and the term 
logarithm are synonymous, so the measurement scheme that is expressed by the numbers in column 5 can be 
summarized as follows: (1) divide a measured intensity by a reference intensity (in this case, 10-12 w/m2), (2) take the 
logarithm of this ratio (i.e., write the number in exponential notation and keep the exponent only). This method, in 
fact, is a completely legitimate way to represent signal intensity. The unit of measure is called the bel, after A.G. 
Bell, and the formula is: 
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 bel = log10 Im/Ir, where: Im = a measured intensity 
    Ir = a reference intensity 
 
_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 
 
Table 3-1. Sound intensities and intensity ratios showing how the decibel scale is created. Column 2 shows the 
measured intensities (Im) of several sounds. Column 3 shows the ratio of these intensities to a reference intensity of 
10-12 w/m2. Column 4 shows the ratio written in exponential notation while column 5 shows the exponent only. The 
last column shows the intensity ratio expressed in decibels, which is simply the logarithm of the intensity ratio 
multiplied by 10. 
_____________________________________________________________________________________________ 
    
                              Measured                     Ratio      Ratio in        Exponent        Decibel 
 Sound                Intensity (Im)                (Im/I r)      Exp. Not.        (log10)         (10 x log10) 
 
 Threshold  10-12 w/m2                            1         100                  0                     0 
 @ 1 kHz 
 
 Whisper   10-8 w/m2                     10,000        104                  4                   40 
 
 Conversational      10-6 w/m2                1,000,000        106                   6                   60 
 Speech 
 
 City Traffic          10-4 w/m2             100,000,000         108                  8                   80 
 
 Rock & Roll         10-2 w/m2        10,000,000,000        1010                10                100 
 
 Jet Engine             100 w/m2    1,000,000,000,000        1012                12                120 
_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 
 
Legitimate or not, the bel finds its sole application in textbooks attempting to explain the decibel. For reasons that 
are purely historical, the log10 of the intensity ratio is multiplied by 10, changing bel into the decibel (dB). As shown 
in the last column of Table 3-1, this has the very simple effect of turning 4 bels into 40 decibels, 8 bels into 80 
decibels, etc.  The formula for the decibel, then, is: 
 
 dBIL = 10 log10 Im/Ir, where: 
 
  Im = a measured intensity 
  Ir = a reference intensity 
 
 The designation "IL" stands for intensity level, and it indicates that the underlying measurements are of sound 
intensity and not sound pressure. As will be seen below, a different version of this formula is needed if sound 
pressure measurements are used. The multiplication by 10 in the dBIL formula is a simple operation, but it can 
sometimes have the unfortunate effect of making the formula appear more obscure that it is. The decibel values that 
are calculated, however, should be readily interpretable. For example, 30 dBIL means 3 factors of 10 more intense 
than Ir, 60 dBIL means 6 factors of 10 more intense than Ir, and 90 dBIL means 9 factors of 10 more intense than Ir. 
 
Deriving a Pressure Version of the dB Formula 
 
 In a simple world, we would be finished with the decibel scale. The problem is that the formula is based on 
measurements of sound intensity, but as a purely practical matter sound intensity is difficult to measure. Sound 
pressure, on the other hand, is quite easy to measure. An ordinary microphone, for example, is a pressure sensitive 
device. The problem, then, is that the decibel is defined in terms of intensity measurements, but the measurements 



The Physics of Sound           27 

 

that are actually used will nearly always be measures of sound pressure. This problem can be addressed since there 
is a predictable relationship between intensity (I) and pressure (E): intensity is proportional to pressure squared: 
 
 I ο⊂ Ε2 
 
Knowing this relationship allows us to create a completely equivalent version of the decibel formula that will work 
when sound pressure measurements are used instead of sound intensity measurements. All we need to do is 
substitute squared pressure measurements in place of the intensity measurements: 
 
 dBIL  = 10 log10 Im/Ir (intensity version of formula) 
 dBSPL= 10 log10 E

2
m/E2 (pressure version of formula) 

 

The designation "SPL" stands for sound pressure level, and it indicates that measures of sound pressure have been 
used and not measures of sound intensity. Although the dBSPL formula shown here will work fine, it will almost 
never be seen in this form. The reason is that the formula is algebraically rearranged so that the squaring operation is 
not needed. The algebra is shown below: 
 
