
1

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Unidad 4

Repaso

 FUNCIONES
 (Capitulo 6 bibliografía)

» Ventre, Luis O.

2

Intro

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• El principal objetivo a cumplir, es entender la magnitud del problema a
solucionar y poder fraccionarlo o dividirlo en problemas menores.

• DIVIDE Y CONQUISTARAS.

3

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• UNA FUNCION SE INVOCA o llama dando su NOMBRE y transmitiéndole la
lista de parámetros o valores a procesar, como argumentos, en los paréntesis
que siguen al nombre de función.

• MAXIMO CUIDADO EN EL ENVIO DE PARAMETROS CUANDO SE INVOCA
LA FUNCION Y EN LOS VALORES DEVUELTOS.

nombre-de-la-función (datos transmitidos a la función)

Identifica la función Transmite datos a la

 función

4

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Como usamos una FUNCION?...invocandola con su nombre:

• La función INVOCADA, debe ser capaz de ACEPTAR los datos que le son
transmitidos.

sqrt (25);

Identifica la funcion Transmite datos a la

 funcion

pow (radio,2);

5

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• ANTES QUE UNA FUNCION PUEDA SER LLAMADA DEBE SER
DECLARADA, PROTOTIPO DE LA FUNCION

• Por ejemplo el siguiente prototipo:

 Declara una función llamada encontrarMax, la cual recibe dos valores

enteros como parámetro y no devuelve ningun valor(void).

void encontrarMax(int, int);

tipo-de-datos-a-devolver nombre-de-función (lista de tipos de datos argumento)

6

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Definición a una función:

 Encabezado y el cuerpo de la función.

 El encabezado es siempre la primer línea, contiene tipo de valor
devuelto, su nombre, y los nombres tipos y orden de datos de
argumento

línea de encabezado de función

{

declaraciones de constante y

variable; cualquier

otra instrucción de C++

}

7

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 El encabezado de la función encontrarMax seria:

 Los nombres de argumento en el encabezado se conocen como
parámetros formales, el parámetro x se usara para almacenar el
primer valor transmitido y el parámetro y para el segundo.

 El primer paso en la invocación, es buscar los valores de primernum y
segundonum, y enviárselos a la función, en este momento se
almacenan en los parámetros nombrados “x” e “y”.

void encontrarMax(int x, int y)

Sin ; ojo!

Debe estar el tipo de dato y separarse con “,”

8

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Colocación de instrucciones:

 directivas del preprocesador

prototipos de funcion

int main()

{

 constantes simbólicas

 declaraciones de variables

 otras instrucciones ejecutables

 return valor

}

9

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Generalmente en el archivo fuente, primero se enlista MAIN, ya que es
la función principal que dará una idea al lector del programa que hace
el mismo antes de ver los detalles de cada función.

10

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Cabos de FUNCION:

 Enfoque común de programación, terminar la función main y luego las
demás funciones. Problema para pruebas intermedias, compilación.

 Se puede hacer una función que actúe como si fuera la correcta y que
acepte los datos e imprima un mensaje en pantalla.

 Esta función FALSA se llama CABO.

 Funciones con listas de parámetros vacías:

 En su prototipo pueden llevar void o nada en el lugar de los
argumentos.

 Argumentos por omisión:

 Estos se enlistan en el prototipo de la función, y son transmitidos a la
función en forma automática cuando los argumentos correspondientes
son omitidos.

11

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Ejemplo de argumentos por omisión:

 Si el prototipo de nuestra función fuera:

 Este prototipo proporciona valores por omisión para los dos últimos
argumentos. Por lo tanto las siguientes llamadas a función son validas:

void ejemplo (int, int = 5, double = 6.78);

ejemplo (7, 2, 9.3) // no utiliza valores por omisión

ejemplo (7, 2) // igual que llamado ejemplo(7, 2, 6.78)

ejemplo (7) // igual que llamado ejemplo (7, 5, 6.78)

12

Sobrecarga de funciones

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Reutilización de nombres de FUNCION:

 Único requisito, que el compilador pueda determinar que función
utilizar basándose en los tipos de datos de los argumentos enviados a
la función y no los tipos de datos del valor devuelto.

