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The Physics of Sound

Sound lies at the very center of speech commuaitad sound wave is both the end product of treesh
production mechanism and the primary source ofrreaterial used by the listener to recover the spésakeessage.
Because of the central role played by sound indpeemmunication, it is important to have a gooderstanding
of how sound is produced, modified, and measurad.plurpose of this chapter will be to review sorasi®
principles underlying the physics of sound, withaaticular focus on two ideas that play an esplgdiaiportant
role in both speech and hearing: the concept ofpeetrum andacoustic filtering. The speech production
mechanism is a kind of assembly line that operdayegenerating some relatively simple sounds cangistf
various combinations of buzzes, hisses, and payisthen filtering those sounds by making a numibdéine
adjustments to the tongue, lips, jaw, soft palaig, other articulators. We will also see that aiedustep at the
receiving end occurs when the ear breaks this cexrgund into its individual frequency componentsiuch the
same way that a prism breaks white light into congots of different optical frequencies. Before iggtinto these
ideas it is first necessary to cover the basicgples of vibration and sound propagation.

Sound and Vibration

A sound wave is an air pressure disturbance tisatteefrom vibration. The vibration can come frortuaing
fork, a guitar string, the column of air in an angaipe, the head (or rim) of a snare drum, stearapmsg from a
radiator, the reed on a clarinet, the diaphragm loludspeaker, the vocal cords, or virtually amyghtihat vibrates in
a frequency range that is audible to a listenargindy 20 to 20,000 cycles per second for humansg.tvvo
conditions that are required for the generatioa sbund wave are a vibratory disturbance and atielaedium,
the most familiar of which is air. We will begin loigscribing the characteristics of vibrating otgeeind then see
what happens when vibratory motion occurs in astielanedium such as air. We can begin by examiaisgnple
vibrating object such as the one shown in Figulle B-we set this object into vibration by tappiihdgrom the
bottom, the bar will begin an upward and downwasdiltation until the internal resistance of the bauses the
vibration to cease.

The graph to the right of Figure 3-1 is a visugdresentation of the upward and downward moticthetar.
To see how this graph is created, imagine thatseeaustrobe light to take a series of snapshdtsedbar as it
vibrates up and down. For each snapshot, we metimirestantaneous displacementf the bar, which is the
difference between the position of the bar at tii¢ second that the snapshot is taken and theipogif the bar at
rest. The rest position of the bar is arbitrarilyeg a displacement of zero; positive numbers agsl dor
displacements above the rest position, and negatimgers are used for displacements below the@ossion. So,
the first snapshot, taken just as the bar is sfrwwdkshow an instantaneous displacement of zév@next snapshot
will show a small positive displacement, the neitt show a somewhat larger positive displacemend, so on. The
pattern that is traced out has a very specific shiajit. The type of vibratory motion that is praéd by a simple
vibratory system of this kind is callaiimple harmonic motionor uniform circular motion , and the pattern that is

traced out in the graph is callediae waveor asinusoid

Figure 3-1. A bar is fixed at one and is set into vibrationtbgping it from the bottommagine tha

a strobe light is used to take a series of snapsifdhe bar as it vibrates up and down. At each
snapshot thenstantaneous displacementf the bar is measured. Instantaneous displaceisém
distance between the rest position of the barrddfas zero displacement) and its position at any
particular instant in time. Positive numbers sigmifsplacements that are above the rest position,
while negative numbers signify displacements thatelow the rest position. The vibratory pattern
that is traced out when the sequence of displacenegraphed is calledsinusoid
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Basic Terminology
We are now in a position to define some of theds@sminology that applies to sinusoidal vibration

periodic: The vibratory pattern in Figure 3-1, and the waxm that is shown in the graph, are examples of
periodic vibration, which simply means that there is a patthat repeats itself over time.

cycle Cycle refers to one repetition of the pattern. The instaeous displacement waveform in Figure 3-1 shows
four cycles, or four repetitions of the pattern.

period: Period is the time required to complete one cycle of ibra For example, if 20 cycles are completed in 1
second, the period is 1/20th of a second (s),@5 8. For speech applications, the most commordyg usit of
measurement for period is the millisecond (ms):

1 ms=1/1,000s =0.001 s =48
A somewhat less commonly used unit is the micrasegdas):
1us = 1/1,000,000 s = 0.000001 s =°%0

frequency: Frequencyis defined as the number of cycles completed insmeend. The unit of measurement for
frequency ishertz (Hz), and it is fully synonymous the older and moraightforward terntycles per second
(cp9). Conceptually, frequency is simply the rate ddration. The most crucial function of the auditeggtem is to
serve as a frequency analyzer — a system thatndeis how much energy is present at different sifypguencies.
Consequently, frequency is the single most importancept in hearing science. The formula for fezauy is:

f = 1/t, where: f = frequency in Hz
t = periodin seconds
So, for a period 0.05 s:

f=1/t=1/0.05=20 Hz

It is important to note that period must be repnése in seconds in order to get the answer to cauhén cycles per
second, or Hz. If the period is represented iniseitlonds, which is very often the case, the pdiisthas to be
converted from milliseconds into seconds by shiftine decimal point three places to the left. B@neple, for a
period of 10 ms:

f=1/10 ms = 1/0.01 s = 100 Hz
Similarly, for a period of 10Qs:
f=1/100ps = 1/0.0001 s = 10,000 Hz

The period can also be calculated if the frequéséynown. Since period and frequency are inversslbted, t
= 1/f. So, for a 200 Hz frequency, t = 1/200 = G.80= 5 ms.

Characteristics of Simple Vibratory Systems

Simple vibratory systems of this kind can diffesrh one another in just three dimensions: frequency
amplitude, and phase. Figure 3-2 shows examplegoéls that differ in frequency. The teamplitude is a bit
different from the other terms that have been dised thus far, such as force and pressure. Aswnghe last
chapter, terms such as force and pressure havespétific definitions as various combinationshaf basic
dimensions of mass, time, and distance. Amplitodethe other hand, will be used in this text ag@egic term
meaning "how much." How much what? The term amgétoan be used to refer to the magnitude of diepteat,
the magnitude of an air pressure disturbance, tignitude of a force, the magnitude of power, andredn the
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present context, the term amplitude refers to tagmitude of the displacement pattern. Figure 3evshiwo
displacement waveforms that differ in amplitudeth&ligh the concept of amplitude is as straightfodves the two
waveforms shown in the figure suggest, measuringlitude is not as simple as it might seem. Theaeés that
theinstantaneous amplitudeof the waveform (in this case, the displacemenhefobject at a particular split
second in time) is constantly changing. There amaynways to measure amplitude, but a very simpléhodecalled
peak-to-peak amplitude will serve our purposes etiugh. Peak-to-peak amplitude is simply the dfiee in
amplitude between the maximum positive and maximegative peaks in the signal. For example, theobott
panel in Figure 3-3 has a peak-to-peak amplituddafm, and the top panel has a peak-to-peak ardplitf 20

cm. Figure 3-4 shows several signals that areiickdnb frequency and amplitude, but differ fromecenother in
phase. The waveform labeletghase would be produced if the bar were set iithi@tion by tapping it from the
bottom. The waveform labeled 18thase would be produced if the bar were set iift@tion by tapping it from
the top, so that the initial movement of the baswawnward rather than upward. The waveforms lab@{®phase
and 270 phase would be produced if the bar were set iifi@tion by pulling the bar to maximum displacement
and letting go -- beginning at maximum positiveptigement for 90phase, and beginning at maximum negative
displacement for 27(hase. So, the various vibratory patterns showfigare 3-4 are identical except with respect
to phase; that is, they begin at different pointthie vibratory cycle. As can be seen in Figure 8 system for
representing phase in degrees treats one cycleafaveform as a circle; that is, one cycle eqda. For
example, a waveform that begins at zero displaceamhshows its initial movement upward has a pb&sg a
waveform that begins at maximum positive displacgnaed shows its initial movement downward has aspltof
90, and so on.
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Figure 3-2. Two vibratory patterns that differ in frequency.eTpanel on top is higher in frequency
than the panel on bottom.
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Figure 3-3. Two vibratory patterns that differ in amplitude.€Tpanel on top is higher in amplitude than the
panel on bottom.
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Figure 3-4. Four vibratory patterns that differ in phase. Shabove are vibratory patterns with phases’p9,
18¢, and 276,
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Figure 3-5. The system for representing phase treats one ofithe vibratory pattern as a circle,
consisting of 368 A pattern that begins at zero amplitude headimgatd positive valueg.e., headin
upward) is designated Pphase; a waveform that begins at maximum positisglacement and shows
its initial movement downward has a phase ¢f 8Gvaveform that begins at zero and heads
downward has a phase of £88nhd a waveform that begiasmaximum negative displacement and
shows its initial movement upward has a phase 06%.27The four phase angles that are shown above
are just examples. An infinite variety of phaselasgre possible.

Springs and Masses

We have noted that objects can vibrate at diffefireguencies, but so far have not discussed tlsiqdl
characteristics that are responsible for variatiarfsequency. There are many factors that affeetrtatural
vibrating frequency of an object, but among the tnmoportant are thenassandstiffnessof the object. The effects
of mass and stiffness on natural vibrating freqyesan be illustrated with the simple spring-and-ens{gstems
shown in Figure 3-6. In the pair of spring-and-msgstems to the left, the masses are identicabeitspring is
stiffer than the other. If these two spring-and-snsgstems are set into vibration, the system wighstiffer spring
will vibrate at a higher frequency than the systeithh the looser spring. This effect is similar hetchanges in
frequency that occur when a guitarist turns théntyikey clockwise or counterclockwise to tune agustring by
altering its stiffnesd.

The spring-and-mass systems to the right havdiaésprings but different masses. When theseegystare
set into vibration, the system with the greatersnaifl show a lower natural vibrating frequency.eTireason is that
the larger mass shows greater inertia and, conadgughows greater opposition to changes in divactAnyone
who has tried to push a car out of mud or snowoloking it back and forth knows that this is muckieawith a
light car than a heavy car. The reason is thabtbee massive car shows greater opposition to clsangdirection.

In summary, the natural vibrating frequency opérgg-and-mass system is controlled by mass affdesi.
Frequency is directly proportional to stiffness F$) and inversely proportional to mass {F ). It is important to
recognize that these rules apply to all objectd, rast just simple spring-and-mass systems. For pigme will
see that the frequency of vibration of the voctd$as controlled to a very large extent by musctdeces that act
to alter the mass and stiffness of the folds. Wkalgo see that the frequency analysis that isezhout by the
inner ear depends to a large extent on a tuned maemlvhose stiffness varies systematically from ek of the
cochlea to the other.

Sound Propagation

As was mentioned at the beginning of this chapler generation of a sound wave requires not otigation,
but also an elastic medium in which the disturbareated by that vibration can be transmitted Bme3-1[bell
jar experiment described in Patrick's science boolkt yet writte). To say that air is an elastic medium means that
air, like all other matter, tends to return todtginal shape after it is deformed through theli@pgion of a force.

