
1

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Unidad 3

INSTRUCCIONES DE REPETICION
(Capitulo 5 bibliografía)

Estructuras de ciclos – Ciclos FOR

» Ventre, Luis O.

2

Intro

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Como hemos visto la construcción de ciclos en C++ puede realizarse
de varias formas. Una de estas es utilizando una instrucción FOR,
cuya traducción puede interpretarse como “para” o “para cada”.

• En muchas situaciones, en particular aquellas que se necesita de una
cuenta fija, o sea se conoce en un comienzo la cantidad de
iteraciones a realizar es mas fácil el formato de la instrucción FOR.

• La sintaxis de la instrucción FOR tiene la siguiente forma:

for (lista de inicialización; expresión; lista de alteración)

 instrucción;

3

Ciclos FOR

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Aunque esta instrucción parezca compleja, es bien simple si
analizamos sus componentes por separado.

• La sintaxis de esta instrucción muestra entre paréntesis 3 elementos
OPCIONALES, separados por “;”; aunque los elementos pueden
faltar, los “;” deben estar SIEMPRE.

• lista de inicialización: en su forma mas común, consiste de una sola
instrucción usada para establecer el valor inicial de un contador.

for (lista de inicialización; expresión; lista de alteración)

 instrucción;

4

OJO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Al finalizar la instrucción FOR, NO se debe colocar ;

• Al finalizar la instrucción WHILE, NO se debe colocar ;

for (lista de inicialización; expresión; lista de alteración)

 instrucción;

while (expresion)

 instrucción;

5

Ciclos FOR ANIDADOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• En muchas situaciones es necesario y conveniente utilizar un ciclo
contenido dentro de otro ciclo. Esto es posible y los ciclos resultantes
se conocen como ciclos anidados.

• El primer ciclo se llama CICLO EXTERIOR, el segundo es llamado
CICLO INTERIOR. Generalmente todas las instrucciones del CICLO
INTERIOR están contenidas en el cuerpo del ciclo EXTERIOR.

• Debido a esto, en CADA ITERACION DEL CICLO EXTERIOR se
PRODUCE todas las iteraciones DEL CICLO INTERIOR.

• Se usan DIFERENTES VARIABLES PARA EL CONTROL DE LAS
ITERACIONES DE CADA CICLO.

6

Ciclos FOR ANIDADOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Cual será la salida?

7

Ciclos FOR ANIDADOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Para observar la utilidad de un ciclo anidado, veremos un ejemplo mas
concreto, suponga que se necesita un programa en c++ para calcular
la calificación final para cada estudiante en una clase de 20
alumnos. Cada alumno ha presentado cuatro exámenes durante el
semestre. La calificación final es el promedio de las 4 calificaciones
obtenidas.

 El pseudocódigo seria:

 Hago un ciclo que recorra los 20 alumnos

 Establezco total de calificaciones del alumno en 0

 Hago un ciclo para las 4 calificaciones de cada alumno

 introducir calificación

 acumular calificación al total

 Fin del ciclo de calificaciones

 Calculo promedio e imprimo nota final del alumno

 Fin del ciclo de alumnos.

8

Ciclos FOR ANIDADOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Es importante notar el

lugar donde se coloca

total=0 y donde se calcula

el promedio.

9

Ciclos FOR ANIDADOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 La salida generada será:

•Puede implementar este

 programa con bucles

 while anidados?...

10

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Unidad 4

 FUNCIONES
 (Capitulo 6 bibliografía)

» Ventre, Luis O.

11

Intro

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• El principal objetivo a cumplir, es entender la magnitud del problema a
solucionar y poder fraccionarlo o dividirlo en problemas menores.

• DIVIDE Y CONQUISTARAS.

• Con esta idea en mente es posible establecer una analogía en el desarrollo de
software con la producción de hardware e incluso con el proceso de
fabricación de un automóvil.

• Cada modulo es desarrollado de manera individual y se encuentra libre de
defectos antes de la integración, lo que permite optimizar el tiempo de
desarrollo, y desvincular el producto final de las partes internas.

• Ahora si quisiera un automóvil con mas potencia que tendría que hacer?

12

Intro

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ahora si, todos estos módulos forman el vehículo, pero cuando el usuario
necesita acelerar llama al motor, este acepta entradas como combustible,
aire y electricidad y produce potencia, que se la envía a la transmisión y así
sucesivamente.