 Cada función debe escribirse como una entidad separada.

 El código puede tener leves cambios, aunque una buena practica
de programación es que funciones sobrecargadas realicen en
esencia las mismas operaciones.

 Cuando las funciones son idénticas y solo cambia el tipo de dato,
es mejor implementar “plantillas de función” (ver pagina 314
libro)

13

Sobrecarga de funciones

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Ejemplo:

void vabs(int x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero entero es”<<x<<endl;

}

void vabs(float x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero de punto flotante es”<<x<<endl;

}

void vabs(double x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero de doble precision es”<<x<<endl;

}

14

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Al utilizar el método de transmitir datos a una función presentado, la
función llamada solo recibe copias de los valores contenidos en los
argumentos. Esto se conoce como “llamada por valor” o “pasaje de
datos por valor”.

 De esta forma, la función invocada puede procesar los datos y
devolver un y solo un valor legitimo a la función que la invoco.

 Para que esto no produzca errores indeseados debe manejarse con
cautela y de manera correcta:

 Desde el punto de vista de la función llamada esta debe devolver:

 * El tipo de dato del valor devuelto (encabezado 1º línea de la fx)

 * El valor real que se devuelve

cout<<encotnrarMax(num1, num2);
15

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Para que la función retorne el valor solo es necesario colocar la
instrucción:

 Debe cuidarse para evitar errores indeseados que el tipo de dato
devuelto por la función declarado en el encabezado y el tipo
utilizado en la instrucción de return coincidan!.

 Desde el punto de vista del receptor, la función que llama debe:

 * Ser alertada del tipo de valor a esperar (prototipo de función)

 * Usar de manera apropiada el valor.

 La variable utilizada para almacenar el valor devuelto debe ser del
mismo tipo de dato.

return expresion;

max = encontrarMax(num1, num2);

16

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Asignación

a la variable max

del valor devuelto

por la función

Alerta a main

y demás fx

sobre el valor

devuelto

17

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Encabezado

declara que

valor será

devuelto

Ver en el libro ejemplo similar programa 6.6

18

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Unidad 5

 Tipos de datos Arreglos

 (Capitulo 11 bibliografía)

» Ventre, Luis O.

19

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Contexto: Todas las variables vistas hasta ahora, sin discriminar el tipo
de dato que puedan almacenar, todas solo pueden almacenar un
UNICO valor.

• En numerosas oportunidades es necesario manejar conjuntos de
valores de un mismo tipo. Por ejemplo una lista de notas de
parciales, una lista de valores de voltajes, etc.

• Una lista simple que contiene elementos individuales del mismo
tipo de datos se llama arreglo unidimensional.

• A continuación se vera como declarar, inicializar, almacenar y usar los
arreglos unidimensionales.

20

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Lista de valores relacionadas con “el mismo tipo de datos” que se
almacena bajo un “nombre de grupo único”.

• En la declaración de un arreglo de dimensión única es necesario
indicar:

– El tipo de datos del conjunto

– El nombre del arreglo o del grupo.

– La cantidad de elementos del grupo entre corchetes []

 Sintaxis de declaración:

tipo-de-datos nombreArreglo [cantidad-elementos]

21

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ej. de declaración de un arreglo de temperaturas llamado temp con 5
elementos:

• Una buena práctica de programación es definir la cantidad de elementos
como una constante antes de su declaración:

• Ej:

const int CANT = 5;

double temp[CANT];

double temp [5];

Arreglo

 temp

Espacio para

 5 doubles

• Cada elemento del arreglo se llama componente. Estos se almacenan
de manera secuencial en la memoria. Este almacenamiento contiguo
es una ventaja para encontrar con facilidad cualquier elemento de la
lista.