IThe example of tuning a guitar string is imperfante the mass of the vibrating portion of thengtidecreases slightly as the string is
tightened. This occurs because a portion of thegsts wound onto the tuning key as it is tightened
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The prototypical example of an object that exhithis kind of restoring force is a spring. To urstend the
mechanism underlying sound propagation, it is ugefthink of air as consisting of collection ofrfieles that are
connected to one another by springs, with the gpriepresenting the restoring forces associatddtigt elasticity
of the mediumAir pressure is related to particldensity. When a volume of air is undisturbed, the indidu
particles of air distribute themselves more-or-kegsnly, and the elastic forces are at their rgsdtate. A volume of
air that is in this undisturbed state it is saidéoatatmospheric pressure For our purposes, atmospheric pressure
can be defined in terms of two interrelated condit (1) the air molecules are approximately evepbced, and
(2) the elastic forces, represented by the intareoting springs, are neither compressed nor stdtbkyond their
resting state. When a vibratory disturbance catiseair particles to crowd together (i.e., prodgcm increase in
particle density), air pressure is higher than apheric, and the elastic forces are tompressedstate.
Conversely, when particle spacing is relativelgéarair pressure is lower than atmospheric.
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Figure 3-7. Shown above is a highly schematic illustrationtef thain reaction that
results in the propagation of a sound wave (modafent Denes and Pinson, 1963).
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When a vibrating object is placed in an elastidime, an air pressure disturbance is created tirauchain
reaction similar to that illustrated in Figure 3A& the vibrating object (a tuning fork in this easnoves to the
right, particlea, which is immediately adjacent to the tuning fdskdisplaced to the right. The elastic force
generated between particiezandb (not shown in the figure) has the effect a s@itand later of displacing particle
b to the right. This disturbance will eventuallgch particles c, d, e, and so on, and in eachtbaggarticles will be
momentarily crowded together. This crowding efisatalledcompressionor condensation and it is characterized
by dense particle spacing and, consequently, agspire that is slightly higher than atmospherisqree. The
propagation of the disturbance is analogous t@hiaén reaction that occurs when an arrangemenbmirtbs is
toppled over. Figure 3-7 also shows that at somsectlistance to the left of a point of compresgpamticle spacing
will be greater than average, and the elastic fova# be in a stretched state. This effect isedthrefaction, and
it is characterized by relatively wide particle sipg and, consequently, air pressure that is $jigbtver than
atmospheric pressure.

The compression wave, along with the rarefactiamermthat immediately follows it, will be propagateatward
at the speed of sound. The speed of sound vaneEndang on the average elasticity and density @htledium in
which the sound is propagated, but a good workimgré for air is about 35,000 centimeters per sdcon
approximately 783 miles per hour. Although Figufé §ives a reasonably good idea of how sound pratjxay
works, it is misleading in two respects. First, sitale is inaccurate to an absurd degree: a sinpie inch of air
contains approximately 400 billion molecules, antithe handful of particles shown in the figuren€equently,
the compression and rarefaction effects are statistither than strictly deterministic as showrkigure 3-7.
Second, although Figure 3-7 makes it appear tleaithpressure disturbance is propagated in a sistpight line
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from the vibrating object, it actually travels ith @irections from the source. This idea is capdusemewhat better
in Figure 3-8, which shows sound propagation in 6f/the three dimensions in which the disturbanidkebes
transmitted. The figure shows rod and piston cotateto a wheel spinning at a constant speed. Coethén the
piston is a balloon that expands and contracteeapiston moves in and out of the cylinder. Astiboon expands
the air particles are compressed; i.e., air pressumomentarily higher than atmospheric. Convgrsethen the
balloon contracts the air particles are sucked rdysulting in rarefaction. The alternating coegsion and
rarefaction waves are propagated outward in adlations form the source. Only two of the three digiens are
shown here; that is, the shape of the pressurardisice is actually spherical rather than the trgoattern that is
shown here. Superimposed on the figure, in thelglapeled “one line of propagation,” is the resigtair pressure
waveform. Note that the pressure waveform takes bigh value during instants of compression arahaMalue
during instants of rarefaction. The figure alsoegisome idea of where the teumiform circular motion comes
from. If one were to make a graph plotting the heigf the connecting rod on the rotating wheel &snation of
time it would trace out a perfect sinusoid; i.eithvexactly the shape of the pressure waveformithatiperimposed
on the figure.
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Figure 3-8.lllustration of the propagation of a sound wavéwo dimensions.

The Sound Pressure Waveform

Returning to Figure 3-7 for a moment, imagine thatchose some specific distance from the tuninktfm
observe how the movement and density of air padighried with time. We would see individual airtjzdes
oscillating small distances back and forth, ansdéfmonitored particle density we would find thagthiparticle
density (high air pressure) would be followed a reatriater by relatively even particle spacing (agpteeric
pressure), which would be followed by a momentrlaiewide particle spacing (low air pressure), andn.
Therefore, for an object that is vibrating sinusdlid a graph showing variations iimstantaneous air pressure
over time would also be sinusoidal. This is illaséd in Figure 3-9.

The vibratory patterns that have been discusséarsdmve all been sinusoidal. The concept of assiid has
not been formally defined, but for our purposés #&nough to know that a sinusoid has preciselgtheoth shape
that is shown in Figures such as 3-4 and 3-5. Wiiilesoids, also known gsire tones have a very special place
in acoustic theory, they are rarely encounterethiinire. The sound produced by a tuning fork comige glose to a
sinusoidal shape, as do the simple tones thatsaein hearing tests. Much more common in bothdpaed music
are more complex, nonsinusoidal patterns, to beudsed below. As will be seen in later chapteeselcomplex
vibratory patterns play a very important role ireph.

The Frequency Domain
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Figure 3-8.Figure not yet drawn. The picture above is justeae holder.

We now arrive at what is probably the single migtortant concept for understanding both hearirdyspeech
acoustics. The graphs that we have used up tpois for representing either vibratory motiontloe air pressure
disturbance created by this motion are calieet domain representations These graphs show how instantaneous
displacement (or instantaneous air pressure) vaviestime. Another method for representing eismimnd or
vibration is called #requency domain representation also known as spectrum. There are, in fact, two kinds of
frequency domain representations that are useldaiacterize sound. One is calledaamplitude spectrum (also
known as anagnitude spectrumor apower spectrum,depending on how the level of the signal is reprish
and the other is calledpnasespectrum. For reasons that will become clear soon, the iamlg spectrum is by far
the more important of the two. An amplitude spewtia simply a graph showing what frequencies aesgmt with
what amplitudes. Frequency is given along the g arid some measure of amplitude is given on thésy A phase
spectrum is a graph showing what frequencies a®ept with what phases.

Figure 3-10 shows examples of the amplitude arsd@lspectra for several sinusoidal signals. Theaogel
shows a time-domain representation of a sinusdild avperiod of 10 ms and, consequently, a frequefdp0 Hz
(f=1/t =1/0.01 sec =100 Hz). The peak-to-pemipltude for this signal is 400Pa, and the signal has a phase of
90°. Since the amplitude spectrum is a graph showinaf frequencies are present with what amplituthes,
amplitude spectrum for this signal will show a $enline at 100 Hz with a height of 4Q@Pa. The phase spectrum is
a graph showing what frequencies are present whitt whases, so the phase spectrum for this sighahaow a
single line at 100 Hz with a height of 90The second panel in Figure 3-10 shows a 200 himssid with a peak-to-
peak amplitude of 20@Pa and a phase of 18Consequently, the amplitude spectrum will shasingle line at 200
Hz with a height of 10QiPa, while the phase spectrum will show a line & B8 with a height of 180

Complex Periodic Sounds

Sinusoids are sometimes referred teiagple periodic signals. The term "periodic” means that there is a
pattern that repeats itself, and the term "simpieans that there is only one frequency componesept. This is
confirmed in the frequency domain representatiarfsigure 3-10, which all show a single frequencspnponent in
both the amplitude and phase spedffamplex periodic signals involve the repetition of a nonsinusojatitern,
and in all cases, complex periodic signals comdistore than a single frequency compon@étitnonsinusoidal
periodic signals are considered complex periodic.
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Figure 3-10. Time and frequency domain representations of thiragsoids. The frequency domain
consists of two graphs: an amplitude spectrum gpltbae spectrum. An amplitude spectrum is a
graph showing what frequencies are present with whmgplitudes, and a phase spectrum is a graph
showing the phases of each frequency component.

Figure 3-11 shows several examples of complexogerisignals, along with the amplitude spectrattiese
signals. The time required to complete one cyclthefcomplex pattern is called thendamental period. This is
precisely the same concept as the tpamod that was introduced earlier. The only reason fangithe term
"fundamental period" instead of the simpler termarfpd” for complex periodic signals is to differexé the
fundamental period (the time required to complete oycle of the pattern as a whole) from otherqurithat may
be present in the signal (e.g., more rapid oswmlatthat might be observed within each cycle). 3ymbol for
fundamental period is.tFundamental frequency(f,) is calculated from fundamental period using themes kind of
formula that we used earlier for sinusoids:

fo= 1/
The signal in the top panel of Figure 3-11 hasral&amental period of 5 ms, sg@ =1/0.005 = 200 Hz.

Examination of the amplitude spectra of the sigialFigure 3-11 confirms that they do, in factsist of
more than a single frequency. In fact, complexqabid signals show a very particular kind of amml#gtspectrum
called aharmonic spectrum. A harmonic spectrum shows energy at the fundaah&etguencyand at whole
number multiples of the fundamental frequenEgr example, the signal in the top panel of Fegsnll has energy
present at 200 Hz, 400 Hz, 600 Hz, 800 Hz, 1,0001400 Hz, and so on. Each frequency componetiein t
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Figure 3-11. Time and frequency domain representations of thoeeplex periodic signals.
Complex periodic signals have harmonic spectrd) efitergy at the fundamental frequengy &hd
at whole number multiples of ffo 2, fy 3, fy 4, etc.) For example, the signal in the upper leitt) a
fundamental frequency of 200 Hz, shows energy @t 400 Hz, 600 Hz, etc. In the spectra on
the right, amplitude is measured in arbitrary unitse main point being made in this figure is the
distribution of harmonic frequencies at whole numeltiples of § for complex periodic signals.

amplitude spectrum of a complex periodic sigh@abed aharmonic (also known as partial ). The fundamental
frequency, in this case 200 Hz, is also calleditiseharmonic, the 400 Hz component({g) is called the second
harmonic, the 600 Hz component({3) is called the third harmonic, and so on.

The second panel in Figure 3-11 shows a complargie signal with a fundamental period of 10 mslan
consequently, a fundamental frequency of 100 He. Rdrmonic spectrum that is associated with tigisadiwill
therefore show energy at 100 Hz, 200 Hz, 300 H@,H®, 500 Hz, and so on. The bottom panel of FiQitd
shows a complex periodic signal with a fundamepésiod of 2.5 ms, a fundamental frequency of 400&tx
harmonics at 400, 800, 1200, 1600, and so on. blttiat there two completely interchangeable wayefme the
term fundamental frequency. In the time domain ftmelamental frequency is the number of cyclehefdomplex
pattern that are completed in one second. In #guiEncy domain, except in the case of certain apgignals, the
fundamental frequency is the lowest harmonic infthemonic spectrum. Also, the fundamental frequetefines
the harmonic spacing; that is, when the fundamdraguency is 100 Hz, harmonics will be spacedoét Hz
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intervals (i.e., 100, 200, 300 ...), when the fundatal frequency is 125 Hz, harmonics will be spzaael25 Hz
intervals (i.e., 125, 250, 375...), and when thethmental frequency is 200 Hz, harmonics will becegl at 200 Hz
intervals (i.e., 200, 400, 600 ...). (For some gpesignals this will not be the cadeSo, when §is low, harmonics
will be closely spaced, and wheyig high, harmonics will be widely spaced. Thislisarly seen in Figure 3-11: the
signal with the lowest,f(100 Hz, the middle signal) shows the narrowestmloaic spacing, while the signal with
the highestf (400 Hz, the bottom signal) shows the widest harimepacing.
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Figure 3-12. Time and frequency domain representations of thogetransient complex aperiodic
signals. Unlike complex periodic signals, compleei@odic signals show energy that is spread
across the spectrum. This type of spectrum isadémseor continuous These spectra have a very
different appearance from the “picket fence” lobd&ttis associated with tligscrete, harmonic
spectra of complex periodic signals.