• Observe que estos módulos “conocen el mundo” a través de sus entradas y
salidas. Y que el conductor no necesita saber nada de cómo funciona
internamente la transmisión, ni el motor…

• De la misma manera, con este enfoque modular, que no son mas que
funciones, los ingenieros diseñan y crean programas confiables.

• Hemos visto que todo programa en C++ debe tener una única función main,
además de esta puede tener cualquier cantidad de funciones adicionales.
Veremos como escribir, transmitirle valores procesar datos y devolver
resultados a continuación…

13

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• UNA FUNCION SE INVOCA o llama dando su NOMBRE y transmitiéndole la
lista de parámetros o valores a procesar, como argumentos, en los paréntesis
que siguen al nombre de función.

• MAXIMO CUIDADO EN EL ENVIO DE PARAMETROS CUANDO SE INVOCA
LA FUNCION Y EN LOS VALORES DEVUELTOS.

nombre-de-la-función (datos transmitidos a la función)

Identifica la función Transmite datos a la

 función

14

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Un ejemplo utilizado con anterioridad, fue cuando necesitábamos calcular la
raíz cuadrada, o la potencia de dos números, estas son FUNCIONES que trae
incorporada la biblioteca CMATH.

• La función INVOCADA, debe ser capaz de ACEPTAR los datos que le son
transmitidos.

sqrt (25);

Identifica la funcion Transmite datos a la

 funcion

pow (radio,2);

15

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• ANTES QUE UNA FUNCION PUEDA SER LLAMADA DEBE SER
DECLARADA, LA DECLARACION INICIAL DE LA MISMA SE
CONOCE COMO PROTOTIPO DE LA FUNCION

• En el prototipo de una función se puede reconocer, su NOMBRE,
sus datos válidos como ARGUMENTOS Y EL ORDEN, y su valor
DEVUELTO.

• Por ejemplo el siguiente prototipo:

 Declara una función llamada encontrarMax, la cual recibe dos valores

enteros como parámetro y no devuelve ningún valor(void).

void encontrarMax(int, int);

16

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La forma general de escritura de un prototipo de función es:

• Ejemplos de prototipos de funciones:

• Los prototipos de funciones permiten la verificación de errores en
los tipos de datos por el compilador. Y asegura la conversión de
todos los argumentos enviados al tipo de datos declarado.

tipo-de-datos-a-devolver nombre-de-función (lista de tipos de datos argumento)

int fmax(int, int);

double intercambio(int, char, char, double);

17

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Llamada/ejecución de una función:

 El llamado a una función es simple, basta con utilizar su nombre,
y entre paréntesis enviar los argumentos necesarios.

• Por ejemplo:

• Si uno de los argumentos es una variables, la función llamada recibe
una copia del valor almacenado en la variable.

• En el ejemplo anterior, encontrarMax recibe una copia del valor de las
variables primernum y segundonum pero no tiene conocimiento del
nombre de estas variables. La función solo recibe los valores y debe
almacenarlos, este mecanismo es por seguridad.

encontrarMax(primernum, segundonum);

18

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Definición a una función:

 Una función se define cuando se escribe. Cada función es
definida solo una vez y puede ser utilizada por cualquier otra
función que la declare correctamente.

 Al igual que la función main, toda función en C++ consta de dos
partes: el encabezado y el cuerpo de la función.

 El encabezado es siempre la primer línea, contiene tipo de valor
devuelto, su nombre, y los nombres tipos y orden de datos de
argumento

línea de encabezado de función

{

declaraciones de constante y

variable; cualquier

otra instrucción de C++

}

19

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 El encabezado de la función encontrarMax seria:

 Los nombres de argumento en el encabezado se conocen como
parámetros formales, el parámetro x se usara para almacenar el
primer valor transmitido y el parámetro y para el segundo.

 El primer paso en la invocación, es buscar los valores de primernum y
segundonum, y enviárselos a la función, en este momento se
almacenan en los parámetros nombrados “x” e “y”.

void encontrarMax(int x, int y)

Sin ; ojo!

