Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Unidad 3

INSTRUCCIONES DE REPETICION

(Capitulo 5 bibliografia)
Estructuras Basicas de ciclos — Ciclos While

» Ventre, Luis O.

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

* Los programas vistos hasta ahora han ilustrado conceptos de
programacion implicados con capacidad de entrada, salida,

asignacion y seleccion.

« Muchos problemas requieren de una capacidad de repeticion, donde
una seccion del programa debe ejecutarse reiteradas veces con
distintos conjuntos de datos con los objetivos de contar, acumular,
validar, e incluso permitir el constante ingreso de datos y el
recalculo de los valores de salida que solo se detiene al introducir
un valor centinela.

« Estas secciones de codigo repetitivas son llamadas generalmente
ciclos. Y cada repeticion del mismo se conoce como iteracion o paso
a traves del ciclo.

N 2

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Estructuras Basicas de ciclos

1)
2)
3)
4)

1)

Construir una seccion de codigo repetitiva requiere cuatro
elementos:

Instruccidon de repeticidon
Condicidn de repeticion
Instruccion Condicion de inicio
Instruccion de Salida.

Instruccion de repeticion:

Esta define los limites que contienen la seccion de coédigo
repetitiva. Y controla si el codigo se ejecutara o no. C++ incorpora 3
diferentes:

WHILE - FOR - DO WHILE

e R

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Estructuras Basicas de ciclos

2) Condicién de repeticion:

Es la condicion que debe evaluarse para
condiciones validas son iguales a las de las € sentencia

Si la condicion es verdadera el ciclo es ejecul Falso (0)

3) Instruccion Condicidén de inicio: verddero

Instruccion que establece la condicion al inic eah
siempre antes de que la condicion sea eve
para asegurar la ejecucion correcta del ciclo.

¥

sentencia

v

4) Instruccidén de Salida:

Debe existir en el ciclo, una instruccion que permita volver falsa la
condicion de ejecucion del ciclo. Esto es necesario con el objetivo
de poder detener las repeticiones en algin momento.

S EEEENEEN__—————

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Estructuras Basicas de ciclos

. Ciclos de prueba preliminar vy

posterior: J}
La condicibn que se esta i"m;gﬂﬂl
probando puede ser evaluada al : ,
principio o al final del ciclo. !!.“'
Ala
Los ciclos de prueba preliminar W"ﬁsMimwmm
también conocidos como ciclos verdadera? = el o
controlados a la entrada,
evalian la condicion antes de {L_""
comenzar el ciclo, si esta es falsa, a2 l
el ciclo no se ejecuta nunca y siguiente
sigue la instruccion posterior al J
blogue de repeticion. Las

instrucciones while y for son

ejemplos de estos ciclos. n

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Estructuras Basicas de ciclos

. Un ciclo de prueba posterior,
evalla la condicion al final de la @
ejecucion de las instrucciones del

bloque repetitivo. Estos ciclos son =
llamados ciclo controlados en la Sl
salida.

. ; Se le |
. Puede observarse que siempre el condicin?
blogue de instrucciones se

. Si
ejecuta al menos una vez. —

. La instruccion do while es un
ejemplo de este tipo de ciclo.

. Para evitar ciclos infinitos, la
condicion debe actualizarse
dentrodel CICIO.cvvevrivrcvrenecnenn.

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Estructuras Basicas de ciclos

. Ciclos de cuenta fija vs de condicién variable

Ademas del lugar donde se prueba la condicion las secciones de
codigo repetitivo también se clasifican segun el tipo de condicion
gue se prueba:

En un ciclo de cuenta fija, la condicion se usa para dar
seguimiento al numero de repeticiones, y se ejecuta un
numero fijo predefinido de veces. El bucle finaliza al llegar al valor
deseado.

En un ciclo de condicidon variable, puede no conocerse el limite
al inicio, por ende el fin del ciclo no depende de que se alcance
una cuenta sino mas bien del cambio de una variable que puede
cambiar en cada paso del ciclo.

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

. La instruccion WHILE se utiliza para armar un ciclo de la
siguiente manera:

. EXPRESION: es la condicion probada para ver si se ejecuta la
instruccionA.

. Si EXPRESION es verdadero != 0, diferente de 0, se ejecuta
InstruccionA.