There are certain characteristics of the spectcwiplex periodic sounds that can be determinemdlking simple
measurements of the time domain signal, and threreeatain other characteristics that require aencomplex
analysis. For example, simply by examining the aigm the bottom panel of Figure 3-11 we can deteenthat it is
complex periodic (i.e., it is periodic but not ssmidal) and therefore it will show a harmonic spatt with energy
at whole number multiples of the fundamental frewpye Further, by measuring the fundamental per®o8 (s)

2There are some complex periodic signals that haeegy atoddmultiples of the fundamental frequency onlysgquare wave, for
example, is a signal that alternates between maripusitive amplitude and maximum negative amplitdde spectrum of square wave shows
energy at odd multiples of the fundamental freqyendy. Also, a variety of simple signal processirigks can be used to create signals with
harmonics at any arbitrary set of frequencies.dxample, it is a simple matter to create a sigrithl @nergy at 400, 500, and 600 Hz only.
While these kinds of signals can be quite usefutémducting auditory perception experiments, ib@éns true that most naturally occurring
complex periodic signals have energy at all whoimber multiples of the fundamental frequency.
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Figure 3-13. Time and frequency domain representations of thregesients. Transients are complex
aperiodic signals that are defined by their brigfation. Pops, clicks, and the sound gun fire are
examples of transients. In common with longer lanacomplex aperiodic signals, transients show
denseor continuous spectra, very unlike the discrete, harmonic spez$sociated with complex peric

and converting it into fundamental frequency (40),Hve are able to determine that the signal vélldhenergy at
400, 800, 1200, 1600, etc. But how do we know thelaude of each of these frequency components?havddo
we know the phase of each component? The answatigyou cannot determine harmonic amplitudes asph
simply by inspecting the signal or by making simpleasurements of the time domain signals wither.ruiVe will
see soon that a technique calfalrier analysisis able to determine both the amplitude spectronththe phase
spectrum of any signal. We will also see that tiver ears of humans and many other animals haveaped a
trick that is able to produce a neural represesatiat is comparable in some respects to an amdplispectrum.
We will also see that the ear has comparable trick for deriving a representation thatquivalent to a phase
spectrum. This explains why the amplitude spectisifar more important for speech and hearing appibas than
the phase spectrum. We will return to this poitena

To summarize: (1) a complex periodic signal is pagiodic signal that is not sinusoidal, (2) conxgberiodic
signals have energy at the fundamental frequeryiifd at whole number multiples of the fundamefmtuency
(2 o,, 3, 4, ...), and (3) although measuring the fundamemnégjufency allows us to determine fhequency
locationsof harmonics, there is no simple measurementctmatell us harmonic amplitudes or phases. Fory this
Fourier analysis or some other spectrum analyshnique is needed.

Aperiodic Sounds
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Figure 3-14. lllustration of the principle underlying Fouriemaysis. The complex periodic signal
shown in pane¢ was derived by point-for-point summation of theusioidal signals shown in
panelsa-d. Point-for-point summation simply means beginragme zero (i.e., the start of the
signal) and adding the instantaneous amplitudégobsa to the instantaneous amplitude of sigmal
at time zero, then adding that sum to the instaattas amplitude of signal also at time zero, then
adding that sum to instantaneous amplitude of sigaatime zero. The sum of instantaneous
amplitudes at time zero of signals a-d is the imst@eous amplitude of the composite signai

time zero. For example, at time zero the amplituefesnusoids a-d are 0, +100, -200, and 0O,
respectively, producing a sum of -100. This agweigls the instantaneous amplitude at the very
beginning of composite signal e. The same summatiocedure is followed for all time points.

An aperiodic sound is any sound that does not show a repeaditigrn in its time domain representation.
There are many aperiodic sounds in speech. Exanmgesle the hissy sounds associated with fricatsugch as /f/
and /s/, and the various hisses and pops assoeidtedrticulatory release for the stop consondnis,g,p,t,k/.
Examples of non-speech aperiodic sounds includermmer's cymbal or snare drum, the hiss produceal by
radiator, and static sound produced by a poorlgduadio. There are two types of aperiodic sou(idontinuous
aperiodic sounds (also known amisg and (2)transients. Although there is no sharp cutoff, the distinatio
between continuous aperiodic sounds and transebessed on duration. Transients (also "pops" alicdks") are
defined by their very brief duration, and contins@periodic sounds are of longer duration. Figut® 3hows
several examples of time domain representationaarglitude spectra for continuous aperiodic soumtls.lack of
periodicity in the time domain is quite evidentatlis, unlike the periodic sounds we have seemefiseno pattern
that repeats itself over time.
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Figure 3-15. A signal enters a Fourier analyzer in the time donaad exits in the frequency domain.
As outputs, the Fourier analyzer produces two feegy-domain representations: an amplitude
spectrum that shows the amplitude of each sinusocaaponenthat is present in the input signal,

a phase spectrum that shows the phase of each sirtisoids. The input signal can be reconstructed
perfectly by summing sinusoids at frequencies, &oges, and phase that are shown in the Fourier
amplitude and phase spectra, using the summingoa¢itat is illustrated in Figure 3-14..

All aperiodic sounds -- both continuous and transi- are complex in the sense that they alwagsisbof
energy at more than one frequency. The charadteféstture of aperiodic sounds in the frequency @ions a
denseor continuous spectrum which stands in contrast to the harmonic specthahis associated with complex
periodic sounds. In a harmonic spectrum, thereésgy at the fundamental frequency, followed byp gith little
or no energy, followed by energy at the second baia) followed by another gap, and so on. The speuft
aperiodic sounds do not share this "picket fenpgtarance. Instead, energy is smeared more-ocdesisiuously
across the spectrum. The top panel in Figure 3hab®%/s a specific type of continuous aperiodic socedtedwhite
noise.By analogy to white light, white noise has a #atplitude spectrum; that is, approximately equablénde at
all frequencies. The middle panel in Figure 3-18vehithe sound /s/, and the bottom panel shows siitifdbtice
that the spectra for all three soundsaease that is, they do not show the "picket fence" ldb&t reveals harmonic
structure. As was the case for complex periodindsuthere is no way to tell how much energy thahebe at
different frequencies by inspecting the time donsgmal or by making any simple measures with arrilikewise,
there is no simple way to determine the phase spactSo, after inspecting a time-domain signal detgrmining
that it is aperiodic, all we know for sure is thtawill have a dense spectrum rather than a harmspéctrum.

Figure 3-13 shows time domain representationsaamglitude spectra for three transients. The transiethe
top panel was produced by rapping on a wooden dleslsecond is a single clap of the hands, anthttiewas
produced by holding the mouth in position for tlusvel /o/, and tapping the cheek with an index finduote the
brief durations of the signals. Also, as with contus aperiodic sounds, the spectra associatedraitbients are
dense; that is, there is no evidence of harmomjargrzation. In speech, transients occur at thamsif articulatory
release for stop consonants. There are also somgadges, such as the South African languages HAudlttientot,
and Xhosa, that contain mouth clicks as part af ffleonemic inventory (MacKay, 198@jourier Analysis

Fourier analysisis an extremely powerful tool that has widesprapplications in nearly every major branch
of physics and engineering. The method was develbgehe 18 century mathematician Joseph Fourier, and
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although Fourier was studying thermal waves atithe, the technique can be applied to the frequaneyysis of
any kind of wave. Fourier's great insight was tlsealvery thatll complex waves can be derived by adding
sinusoids togetheso long as the sinusoids are of the appropriatpiEncies, amplitudes, and phases. For example,
the complex periodic signal at the bottom of Figg«®4 can be derived by summing sinusoids at 100, 200, and
400 Hz, with each sinusoidal component having thpléude and phase that is shown in the figure {seeaption
of Figure 3-14 for an explanation of what is mdaynsumming the sinusoidal components). The assomhiat all
complex waves can be derived by adding sinusomgistier is calledrourier's theorem, and the analysis technique
that Fourier developed from this theorem is caltedrier analysis. Fourier analysis is a mathemiatiszdonique that
takes a time domain signal as its input and detemi(1) the amplitude of each sinusoidal compotieattis

present in the input signal, and (2) the phaseaofisinusoidal component that is present in thetigjgnal.

Another way of stating this is that Fourier anaysikes a time domain signal as its input and prestwo

frequency domain representations as output: (Bnaplitude spectrum, and (2) a phase spectrum.

The basic concept is illustrated in Figure 3-1Bjclhr shows a time domain signal entering the Foaalyzer.
Emerging at the output of the Fourier analyzemisuaplitude spectrum (a graph showing the amplitfd=ach
sinusoid that is present in the input signal) ammhase spectrum (a graph showing the phase okeadvid that is
present in the input signal). The amplitude spectteils us that the input signal contains: (1) 20sinusoid with
an amplitude of 10QPa, a 400 Hz sinusoid with an amplitude of 28@&, and a 600 Hz sinusoid with an amplitude
of 50 uPa. Similarly, the phase spectrum tells us thaR@@eHz sinusoid has a phase of,98e 400 Hz sinusoid
has a phase of 18tand the 600 Hz sinusoid has a phase of.a7Bourier's theorem is correct, we should beabl
to reconstruct the input signal by summing sinus@iti200, 400, and 600 Hz, using the amplitudegphiades that
are shown. In fact, summing these three sinusaitlsis way wouldreciselyreproduce the original time domain
signal; that is, we would get back an exact rephicaur original signal, and not just a rough apgraation to it.

For our purposes it is not important to understaod Fourier analysis works. The most importanhpabout
Fourier's idea is that, visual appearances aslidegraplex waves consist of sinusoids of varyingguencies,
amplitudes, and phases. In fact, Fourier analygiies not only to periodic signals such as thdsevs in Figure
3-15, but also to noise and transients. In faet amplitude spectra of the aperiodic signals shiowigure 3-13
were calculated using Fourier analysis. In lateptérs we will see that the auditory system is &blgerive a
neural representation that is roughly comparabbe Fourier amplitude spectrum. However, as was iomeed
earlier, the auditory system does not derive agsgmtation comparable to a Fourier phase spec&ksra.result,
listeners are very sensitive to changes in the iaindel spectrum but are relatively insensitive taraes in phase.

Some Additional Terminology

Overtones vs. Harmonics:The termovertoneand the term harmonic refer to the same concegy; dhe just
counted differently. As we have seen, in a harmeaites such as 100, 200, 300, 400, etc., the ¥Ofbkriponent
can be referred to as either the fundamental fregyuer the first harmonic; the 200 Hz componenh&second
harmonic, the 300 Hz component is the third harmcaid so on. An alternative set of terminology ldoefer to
the 100 Hz component as the fundamental frequehey?200 Hz component as thiest overtone, the 300 Hz
component as theecond overtoneand so on. Use of the term overtone tends tabaréd by those interested in
musical acoustics, while most other acousticiand te use the term harmonic.