(1) dBIL = 10 log10 Im/I r    (the intensity version of the formula) 
    
(2) dBSPL = 10 log10 E

2
m/E2

   (measures of E2 replace measures of I because I ο⊂ E2) 
 
(3) dBSPL =  10 log10 (Em/Er)

2 (a2/b2 = (a/b)2) 
 
(4) dBSPL =  10 ⋅ 2 log10 Em/Er  (this is the only tricky step: log ab = b log a) 
 
(5) dBSPL =  20 log10 Em/Er   (2 ⋅ 10 = 20) 
 
 With the possible exception of the fourth step,4 the algebra is straightforward, but the details of the derivation 
are less important than the following general points: 
 
1. The decibel formula is defined in terms of intensity ratios. The basic formula is; 
 
 dBIL  = 10 log10 Im/Ir. 
 
2. While sound intensity is difficult to measure, sound pressure is easy to measure. It is therefore necessary to 
derive a version of the decibel formula that works when measures of sound pressure are used instead of sound 
intensity. 
 
3. The derivation of the pressure version of the formula is based entirely on the fact that intensity is proportional to 
pressure squared (I ο⊂ Ε2). This allows measures of E2 to replace measures of I, turning: dBIL = 10 log10 Im/I r  into 
dBSPL = 10 log10 E

2
m/Er

2. A few algebra tricks are applied to turn this formula into the more aesthetically pleasing 
final version:  dBSPL = 20 log10 Em/Er . 
 
4. The two versions of the formula are fully equivalent to one another (see Box 3-3).  
 
 This last point about the equivalence of the intensity and sound pressure versions of the formula is explained in 
some detail in Box 3-3, but the basic point is quite simple. The pressure version of the dB formula was derived from 
the intensity version of the formula through algebraic manipulations (based on this relationship: I ο⊂ Ε2). The whole 
 

                                                           
4 Step 4 is the only tricky part of derivation. The reason it works is that squaring a number and then taking a log is the same as taking 

the log first, and then multiplying the log by 2. For example, note that the two calculations below produce the same result:  
 
log 10 1002 =  log 10 10,000 = 4  (square first, then take the log) 
log 10 1002 =  (log 10 100) x 2 = 2 x 2 = 4 (take the log, then multiply by 2) 
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_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 

 
Box 3-2 

 
HARMONICS, OCTAVES, LINEAR SCALES, AND LOGARITHMIC SCALES 

 
 As we will see when the decibel scale is introduced, there is an important distinction to be made between 
linear scales, which are quite common, and logarithmic scales, which are less common but quite important. 
This distinction can be illustrated by examining the difference between a harmonic progression and an octave 
progression. Notice that in a harmonic progression, the spacing between the harmonics is always the same; that 
is, the difference between H1 and H2 is the same as the difference between H2 and H3, and so on. This is because 
increases in frequency between one harmonic and the next involve adding a constant, with the constant being 
the fundamental frequency. For example: 
 
 H1   500 
 H2 1000 (add 500) 
 H3 1500 (add 500) 
 H4 2000 (add 500) 
       .               . 
       .               . 
       .              . 
 
 To get from one scale value to another on an octave progression involves multiplying by a constant rather 
than adding a constant. For example, an octave progression starting at 500 Hz looks like this: 
 
 O1   500 
 O2 1000 (multiply by 2) 
 O3 2000 (multiply by 2) 
 O4 4000 (multiply by 2) 
       .               . 
       .               . 
       .              . 
 
 As a result of the fact that we are multiplying by a constant rather than adding a constant, the spacing is no 
longer even (i.e., the spacing between O1 and O2 is 500 Hz, the spacing between O2 and O3 is 1000 Hz, and so 
on). The point to be made of this is that there are two fundamentally different kinds of scales: (1) scales like 
harmonic progressions that are created by adding a constant, which are by far the more common, and (2) scales 
like octave progressions that are created by multiplying by a constant. Scales that are created by adding a 
constant are called linear scales, while scales that are created by multiplying by a constant are called 
logarithmic scales. Note that for an octave progression, the multiplier happens to be 2, meaning that progressing 
from one frequency to an octave above that frequency involves multiplication by 2. However, a logarithmic 
scale can be built using any multiplier. We will return to the distinction between linear and logarithmic scales 
when we talk about the decibel scale, and there we will see that a logarithmic scale is built around multiplication 
by a constant value of 10 rather than 2. 