. InstruccionA se ejecuta hasta que EXPRESION evalue a 0.

. Ver en la proxima grafica los dos puntos de entrada y los dos
puntos de salida de la instruccion

e s

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

m ingreso a la instrucciéon

while

salir de la
instruccion
while

evallo la

expresion
paso 1

regreso condicion

y revallio verdadera Ej’s.

de la I=0 _

expresion while (edad<40)
edad++;

Ejecucion de
instruccion-es

T T
cuerpo - Paso 2

while (dato!=0)
cout<<dato;

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

. Veamos un ejemplo:

. Que problematiene esto?
. Debo inicializar la variable cuenta:

*Y debo poder hacer falsa la condicion
para esto puedo utilizar una instruccion
compuesta en lugar de una simple

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

. El programa anterior

- :‘Fmgrama 5.1

#include <iostream>
using namespace std;

La salida del programa 5.1 es:

int main() 1 2 3 4 5 6 7 8 9% 10
{

int cuenta;

cuenta = 1; // inicializa cuenta
while (cuenta <= 10)
{

cout =< cuenta << " -

cuenta++; // incrementa cuenta
}

return 0;

. |

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

while (celsius <= MaAX CELSIUS)
. Otro Ejemplo — cuenta fija {

fahren = (2.0/5.0) #* gelsius + 32.0;

#include <iostream>
tinclude <iomanip> cout << setw(4) <« celsius << fixed

nsing namespace std; << zZetw(l3) <« fahren << endl;
celsius = celsius + TAMANHC PASO;

==
&

system ("PAISE

”:I.:

retorn O:

const int MaAX CELSIUS = 50;
con2t int VALOR INICIAL = 5; H
const int TAHRNHD_PASD = §;
int cel=zius;
donble fahren: RADC GRADC)
ST
cout << "GRADDS GRADOSYn" T
FIE]
<< "CELSIUS FaHRENHEIT.n" [[. A
g L — Yo T el i | G
e 4 bid . FIH
515
celsius = VALOR INICIAL: i il ff
- . I
5 A4 . BA
aotfFskhlermra Trhae TAy»rstac A o577 maSr»s moameaernac As AN
e e e T e A AR
cout << setio=sflags(iocs::showpoint) . i i
<< setpreci=zion(l):
e N o e o o o R o o o S o S

s ————=——)

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

. La combinacion de un
ciclo repetitivo con la
capacidad de introducir
datos produce
programas potentes vy
adaptables

. El siguiente programa
usa el ciclo WHILE para
aceptar y luego imprimir
en pantalla 4 numeros
Introducidos por el

Ezte programa le piede gue ingrese 4 numeros.

Ingrese un numero: 1808

El numero ingresado es 166
Ingrese un numero: 79

El numero ingresado es 99

Ingrese un numero: 78

El numero ingresado es 98

Ingrese un numero: 77

El numero ingresado es 97

Prezione una tecla para continuar . . .

finclude <iostream>
#$include <iomanip>
nsing namespace std;

int main()

{
const int MAXNUMS = 4:
int cuenta:;
donble nuam;

cout << "“nEste programa le piede que ingress "
<< MAXNUMS << " numeros. \n":
cuenta = 1;

while (cuenta <= MLXNIMS)

{
cout << "“nIngrese un numero: ";
cin >»> num;
cout << "El numero ingresado ez " << num;

cusnta++;
cout << endl:;

system ("PATSE") ;
retorn 0;

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos WHILE Interactivos

Si el objetivo del programa fuera calcular suma total de numeros

Ingresados, se deberia incluir una instruccion como las vistas en la
seccion 3.1 (acumulacion).

Ant) e e - S

{

{

cuenta = 1;
total = 0;

while (cuenta <=

con=st int MLNNIMS = 4:
int cuenta:;
dooble numerco, total;

cout << "“nEste programa le pide gue ingrese "

<< MB¥NUMS << " numeros.\n":

cout << "“nIngrese numero: ";

cin >> numerao;

total = total + numero;

cout << "Ahora el total ez de " << setpreci=sion(7) << total:

cuentat++;

w7

cout << "YnEl total final ez " <« setprecision(7) «< total «< endl;

I--‘a{,ls_ty‘:;q__ﬁy-«..__._ P S N N e S

Ezte programa le pide gque ingrese 4 numeros.