Octaves vs. HarmonicsAn octaverefers to a doubling of frequency. So, if we begfii00 Hz, the next octave up
would 200 Hz, the next would be 400 Hz, the nextldoe 800 Hz, and so on. Note that this is quiffergnt from
a harmonic progression. A harmonic progressionriyegg at 300 Hz would be 300, 600, 900, 1200, 1804,

while an octave progression would be 300, 600, 12800, 4800, etc. There is something auditoriiyunal about
octave spacing, and octaves play a very importaatin the organization of musical scales. For gdapon a piano
keyboard, middle A (4 is 440 Hz, A above middle A @\is 880 Hz, Ais 1,760 and so on. (See Box 3-2).

Wavelength: The concept ofvavelengthis best illustrated with an example given by SriEH73). Small asks us
to imagine dipping a finger repeatedly into a peddfl water at a perfectly regular interval. Eachetithe finger hits
the water, a wave is propagated outward, and weédrsme a pattern formed consisting of a serie@ptentric
circles (see Figure 3-16). Wavelength is simplydstance between the adjacent waves. Preciselatine concept
can be applied to sound waves: wavelength is sitlgydistance between one compression wave antettigor
one rarefaction wave and the next or, more genethk distance between any two corresponding painadjacent
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Figure 3-16. Wavelength is a measure of the distance betweecr#isé of one cycle of a wave and the
crest of the next cycle (or trough to trough orfaat, the distance between any two corresponding
points in the wave). Wavelength and frequency elaed to one another. Because the wave has
short time to travel from one cycle to the nexghhfrequencies produce short wavelengths.
Conversely, because of the longer travel times,ftequencies produce long wavelengths.

waves). For our purposes, the most important goibe made about wavelength is that there is alsimp
relationship between frequency and wavelength. dJgie puddle example, imagine that we begin byidgppur
finger into the puddle at a very slow rate; thatngh a low "dipping frequency." Since the wavesé a long
period of time to travel from one dip to the neékie wavelength will be large. By the same reasqriimng
wavelength becomes smaller as the "dipping freqgleisdncreased; that is, the time allowed for teeve to travel
at high "dipping frequency" is small, so the wawgiih is small. Wavelength is a measure of distaacd the
formula for calculating wavelength is a straightfard algebraic rearrangement of the familiar "dista= rate]
time" formula from junior high school.

A = c/f, where: A =wavelength
¢ = the speed of sound
f = frequency

By rearranging the formula, frequency can be catedl if wavelength and the speed of sound are known
f=ch

Spectrum Envelope:The termspectrum envelopeefers to an imaginary smooth line drawn to erelas

amplitude spectrum. Figure 3-17 shows several el@nphis is a rather simple concept that will phayery

important role in understanding certain aspeciudiitory perception. For example, we will see that perception
of a perceptual attribute calléichbre (also calledsound quality) is controlled primarily by the shape of the
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Figure 3-17. A spectrum envelope is an imaginary smooth linevdrto enclose an amplitude
spectrum. Paneksandb show the spectra of two signals (the vowél with different fundamental
frequencies (note the differences in harmonic spgdiut very similar spectrum envelopes. Paoels
andd show the spectra of two signals with differentcdpen envelopes (the vowels /i/ and /u/ in this
case) but the same fundamental frequencies tigsame harmonic spacing).

spectrum envelope, and not by the fine detailh®famplitude spectrum. The examples in Figure 8Hbiv how
differences in spectrum envelope play a role indgligg differences in one specific example of timballed

vowel quality (i.e., whether a vowel sounds like /i/ vs. /a/$, etc.). For example, panelsndb in Figure 3-17
show the voweld/ produced at two different fundamental frequeng@ge know that the fundamental frequencies
are different because one spectrum shows wide lmacrspacing and the other shows narrow harmonicisga
The fact that the two vowels are heard as /a/ teetipe difference in fundamental frequency canttrébated to the
fact that these two signals have similar spectrowepes. Panelsandd in Figure 3-17 show the spectra of two
signals with different spectrum envelopes but tirae fundamental frequency (i.e., with the same baitn
spacing). As we will see in the chapter on audifmasception, differences in fundamental frequeneyperceived
as differences in pitch. So, for signals (a) andr{d~igure 3-17, the listener will hear the saroevel produced at
two different pitches. Conversely, for signalsdoy (d) in Figure 3-17, the listener will hear tdiferent vowels
produced at the same pitch. We will return to theocept of spectrum envelope in the chapter on anydit
perception.

Amplitude Envelope: The term amplitude envelope refers to an imagisargoth line that is drawn on top of a
time domain signal. Figure 3-18 shows sinusoidsdhaidentical except for their amplitude envekgecan be
seen that the different amplitude envelopes refléttrences in the way the sounds are turned dnodfn For
example, paned shows a signal that is turned on abruptly andedimif abruptly; pandb shows a signal that is
turned on gradually and turned off abruptly; andsoDifferences in amplitude envelope have an itgm effect
on the quality of a sound. As we will see in theger on auditory perception, amplitude envelofmawith
spectrum envelope discussed above, is anothergathysirameter that affedisnbre or sound quality. For
example, piano players know that a given note salind different depending on whether or not theplagpedal
is used. Similarly, notes played on a stringedrimsent such as a violin or cello will sound differelepending on
whether the note is plucked or bowed. In both gabkesunderlying acoustic difference is amplitudeedope.
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Figure 3-18. Amplitude envelope is an imaginary smooth line draaenclose a time-domain signal.
This feature describes how a sound is turned ortianéd off; for example, whether the sound is
turned on abruptly and turned off abruptly (paaeturned on gradually and turned off abruptly (g
b), turned on abruptly and turned off gradually (g@lan), or turned on and off gradually (parng!
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Acoustic Filters

As will be seen in subsequent chapters, acollgdiig plays a central role in the processingadind by the
inner ear. The human vocal tract also serves asaustic filter that modifies and shapes the sotimaisare created
by the larynx and other articulators. For this oggdt is quite important to understand how acaufiiters work. In
the most general sense, the term filter refersdevéce or system that is selective about the kofdkings that are
allowed to pass through versus the kinds of ththgsare blocked. An oil filter, for example, isstgned to allow
oil to pass through while blocking particles oftd®f special interest to speech and hearing seiangfrequency
selectivefilters. These are devices that allow some freqigsto pass through while blockingaitenuating other
frequencies. (The teraittenuate means to weaken or reduce in amplitude).

A simple example of a frequency selective filtemh the world of optics is a pair of tinted sungkes A piece
of white paper that is viewed through red tintedglasses will appear red. Since the original pefqeaper is
white, and since we know that white light consaftall of the visible optical frequencies mixedeéqual amounts,
the reason that the paper appears red througledhtinted glasses is that optical frequencies dtiear those
corresponding to red are being blocked or atteuayethe optical filter. As a result, it is primigrthe red light that
is being allowed to pass through. (Starting atidheest optical frequency and going to the highlégtt will appear
red, orange, yellow, green, blue, indigo, and ¥iple

A graph called &requency response curvés used to describe how a frequency selectiver filiill behave. A
frequency response curve is a graph showing howgegra different frequencies will be affected by fiiter.
Specifically, a frequency response curve plotsratste called "gain” as a function of variationglie frequency of
the input signal. Gain is the amount of amplifioatprovided by the filter at different signal freoncies. Gains are
interpreted as amplitude multipliers; for examplappose that the gain of a filter at 100 Hz is [£.8.100 Hz
sinusoid enters the filter measuring 10 uPa, thplittde at the output of the filter at 100 Hz wileasure 18Pa
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Figure 3-19.Frequency response curves for three optical filfEne lowpass filter on the left allows
low frequencies to pass through, while attenuatiniglocking optical energy at higher frequencies.
The highpass filter in the middle has the oppasitect, allowing high frequencies to pass through,
while attenuating or blocking optical energy at &frequencies. The bandpass filter on the right
allows a band of optical frequencies in the ceaféhe spectrum to pass through, while attenuating
blocking energy at higher and lower frequencies.

(10puPa x 1.3 = 131Pa). The only catch in this scheme is that gainsacal very frequently are less than 1, meaning
that the effect of the filter will be to attenualbe signal. For example, if the gain at 100 Hz.& & 10uPa input

signal at 100 Hz will measureifa at the output of the filter. When the filterrga 1.0, the signal is unaffected by
the filter; i.e., al0 pPa input signal will measure 1Pa at the output of the filter.

Figure 3-19 shows frequency response curves farakoptical filters. Panel a shows a frequenspomse
curve for the red optical filter discussed in tixarmaple above. If we put white light into the filierpanel a, the
signhal amplitude at the output of the filter witk high only when the frequency of the input sigedbw. This is
because the gain of the filter is high only in lfv-frequency portion of the frequency-responseseuthis is an
example of dowpassfilter; that is, a filter that allows low frequers to pass through. Panel b shows an optical
filter that has precisely the reverse effect oinguit signal; that is, this filter will allow higfiequencies to pass
through while attenuating low- and mid-frequenagnsils. A white surface viewed through this filteswid
therefore appear violet. This is an example bighpassfilter. Panel ¢ shows the frequency response ciawve
filter that allows a band of energy in the centiethe spectrum to pass through while attenuatiggaicomponents

of higher and lower frequency. A white surface welthrough this filter would appear green. Thisgled a
bandpassfilter.

Acoustic filters do for sound exactly what opti€iiers do for light; that is, they allow some drgencies to pass
through while attenuating other frequencies. Toagegtter idea of how a frequency response curresured,
imagine that we ask a singer to attempt to shattgystal wine glass with a voice signal alones&e how the
frequency response curve is created we have to tmakeather unrealistic assumptions: (1) we neeassume that
the singer is able to produce a seriepuwk tonef various frequencies (the larynx, in fact, proesia complex
periodic sound and not a sinusoid), and (2) theliaimes of these pure tones are always exactlgéinee. The wine
glass will serve as the filter whose frequency oesge curve we wish to measure. As shown in Figt2@,3ve
attach a vibration meter to the wine glass, andehding on this meter will serve as our measuiugsut
amplitude for the filter. For the purpose of thimmple, will assume that the signal frequency ndeédéreak the
glass is 500 Hz. We now ask the singer to produtmaafrequency signal, say 50 Hz. Since this festgy is quite
remote from the 500 Hz needed to break the glasxyutput amplitude measured by the vibration meiébe
quite low. As the singer gets closer and clos¢h¢orequired 500 Hz, the measured output amplitviléncrease
systematically until the glass finally breaks. ¥ @wssume that the glass does not break but rathenes a
maximum amplitude just short of that required tatsdr the glass, we can continue our measuremeheof
frequency response curve by asking the singerddyme signals that are increasingly high in freqgyeWwe would
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Figure 3-20. lllustration of how therequency response curve of a crystal wine ¢
might be measured. Our singer produces a serigiswgoids that are identical in
amplitude but cover a wide range of frequenciebigpart of the example is
unrealistic: the human larynx produces a complemdaather than a sinusoid.) The
gain of the wine glass filter can be traced outt®asuring the amplitude of
vibration at the different signal frequencies.)

find that the output amplitude would become lowed bower the further we got from the 500 Hz natwibtating
frequency of the wine glass. The pattern thatasdd by our measures of output amplitude at egctakirequency
would resemble the frequency response curve weesalier for green sunglasses; that is, we wouldlsee
frequency response curve for a bandpass filter.