 
_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 
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point of algebra, of course, is to keep the expression on the left equal to the expression on the right. The simple and 
useful point that emerges from this is this: If an intensity meter shows that a given sound measures 60 dBIL, for 
example, a pressure meter will show that the same sound measures exactly 60 dBSPL. (This may seem 
counterintuitive due to the differences in the formulas, but see Box 3-3 for the explanation.) The equivalence of the 
two versions of the dB formula greatly simplifies the interpretation of sound levels that are expressed in decibels.  
 
References 
 
 The reference that is used for the Mach scale is always the speed of sound. One of the virtues of the decibel 
scale is that any reference can be used as long as it is clearly specified. The only reference that has been mentioned 
so far is 10-12 w/m2, which is roughly the audibility threshold for a 1,000 Hz pure tone. This is a standard reference 
intensity, and unless otherwise stated it should be assumed that this is used when a signal level is reported in dBIL. 
The standard reference that is used for dBSPL is 20 µPa, so when a signal level is reported in dBSPL it should be 
assumed that this reference is used unless otherwise stated.5 
 
 Many references besides these two standard references can be used. For example, suppose that a speech signal 
is presented to a listener at an average level of 3500 µPa in the presence of a noise signal whose average sound 
pressure is 1400 µPa. The speech-to-noise ratio (S/N) can be represented on a decibel scale, using the level of the 
speech as Em and the level of the noise as Er: 
 
 dBs/n  = 20 log10 Em/ Er 
               = 20 log10 3500/1400 
  =  20 log10 2.5 
           =  20 (0.39794) 
               =  7.96 dB 
 
 To take one more example, assume that a voice patient prior to treatment produces sustained vowels that 
average 2300 µPa. Following treatment the average sound pressures increase to 8890 µPa. The improvement in 
sound pressure (post-treatment relative to pre-treatment) can be represented on a decibel scale: 
 
 dBImprovement  = 20 log10 Epost/Epre 
  = 20 log10 8890/2300 
  = 20 log10 (3.86522) 
  = 20 (0.58717) 
  = 11.74 dB 
 
 A final example can be used to make the point that the decibel scale can be used to represent intensity ratios for 
any type of energy, not just sound. Bright sunlight has a luminance measuring 100,000 cd/m2 (candela per square 
meter). Light from a barely visible star, on the other hand, has a luminance measuring 0.0001 cd/m2. We can now 
ask how much more luminous bright sunlight is in relation to barely visible star light, and the dB scale can be used 
to represent this value. Since the underlying physical quanities here are measures of electromagnetic intensity, we 
want the intensity version of the formula rather than the pressure version. 
 
                dB  = 10 log10 Isunlight/Istarlight 
  = 10 log10 100000/0.0001 
  = 10 log10 105/10-4 
  = 10 log10 109 (division is done by subtracting exponents: 5 – (-4) = 9) 
  = 10 (9) 
  = 90 dB 
 

                                                           
5The standard pressure reference for dBSPL is sometimes given as 0.0002 dynes/cm2 rather than 20 µPa. These two sound pressures are 

identical, however, in exactly the same sense that 4 quarts and 1 gallon are identical. Likewise, the standard reference for dBIL is often given as 
10-16  w/cm2 instead of 10-12 w/m2. These two intensities are also identical. 
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 The fact that we are measuring light rather than sound makes no difference: a decibel is 10 log10 Im/Ir (or, 
equivalently, 20 log10 Em/Er), regardless of whether the energy comes from sound, light, electrical current, or any 
other type of energy. 
 
dB Hearing Level (dBHL ) 
 