Ingrese numero: 1HA

Ahora el total ez de 188

Ingrese numero: 79

Ahora el total es de 199

Ingrese numero:

Ahora el total es 297

Ingrese numero:

Ahora el total ez de 394

El total final es 394

Preszione wuna tecla para continuar . . .

_——————————————— I |,

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos WHILE Interactivos

. Si el objetivo ahora fuera calcular el promedio de nudmeros
Ingresados, se deberia determinar donde calcular el promedio y
como?

con=t int MRXNUMS = 4:;
int cuenta:;
dooble numero, total, promedio;

cout << "“nEste programa le pide gue ingrese "
<« MAMNUMS << " numeros.'n";
cuenta = 1; Ezte programa le pide gue ingrese 4 numeros.

total = 0: Enter a numero: 1
Enter a numero:
Enter a numero:

while (cuenta <= HMLXNUHS) Enter a nuwmero -

{
cout << "Enter a numero: Ui El promedio de numeros es 78.5
cin >> numero; Presione uwna tecla para continuar .
total = total + numero;
cuenta++;

cuenta—-;
promedio = total / cuenta;
cout << "“nEl promedio de los numeros es " << promedio << endl;

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos WHILE Interactivos

. En los programas vistos, todos los ciclos son de cuenta fija, ya que
se utiliza un contador para determinar el fin del ciclo

. En muchos programas es necesario construir ciclos de condicion
variable.

. Existen casos donde es necesario ingresar datos de manera
continua, en ellos se ingresan datos hasta que un determinado valor,
denominado “centinela” es ingresado y este detiene el ciclo.

. Evidentemente un requisito fundamental es que el valor centinela no
pueda confundirse con los valores esperados en el programa.

. Veamos un ejemplo

N 16

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos WHILE Interactivos

lﬂE lT.E'.J.Z'.I.ii | |

con=st int CALIFICACTONMAYOR = 100; Para detener el ingreso de calificaciunea;
douoble calificacion, total: mayor a 188.

Ingeze wna calificacion: 18H
Ingese wna calificacion: 79
Ingese wna calificacion: 78
total = 0; Ingeszse wuna calificacion: 160
cout << "\nPara detener el ingresc de cali Ingese una calificacion: 50
Ingesze wna calificacion: 181

calificacion= 0;

<+« "tceclee cualgquier numero™;
~out << "\n mavar a 100.\n\n"™: El total de las calificaciones es 447
T - e Presione wuna tecla para continuar . . .

while (calificacion <= CALIFICACIOCHMAYOR)

{ — Centinela
total = total + calificacion; —
cout << "Ingese una calificacion: ™;
cin »» calificacion:;

H

cout << "“nEl total de las calificacionesz ez " << total << endl:;

system ("PATSE™) ;

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos WHILE Interactivos

. Dos instrucciones Utiles relacionadas con las instrucciones de
repeticion son:

- BREAK - CONTINUE.

. Una es la opuesta a la otra, la instruccion BREAK, obliga a una
Interrupcion inmediata o salida del ciclo. Como se vio en switch. Se
usa en while, for, do while.

. Esta instruccion viola los principios puros de programacion
estructurada porque proporciona una segunda salida no
estandar de un ciclo.

. Es util cuando se detecta una condicién inusual.

. La instruccion CONTINUE, indica que la siguiente iteracion del ciclo
comienza de Inmediato. Utll cuando no se deben evaluar
condiciones.

R 18

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

'] —{@\V

Ciclos WHILE Interactivos
Ej de instruccion break: Ej. instruccion continue
while(cuenta<=10 . |
{ () while(cuenta<30)
cout<<“introduzca un numero : “; { - e
ST cout<<“introduzca una calificacion: “;
: : cin>>calificacion;
Iif (num > 76) e ! e
{ () if (calificacion<0 || calificacion>100)
cout << “Perdiste\n”’; . tc?_ntt'rt]ulei lificacion:
break; /linterrumpe el ciclo y saltal otai=total ~callticacion,
) cuenta++;
else J
cout << “Sigue intentandolo!\n”;
cuentat+;

}

//break salta hasta aqui.
La instruccion nula, es una instruccion que no hace nada vy se utiliza
donde se requiere una instruccion desde el punto de vista sintactico.
Son usadas de manera tipica en instrucciones del tipo while o for.