Additional Comments on Filters

Cutoff Frequency, Center Frequency, Bandwidth.The top panel of Figure 3-21 shows frequency respaurves
for two lowpass filters that differ in a parametatledcutoff frequency. Both filters allow low frequencies to pass
through while attenuating high frequencies; thteirfd differ only in the frequency at which the attation begins.
The bottom panel of Figure 3-21 shows two highgidtess that differ in cutoff frequency. There aweo additional
terms that apply only to bandpass filters. In oureglass example above, the natural vibrating fegy of the

wine glass was 300 Hz. For this reason, when #gufncy response curve is measured, we find teatite glass
reaches its maximum output amplitude at 300 Hzs Thcalled theenter frequencyor resonanceof the filter. It

is possible for two bandpass filters to have theesaenter frequency but differ with respect to @pprty called
bandwidth. Figure 3-22 shows two filters that differ in bandth. The tall, thin frequency response curve dbss
anarrow band filter. For this type of filter, output amplitudeaches a very sharp peak at the center frequernkcy a
drops off abruptly on either side of the peak. dtieer frequency response curve describeila band filter (also
calledbroad band). For the wide band filter, the peak that occurhea resonance of the filter is less sharp and the
drop in output amplitude on either side of the eefitequency is more gradual.
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Fixed vs. Variable Filters.A fixed filter is a filter whose frequency respor@gve cannot be altered. For example,
Figure 3-21.Lowpass and highpass filters differing in cutoéduency.

an engineer might design a lowpass filter thataiiées at frequencies above 500 Hz, or a banditassHat passes
with a center frequency of 1,000 Hz. It is alsogioie to create a filter whose characteristicslwawaried. For
example, the tuning dial on a radio controls theteefrequency of a narrow bandpass filter thatvedl a single
radio channel to pass through while blocking chématall other frequencies. The human vocal tisaeh example
of a variable filter of the most spectacular sbdr example: (1) during the occlusion intervaltthecurs in the
production of a sound like /b/, the vocal tractdeds like a lowpass filter; (2) in the articulat@gsture for sounds
like /s/ and /sh/ the vocal tract behaves likeginpass filter; and (3) in the production of vowdle vocal tract
behaves like a series of bandpass filters connégtede another, and the center frequencies oétfilésrs can be
adjusted by changing the positions of the tongps, &nd jaw. To a very great extent, the prodactibspeech
involves making adjustments to the articulators b@ve the effect of setting the vocal tract filiediffer modes to
produce the desired sound quality. We will have Immore to say about this in later chapters.

Bandpass Filters Differing

in Bandwidth
1.0
<«—— Narrow Band Filter
0.8
0.6

<——Wide Band Filter
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0.0 v y y v
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Figure 3-22. Frequency response curves for two bandpass filtitihsidentical center
frequencies but different bandwidths. Both filtpesss a band of energy centered around
2000 Hz, but the narrow band filter is more selecthan the wide band filter; that is,
gain decreases at a higher rate above and belogetiter frequency for the narrow band
filter than for the wide band filter
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Frequency Response Curves vs. Amplitude Spectrh.is not uncommon for students to confuse a freque
response curve with an amplitude spectrum. Thelakigs are rather similar: an amplitude spectriotsp
amplitude on the y axis and frequency on the x,axigle a frequency response curve plots gain erythxis and
frequency on the x axis. The apparent similarigiesdeceiving, however, since a frequency respomse and an
amplitude spectrum display very different kindsrdbrmation. The difference is thah amplitude spectrum
describes a sound while a frequency response aeseribes a filterFor any given sound wave, an amplitude
spectrum tells us what frequencies are presentwiditit amplitudes. A frequency response curve, erother hand,
describes a filter, and for that filter, it tells what frequencies will be allowed to pass throaigth what frequencies
will be attenuated. Keeping these two ideas sepaviitbe quite important for understanding the kele played by
filters in both hearing and speech science.

Resonance

The concept ofesonancehas been alluded to on several occasions but ldsera formally defined. The term
resonance is used in two different but very closelgted ways. The term resonance refers to: € pllenomenon
of forced vibration, and (2)natural vibrating frequency (alsoresonant frequencyor resonance frequency To
gain an appreciation for both uses of this ternrggme the following experiment. We begin with twdetical
tuning forks, each tuned to 435 Hz. Tuning forksfsét into vibration and placed one centimeter fromng fork
B, but not touching it. If we now hold tuning fork B & healthy ear, we will find that it is produciag35 Hz tone
that is faint but quite audible, despite the faett it was not struck and did not come into physicatact with
tuning fork A. The explanation for this "action-aidistance" phenomenon is that the sound wave gteby
tuning fork A forces tuning fork B into vibratiothat is, the series of compression and rarefactiaves will
alternately push and pull the tuning fork, resgtin vibration at the frequency being generatedutmyng fork A.
The phenomenon of forced vibration is not restddtethis "action-at-a-distance" case. The sameceffan be
demonstrated by placing a vibrating tuning forkcamtact with a desk or some other hard surface ifiteasity of
the signal will increase dramatically because thméng fork is forcing the desk to vibrate, resudtin a larger
volume of air being compressed and rarefied.

Returning to our original tuning fork experimestippose that we repeat this test usingnvismatcheduning
forks; for example, tuning fork A with a naturatfuency of 256 Hz and tuning fork B with a natwiblating
frequency of 435 Hz. If we repeat the experimesétting tuning fork A into vibration and holdingahe centimeter
from tuning fork B — we will find that tuning forR does not produce an audible tone. The reasibraigorced
vibration is most efficient when the frequencyoé triving force is closest to the natural vibratfeequency of the
object that is being forced to vibrate. Another wayhink about this is that tuning fork B in theseeriments is
behaving like a filter that is being driven by signal produced by tuning fork A. Tuning forks fatt, behave like
rather narrow bandpass filters. In the experimatit matched tuning forks, the filter was being eénvby a signal
frequency corresponding to the peak in the filtgéguency response curve. Consequently, the filteduced a
great deal of energy at its output. In the expeninvgth mismatched tuning forks, the filter is bgidriven by a
signal that is remote from the peak in the filtérexjuency response curve, producing a low ammituatput signal.

To summarize, resonance refers to the abilityngf wibrating system to force another system inboation.
Further, the amplitude of this forced vibrationlvaié greater as the frequency of the driving fapproaches the
natural vibrating frequency (resonance) of theaysthat is being forced into vibration.

Cavity Resonators

An air-filled cavity exhibits frequency selectipeoperties and should be considered a filter iipety the way
that the tuning forks and wine glasses mentionedalare filters. The human vocal tract is an dliedi cavity that
behaves like a filter whose frequency responseecvavies depending on the positions of the arttotda Tuning
forks and other simple filters have a single resofr@quency. (Note that we will be using the tetmatural
vibrating frequency" and "resonant frequency" iabemngeably.) Cavity resonators, on the other heam have an
infinite number of resonant frequencies.

3The increase in intensity that would occur as timéng fork is placed in contact with a hard surfdoes not mean that additional energy is
created. The increase in intensity would be offises decrease in the duration of the tone, sodtia amount of energy would not increase
relative to a freely vibrating tuning fork.
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Figure 3-23.Frequency response curves for three uniform tupea at one end and closed at the
other. These kinds of tubes have an infinite nunab@esonances at odd multiples of the lowest
resonance. As the figure shows, shortening theshbies all resonances to higher frequencies while
lengthening the tube shifts all resonances to Idveguencies.

A simple but very important cavity resonator is timiform tube. This is a tube whose cross-sectional area is
the same (uniform) at all points along its lendttsimple water glass is an example of a uniformetuthe method
for determining the resonant frequency patterrafaniform tube will vary depending on whether thiegt is closed
at both ends, open at both ends, or closed abjestnd. The configuration that is most directlylegable to
problems in speech and hearing is the uniform thhgeis closed at one end and open at the otherTéredear canal,
for example, is approximately uniform in cross-ge@l area and is closed medially by the ear drathapen
laterally. Also, in certain configurations the vbtract is approximately uniform in cross-sectioasta and is
effectively closed from below by the vocal folddaspen at the lips. The resonant frequencies torifarm tube
closed at one end are determined by its lengthIdkest resonant frequency;jFor this kind of tube is given by:

F. = c/4L, where: ¢ = the speed of sound
L = the length of the tube

For example, for a 17.5 cm tubg,#c/4L = 35000/70 = 500 Hz. This tube will alsosban infinite number of
higher frequency resonancesodt multiples of the lowest resonance:

Fl = Fl .1 = 500 Hz
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F, = R 03 = 1500 Hz
F, = F. 5= 2500 Hz
F, = R 07 = 3500 Hz

The frequency response curve for this tube fayfemcies below 4000 Hz is shown in the solid cimveigure
3-23. Notice that the frequency response curve stpmaks at 500, 1500, 2500, and 3500 Hz, and galey
between these peaks. The frequency response tuffeet, looks like a number of bandpass filterarected in
series with one another. It is important to appatecthat what we have calculated here is a sefiestoral vibrating
frequencies of a tube. What this means is thatiuthe will respond best to forced vibration if thé is driven by
signals with frequencies at or near 500 Hz, 15002390 Hz, and so on. Also, thesonantirequencies that were
just calculated should not be confused vignmonics Harmonics are frequency components that are pras¢he
amplitude spectra of complex periodic sounds; rasbfrequencies are peaks in the frequency respmnsge of
filters.

We next need to see what will happen to the restdnaquency pattern of the tube when the tubetteng
changes. If the tube is lengthened to 20 cm:

F, = c/4L = 35,000/80 = 437.5 Hz
F,= RB=1,3125Hz
F;= R=2,187.5Hz
F4 = Fl r = 3,0625 Hz

It can be seen that lengthening the tube from ¢ %o 20 cm has the effect of shifting all of tkeonant
frequencies downward (see Figure 3-23). Similatgrtening the tube has the effect of shiftingphthe resonant
frequencies upward. For example, the resonant émgyupattern for a 15 cm tube would be:

F.= c/4L = 35,000/60 = 583.3 Hz
F,= RB=1,750 Hz

Fs= F 5 =2916.7 Hz

F,= F 7 =4,083.3 Hz

The general rule is quite simple: all else beiggat, long tubes have low resonant frequencieshod tubes
have high resonant frequencies. This can be denavedteasily by blowing into bottles of variousdérs. The
longer bottles will produce lower tones than shabottles. This effect is also demonstrated evieng ta water glass
is filled. The increase in the frequency of thermbthat is produced as the glass is filled occerahbse the
resonating cavity becomes shorter and shorter as aiois displaced by water. This simple rule Wil quite
useful. For example, it can be applied directlyhe differences that are observed in the acoustipgsties of
speech produced by men, women, and children, whe vacal tracts that are quite different in length.

Resonant Frequencies and Formant Frequencies

The term "resonant frequency" refers to naturatating frequency or, equivalently, to a peak fregiuency
response curve. For reasons that are entirelyrtdatpif the filter that is being described happen be a human
vocal tract, the terrformant frequencyis generally used. So, one typically refers toftrenant frequenciesf the
vocal tract but to theesonant frequencies a plastic tube, the body of a guitar, the diaghm of a loudspeaker, or
most any other type of filter other than the vdeatt. This is unfortunate since it is possiblgéb the mistaken idea
that formant frequencies and resonant frequenceditierent sorts of things. The two terms ardaiet, fully
synonymous.

The Decibel Scale

The final topic that we need to address in thaptér is the representation of signal amplitudagigie decibel
scale. The decibel scale is a powerful and immgrftstible scale for representing the amplitudecound wave.
The scale can sometimes cause students difficaltsilse it differs from most other measurement s¢aleot just
one but two ways. Most of the measurement scaldgswhich we are familiar ar@bsoluteandlinear. The decibel
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scale, however, igelative rather than absolute, atmharithmic rather than linear. Neither of these charactedssic
terribly complicated, but in combination they caaka the decibel scale appear far more obscurettiaiwe will
examine these features one at a time, and thelmoseéhey are put together in building the deciloalls.