 The dB Hearing Level (dBHL) scale was developed specifically for testing hearing sensitivity for pure tones 
of different frequencies. The sound-level dials on clinical audiometers,6 for example, are calibrated in dBHL rather 
than dBSPL. To understand the motivation for the dBHL scale examine Figure 3-24, which shows the sound level (in 
dBSPL) required for the average, normal-hearing listener to barely detect pure tones at frequencies between 125 and 
8000 Hz. This is called the audibility curve  and the simple but very important point to notice about this graph is 
that the curve is not a flat line; that is, the ear is clearly more sensitive at some frequencies than others. The 
differences in sensitivity are quite large in some cases. For example, the average normal-hearing listener will barely 
detect a 1000 Hz pure tone at 7 dBSPL, but at 125 Hz the sound level needs to be cranked all the way up to 45 dBSPL, 
an increase in intensity of nearly 4000:1. Now suppose we were to test pure-tone sensitivity using an audiometer that 
is calibrated in dBSPL. Imagine that a listener barely detects a 1000 Hz pure tone at 25 dBSPL. Does this listener have 
a hearing loss, and if so how large? The only way to answer this question is to consult the data in Figure 3-24, which 
shows that the threshold of audibility for the average normal hearing listener at 1000 Hz is 7 dBSPL. This means that 
the hypothetical listener in this example has a hearing loss of 25-7 = 18 dB. Suppose further that the same listener 
detects a 250 Hz tone at 20 dBSPL. The table in Figure 3-24 shows that normal hearing sensitivity at 250 Hz is 25.5 
dBSPL, meaning that the listener has slightly better than normal hearing at this frequency. As a final example, 
imagine that this listener barely detects a 500 Hz tone at 30 dBSPL. Since the table shows that normal hearing 
sensitivity at 500 Hz is 11.5 dBSPL, the listener has a hearing loss of 30.0-11.5 = 18.5 dB. The simple point to be 
made about these examples is that, with an audiometer dial that is calibrated in dBSPL, it is not possible to determine 
whether a listener has a hearing loss, or to measure the size of that loss, without doing some arithmetic involving the 
normative data in Figure 3-24. The dBHL scale, however, provides a simple solution to this problem that avoids this 
arithmetic entirely. The solution involves calibrating the audiometer in such a way that, when the level dial is set to 
0 dBHL, sound level is set to the threshold of audibility for the average normal-hearing listener for that signal 
frequency. For example, when the level dial is set to 0 dBHL at 125 Hz the level of tone will be 45 dBSPL – the 
threshold of audibility for the average normal hearing listener at this frequency. Now if a listener barely detects the 
125 Hz tone at 0 dBHL, no arithmetic is needed; the listener has normal hearing at this frequency. Further, if the 
listener barely detects this 125 Hz tone at 40 dBHL, for example, the listener must have a 40 dB loss at this frequency 
– and again it is not necessary to consult the data in Figure 3-24. Similarly, when the level dial is set to 0 dBHL at 
250 Hz the level of the tone will be 25.5 dBSPL, which is the audibility threshold at 250 Hz. If this tone is barely 
detected at 0 dBHL, the listener has normal hearing at this frequency. However, if the tone is not heard until the dial 
is increased to 50 dB dBHL, for example, the listener has a 50 dB hearing loss at this frequency. The same system is 
used for all signal frequencies: in all cases, the 0 dBHL reference is not a fixed number as it is for dBSPL (a constant 
value of 20 µPa, no matter what the signal frequency is) or dBIL (a constant value of 10-12 watts/m2

, again 
independent of signal frequency), but rather a family of numbers. In each case the reference for the dBHL scale is the 
threshold of audibility for an average, normal-hearing listener at a particular signal frequency. What this means is 
that values in dBHL are a fixed distance above the audibility curve, although they may be very different levels in 
dBSPL. For illustration, Figure 3-25 shows the audibility curve (the filled symbols) and, above that in the unfilled 
symbols, a collection of values that all measure 30 dBHL. Although the sound levels on the 30 dBHL curve vary 
considerably in dBSPL (i.e. measured using 20 µPa as the reference), every data point on this curve is a constant 3 
factors of 10, or 30 dB, above the audibility curve. The value of 30 dB in this figure is just an example. All values in 
dBHL and dBSPL are interpreted in the same way: 50 dBSPL means that the signal being measured is 100,000 times 
(i.e., 5 factors of 10) more intense than the fixed reference of 20 µPa, independent of frequency; 50 dBHL, on the 
other hand, means that the signal being measured is 100,000 times (again, 5 factors of 10) more intense than a tone 
that is barely audible to a normal-hearing listener at that signal frequency. Similarly, 20 dBSPL means that the signal 
is 20 dB (2 factors of 10) more intense than the fixed reference of 20 µPa, while 20 dBHL means that the signal is 20 
dB (again, 2 factors of 10) above the audibility curve.  
 