• Con esta característica dado el nombre del arreglo y su posición es
posible acceder a cualquier elemento del arreglo.

• Esta posición se llama valor índice o subíndice.

• Todo arreglo comienza en la posición 0.

22

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Arreglo

 temp
Componente

23

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Continuando con el ejemplo anterior, los subíndices de los componentes serán:

• Una vez declarado el array, cada componente es una variable indexada ya
que debe darse su nombre y su subíndice para hacer referencia a ese
elemento.

Arreglo

 temp

temp[0]

temp[1]

temp[2]

temp[3]

temp[4]

24

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ejemplos de utilización de los elementos del arreglo:

• El subíndice entre corchetes también puede ser una expresión que evalúe a
un numero entero. Siempre dentro del rango de valores.

Arreglo

 temp

const int numero=5;

.

double temp[numero];

.

.

.

temp[0] = 95.75;

temp[1] = temp[0] – 11.0;

temp[4]= (temp[1] + temp[2] – 3.1) / 2.2:

temp[i] temp[2*i]

temp[j-i]

25

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• De esta forma y con la gran ventaja de tener subíndices enteros
podemos recorrer un arreglo con un ciclo for; utilizando la
variable “i” como contador del ciclo y como subíndice:

• Ej. Se desea guardar en una variable la suma de todos los elementos
del arreglo temp.

Arreglo

 temp

suma = temp[0] + temp[1] + temp[2] + temp[3] + temp[4]

for (i=0 ; i<5 ; i++)

 suma = suma + temp[i];

26

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Otro ejemplo:

• Ej. Se desea recorrer un arreglo de mil valores y encontrar el mayor
valor:

cons int numels = 1000;

.

.

maximo=voltios[0];

for (i=0 ; i<numels ; i++)

 if (voltios[i] > maximo)

 maximo = voltios[i];

27

Entrada y Salida de valores del arreglo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• A los objetos del arreglo se les puede asignar valores de manera
interactiva usando cin.

• Ej:

Arreglo

 temp
cin>> temp[0];

cin>> temp[1] >> temp[2] >> voltios [4];

Arreglo

 voltios

28

Entrada y Salida de valores del arreglo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Si generamos un arreglo temp, de 10 elementos…..como ingresaríamos
valores por teclado?

cin>> temp[0];

cin>> temp[1];

cin>> temp[2];

cin>> temp[3];

cin>> temp[4];

cin>> temp[5];

cin>> temp[6];

cin>> temp[7];

cin>> temp[8];

cin>> temp[9];

Los sub indices varían….

…y si el arreglo tuviera 1000 elementos?

….alguna forma de simplificarlo?

29

Entrada y Salida de valores del arreglo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• De manera análoga, puede utilizarse un ciclo for para la introducción
interactiva de todos los datos del arreglo:

const int numels=1000;

for (i=0; i<numels; i++)

 {

 cout<<“Introduzca el elemento “<<i;

 cin>>temp[i];

 }

30

Entrada y Salida de valores del arreglo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• De igual manera puede utilizarse un ciclo para imprimir en pantalla todos
los valores del arreglo:

• Advertencia: C++ no tiene verificación de limites. Esto implica que si el
arreglo definido tiene 5 elementos y se accede a un elemento fuera del limite
el compilador no advertirá el error; se accederá a esa posición de memoria
y pueden producirse errores. A veces produce que el programa se caiga pero
no siempre.

for (i=0; i<numels; i++)

{

 cout<<“El valor del elemento “<<i;

 cout>>temp[i];

}

Realize un programa que genere un arreglo de 5 elementos enteros

Solicite al usuario que cargue los 5 valores de temperatura

Y luego imprima los valores ingresados por teclado al arreglo.

El arreglo debe recorrese con bucles FOR.