Linear vs. Logarithmic Measurement Scales

Most measurement scales are linear. To say thegasurement scale is linear means that it is basedual
additivedistances. This is such a common feature of measnescales that we do not give it much thought. Fo
example, on a centigrade (or Fahrenheit) scalenfmsuring temperature, going from a temperatué&foto a
temperature of $linvolvesaddingone £. One rather obvious consequence of this simpléigidgrule is that the
difference in temperature betweer? a0d 12 is the same as the difference in temperature lezt®8 and 91.
However, there are scales for which this additivite does not apply. One of the best known exasngléhe
Richter scale that is used for measuring seisn@nsity. The difference in seismic intensity betw&ichter values
of 4.0 and 5.0, 5.0 and 6.0, 6.0 and 7.0 is notesoomstant amount of seismic intensity, but ratheonstant
multiple. Specifically, a 7.0 on the Richter scale indisata earthquake that is 10 times greater in irtfetishn an
earthquake that measures 6.0 on the Richter Riahdarly, an 8.0 on the Richter scale is 10 tigesater in
intensity than a 7.0. Whenever jumping from ondesealue to the next involves multiplying by a ctard rather
than adding a constant, the scale is called Idgaiit. (The multiplicative constant need not be 3€e Box 3-2 for
an example of a logarithmic scale — an octave g®Ejon — that uses 2 as the constant.) Anotheoivanaking the
same point is to note that the values along thatBicscale are exponents rather than ordinary ntenfoe
example, a Richter value of 6 indicates a seisntinisity of 16, a Richter value of 7 indicates a seismic intgnsit
10, etc. The Richter values can, of course, justelslve referred to asowersor logarithmssince both of these
terms are synonyms fexponentThe decibel scale is an example of a logaritrsnale, meaning that it is based on
equal multiples rather than equal additive distance

Absolute vs. Relative Measurement Scales

A simple example of a relative measurement saatfledMach scale that is used by rocket scientists to measure
speed. The Mach scale measures speed not in absaiots but in relation to the speed of sound example, a
missile at Mach 2.0 is traveling at twice the spekslound, while a missile at Mach 0.9 is travela®0% of the
speed of sound. So, the Mach scale does not repraseeasured speed,jSn absolute terms, but rather,
represents a measured speed in relation to a nefespeed (3S). The reference that is used for the Mach scale is
the speed of sound, so a measured absolute spebé canverted to a relative speed on the Macle $gasimple
division. For example, taking 783 mph as the spdexbund, 1,200 mph = 1200/783 = Mach 1.53. Thébé¢scale
also exploits this relative measurement scheme debibel scale does not represent a measured itgt@n3 in
absolute terms, but rather, represents the ratoréasured intensity to a reference intensii)!

The decibel scale is trickier than the Mach s@alene important respect. For the Mach scale, ¢ference is
always the speed of sound, but for the decibeksoahny different references can be used. In exipahow the
decibel scale works, we will begin with the commypoused intensity reference of ¥ow/m? (watts per square
meter), which is approximately the intensity tteteéquired for an average normal hearing listembately detect a
1,000 Hz pure tone. So, for our initial pass thiotle decibel scale, Tw/m?® will serve as,| and will perform the
same function that the speed of sound does favitheh scale. Table 3-1 lists several sounds thagrcawery broad
range of intensities. The second column shows thasored intensities of those sounds, and the d¢bleamn shows
the ratio of those intensities to our referencerisity. Whispered speech, for example, measuresxipmtely 106°
w/m?, which is 10,000 times more intense than the eefez intensity (1&10"? = 10*= 10,000). The main point to
be made about column 3 is that the ratios becomel&ege very soon. Even a moderately intense stikad
conversational speech is 1,000,000 times moresgetdman the reference intensity. The awkwardnedealing
with these very large ratios has a very simpletgmiu Column 4 shows the ratios written in exporentotation,
and column 5 simplifies the situation even furthgrecording the exponent only. The term exponadtthe term
logarithm are synonymous, so the measurement sctiehis expressed by the numbers in column 5 ean b
summarized as follows: (1) divide a measured iritghy a reference intensity (in this case;"4@/m?), (2) take the
logarithm of this ratio (i.e., write the numberdrponential notation and keep the exponent onlyjs Tethod, in
fact, is a completely legitimate way to represégual intensity. The unit of measure is called bleg after A.G.
Bell, and the formula is:
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bel = logg I/1;, where: }, = a measured intensity
I, = a reference intensity

Table 3-1. Sound intensities and intensity ratlossng how the decibel scale is created. Columhas the
measured intensities {)l of several sounds. Column 3 shows the ratio e$¢hintensities to a reference intensity of
10" w/m?. Column 4 shows the ratio written in exponentiatation while column 5 shows the exponent only. The
last column shows the intensity ratio expressegetibels, which is simply the logarithm of the imdgy ratio
multiplied by 10.

Measured Ratio  Ratin Exponent  Decibel
Sound Intensity @) /1;)  Exp. Not. (log) (10 x logyg)
Threshold 102 w/im? 1 %0 0 0
@ 1 kHz
Whisper 16 w/m? 10,000 40 4 40
Conversational  10w/m? 1,000,000 90 6 60
Speech
City Traffic 10 w/m? 100,000,000 40 8 80
Rock & Roll 16 w/m? 10,000,000,000 o 10 100
Jet Engine fovm® 1,000,000,000,000  f0 12 120

Legitimate or not, the bel finds its sole applioatin textbooks attempting to explain the decibek reasons that
are purely historical, the lggof the intensity ratio is multiplied by 10, changibel into the decibel (dB). As shown
in the last column of Table 3-1, this has the \&@mple effect of turning 4 bels into 40 decibelfess into 80
decibels, etc. The formula for the decibel, then,

dB. = 10 logyl/l;, where:

a measured intensity
a reference intensity

Im

Iy

The designation "IL" stands famtensity level, and it indicates that the underlying measuremargof sound
intensityand not soungressure As will be seen below, a different version ostformula is needed if sound
pressure measurements are used. The multiplichyid® in the dB formula is a simple operation, but it can
sometimes have the unfortunate effect of makingahmula appear more obscure that it is. The désibees that
are calculated, however, should be readily integite. For example, 30 ¢gBmeans 3 factors of 10 more intense
than |, 60 dB, means 6 factors of 10 more intense thaarid 90 dB means 9 factors of 10 more intense than |

Deriving a Pressure Version of the dB Formula

In a simple world, we would be finished with thecibel scale. The problem is that the formula sebleon
measurements of sound intensity, but as a purelstisal matter sound intensity is difficult to maes Sound
pressure, on the other hand, is quite easy to mea&n ordinary microphone, for example, is a puessensitive
device. The problem, then, is that the decibekfingd in terms of intensity measurements, buntkasurements
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that are actually used will nearly always be measwoif sound pressure. This problem can be addrsgsegithere
is a predictable relationship between intensitya(l)l pressure (E): intensity is proportional tosptge squared:

| o0 E?
Knowing this relationship allows us to create a ptately equivalent version of the decibel formdiattwill work
when sound pressure measurements are used in§tgauhd intensity measurements. All we need tcsdo i

substitutesquaredpressure measurements in place of the intensitgunements:

dB. =10 logely/I, (intensity version of formula)
dBsp,= 10 log E%/E? (pressure version of formula)

The designation "SPL" stands faound pressurelevel, and it indicates that measures of sound pressawe been
used and not measures of sound intensity. AltholghiBsp. formula shown here will work fine, it will almost
never be seen in this form. The reason is thafoihmsula is algebraically rearranged so that theasigg operation is
not needed. The algebra is shown below:

(1) dB. =10 loggl/I; (the intensity version of the formula)

(2) dBsp =10 logoE%/E?>  (measures of &eplace measures of | becausell E?)

(3) dBspL= 10 logo (EL/E)* (&/b” = (a/bf)

(4) dBsp = 102 logoEL/E; (this is the only tricky step: lod & b log a)

(5) stpL: 20 Iog_o Em/Er (2 o = 20)

With the possible exception of the fourth stepe algebra is straightforward, but the detailthefderivation
are less important than the following general oint

1. The decibel formula is defined in terms of irsignratios. The basic formula is;
dB||_ =10 IOgolmllr.

2. While sound intensity is difficult to measureusd pressure is easy to measure. It is thereferessary to
derive a version of the decibel formula that wosken measures of sound pressure are used instsadruf
intensity.

3. The derivation of the pressure version of thenfda is baseéntirelyon the fact that intensity is proportional to
pressure squareddl] E?). This allows measures of b replace measures of |, turning:,dB 10 logo /!, into
dBsp. = 10 logoE%/E2 A few algebra tricks are applied to turn thismota into the more aesthetically pleasing
final version: dBp, = 20 logoE/E;.

4. The two versions of the formula dtély equivalento one another (see Box 3-3).
This last point about the equivalence of the isityrand sound pressure versions of the formuéxjsained in

some detail in Box 3-3, but the basic point is ggimple. The pressure version of the dB formula dexived from
the intensity version of the formula through alggébmanipulations (based on this relationshipclE?). The whole

4 Step 4 is the only tricky part of derivation. Tteason it works is that squaring a number and thléng a log is the same as taking
the log first, and then multiplying the log by 2rfexample, note that the two calculations beloedpce the same result:

log 1010F = 10g1010,000 = 4 (square first, then take the log)
log 10100 = (log;0100) x2=2x2=4 (take the log, then multipiy2)
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Box 3-2

HARMONICS, OCTAVES, LINEAR SCALES, AND LOGARITHMIC SCALES

As we will see when the decibel scale is introdiitkere is an important distinction to be madeveen
linear scales, which are quite common, dagerithmic scales, which are less common but quite important.
This distinction can be illustrated by examining tlifference between a harmonic progression arattave
progression. Notice that in a harmonic progresdiom spacing between the harmonics is always time sthat
is, the difference between ldnd H is the same as the difference betwegmhtl H, and so on. This is because
increases in frequency between one harmonic andekieinvolveadding a constantwith the constant being
the fundamental frequency. For example:

H, 500
H, 1000 (add 500)
H, 1500 (add 500)

H, 2000 (add 500)

To get from one scale value to another on an egvawgression involves multiplying by a constatiea
than adding a constant. For example, an octavegssipn starting at 500 Hz looks like this:

o} 500
O, 1000 (multiply by 2)
Os 2000 (multiply by 2)

Oy 4000 (multiply by 2)

As a result of the fact that we are multiplyingdygonstant rather than adding a constant, thergp&cno
longer even (i.e., the spacing betwegra@d Q is 500 Hz, the spacing betweep&hd Q is 1000 Hz, and so
on). The point to be made of this is that theretamefundamentally different kinds of scales: (tales like
harmonic progressions that are created by addaumstant, which are by far the more common, and¢ales
like octave progressions that are created by myiltip by a constant. Scales that are created bingad
constant are calldihear scales, while scales that are created by multiglpiya constant are called
logarithmic scales. Note that for an octave progression, tHéptier happens to be 2, meaning that progressing
from one frequency to an octave above that frequanmlves multiplication by 2. However, a logaritic
scale can be built using any multiplier. We willen to the distinction between linear and logamihscales
when we talk about the decibel scale, and theraviltsee that a logarithmic scale is built aroundltiplication
by a constant value of 10 rather than 2.
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point of algebra, of course, is to keep the expoassn the left equal to the expression on thetrighe simple and
useful point that emerges from this is this: lfiatensity meter shows that a given sound measretg, for
examplea pressure meter will show that the same sound uneagxactly 60 di,. (This may seem
counterintuitive due to the differences in the fatas, but see Box 3-3 for the explanation.) Thewedence of the
two versions of the dB formula greatly simplifiéetinterpretation of sound levels that are expregséecibels.