                                                           
6A clinical audiometer is an instrument with, among other things, one dial (for each ear)  that controls pure-tone frequency and another dial 

that controls the intensity of the tone. The listener is asked to raise a hand when the tone is barely audible.  
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Summary 
 
 The decibel is a powerful scale for representing signal amplitude. The scale has two important properties: (1) 
similar to the Mach scale, it represents signal level not in absolute terms but as a measured level divided by a 
reference level; and (2) like the Richter scale, the dB scale is logarithmic rather than linear, meaning that it is based 
on equal multiplicative distances rather than equal additive distances. While the decibel is defined in terms of 
intensity ratios, for practical reasons, measures of sound pressure are far more common than measures of sound 
intensity. Consequently, a version of the decibel formula was derived that makes use of pressure ratios rather than 
intensity ratios. The derivation was based on the fact that intensity is proportional to pressure squared. The two 
versions of the decibel formula (dBIL = 10 log 10 Im/I r and dBSPL = 20 log 10 Em/Er) are fully equivalent, meaning that 
if a sound measures 60 dBIL that same sound will measure 60 dBSPL. Unlike the Mach scale, which always uses the 
speed of sound as a reference, any number of references can be used with the decibel scale. The standard reference 
for the dBIL scale is 10-12 w/m2 and the standard reference for the dBSPL scale is 20 µPa. However, any level can be 
used as a reference as long as it is specified. The dBHL scale, widely used in audiological assessment, was developed 
specifically for measuring sensitivity to pure tones of difference frequencies. The reference that is used for the dBHL 
scale is the threshold of audibility at a particular signal frequency for the average, normal-hearing listener. Sound 
levels in dBSPL and dBHL are interpreted quite differently. For example, a pure tone measuring 40 dBSPL is 4 factors 
of 10 (i.e., 40 dB) greater than the fixed SPL reference of 20 µPa, while a pure tone measuring 40 dBHL is 4 factors 
of 10 (again, 40 dB) greater than a tone of that same frequency that is barely audible to an average, normal-hearing 
listener. 
 
 
 

Frequency  Threshold      
                          
     125       45.0                         
     250       25.5                        
     500       11.5                        
     750        8.0                         
    1000        7.0 
    1500        6.5 
    2000        9.0 
    3000       10.0 
    4000        9.5 
    6000       15.5 
    8000       13.0 

Figure 3-24. The threshold of audibility for the average, normal-hearing listener for pure tones varying between 
125 and 8000 Hz. The audibility threshold is the sound level in dBSPL that is required for a listener to barely detect 
a tone. Values on this curve are shown in the table to the right. The most important point to note about this graph 
is that the curve is not flat, meaning that the ear is more sensitive at some frequencies than others. In particular, 
the ear is more sensitive in a range of mid-frequencies between about 1000 and 4000 Hz than it is at lower and 
higher frequencies. The complex shape of this curve provides the underlying motivation for the dBHL scale. See 
text for details.  
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Figure 3-25. The lower function is the audibility curve – the sound level in dBSPL that is required for an average 
normal hearing listener to barely detect pure tones of different frequencies. The upper function shows sound levels for 
a set of tones that all measure 30 dBHL. These tones vary quite a bit in dBSPL (i.e., relative to the constant value of 20 
µPa) but in all cases the tones are a constant 3 factors of 10 in intensity (i.e., 30 dB) above the audibility curve.  
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_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 
 

Box 3-3 
 

THE EQUIVALENCE OF THE INTENSITY AND PRESSURE  
VERSIONS OF THE DECIBEL FORMULA  

 
 One fact about the two versions of the dB formula that is not always well understood is that the dBIL and 
dBSPL formulas are fully equivalent. By "fully equivalent" we mean the following: suppose that a sound intensity 
meter is used to measure the level of some sound, and we find that this sound is 1,000 times more intense than 
the standard intensity reference of 10-12 w/m2. The sound would then measure 30 dBIL (10 log10 1,000 = 10 (3) = 
30 dBIL). Now suppose that we put the sound intensity meter away and use a sound pressure meter to measure 
the same sound. You might think that the sound would measure 60 dBSPL since now we are multiplying by 20 
instead of 10, but the trick is that the ratio is no longer 1,000. Recall that intensity is proportional to pressure 
squared, which means that pressure is proportional to the square root of intensity. This means that if the intensity 
ratio is 1,000, the pressure ratio must be the square root of 1,000, or 31.6. So, the formula now becomes 20 log 
31.6 = 20 (1.5)  = 30 dBSPL, which is exactly what we obtained originally. It will always work out this way: if a 
sound measures 50 dBIL, that same sound will measure 50 dBSPL. 
 