R N N e v

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Como hemos visto la construccion de ciclos en C++ puede realizarse
de varias formas. Una de estas es utilizando una instruccion FOR,
cuya traduccion puede interpretarse como “para” o “para cada”.

 En muchas situaciones, en particular aquellas que se necesita de una
cuenta fija, o0 sea se conoce en un comienzo la cantidad de
iteraciones a realizar es mas facil el formato de la instruccion FOR.

« Lasintaxis de lainstruccion FOR tiene la siguiente forma:

for (lista de inicializacidon; expresion; lista de alteracidn)
instruccion;

e D

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Aunque esta instruccion parezca compleja, es bien simple si
analizamos sus componentes por separado.

« La sintaxis de esta instruccion muestra entre paréntesis 3 elementos
OPCIONALES, separados por “;”; aunque los elementos pueden
faltar, los “;” deben estar SIEMPRE.

for (lista de inicializacion; expresion; lista de alteracion)
Instruccion,;

* lista de inicializacion: en su forma mas comun, consiste de una sola
instruccion usada para establecer el valor inicial de un contador.

N 2.

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

for (lista de inicializacion; expresion; lista de alteracion)
instruccion;

« expresion: contiene el valor maximo o minimo que puede tener el
contador y determina cuando se termina el ciclo.

» lista de alteracion: proporciona el valor de incremento que se suma o
resta del contador cada vez que se ejecuta el ciclo.

 Ej.simples de estainstruccion son:

for (cuenta=1 ; cuenta <10 ; cuenta =cuenta +1)
cout<<cuenta,

for (i=1; i <=15;i=i+2)
cout<<i;

N 22

for (lista de inicializacion; expresion; lista de alteracion)
instruccion-es;

Diagrama de Flujo - FOR

ingreso ala instruccion
for

Lista inicializacion

Evaluar la
Expresion
probada

salir de la

instruccion
for

@ condicion
e91E80 verdadera
y vuelo a

. =0
probar la ciclo . -
condicion Ejecucion de

instruccidn-es

Lista alteracion

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

A5
=
€2 &

for (cuenta=1; cuenta <10; cuenta = cuenta +1)
cout<<cuenta;

« En esta instruccion, la variable contadora debe haber estado
DECLARADA anteriormente, y se llama cuenta. La misma es
inicializada en valor 1, y se repite el ciclo incrementandose en 1
siempre y cuando sea menor que 10.

« En esta instruccidon, la variable contadora debe haber estado
DECLARADA anteriormente, y se llamai. La misma es inicializada
en valor 5, y se repite el ciclo incrementandose en 2 siempre y
cuando su valor sea menor o igual a 15.

PSS .,

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Ejemplo:

finclude <iostreams>
#include <iomanip>

#include <cmath> 1 .88AAA
n=ing namespace std: 1.41421

1.73285
.) 2 .BdBuA
int main() 3 IILHT

i Prezione wuna tecla para continuar .

con=t int MLECTUENTL = 5:
int cuenta:

cout << "NUMERO RATIZ CUADRADAN\N"™;

% oam Tl w

cout << "-————-
cout << setio=sflags(ios::showpoint):

for [(cuenta = 1; cuenta <= MAXCUENTA: cuenta++)

cout << setw({d4) << cuenta
<< Betw(l:) << =grt(donble(cuenta)) << endl:;

svstem ("FAUTIE"™) ;

retorn O:

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Ciclo WHILE equivalente

cuenta=1;
while(cuenta<=MAXCUENTA)
{cout<<setw(4)<<cuenta

cuentat++;

}

<<setw(15)<<sqrt(double(cuenta)<<end];

for([exprel]; [expre2]; [expre3])

sentencia;

AN

for([exprel]; [expre2]; [expre3])
{

sentencia 1;

sentencia n;

by

e I S S

Obsérvese que esto
equivale a:

exprel;
while (expre2)

sentencia;
expre3;

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Puede determinar la salida del siguiente programa?

TR A T
Fhmtg — L s

$¥include <iostream>r
u=sing namespace std:

int main{)
{

int cuenta;

for (cuenta = 2; cuenta <= 20; cuenta = cuenta + 2)
cout << cuenta << " ";

system ("EAUSE"™) ;
return 0;

IE 4 6 8 18 12 14 16 183 20 Presione wuna tecla para continuwar . . .