References

The reference that is used for the Mach scallnviays the speed of sound. One of the virtues ofitrwbel
scale is that any reference can be used as lomgsadearly specified. The only reference thas baen mentioned
so far is 1% w/m?, which is roughly the audibility threshold for @0@0 Hz pure tone. This is a standard reference
intensity, and unless otherwise stated it shoulddseimed that this is used when a signal levelisrted in dB.

The standard reference that is used fogsd B 20uPa, so when a signal level is reported irg B should be
assumed that this reference is used unless otlreestated®.

Many references besides these two standard refseran be used. For example, suppose that a sgigeeh
is presented to a listener at an average leveb@®@Pa in the presence of a noise signal whose avemga
pressure is 140@Pa. The speech-to-noise ratio (S/N) can be repredem a decibel scale, using the level of the
speech as fand the level of the noise as E

dByn =20 logo B/ E
= 20 logo 3500/1400
= 20logg 2.5
= 20 (0.39794)
= 7.96 dB

To take one more example, assume that a voicenpatiior to treatment produces sustained vowelts th
average 230QPa. Following treatment the average sound presgwesase to 889APa. The improvement in
sound pressure (post-treatment relative to prerreat) can be represented on a decibel scale:

dBImprovement =20 |0g0 Epos{Epre
= 20 logo 8890/2300
=20 log, (3.86522)
=20 (0.58717)
=11.74dB

A final example can be used to make the pointttietecibel scale can be used to represent ibyaasios for
any type of energy, not just sound. Bright sunligés a luminance measuring 100,000 édandela per square
meter). Light from a barely visible star, on theathand, has a luminance measuring 0.0001%dfa can now
ask how much more luminous bright sunlight is ilatien to barely visible star light, and the dBlsczan be used
to represent this value. Since the underlying glafgjuanities here are measures of electromagnéticsity, we
want the intensity version of the formula rathearttihe pressure version.

dB =10 lag lsunigh{! stariight
=10 loge 100000/0.0001
=10 log, 10°/10*
=10 log, 10° (division is done by subtracting exponents: 54} & 9)
=10 (9)
=90 dB

SThe standard pressure reference fogsdB sometimes given as 0.0002 dyned/cather than 2QiPa. These two sound pressures are
identical, however, in exactly the same sensedhpiarts and 1 gallon are identical. Likewise,dtadard reference for @Bs often given as
10" wicn? instead of 18% w/n?. These two intensities are also identical.
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The fact that we are measuring light rather ttamd makes no difference: a decibel is 1QJag/|, (or,
equivalently, 20 log E./E,), regardless of whether the energy comes fromdsdight, electrical current, or any
other type of energy.

dB Hearing Level (dBy.)

The dB Hearing Level (dg) scale was developed specifically for testing imgasensitivity for pure tones
of different frequencies. The sound-level dialscbnical audiometer§ for example, are calibrated in dBrather
than dBp.. To understand the motivation for the,gBcale examine Figure 3-24, which shows the soeweal (in
dBspy) required for the average, normal-hearing listeadrarely detect pure tones at frequencies bet@2srand
8000 Hz. This is called theudibility curve and the simple but very important point to nod®ut this graph is
that the curve is not a flat line; that is, the isatlearly more sensitive at some frequencies tthars. The
differences in sensitivity are quite large in sorases. For example, the average normal-heariegéstvill barely
detect a 1000 Hz pure tone at 7sgBbut at 125 Hz the sound level needs to be craakele way up to 45 df3,,
an increase in intensity of nearly 4000:1. Now saggpwe were to test pure-tone sensitivity usinguadiometer that
is calibrated in dBs.. Imagine that a listener barely detects a 100@u#z tone at 25 df3,. Does this listener have
a hearing loss, and if so how large? The only wagrswer this question is to consult the dataguie 3-24, which
shows that the threshold of audibility for the age normal hearing listener at 1000 Hz is &gBrhis means that
the hypothetical listener in this example has aihgdoss of 25-7 = 18 dB. Suppose further thatsmme listener
detects a 250 Hz tone at 204B The table in Figure 3-24 shows that normal heasiggitivity at 250 Hz is 25.5
dBsp, meaning that the listener has slightly bettentharmal hearing at this frequency. As a final eghan
imagine that this listener barely detects a 50Qdde at 30 dBs.. Since the table shows that normal hearing
sensitivity at 500 Hz is 11.5 dB, the listener has a hearing loss of 30.0-11.5.5 @B. The simple point to be
made about these examples is that, with an audesrditl that is calibrated in @B, it is not possible to determine
whether a listener has a hearing loss, or to medharsize of that loss, without doing some aritticriavolving the
normative data in Figure 3-24. ThegBscale, however, provides a simple solution to phidlem that avoids this
arithmetic entirely. The solution involves calibngf the audiometer in such a way that, when thelldial is set to
0 dBy., sound level is set to the threshold of audibiiitythe average normal-hearing listefmrthat signal
frequencyFor example, when the level dial is set to Q,d& 125 Hz the level of tone will be 45 gB— the
threshold of audibility for the average normal legtistener at this frequency. Now if a listenardly detects the
125 Hz tone at 0 dB, no arithmetic is needed,; the listener has nofmating at this frequency. Further, if the
listener barely detects this 125 Hz tone at 4@, dBr example, the listener must have a 40 dB &vdhis frequency
—and again it is not necessary to consult theiddtggure 3-24. Similarly, when the level dialsist to 0 dB, at
250 Hz the level of the tone will be 25.54B which is the audibility threshold at 250 Hz.Hfd tone is barely
detected at O dB, the listener has normal hearing at this frequeRoyvever, if the tone is not heard until the dial
is increased to 50 dB @B for example, the listener has a 50 dB hearing &ghis frequency. The same system is
used for all signal frequencies: in all cases,&lk8,_ reference is not a fixed number as it is foggBa constant
value of 20uPa, no matter what the signal frequency is) qr @8 constant value of féwatts/rﬁ, again
independent of signal frequency), but rather affiaofinumbers. In each case the reference for Byg dcale ighe
threshold of audibility for an average, normal-hiay listener at a particular signal frequendyhat this means is
that values in dR._ area fixed distance above the audibility curedthough they may be very different levels in
dBsp,. For illustration, Figure 3-25 shows the audilgitiurve (the filled symbols) and, above that in tindlled
symbols, a collection of values that all measureBQ . Although the sound levels on the 30gBurve vary
considerably in dB (i.e. measured using 20Pa as the reference), every data point on thisedsra constant 3
factors of 10, or 30 dBabove the audibility curvéhe value of 30 dB in this figure is just an exdenll values in
dBy. and dBp, are interpreted in the same way: 50;siBneans that the signal being measured is 100,005t
(i.e., 5 factors of 10) more intense than the fikgfdrence of 2QPa, independent of frequency; 50gBon the
other hand, means that the signal being measufDi®00 times (again, 5 factors of 10) more irggthsin a tone
that is barely audible to a normal-hearing listestethat signal frequency. Similarly, 20 gBmeans that the signal
is 20 dB (2 factors of 10) more intense than thedireference of 2(Pa, while 20 dB. means that the signal is 20
dB (again, 2 factors of 10) above the audibilityveu

6A clinical audiometer is an instrument with, amariger things, one dial (for each ear) that coatpaire-tone frequency and another dial
that controls the intensity of the torhe listener is asked to raise a hand when theisoo&rely audible.
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Summary

The decibel is a powerful scale for representigga amplitude. The scale has two important prigsr(1)
similar to the Mach scale, it represents signatlleot in absolute terms but as a measured levalat by a
reference level; and (2) like the Richter scale,dB scale is logarithmic rather than linear, megnhat it is based
on equal multiplicative distances rather than equalitive distances. While the decibel is defineterms of
intensity ratios, for practical reasons, measufa®ond pressure are far more common than meastisesind
intensity. Consequently, a version of the decibeiula was derived that makes use of pressuresrattber than
intensity ratios. The derivation was based on #ut that intensity is proportional to pressure sgdaThe two
versions of the decibel formula (gB= 10 logyol/1; and dBp, = 20 log,o E/E;) are fully equivalent, meaning that
if a sound measures 60 gBhat same sound will measure 60sgBUnlike the Mach scale, which always uses the
speed of sound as a reference, any number of nefesecan be used with the decibel scale. The st@nefierence
for the dB, scale is 18*w/m? and the standard reference for thedBcale is 2QuPa. However, any level can be
used as a reference as long as it is specifieddBhescale, widely used in audiological assessment,deasloped
specifically for measuring sensitivity to pure terc# difference frequencies. The reference thaséed for the dR.
scale is the threshold of audibility at a particd@nal frequency for the average, normal-hedistgner. Sound
levels in dBp. and dBy_ are interpreted quite differently. For exampl@uae tone measuring 40 gB is 4 factors
of 10 (i.e., 40 dB) greater than the fixed SPL mefiee of 2QuPa, while a pure tone measuring 4Q,dB 4 factors
of 10 (again, 40 dB) greater than a tone of thatesftequency that is barely audible to an averagemal-hearing
listener.

Frequency Threshol d

The Audibility Curve

80

125 45. 0
70 All of These Tones are Barely Audible 250 25.5
to the Average, Normal-Hearing Listener 500 11.5

60 - .
mg By Definition, All Values on This Curve = 0 dB,, 750 8.0
T 501 1000 7.0
£ TN 1500 6.5
s 407 2000 9.0
2 30} 3000 10.0
3 4000 9.5
207 6000 15.5
ol 8000 13.0

ol | I I ‘{,— 0 dBSIPL =20 yPa | I
125 250 500 1000 2000 4000 8000
Frequency (Hz)

Figure 3-24. The threshold of audibility for the average, nomearing listener for pure tones varying between
125 and 8000 Hz. The audibility threshold is thergblevel in dBp, that is required for a listener to barely de
a tone. Values on this curve are shown in the tiabtke right. The most important point to note @itbis graph

is that the curve is not flat, meaning that theiganore sensitive at some frequencies than otheparticular,

the ear is more sensitive in a range of mid-fregigsnbetween about 1000 and 4000 Hz than it isvetd and
higher frequencies. The complex shape of this cpregides the underlying motivation for the (iBcale. See
text for details.