 Table 3-2 might help to make this more clear. The first column shows an intensity ratio, the second column 
shows the corresponding pressure ratio (this is always the square root of the intensity ratio), the third column 
shows the dBIL value (10 log of the intensity ratio), and the fourth column shows dBSPL value (20 log of the 
pressure ratio). As you can see, they are always the same. 
                                
                               ____________________________________________________________ 
 
                                Table  3-2.   Intensity  ratios,  equivalent  pressure  ratios,  dBIL values and 
                         dBSPL values showing the equivalence of the intensity and pressure versions 

                                  of the dB formula. 
                               ____________________________________________________________ 
 
                                  Intensity                  Pressure                      dBIL                      dBSPL 
                                         Ratio                       Ratio                (10 log10 Im/Ir)       (20 log10 Em/Er) 
 
 10  3.16 10.00 10.00 
 20 4.47 13.01 13.01 
 40 6.32 16.02 16.02 
 50 7.07 16.99 16.99 
 60 7.75 17.78 17.78 
 70 8.37 18.45  18.45 
 80 8.94 19.03 19.03 
 90 9.49 19.54  19.54 
 100 10.00 20.00 20.00 
 200 14.14 23.01 23.01 
 300 17.32 24.77 24.77 
 400 20.00 26.02 26.02 
 500 22.36 26.99 26.99 
 1000 31.62 30.00 30.00 
                               ____________________________________________________________ 

 
_____________________________________________________________________________________________ 
_____________________________________________________________________________________________ 
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Study Questions: Physical Acoustics 
 
1. Explain the basic processes that are involved in the propagation of a sound wave. 
 
2. Draw time- and frequency-domain representations of simple periodic, complex periodic, complex aperiodic, and 

transient sounds. 
 
3. Draw time- and frequency-domain representations of two complex periodic sounds with different fundamental 

frequencies. 
 
4. Draw time-domain representations of two simple periodic sounds with the same frequency and phase, but different 

amplitudes. 
 
5. Draw time-domain representations of two simple periodic sounds with the same frequency and different amplitudes but 

different phases. 
 
6. Draw amplitude spectra of two sounds with the same fundamental frequencies but different spectrum envelopes. 
 
7. Draw amplitude spectra of two sounds with different fundamental frequencies but similar spectrum envelopes. 
 
8. Calculate signal frequencies for sinusoids with the following values: 
 
 a. period = 0.34 s  
 b. period = 2 s 
 c. period = 10 ms  
 d. period =  2 ms 
 e. wavelength =  20 cm 
 f. wavelength = 100 cm 
 
Answers: 
 
 a. f = 1/0.34 = 2.94 Hz 
 b. f = 1/2 = 0.5 Hz 
 c. f = 1/0.01 = 100 Hz 
 d. f = 1/.002 = 500 Hz 
 e. f = c/WL (speed of sound/wavelength) = 35000/20 = 1750 Hz 
 f. f = c/WL (speed of sound/wavelength) = 35000/100 = 350 Hz 
 
9. Calculate the three lowest resonant frequencies of the following uniform tubes that are closed at one end and open at 

the other end: 
 
 a. 10 cm 
 b. 30 cm 
 c. 40 cm 
 
Answers: 
 
 a.  wavelength of lowest resonance = 40 cm (10 x 4) 
     f = 35000/40 = 875 
    R1 =  875 (R1 = frequency of resonance number 1) 
     R2 = 2625 
     R3 = 4375 
 
 b. wavelength of lowest resonance = 120 cm (30 x 4) 
     f = 35000/120 = 291.7 
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     R1 =  291.7 
     R2 =  875.0 
     R3 = 1458.3 
 
 c. wavelength of lowest resonance = 160 cm (40 x 4) 
  f = 35000/160 = 218.75 
     R1 =  218.75  
     R2 =  656.25 
     R3 = 1093.75 
 
10. Show what the frequency-response curves look like for the tubes in the problem above. 
 
11. A complex periodic signal has a fundamental period of 4 msec. What is the fundamental frequency of the signal?  At 
what frequencies would we expect to find energy? 
 
