
1

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Unidad 3

INSTRUCCIONES DE REPETICION
(Capitulo 5 bibliografía)

Estructuras Básicas de ciclos – Ciclos While

» Ventre, Luis O.

2

Intro

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Los programas vistos hasta ahora han ilustrado conceptos de
programación implicados con capacidad de entrada, salida,

asignación y selección.

• Muchos problemas requieren de una capacidad de repetición, donde
una sección del programa debe ejecutarse reiteradas veces con

distintos conjuntos de datos con los objetivos de contar, acumular,
validar, e incluso permitir el constante ingreso de datos y el

recalculo de los valores de salida que solo se detiene al introducir
un valor centinela.

• Estas secciones de código repetitivas son llamadas generalmente
ciclos. Y cada repetición del mismo se conoce como iteración o paso

a través del ciclo.

3

Estructuras Básicas de ciclos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Construir una sección de código repetitiva requiere cuatro
elementos:

1) Instrucción de repetición

2) Condición de repetición

3) Instrucción Condición de inicio

4) Instrucción de Salida.

1) Instrucción de repetición:

 Esta define los limites que contienen la sección de código
repetitiva. Y controla si el código se ejecutara o no. C++ incorpora 3
diferentes:

WHILE - FOR - DO WHILE

4

Estructuras Básicas de ciclos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

2) Condición de repetición:

 Es la condición que debe evaluarse para ejecutar el ciclo. Las
condiciones válidas son iguales a las de las estructuras selectivas.

 Si la condición es verdadera el ciclo es ejecutado de lo contrario no.

3) Instrucción Condición de inicio:

 Instrucción que establece la condición al inicio. Esta debe colocarse
siempre antes de que la condición sea evaluada por primera vez
para asegurar la ejecución correcta del ciclo.

4) Instrucción de Salida:

 Debe existir en el ciclo, una instrucción que permita volver falsa la
condición de ejecución del ciclo. Esto es necesario con el objetivo
de poder detener las repeticiones en algún momento.

5

Estructuras Básicas de ciclos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ciclos de prueba preliminar y
posterior:

 La condición que se esta
probando puede ser evaluada al
principio o al final del ciclo.

 Los ciclos de prueba preliminar
también conocidos como ciclos
controlados a la entrada,
evalúan la condición antes de
comenzar el ciclo, si esta es falsa,
el ciclo no se ejecuta nunca y
sigue la instrucción posterior al
bloque de repetición. Las
instrucciones while y for son
ejemplos de estos ciclos.

6

Estructuras Básicas de ciclos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Un ciclo de prueba posterior,
evalúa la condición al final de la
ejecución de las instrucciones del
bloque repetitivo. Estos ciclos son
llamados ciclo controlados en la
salida.

• Puede observarse que siempre el
bloque de instrucciones se
ejecuta al menos una vez.

• La instrucción do while es un
ejemplo de este tipo de ciclo.

• Para evitar ciclos infinitos, la
condición debe actualizarse
dentro del ciclo………………….

7

Estructuras Básicas de ciclos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ciclos de cuenta fija vs de condición variable

 Además del lugar donde se prueba la condición las secciones de
código repetitivo también se clasifican según el tipo de condición
que se prueba:

 En un ciclo de cuenta fija, la condición se usa para dar
seguimiento al numero de repeticiones, y se ejecuta un
numero fijo predefinido de veces. El bucle finaliza al llegar al valor
deseado.

 En un ciclo de condición variable, puede no conocerse el limite
al inicio, por ende el fin del ciclo no depende de que se alcance
una cuenta sino mas bien del cambio de una variable que puede
cambiar en cada paso del ciclo.

- de cuenta fija - de condición de variable

8

Ciclos WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La instrucción WHILE se utiliza para armar un ciclo de la
siguiente manera:

• EXPRESION: es la condición probada para ver si se ejecuta la
instrucciónA.

• Si EXPRESION es verdadero != 0, diferente de 0, se ejecuta
instruccionA.

• InstruccionA se ejecuta hasta que EXPRESION evalúe a 0.