Debe estar el tipo de dato y separarse con “,”

20

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Una vez listo el encabezado puede escribirse el cuerpo, este debe
comenzar con una llave de apertura “{” al igual que la función main, y
debe finalizar con una llave de cierre “}”

void encontrarMax(int x, int y)

{ //inicio de cuerpo de la funcion

 int numMax; /declaracion de variable

 if(x >= y)

 numMax=x;

 else

 numMax=y;

 cout<<“\n El maximo de los dos numeros es “

 <<numMax<<endl;

} //fin de cuerpo y de la funcion

21

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Colocación de instrucciones:

 directivas del preprocesador

prototipos de funcion

int main()

{

 constantes simbólicas

 declaraciones de variables

 otras instrucciones ejecutables

 return valor

}

22

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Generalmente, primero se enlista MAIN, ya que es la función principal
que dará una idea al lector del programa que hace el mismo antes de
ver los detalles de cada función.

23

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Cabos de FUNCION:

 Enfoque común de programación, terminar la función main y luego las
demás funciones. Problema para pruebas intermedias, compilación.

 Se puede hacer una función que actúe como si fuera la correcta y que
acepte los datos e imprima un mensaje en pantalla.

 Esta función FALSA se llama CABO.

 Funciones con listas de parámetros vacías:

 En su prototipo pueden llevar void o nada en el lugar de los
argumentos.

 Argumentos por omisión:

 Estos se enlistan en el prototipo de la función, y son transmitidos a la
función en forma automática cuando los argumentos correspondientes
son omitidos.

24

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Ejemplo de argumentos por omisión:

 Si el prototipo de nuestra función fuera:

 Este prototipo proporciona valores por omisión para los dos
últimos argumentos. Por lo tanto las siguientes llamadas a función son
validas:

void ejemplo (int, int = 5, double = 6.78);

ejemplo (7, 2, 9.3) // no utiliza valores por omisión

ejemplo (7, 2) // igual que llamado ejemplo(7, 2, 6.78)

ejemplo (7) // igual que llamado ejemplo (7, 5, 6.78)

25

Sobrecarga de funciones

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Reutilización de nombres de FUNCION:

 Único requisito, que el compilador pueda determinar que función
utilizar basándose en los tipos de datos de los argumentos enviados a
la función y no los tipos de datos del valor devuelto.

 Cada función debe escribirse como una entidad separada.

 El código puede tener leves cambios, aunque una buena practica
de programación es que funciones sobrecargadas realicen en
esencia las mismas operaciones.

 Cuando las funciones son idénticas y solo cambia el tipo de dato,
es mejor implementar “plantillas de función” (ver pagina 314
libro)

26

Sobrecarga de funciones

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Ejemplo:

void vabs(int x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero entero es”<<x<<endl;

}

void vabs(float x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero de punto flotante es”<<x<<endl;

}

void vabs(double x)

{if(x<0)

 x= -x;

 cout<<“ el valor absoluto del numero de doble precision es”<<x<<endl;

}

27

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Al utilizar el método de transmitir datos a una función presentado, la
función llamada solo recibe copias de los valores contenidos en los
argumentos. Esto se conoce como “llamada por valor” o “pasaje de
datos por valor”.

 De esta forma, la función invocada puede procesar los datos y
devolver un y solo un valor legitimo a la función que la invoco.

 Para que esto no produzca errores indeseados debe manejarse con
cautela y de manera correcta:

 Desde el punto de vista de la función llamada esta debe indicar:

 * El tipo de dato del valor devuelto (encabezado 1º línea de la fx)

 * El valor real que se devuelve

cout<<encotnrarMax(num1, num2);
28

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Para que la función retorne el valor solo es necesario colocar la
instrucción:

 Debe cuidarse para evitar errores indeseados que el tipo de dato
devuelto por la función declarado en el encabezado y el tipo
utilizado en la instrucción de return coincidan!.

 Desde el punto de vista del receptor, la función que llama debe:

 * Ser alertada del tipo de valor a esperar (prototipo de función)

 * Usar de manera apropiada el valor.

 La variable utilizada para almacenar el valor devuelto debe ser del
mismo tipo de dato.

return valor;

max = encontrarMax(num1, num2);

29

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Asignación

a la variable max

del valor devuelto

por la función

Alerta a main

y demás fx

sobre el valor

devuelto

30

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Encabezado

declara que

valor será

devuelto

Ver en el libro ejemplo similar programa 6.6