12. How are the terms octave and harmonic different? 
 
13. Give examples of the following kinds of graphs, being sure to label both axes: 
 
 a.  amplitude spectrum 
 b.  phase spectrum 
 c.  frequency-response curve 
 d.  time-domain representation  
 
14. Give a brief explanation of the basic idea behind Fourier analysis. What is the input to Fourier analysis and what kind 

of output(s) does it produce? 
 
15. Draw and label frequency-response curves for low-pass, high-pass, and band-pass filters. 
 
16. What parameters control the frequency of vibration of a spring and mass system? 
 
17. Draw the time domain representation of one cycle of a sinusoid as variations in instantaneous air pressure over time 

and one cycle of that same sinusoid as variations in instantaneous velocity over time. 
 
18. How, if at all, are the terms resonant frequency and harmonic different? 
 
19. How, if at all, are the terms resonant frequency and formant different? 
 
20. A harmonic is a peak in: (a) a frequency response curve, (b) an amplitude spectrum, or (c) either a frequency response 

curve or an amplitude spectrum. 
 
21. A resonance is a peak in: (a) a frequency response curve, (b) an amplitude spectrum, or (c) either a frequency response 

curve or an amplitude spectrum. 
 
22. A formant is a peak in: (a) a frequency response curve, (b) an amplitude spectrum, or (c) either a frequency response 

curve or an amplitude spectrum. 
 
23. A frequency response curve describes a _________________________. 
 
24. An amplitude spectrum describes a _________________________. 
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Frequency Response Problems 
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Answers to Frequency Response Problems 
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Decibel Study Questions 
 
 
1. What reference is used for the dBIL scale? 
 
2. What reference is used for the dBSPL scale? 
 
3. What reference is used for the dBHL scale? 
 
4. What reference is used for the dBSL scale? 
 
5. A listener barely detects a 125 Hz pure tone at 55 dBSPL. Does this listener have a hearing loss at 125 Hz, and if 

so, what is the size of the hearing loss? 
 
6. A listener barely detects a 1,000  Hz pure tone at 55 dBSPL. Does this listener have a hearing loss at 1,000  Hz, 

and if so, what is the size of the hearing loss? 
 
7. A listener barely detects a 125 Hz pure tone at 55 dBHL. Does this listener have a hearing loss at 125 Hz, and if 

so, what is the size of the hearing loss? 
 
8. A listener barely detects a 1,000  Hz pure tone at 55 dBHL. Does this listener have a hearing loss at 1,000  Hz, 

and if so, what is the size of the hearing loss? 
 
9. 60 dBSPL at 1,000  Hz means ___________________ more intense than ___________________. 
 
10. 60 dBIL at 1,000  Hz means ___________________ more intense than ___________________. 
 
11. 60 dBHL at 1,000  Hz means ___________________ more intense than ___________________. 
 
12. The reference that is used for the dBSPL scale is: 
 

a. a number 
b. a sentence 

 
13. If the answer to the question above is a number, give the number; if it’s a sentence, give the sentence. 
 
14. The reference that is used for the dBHL scale is: 
 

a. a number 
b. a sentence 

 
15. If the answer to the question above is a number, give the number; if it’s a sentence, give the sentence. 
 
16. A specific individual has a 70 dB hearing loss in the left ear at 1,000 Hz. A 90 dBHL, 1,000 Hz tone that is 

presented to this listener’s left ear would measure ______ dBSL. 
 
17. A sound measures 42 dBIL. On the dBSPL scale, that same sound will measure: 
 

a. 84 dBSPL because with the dBSPL formula we are now are multiplying the ratio by 20 instead of 10. 
b. 42 dBSPL because the two versions of the formula are equivalent 

 
18. A sound measures 60 dBIL. (a) The measured intensity (IM) must therefore be _________ times  

greater than the reference intensity (IR). (b) What would the pressure ratio (EM/ER) be for this same sound? (c) 
Do the arithmetic to show what this sound would measure in dBSPL. 
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19. A sound measures 40 dBIL. (a) The measured intensity (IM) must therefore be _________ times  
greater than the reference intensity (IR). (b) What would the pressure ratio (EM/ER) be for this same sound? (c) 
Do the arithmetic to show what this sound would measure in dBSPL. 