• Ver en la próxima grafica los dos puntos de entrada y los dos
puntos de salida de la instrucción

while (expresion)

instrucciónA;

9

Ciclos WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

evalúo la

expresión

paso 1

Ejecución de

instrucción-es

cuerpo - Paso 2

salir de la

instrucción

while

ciclo

ingreso a la instrucción

 while

condición

verdadera

!= 0

falsa

regreso

y revalúo

de la

expresión

Paso 3

while (edad<40)

edad++;

/////////////////////////////////////

while (dato!=0)

cout<<dato;

Ej´s.

cuenta=1;

while (cuenta<=10)

{

cout<<cuenta;

cuenta++;

}
10

Ciclos WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Veamos un ejemplo:

• Que problema tiene esto?

while (cuenta<=10)

cout<<cuenta;

 cuenta=1;

while (cuenta<=10)

cout<<cuenta;

•Y debo poder hacer falsa la condición

 para esto puedo utilizar una instrucción

 compuesta en lugar de una simple

• Debo inicializar la variable cuenta:

1

1

Ciclos WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• El programa anterior

12

Ciclos WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Otro Ejemplo – cuenta fija

13

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La combinación de un
ciclo repetitivo con la
capacidad de introducir
datos produce
programas potentes y
adaptables

• El siguiente programa
usa el ciclo WHILE para
aceptar y luego imprimir
en pantalla 4 números
introducidos por el
usuario

14

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Si el objetivo del programa fuera calcular suma total de números
ingresados, se debería incluir una instrucción como las vistas en la
sección 3.1 (acumulación).

15

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Si el objetivo ahora fuera calcular el promedio de números
ingresados, se debería determinar donde calcular el promedio y
como?

16

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• En los programas vistos, todos los ciclos son de cuenta fija, ya que
se utiliza un contador para determinar el fin del ciclo

• En muchos programas es necesario construir ciclos de condición
variable.

• Existen casos donde es necesario ingresar datos de manera
continua, en ellos se ingresan datos hasta que un determinado valor,
denominado “centinela” es ingresado y este detiene el ciclo.

• Evidentemente un requisito fundamental es que el valor centinela no
pueda confundirse con los valores esperados en el programa.

• Veamos un ejemplo

17

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Centinela

18

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Dos instrucciones útiles relacionadas con las instrucciones de
repetición son:

• Una es la opuesta a la otra, la instrucción BREAK, obliga a una

interrupción inmediata o salida del ciclo. Como se vio en switch. Se
usa en while, for, do while.

• Esta instrucción viola los principios puros de programación
estructurada porque proporciona una segunda salida no
estándar de un ciclo.

• Es útil cuando se detecta una condición inusual.

• La instrucción CONTINUE, indica que la siguiente iteración del ciclo
comienza de inmediato. Útil cuando no se deben evaluar
condiciones.

- BREAK - CONTINUE.

19

Ciclos WHILE Interactivos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Ej de instrucción break:

 while(cuenta<=10)

{

 cout<<“introduzca un numero : “;

 cin>>num;

 if (num > 76)

 {

 cout << “Perdiste!\n”;

 break; //interrumpe el ciclo y salta

 }

 else

 cout << “Sigue intentandolo!\n”;

 cuenta++;

}

 //break salta hasta aquí.

while(cuenta<30)

{

 cout<<“introduzca una calificacion: “;

 cin>>calificacion;

 if (calificacion<0 || calificacion>100)

 continue;

 total=total +calificacion;

 cuenta++;

}

•La instrucción nula, es una instrucción que no hace nada y se utiliza

 donde se requiere una instrucción desde el punto de vista sintáctico.

 Son usadas de manera típica en instrucciones del tipo while o for.

Ej. instrucción continue

20

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Como hemos visto la construcción de ciclos en C++ puede realizarse
de varias formas. Una de estas es utilizando una instrucción FOR,
cuya traducción puede interpretarse como “para” o “para cada”.

• En muchas situaciones, en particular aquellas que se necesita de una
cuenta fija, o sea se conoce en un comienzo la cantidad de
iteraciones a realizar es mas fácil el formato de la instrucción FOR.