The Physics of Sound 32

80
All Values on the 30 dB,, Curve are a

70k Constant 3 Factors of 10 in Intensity
(i.e., 30 dB) above the Audibility Curve

Sound Level in dBg;,,

125 250 500 1000 2000 4000 8000
Frequency (Hz)

Figure 3-25. The lower function is the audibility curve — thausd level in dBp_ that is required for an average
normal hearing listener to barely detect pure taietifferent frequencies. The upper function sheasnd levels for
a set of tones that all measure 3QudB hese tones vary quite a bit ingB(i.e., relative to the constant value of 20
pMPa) but in all cases the tones are a constant@$aaf 10 in intensity (i.e., 30 dBbove the audibility curve.
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Box 3-3

THE EQUIVALENCE OF THE INTENSITY AND PRESSURE
VERSIONS OF THE DECIBEL FORMULA

One fact about the two versions of the dB formbd is not always well understood is that dB_ and
dBsp. formulas are fully equivalenBy "fully equivalent” we mean the following: supge that a sound intensity
meter is used to measure the level of some somadwa find that this sound is 1,000 times moreriséethan
the standard intensity reference of"4@/m? The sound would then measure 3¢ d&0 log, 1,000 = 10 (3) =
30 dB,). Now suppose that we put the sound intensity mete@y and use a sound pressure meter to measure
the same sound. You might think that the sound dvowtasure 60 di3, since now we are multiplying by 20
instead of 10, but the trick is thidie ratio is no longer 1,00QRecall that intensity is proportional to pressure
squared, which means that pressure is proportiortake square root of intensity. This means th#idfintensity
ratio is 1,000, the pressure ratio must be thersguent of 1,000, or 31.6. So, the formula now Imees 20 log
31.6 =20 (1.5) =30 dB,, which is exactly what we obtained originallywlill always work out this way: if a
sound measures 50 @Bthat same sound will measure 50;6B

Table 3-2 might help to make this more clear. fitst column shows an intensity ratio, the secooldimn
shows the corresponding pressure ratio (this isygwhe square root of the intensity ratio), thedtbolumn
shows the dB value (10 log of the intensity ratio), and thertbucolumn shows d&, value (20 log of the
pressure ratio). As you can see, they are alwaysdme.

Table 3-2. Irg@gp ratios, equivalent pressure ratios,, dBlues and
d&, values showing the equivalence of the intensity gessure versions
of the dB formula

Intensity Pressure dB di
Ratio Ratio (10 lggd./1)) (20 logp E/E))
10 3.16 10.00 10.00
20 4.47 13.01 13.01
40 6.32 16.02 16.02
50 7.07 16.99 16.99
60 7.75 17.78 17.78
70 8.37 18.45 18.45
80 8.94 19.03 19.03
90 9.49 19.54 19.54
100 10.00 20.00 20.00
200 14.14 23.01 23.01
300 17.32 24.77 24.77
400 20.00 26.02 26.02
500 22.36 26.99 26.99

1000 31.62 30.00 30.00
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Study Questions: Physical Acoustics

1. Explain the basic processes that are involveédarpropagation of a sound wave.

2. Draw time- and frequency-domain representatafrssmple periodic, complex periodic, complex apdit, and
transient sounds.

3. Draw time- and frequency-domain representatadris/o complex periodic sounds with different fungantal
frequencies.

4. Draw time-domain representations of two simpeqalic sounds with the same frequency and phagelitberent
amplitudes.

5. Draw time-domain representations of two simmgdqulic sounds with the same frequency and difftesemplitudes but
different phases.

6. Draw amplitude spectra of two sounds with thees&undamental frequencies but different spectrovel®pes.
7. Draw amplitude spectra of two sounds with défagrfundamental frequencies but similar spectruuelepes.
8. Calculate signal frequencies for sinusoids wiihfollowing values:

a. period =0.34 s

b. period =2s

c. period =10 ms

d. period = 2 ms

e. wavelength = 20 cm
f. wavelength = 100 cm

Answers:
a.f=1/0.34 =2.94 Hz
b.f=1/2=05Hz
c.f=1/0.01 =100 Hz
d. f=1/.002 = 500 Hz
e. f = ¢/WL (speed of sound/wavelength) = 35006/2050 Hz

—

. f = ¢/WL (speed of sound/wavelength) = 35000/ 0350 Hz

9. Calculate the three lowest resonant frequertdiize following uniform tubes that are closed aé @nd and open at
the other end:

a. 10 cm
b. 30 cm
c.40 cm

Answers:
a. wavelength of lowest resonance =40 cm (1P x 4

f =35000/40 = 875
R1 = 875 (R1 = frequency of resonance numper 1

R2 = 2625
R3 = 4375
b. wavelength of lowest resonance =120 cm (3D x 4

f =35000/120 = 291.7
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R1= 291.7

R2 = 875.0

R3 =1458.3

C. wavelength of lowest resonance = 160 cm (4D x 4

f = 35000/160 = 218.75

R1= 218.75

R2 = 656.25

R3 =1093.75

Show what the frequency-response curves |&ekftir the tubes in the problem above.

11. A complex periodic signal has a fundamentaiopeof 4 msec. What is the fundamental frequencahefsignal? At
what frequencies would we expect to find energy?

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

How are the termsctaveandharmonicdifferent?

Give examples of the following kinds of grapbsing sure to label both axes:

p

amplitude spectrum

b. phase spectrum

c. frequency-response curve
d. time-domain representation

Give a brief explanation of the basic idea beéftourier analysis. What is the input to Fouriealgsis and what kind
of output(s) does it produce?

Draw and label frequency-response curves ferdass, high-pass, and band-pass filters.
What parameters control the frequency of vibneof a spring and mass system?

Draw the time domain representation of oneecgtla sinusoid as variations in instantaneoupragsure over time
and one cycle of that same sinusoid as variationsstantaneous velocity over time.

How, if at all, are the termiesonant frequencgndharmonicdifferent?
How, if at all, are the terrmesonant frequencgndformantdifferent?

A harmonic is a peak in: (a) a frequency respamurve, (b) an amplitude spectrum, or (c) eithizequency response
curve or an amplitude spectrum.

A resonance is a peak in: (a) a frequency respourve, (b) an amplitude spectrum, or (c) eishieequency response
curve or an amplitude spectrum.

A formant is a peak in: (a) a frequency respansve, (b) an amplitude spectrum, or (c) eithieequency response
curve or an amplitude spectrum.

A frequency response curve describes a

An amplitude spectrum describes a
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Freqguency Response Problems

Input Spectrum

Frequency Response Curve Qutput Specirum
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Assume that a signal with the amplitude spectrum show at the left
is modified by a filter with the frequency response curve show in
the middle. Show what the output spectrum would look like.
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Answers to Frequency Response Problems

Input Spectrum
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Decibel Study Questions

What reference is used for the,dBcale?
What reference is used for thegiBscale?
What reference is used for the giBcale?
What reference is used for theglBcale?

A listener barely detects a 125 Hz pure tone alB%,. Does this listener have a hearing loss at 125Hd if
so, what is the size of the hearing loss?

A listener barely detects a 1,000 Hz pure torigbadBsp,. Does this listener have a hearing loss at 1,8@0
and if so, what is the size of the hearing loss?

A listener barely detects a 125 Hz pure tone alB%. Does this listener have a hearing loss at 125aHd if
so, what is the size of the hearing loss?

A listener barely detects a 1,000 Hz pure torgbadB, . Does this listener have a hearing loss at 1,8@0
and if so, what is the size of the hearing loss?

60 dBsp_ at 1,000 Hz means more mteéas
60 dB, at 1,000 Hz means more mtbas
60 dB,_at 1,000 Hz means more mteas

The reference that is used for thesgBscale is:

a. anumber
b. asentence

If the answer to the question above is a numbee tfie number; if it's a sentence, give the semtenc
The reference that is used for the dBcale is:

a. anumber
b. asentence

If the answer to the question above is a numbee tie number; if it's a sentence, give the semenc

A specific individual has a 70 dB hearing losshia teft ear at 1,000 Hz. A 90 dB 1,000 Hz tone that is
presented to this listener’s left ear would measure dB,.

A sound measures 42 ¢IBOn the dBp, scale, that same sound will measure:

a. 84 dBsp, because with the @B, formula we are now are multiplying the ratio byigétead of 10.
b. 42 dBsp. because the two versions of the formula are etpriva

A sound measures 60,dB8a) The measured intensityJImust therefore be times
greater than the reference intensity.({b) What would the pressure ratiq{Eg) be for this same sound? (c)
Do the arithmetic to show what this sound would soea in dBp,.
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19. A sound measures 40,d8a) The measured intensity,JImust therefore be times
greater than the reference intensity).((b) What would the pressure ratiq{(Eg) be for this same sound? (c)
Do the arithmetic to show what this sound would soea in dBp,.

20. On the graph below, put a mark at: (a) 3,00028 dB;, and (b) 3,000 Hz, 20 4B (the
grid lines on the y axis are spaced at 2nd@&vals).

o Frequency Thr eshol d
The Audibility Curve in Hz in dB SPL
80
125 45.0
70 250 25.5
500 11.5
60 750 8.0
1000 7.0
01 1500 6.5
* 2000 9.0
40 3000 10.0
30 4000 9.5
. 6000 15.5
20 8000 13.0
0 3 = 20[Pa

125 250 500 1000 2000 4000 8000
Frequency (Hz)
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Answers to Decibel Study Questions

10"? watts/nf

20 pPa (or, equivalently, 0.0002 dynesfm

The threshold of audibility for an average, noriakring listener at a particular signal frequency.

3. The threshold of audibility for a particulartéger at a particular signal frequency.

Consulting the attached figure and table showiegaindibility curve for average, normal-hearingelisrs, we
find that the threshold of audibility at 125 Hz4i5 dBsp,. A listener who barely detected a 125 Hz tonebat 5
dBsp. Would therefore have hearing loss of 55-45=10ttiBt is, the hearing sensitivity of this listenesuld be
10 dB worse than normal.

Consulting the attached figure and table showiegatindibility curve for average, normal-hearingelisrs, we
find that the threshold of audibility at 1,000 14Z7 dBsp,. A listener who barely detected a 1,000 Hz tdne a
55 dBsp, would therefore have a hearing loss of 55-7=48tHB is, the hearing sensitivity of this listener

would be 48 dB worse than normal.

The reference for dB is the audibility threshold, so this listener woulave a 55 dB hearing loss at 125 Hz.
There is no need to consult the table.

The reference for dB is the audibility threshold, so this listener woulave a 55 dB hearing loss at 1,000 Hz.
There is no need to consult the table.

6 factors of 10 (i.e., 1,000,000 times) more inéettan 2QuPa)
6 factors of 10 (i.e., 1,000,000 times) more inéetian 102 watts/nf

6 factors of 10 (i.e., 1,000,000 times) more ingettgmn a 1,000 Hz tone that is barely audible taveamage,
normal-hearing listener.

a number

20pPa

a sentence

The threshold of audibility for an average, noriakring listener at a particular signal frequency.

20 dBs,. The reference for the dB(SL=sensation level) is the threshold of audipildr a specific listener. So,
what we want to know here very simply is where 80sdB;, tone is in relation tthis particular listener’s
threshold. This listener has a 70 dB hearing loglig frequency, so the 90 dBHL tone, which woloéd90 dB
above a normal-hearing listener’s threshold, iy @ dB above this particular listener’s threshold.

42 dBspi: The pressure version of the formula was derivethfthe intensity version through algebraic
manipulations, so they have to be equivalent toasrgher. The next problem was designed to illtesthaw
this can be the case.

(a) 1,000,000 times (6 factors of 10) more integhsa k. (b) If the intensity ratio is 1,000,000, the e
ratio has to be the square root of 1,000,000, wisidh000. (c) dBs. = 20 log 1,000 = 203 = 60 dBp,. This is
exactly what we got for the same sound measurd@jn It will always be the same. If a sound measufes 6
dB,., that same sounwill measure 60 d&,.
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(a) 10,000 times (4 factors of 10) more intensa tha(b) If the intensity ratio is 10,000, the presstatio has
to be the square root of 10,000, which is 100d&, = 20 log 100 = 202 = 40 dBp,. This is exactly what
we got for the same sound measured in.dBwill always be the same. If a sound measufedB} , that same
soundwill measure 40 dB,.

See below. The lower of the two marks is 20 dBa@drs of 10) above the constant reference lirkDqiPa.
The higher of the two marks is 20 dB (also 2 fextir10) above theurveyline, which is the threshold of
audibility for the average normal-hearing listener.

The Audibility Curve
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