 
20.  On the graph below, put a mark at: (a) 3,000 Hz, 20 dBSPL, and (b) 3,000 Hz, 20 dBHL (the  
       grid lines on the y axis are spaced at 2 dB intervals). 
 
 
 
 

Frequency     Threshold 
  in Hz       in dB SPL 
      
    125          45.0 
    250          25.5 
    500          11.5 
    750           8.0 
   1000           7.0 
   1500           6.5 
   2000           9.0 
   3000          10.0 
   4000           9.5 
   6000          15.5 
   8000          13.0 
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Answers to Decibel Study Questions 
 

1. 10-12 watts/m2 
 
2. 20 µPa (or, equivalently, 0.0002 dynes/cm2) 
 
3. The threshold of audibility for an average, normal-hearing listener at a particular signal frequency. 
 
4. 3. The threshold of audibility for a particular listener at a particular signal frequency. 
 
5. Consulting the attached figure and table showing the audibility curve for average, normal-hearing listeners, we 

find that the threshold of audibility at 125 Hz is 45 dBSPL. A listener who barely detected a 125 Hz tone at 55 
dBSPL would therefore have hearing loss of 55-45=10 dB; that is, the hearing sensitivity of this listener would be 
10 dB worse than normal. 

 
6. Consulting the attached figure and table showing the audibility curve for average, normal-hearing listeners, we 

find that the threshold of audibility at 1,000  Hz is 7 dBSPL. A listener who barely detected a 1,000  Hz tone at 
55 dBSPL would therefore have a hearing loss of 55-7=48 dB; that is, the hearing sensitivity of this listener 
would be 48 dB worse than normal. 

 
7. The reference for dBHL is the audibility threshold, so this listener would have a 55 dB hearing loss at 125 Hz. 

There is no need to consult the table. 
 
8. The reference for dBHL is the audibility threshold, so this listener would have a 55 dB hearing loss at 1,000  Hz. 

There is no need to consult the table. 
 
9. 6 factors of 10 (i.e., 1,000,000 times) more intense than 20 µPa) 
 
10. 6 factors of 10 (i.e., 1,000,000 times) more intense than 10-12 watts/m2 
 
11. 6 factors of 10 (i.e., 1,000,000 times) more intense than a 1,000 Hz tone that is barely audible to an average, 

normal-hearing listener. 
 
12. a number 
 
13. 20 µPa 
 
14. a sentence 
 
15. The threshold of audibility for an average, normal-hearing listener at a particular signal frequency. 
 
16. 20 dBSL. The reference for the dBSL (SL=sensation level) is the threshold of audibility for a specific listener. So, 

what we want to know here very simply is where this 90 dBHL tone is in relation to this particular listener’s 
threshold. This listener has a 70 dB hearing loss at this frequency, so the 90 dBHL tone, which would be 90 dB 
above a normal-hearing listener’s threshold, is only 20 dB above this particular listener’s threshold. 

 
17. 42 dBSPL: The pressure version of the formula was derived from the intensity version through algebraic 

manipulations, so they have to be equivalent to one another. The next problem was designed to illustrate how 
this can be the case. 

 
18. (a) 1,000,000 times (6 factors of 10) more intense than IR. (b) If the intensity ratio is 1,000,000, the pressure 

ratio has to be the square root of 1,000,000, which is 1,000. (c) dBSPL = 20 log 1,000 = 20 . 3 = 60 dBSPL. This is 
exactly what we got for the same sound measured in dBIL. It will always be the same. If a sound measures 60 
dBIL, that same sound will measure 60 dBSPL. 
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19. (a) 10,000 times (4 factors of 10) more intense than IR. (b) If the intensity ratio is 10,000, the pressure ratio has 
to be the square root of 10,000, which is 100. (c) dBSPL = 20 log 100 = 20 . 2 = 40 dBSPL. This is exactly what 
we got for the same sound measured in dBIL. It will always be the same. If a sound measures 40 dBIL, that same 
sound will measure 40 dBSPL. 

 
20. See below. The lower of the two marks is 20 dB (2 factors of 10) above the constant reference line of 20 µPa. 

The higher of the two marks is 20 dB (also 2 factors of 10) above the curvey line, which is the threshold of 
audibility for the average normal-hearing listener. 
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