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Como se menciono anteriormente, las expresiones dentro del
paréntesis son opcionales. La instruccion FOR solo asegura que
todas las expresiones en la lista de inicializacion se ejecutaran una
vez, antes de la evaluacion de la expresion, y que todas las
expresiones en la lista de alteracion se ejecutan al final del ciclo
antes que se vuelva a verificar la expresion probada.

* Por lo tanto el proarama anterior tiene los siquientes equivalentes:

FS e - I
'-'\.

#incll| // PEME-10C
osing |#include <iostreamr
n=ing namespace =td:
int n
i int main/() S/ todas las sxpresionss dentreo d=l parentesis d=l for
int cuenta; For
ouE
for - - -
for (cuenta = 2; cuenta <= 20; cout << cuenta << " ", cuenta = cuenta + 2);
4
system|"BLAUSE") ;

ByE
o retorn O;

ret

_———————| I

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Como pudo observarse en los distintos casos, faltaban algunos de
los elementos en la expresion entre paréntesis de la instruccion
FOR; estando reemplazados en el lugar adecuado en el programa.

« Es importante destacar que en la ultima version, se encontraron
separados por “,”, dos elementos en la lista de alteracidon. El uso de
comas para separar elementos en las listas de inicializacion y de
alteracion se requiere si cualquiera de estas dos listas contiene

mas de un elemento.

 Agregar elementos distintos a las variables de control del ciclo y
sus condiciones de actualizacion dentro del ciclo tiende a
CONFUNDIR su legibilidad. Por lo tanto mantener “limpia” la
estructura es una buena practica de programacion.

« Ciclo FOR o WHILE?, depende del estilo de programacion, al ser
ambos prueba preliminar una alternativa es FOR para cuenta fija y

WHILE para cond. vble. m

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

 La instruccion CONTINUE en los ciclos FOR, transfiere el control a la
lista de alteracidn, no a la expresion como en while.

« Lainstruccion BREAK opera igual que en los ciclos while.

« TECNICAS DE PROGRAMACION CON CICLOS

« Es de importancia destacar que con la instruccion FOR, se pueden
utilizar todas las composiciones de instrucciones de seleccion,
acumulacion, ingreso de datos, etc tal cual la instruccion while.

* A continuacion veremos un ejemplo, que nos permite dentro de un
bucle FOR de cuenta fija, ingresar numeros y calcular el promedio

al salir del mismo. m

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

const int MAXCUENTL = 4;
int cuenta;
double numero, total, promedio;

total = 0.0;

for (cuenta = 0; cuenta < MAXCUENTA; cuenta++)
{

Ingrese un numero: 156
Ingresze un numero: 685
cin > numero; Ingresze un numero: 542
Ingresze un numero: 658

cout << "Ingrese un numero:

total = total + numero;

El promedio de los datos ingresados es SH8.Y5
Presione una tecla para continuar . .

promedio = total / MAXCUENTL:
cout << "E1l promedio de lo= datos ingresado=s ez "
<< promedio << endl;

R i i T T e e e e R e T E

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

« Oftro caso es la seleccidén dentro de un ciclo for.

« Esta implica hacer un ciclo en el cual através de un conjunto de
numeros es posible seleccionar aquellos que satisfagan uno o mas
criterios.

« A continuacion se vera un ejemplo donde se desea encontrar la suma
positiva y negativa de un conjunto de numeros. Los criterios aqui son
si el numero es positivo o negativo y el pseudocodigo seria.

mientras la condicion se cumpla
introducir un numero
Si es mayor que cero
sumar a la suma positiva
de lo contrario
sumar a la suma negativa
fin

e >

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

— e o AN e #
int main() Ingrese un numero Cpositivo negativol} =
i Ingrese un numero <positivo negativo>» =
Ingrese un numero Cpositivo negativo>» =
con=t int MAXNIOMS = 5; Ingresze un numero (positivo negativo) :
int i: Ingrese un numero <positivo negativo>» =
int 1: EL. total positivo es 94
donble usenum, postot, negto [EEREVE-ENEETETER - T RN b
Prezione una tecla para continuar . . .
postot = 0; 2gta Inlclallrees S s s
negtot = 0; es5fa 1nicializacion 5= puede hacer en 1la declaracion
for (1 = 1; i <= MAXNOMS; i++)
{
cout <« "Ingrese un numero (positivo or negativo) "
cin >> usenum;
if (usenum > 0)
postot = postot + usenum;
el=e
negtot = negtot + usenum;
cout << "EL total positivo ez " << postot << endl;
cout << "El total negativo ez " << negtot << endl;