• La sintaxis de la instrucción FOR tiene la siguiente forma:

for (lista de inicialización; expresión; lista de alteración)

 instrucción;

21

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Aunque esta instrucción parezca compleja, es bien simple si
analizamos sus componentes por separado.

• La sintaxis de esta instrucción muestra entre paréntesis 3 elementos
OPCIONALES, separados por “;”; aunque los elementos pueden
faltar, los “;” deben estar SIEMPRE.

• lista de inicialización: en su forma mas común, consiste de una sola
instrucción usada para establecer el valor inicial de un contador.

for (lista de inicialización; expresión; lista de alteración)

 instrucción;

22

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• expresión: contiene el valor máximo o mínimo que puede tener el
contador y determina cuando se termina el ciclo.

• lista de alteración: proporciona el valor de incremento que se suma o
resta del contador cada vez que se ejecuta el ciclo.

• Ej. simples de esta instrucción son:

for (lista de inicialización; expresión; lista de alteración)

instrucción;

for (cuenta=1 ; cuenta <10 ; cuenta = cuenta +1)

 cout<<cuenta;

for (i=1; i <=15; i = i +2)

 cout<<i;

23

Diagrama de Flujo - FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Evaluar la

Expresión

probada

Ejecución de

instrucción-es

salir de la

instrucción

for

ciclo

ingreso a la instrucción

 for

condición

verdadera

!= 0

falsa

regreso

y vuelo a

probar la

condición

Lista inicialización

Lista alteración

for (lista de inicialización; expresión; lista de alteración)

 instrucción-es;

24

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• En esta instrucción, la variable contadora debe haber estado
DECLARADA anteriormente, y se llama cuenta. La misma es
inicializada en valor 1, y se repite el ciclo incrementándose en 1
siempre y cuando sea menor que 10.

• En esta instrucción, la variable contadora debe haber estado
DECLARADA anteriormente, y se llama i. La misma es inicializada
en valor 5, y se repite el ciclo incrementándose en 2 siempre y
cuando su valor sea menor o igual a 15.

for (cuenta=1; cuenta <10; cuenta = cuenta +1)

cout<<cuenta;

for (i=5; i <=15; i = i +2)

cout<<i;

25

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ejemplo:

26

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ciclo WHILE equivalente

cuenta=1;

while(cuenta<=MAXCUENTA)

{cout<<setw(4)<<cuenta

 <<setw(15)<<sqrt(double(cuenta)<<endl;

cuenta++;

}

27

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Puede determinar la salida del siguiente programa?

28

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Como se menciono anteriormente, las expresiones dentro del
paréntesis son opcionales. La instrucción FOR solo asegura que
todas las expresiones en la lista de inicialización se ejecutaran una
vez, antes de la evaluación de la expresión, y que todas las
expresiones en la lista de alteración se ejecutan al final del ciclo
antes que se vuelva a verificar la expresión probada.

• Por lo tanto el programa anterior tiene los siguientes equivalentes:

29

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Como pudo observarse en los distintos casos, faltaban algunos de
los elementos en la expresión entre paréntesis de la instrucción
FOR; estando reemplazados en el lugar adecuado en el programa.

• Es importante destacar que en la ultima versión, se encontraron
separados por “,”, dos elementos en la lista de alteración. El uso de
comas para separar elementos en las listas de inicialización y de
alteración se requiere si cualquiera de estas dos listas contiene
mas de un elemento.

• Agregar elementos distintos a las variables de control del ciclo y
sus condiciones de actualización dentro del ciclo tiende a
CONFUNDIR su legibilidad. Por lo tanto mantener “limpia” la
estructura es una buena practica de programación.

• Ciclo FOR o WHILE?, depende del estilo de programación, al ser
ambos prueba preliminar una alternativa es FOR para cuenta fija y
WHILE para cond. vble.

30

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La instrucción CONTINUE en los ciclos FOR, transfiere el control a la
lista de alteración, no a la expresión como en while.

• La instrucción BREAK opera igual que en los ciclos while.

• TECNICAS DE PROGRAMACION CON CICLOS

• Es de importancia destacar que con la instrucción FOR, se pueden
utilizar todas las composiciones de instrucciones de selección,
acumulación, ingreso de datos, etc tal cual la instrucción while.