31

Ejemplo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

32

Inicialización de arreglos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Al igual que las variables vistas, los arreglos pueden inicializarse cuando
son declarados, la DIFERENCIA entre ambas declaraciones radica en que
los valores del arreglo deben ir entre llaves { }

• La inicialización de valores puede extenderse a múltiples líneas:

• Si el numero de valores inicializados es menor al total de elementos, los
restantes serán inicializados a “0”.

int temp[5] = { 98, 87, 92, 79, 85};

char codigos[7] = { „m‟, „u‟, „e‟, „s‟, „t‟, „r‟, „a‟};

int voltios [9] = { 98, 87, 92,

 79, 85, 66,

 94, 55, 67};

33

Inicialización de arreglos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• En la inicialización puede omitirse el tamaño del arreglo si esta
perfectamente definida su cantidad de elementos; los dos ejemplos a
continuación son iguales:

• Otro uso interesante es la declaración de un arreglo de caracteres
haciendo uso de las “ “.

• Advertencia: Esta declaración crea un arreglo con 8 caracteres. El ultimo es
la secuencia de escape “carácter nulo” \0. Este se agrega de manera
automática a todas las cadenas e “indica el fin”.

int temp[5] = { 98, 87, 92, 79, 85};

int temp[] = { 98, 87, 92, 79, 85};

char codigos[] = “muestra”; // sin llaves ni comas

34

Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Un arreglo bidimensional, a veces llamado tabla, es un arreglo de
elementos que posee filas y columnas. Por ejemplo un arreglo
bidimensional de números enteros se observa a continuación:

• Para reservar los lugares de almacenamiento en su declaración deben
incluirse el numero de filas y el numero de columnas

8 16 9 52

3 15 27 6

14 25 2 10 14 25 2 10

3 15 27 6

8 16 9 52

Col 0

Col 1

Col 2

Col 3

Fil 0

Fil 1

Fil 2

int val [3] [4];

val[1][3]

val[2][1]

35

Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Es importante recordar que en un arreglo bidimensional el primer subíndice
hace referencia a la FILA y el segundo a la COLUMNA

• Al igual que los arreglos unidimensionales se puede hacer uso de
cualquier elemento del arreglo:

int val [3] [4];

val[0][0]=62.54;

nuevonum= val[0][0] + val[0][1] + 4*(val[1][0] – 5);

36

Inicialización de Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• De manera análoga con los arreglos unidimensionales puede inicializarse un
arreglo bidimensional enlistando los valores entre llaves y separándolos
entre comas. Pueden usarse llaves para las filas.

• El compilador asigna valores iniciando en val[0][0], y recorre por filas por
lo tanto podría inicializarse con valores corridos pero no seria una
ilustración clara.

int val[3][4] = { {8,16,9,52},

 {3,15,27,6},

 {14,25,2,10} }

int val[3][4] = { 8,16,9,52,

 3,15,27,6,

 14,25,2,10}

14 25 2 10

3 15 27 6

8 16 9 52

int val[3][4] = { 8,16,9,52,3,15,27,6,14,25,2,10 }

37

Entrada y salida de valores Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Para asignar valores a un arreglo bidimensional y/o imprimir sus valores es
necesario implementar dos ciclos for anidados.

• Un ciclo for exterior recorrerá las filas o renglones.

• Un ciclo for interior recorrerá las columnas.

• Por cada ciclo exterior se recorrerán todas las columnas interiores.

14 25 2 10

3 15 27 6

8 16 9 52

Controlado por for interno

“j”

Controlado

por for

Externo “i”

for (i=0; i<FILAS; i++) // ciclo externo

{

 for(j=0; j<COLUMNAS; j++) //ciclo interno

 {

 cout<<“Ingrese el elemento temp“<<i<<j;

 cin>>temp[i][j];

}

for (i=0; i<FILAS; i++) // recorre filas

{ cout<<endl;

 for(j=0; j<COLUMNAS; j++) // recorre colum.

 {

 cout<<“El elemento temp“<<i<<j<<“es: “;

 cout>>temp[i][j];

}

0

1

2

0 1 2 3

38

Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