T, ol e e, e o i e i ol ol S b, b ol ot ol ol e ol ol o ol o ol Sy g R odp R S e e e S o R e R S e Bl % R R) m

Céatedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos FOR

Evaluacion de funciones

TRRETRNETS
1

de una variable: Fin

No limitados a enteros
en variable contador. ™——_|:

Saltos fraccionarios.\

n=ing namespa
int main()

T double x,

fori= = 2.0; =

{

count<<fixe

44 . A8AAA
68 . AlAAA
9% .AlHEA
131 . 888808

178.8808684
214 .88004
263 .08884
317 .880884
376 . A008AH
resione una tecla para continuar .

v=10.0 * pow(=x,2.0) + 3.

cout<<setw (7)<< X

{{setwizq]{{yiiendl;

system("pausze™) ;
retaorn 0;

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos FOR //Programa 5-16
finclude<iostreams>
#inc :

. . include<iomanip>
Control interactivo de un S ———
N [ntroduzca el numero final para la tabhla: 6
ClClO sus respesctbtivos o gl e T L))
nsing namespace St
27
Se pueden utilizar int main () e 5

36 216

variables para controlar |[*

un ciclo, y su valor
. cout<<"Introduzca el numero final para la tabla:
puede ser ingresado |, cin>>final;

interactivamente. <

int num, final,

cout<<"NUMERC CUADRADD CUBCA\n":

for(num = 1; num <= final; num++)

{
cout<<setw (3) <<num;
cout<<setw (8) «<<num®* mum;
cout<<setw [7) <<num*num*num<<end]l ;

system ("pause™) ;
retaorn 0;

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

. Traduccion: HACER MIENTRAS.

. Como puede deducirse, la gran diferencia con la instruccion WHILE,
radica en que esta instruccion produce un ciclo de repeticion
CONTROLADO A LA SALIDA o DE PRUEBA POSTERIOR, vy al
menos se EJECUTA una vez el codigo dentro del cuerpo de la
Instruccion.

. La sintaxis de esta instruccion es:

. La instruccion simple puede ser reemplazada por una
compuesta, NO OLVIDAR LAS {}

. Puede ser reemplazada por un ciclo WHILE o FOR equivalente,
generalmente es mas usado el ciclo WHILE por claridad.

S E

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos DO WHILE _ _ -
ingreso a la instrucciéon

@DO WHILE

Ejecucion de
Instruccidn/es

regreso
y ejecuto
la

instruccion evaluar la

expresion

falsa

salir de la

instruccion
DIORAWiglIN=

condicion
verdadera
I=0

Céatedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Ciclos DO WHILE

. En el ultimo programa visto puede cambiarse el ciclo WHILE a:

while (calificacion <= CALIFICACIOHMAYOR) Para detener el ingreso de calificaciones.
‘ mayor a 18@.
total = total + calificacion: Ingeze wna calificacion: 18H
_ — L I o m. Ingese una calificacion: 99
cout << "Ingese una calificacion: ’ Ingese wna calificacion: 78
cin ¥ calificacion: Ingese wna calificacion: 188
Ingese wna calificacion: 58
Ingesze wna calificacion: 181
_ N e ; . L BEl total de las calificaciones es 447
cout << "\nEL total de las calliflicaclones i e T I L T L rr

Para detener el ingreso de calificaciones.
mayor a 186.