• A continuación veremos un ejemplo, que nos permite dentro de un
bucle FOR de cuenta fija, ingresar números y calcular el promedio
al salir del mismo.

31

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

32

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Otro caso es la selección dentro de un ciclo for.

• Esta implica hacer un ciclo en el cual através de un conjunto de
números es posible seleccionar aquellos que satisfagan uno o mas
criterios.

• A continuación se vera un ejemplo donde se desea encontrar la suma
positiva y negativa de un conjunto de números. Los criterios aquí son
si el numero es positivo o negativo y el pseudocódigo seria.

mientras la condición se cumpla

introducir un numero

 si es mayor que cero

 sumar a la suma positiva

 de lo contrario

 sumar a la suma negativa

fin

33

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

34

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Evaluación de funciones

de una variable:

No limitados a enteros

en variable contador.

Saltos fraccionarios.

35

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Control interactivo de un

Ciclo:

Se pueden utilizar

variables para controlar

un ciclo, y su valor

puede ser ingresado

interactivamente.

36

DO WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Traducción: HACER MIENTRAS.

• Como puede deducirse, la gran diferencia con la instrucción WHILE,
radica en que esta instrucción produce un ciclo de repetición
CONTROLADO A LA SALIDA o DE PRUEBA POSTERIOR, y al
menos se EJECUTA una vez el código dentro del cuerpo de la
instrucción.

• La sintaxis de esta instrucción es:

• La instrucción simple puede ser reemplazada por una
compuesta, NO OLVIDAR LAS {}

• Puede ser reemplazada por un ciclo WHILE o FOR equivalente,
generalmente es mas usado el ciclo WHILE por claridad.

do

 instrucción;

while (expresion);

37

Ciclos DO WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

evaluar la

expresión

Ejecución de

Instrucción/es

salir de la

instrucción

DO WHILE

ciclo

ingreso a la instrucción

 DO WHILE

condición

verdadera

!= 0

falsa

regreso

y ejecuto

la

instrucción

38

Ciclos DO WHILE

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• En el ultimo programa visto puede cambiarse el ciclo WHILE a:

39

REPASO CLASE IF ELSE SWITCH

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La instrucción SWITCH permite comparar, el valor de una expresión
con los distintos CASOS. Si no coincide ninguno se ejecuta el
DEFAULT si esta presente.

switch(edad)

{

 case 10:

 case 15:

 case 16: cout<<“Usted es demasiado JOVEN para estudiar

 << informatica”;

 case 17:

 case 18: cout<<“Es el momento de empezar”;

 default: cout<<“ Usted ya deberia SABER C++”;

}

40

REPASO CLASE IF ELSE SWITCH

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Resolución Ejercicio 2c con SWITCH

41

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

42

Repaso Clase IF ELSE SWITCH

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

REPASO

EJERCICIO 4 - página 229 Bronson.

Todos los años que se dividen exactamente entre 400 “o” que son divisibles
exactamente entre 4 “y” no son divisibles exactamente entre 100 son
años bisiestos. Por ejemplo en vista que 1600 es divisible exactamente

entre 400, el año 1600 fue un año bisiesto. Del mismo modo, en vista que
1988 es divisible exactamente por 4 y no es divisible exactamente por

100, el año 1988 también fue un año bisiesto.

Usando esta información escriba un programa en C++, que acepte el año
como una entrada del usuario, determine si el año es un año bisiesto y

despliegue un mensaje apropiado que le indique al usuario si el año
introducido es o no bisiesto.

Ayuda: revise la funciones aritméticas de la biblioteca cmath vistas en clase

43

Repaso Clase IF ELSE SWITCH

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Primero debo OBSERVAR que EXISTEN DOS CONDICIONES QUE ME DA
EL ENUNCIADO que determinan si un año es bisiesto. Esto es debido a

que el tiempo necesario para que la tierra gire una vuelta alrededor del sol
es 365.25635 días. Por lo tanto no solo cada cuatro años puede darse

una año bisiesto debe considerarse la fracción completa.

Que se cumpla UNA U OTRA CONDICION es SUFICIENTE para decir que
el año ingresado es bisiesto.