{ Ingesze wuna calificacion: 1680
caotal = total + calificacion:s Ingese wna calificacion: 99
! Ingese wna calificacion: 78
cout << "Ingese una calificacion: "; Ingese una calificacion: 188
cin 33 calificacion: Ingese wuna calificacion: 5@
Ingese wna calificacion: 181
while (calificacion <= CALIFICARCIONMAYCR) ; El total de las calificaciones es 447

Presione wna tecla para continuar . . .

cout << "“nEl total de las calificaciones es

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

REPASO CLASE IF ELSE SWITCH

. La instruccion SWITCH permite comparar, el valor de una expresion
con los distintos CASOS. Si no coincide ninguno se ejecuta el
DEFAULT si esta presente.

switch(edad)
{
case 10:
case 15:
case 16: cout<<“Usted es demasiado JOVEN para estudiar
<< informatica”;
case 17:
case 18: cout<<"Es el momento de empezar’;

default: cout<<" Usted ya deberia SABER C++7;

S ————— >

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

REPASO CLASE IF ELSE SWITCH

. Resolucion Ejercicio 2¢ con SWITCH

¢. En un ano que no es bisiesto, febrero tiene 28 dias, los meses de enero, marzo,
mavyo, julio, agosto, octubre vy diciembre tienen 31 dias v todos los demas meses
tienen 30 dias. Usando esta informacién, modifique el programa escrito en el ejer-
cicio 2a para desplegar un mensaje cuando se introduzea un dia invdlido para un
mes introducido por un usuario. Para este programa ignore los afios bisiestos.

Finclude<iostreams>
n=ing namespace std;

int main()
{
int mes=0,dia=0;

cout<<"Ingrese un mes (utilize 1 para enero, 2 para febrero y asi sucesivamente) "<<endl;

cin>>mes;
cout<<"Ahora ingrese un dia del mes!"<<endl;

cin>>dia;

N w0

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

switch (mes)
{
case 1
case 3
case 5t
case 7
case =2
case 10:
case 12: if(dia<l || diax>31)
cout<<"El dia ingresado ez INVALIDOYn";
else
cout<<"La fecha ingresada ez walida v esz: "<< dia<<"
break:
case 4:
case &
case 9:
case 1l: if(dia<l || dia=30)
cout<<"El dia ingresado =3 INVALIDOWR":
else
cout<<"La fecha ingresada es valida v ez: "<< dig<<™
break:
case 2: 1f(dia<l || diax=ZZ)
cout<<"El dia ingresado es INVALIDOWYn";
elze
cout<<"La fecha ingresada ez walida v ez: "<« dia<<®
break:
defanlt:
cout<<"Usted esta seguro de lo gue hace?wn":
} II!IIII

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Repaso Clase IF ELSE SWITCH

REPASO
EJERCICIO 4 - pagina 229 Bronson.

Todos los afos gue se dividen exactamente entre 400 “0” que son divisibles
exactamente entre 4 “y” no son divisibles exactamente entre 100 son
anos bisiestos. Por ejemplo en vista que 1600 es divisible exactamente

entre 400, el afio 1600 fue un afno bisiesto. Del mismo modo, en vista que
1988 es divisible exactamente por 4 y no es divisible exactamente por

100, el afno 1988 también fue un afno bisiesto.

Usando esta informacion escriba un programa en C++, que acepte el aio
como una entrada del usuario, determine si el ano es un afo bisiesto y
despliegue un mensaje apropiado que le indique al usuario si el afo
Introducido es o no bisiesto.

Ayuda: revise la funciones aritméticas de la biblioteca cmath vistas en clase

===

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Repaso Clase IF ELSE SWITCH

Primero debo OBSERVAR que EXISTEN DOS CONDICIONES QUE ME DA
EL ENUNCIADO que determinan si un afo es bisiesto. Esto es debido a
gue el tiempo necesario para que la tierra gire una vuelta alrededor del sol
es 365.25635 dias. Por lo tanto no solo cada cuatro afos puede darse
una ano bisiesto debe considerarse la fraccion completa.

Que se cumpla UNA U OTRA CONDICION es SUFICIENTE para decir que
el afno ingresado es bisiesto.

int main()
{

int age; //declarc variabhle 3 usar

cout<<"Ingrese un a“244o (ej: 1924) "<<"\n\n"; /Sindicador de= comandos
cin>>»age; //i1ngreso po 1

if{ (age%400==0) || (age%F4==0 && ageFl00'=0)) festructurs d= s=l=ccion

cout<<"\nEl a\2440 "<<age<<" ingresado es bisiesto"<<endl; //impresion d= resultados
el=se

cout<<"“nEl afio ingresado no 2 bisiesto! IM<<"\n\n";

e 2D

