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Capítulo VI: Campo Magnético:

SOLENOIDE

El solenoide recto (del griego: solén, solénos, canal, tubo, y eídos, forma) es una bobina
conformada por varias espiras de alambre conductor, arrolladas una al lado de la otra, según una hélice de
paso constante, en una o varias capas sobre una superficie cilíndrica. Para nuestro caso vamos a tomar un
solenoide de una sola capa de espiras (a fin que todas posean el mismo radio), y las espiras muy próximas
entre sí para que podamos considerar a cada una de ellas contenida en planos normales al eje geométrico.

Fijamos el eje x de un sistema de coordenadas, y su origen 0 según la figura. Sea N el
número de espiras, y L la  longitud del solenoide1.

Calcularemos de una manera suficientemente exacta la intensidad del campo B en un punto
cualquiera P del eje geométrico. Para ello se pueden utilizar herramientas que ya conocemos, como el
cálculo del campo magnético en un punto del eje de una espira ubicado a una cierta distancia del plano de
la espira. Nosotros podemos calcular el valor del campo magnético B en este punto considerando a cada
espira aisladamente, y aplicando el principio de superposición. Para ello podemos tomar la distancia de
cada espira al punto considerado, y calculando el valor del campo que cada espira individualmente aporta
al punto P , al efectuar la sumatoria de los valores calculados sobre todas las espiras, podemos obtener el
valor del campo resultante en P. Ahora bien, como se darán cuenta, este procedimiento es sumamente
laborioso, sobre todo considerando que existen solenoides que poseen varios miles de espiras.

Necesitamos aplicar entonces, un método matemático que nos permita simplificar este
trabajo. A estos fines, nosotros podemos asociar todo este conjunto de espiras arrollada una al lado de la
otra, por las cuales circula en cada espira el mismo valor de corriente i , y al tener todas el mismo
diámetro, podemos asociar –dijimos- a una distribución “laminar” de corriente eléctrica en la superficie
del cilindro sobre el cual está arrollado el solenoide. Luego, si nosotros tomamos la corriente que circula

                                                     
1 Es frecuente utilizar como dato en los solenoides el número n = N / L [vueltas/metro].
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en cada espira y la multiplicamos por el número de espiras, tendríamos este valor de corriente laminar Ni.
Con este concepto definimos una densidad lineal de corriente 

L
iN ⋅ . Haciendo esta aproximación

podemos tomar una “fibra” de esta corriente laminar, como si fuera una espira elemental de espesor dx
por la que circula una corriente dx

L
iN ⋅⋅ . Esto nos va a permitir integrar a lo largo del eje de la espira ya

que con la aproximación matemática efectuada podemos dejar de considerar a las espiras en forma
discretas, sino como un desarrollo continuo a lo largo de x. O sea, ya no tomamos a las espiras
individualmente, sino al conjunto de espiras distribuidas a lo largo de la longitud L, como 

L
N  , y a una

fracción elemental de este conjunto como dx
L
N ⋅ .

Vamos entonces a calcular el valor de campo magnético que produce este paquete elemental
de espiras en el punto P. La expresión general de la Primera Ley elemental de Laplace-Ampère2 era en su
forma escalar:

2
0 sen

4 r
dcidB θ

π
µ ⋅⋅⋅=

Cuando calculábamos el campo en el eje de una espira tomábamos el valor de la proyección
del campo en una dirección paralela al eje de la espira3:

ϕθ
π

µ
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0 ⋅⋅⋅⋅=

r
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Si a esta expresión la multiplicamos por  dx
L
N ⋅  tenemos entonces el valor de campo B que

produce el elemento de corriente i.dc de una fracción elemental de espiras:

L
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que es un diferencial de segundo orden en x (a lo largo del eje x), y en l (alrededor de la espira). Para
resolver esto, debemos efectuar una doble integración, una por cada variable, x, y c :
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Efectuamos una primera integral alrededor de la espira, o sea a lo largo de Rπ2  , dando
como resultado:

ϕπ
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La intensidad total del campo B en el punto P será:

dx
rL

NiRB
L
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Dentro de la integral nos encontramos con tres variables diferentes pero no independientes.
El problema se reduce ahora a unificar las variables que se encuentran dentro de la expresión integral,
para poder resolverla. Para ello tendremos en cuenta las siguientes consideraciones:
                                                     
2 En la bibliografía denominada también Ley de Biot-Savart.
3 El ángulo ϕ tomado es igual al que se produce entre el eje y r (por ser alternos internos), y –como lo habíamos
visto en Campo en el eje de una espira- es igual al ángulo entre dB y la dirección normal al eje. Por otro lado aquí
tomamos dB, y nó dBe pues ya conocemos que al integrar, queda B = Be.
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ϕϕ dRdx ⋅⋅−= 2cosec ⇒
ϕ
ϕ

2sen
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Cuando reemplazamos valores, nos queda ya, esta integral referida a una sola variable, el
ángulo ϕ . Resta ahora unificar los límites de la integral. Tenemos que para x = 0 , el ángulo
correspondiente es ϕ 1

 , mientras que para x = L , el ángulo correspondiente es ϕ 2
:

∫ ⋅⋅−= 2
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Ahora bien, nosotros podemos detener aquí el cálculo; entonces la cuestión del campo en un
solenoide se va a reducir a hallar los valores de los ángulos ϕ

1
 y ϕ 2

. Pero si nosotros establecemos las

relaciones trigonométricas de estos ángulos con las dimensiones del solenoide, podemos simplificar aún
más, y generalizar mejor la expresión del campo. Para ello tenemos:
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Con lo cual, al reemplazar estos valores en la expresión calculada del campo, nos queda:
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que es la función que representa el valor del campo B , para cualquier punto que se encuentra sobre el eje
de un solenoide, tanto dentro como fuera del mismo.

Particularmente nos interesa hallar el valor del campo en puntos típicos del eje del solenoide.
Uno de ellos es el punto medio del solenoide que, nos damos cuenta, es donde el campo B adquiere su
mayor valor sobre el eje. Otros puntos interesantes de calcular son los dos puntos extremos del solenoide.

Para el punto medio del eje del solenoide, 2
LxP =  por lo que la ecuación se reduce a:

14

1

2

20

+

⋅=

L
RL

NiB µ (3)

                                                     
4 Aquí también podríamos haber efectuado un tratamiento matemático para reemplazo de variables, similar al
efectuado en el caso del cálculo del Campo en un Conductor Rectilíneo:  r.dϕ = dx.senϕ.
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Para los dos extremos del solenoide, podemos ver que al reemplazar 0=Px , ó LxP =
en la expresión (2) el campo B adquiere el mismo valor, lo cual se justifica por cuestiones de simetría.

1

1
2
1

2

20

+

⋅=

L
RL

NiB µ (4)

Tenemos entonces ya, calculado el campo B en dos puntos típicos del eje del solenoide.
Estas expresiones de campo son válidas para cualquier tipo de solenoide, particularmente en los casos en
que el largo del mismo no sea apreciable frente a su radio (hasta R10 ); los mismos se denominan
solenoide corto. Cuando el solenoide está formado por más de una capa de espiras, se adoptará para
efectuar los cálculos, el radio medio (o promedio) de dichas capas de espiras; se deberá tener en cuenta
que, cuando se aumenta el número de capas, aumenta la incertidumbre del resultado5. Lo mismo ocurre
cuando disminuye el número de espiras, o se incrementa el espaciado entre las mismas (aumenta el paso
de la helicoide).

Debemos tener en cuenta que, para desarrollar estas expresiones, habíamos partido de asociar la circulación de
corriente por el solenoide, a una distribución laminar de corriente eléctrica en la superficie del cilindro. En realidad, la corriente i
no solo se desplaza alrededor de la superficie del cilindro, sino que, al circular por las espiras, va avanzando a lo largo del eje del
cilindro. Este avance lo podemos asociar a una corriente que se mueve a lo largo de un conductor rectilíneo de forma “tubular”,
que hace aparecer una pequeña componente del campo B, en el mismo sentido de las espiras. Esto produce produce un pequeño
efecto de rotación o torsión, de las líneas del campo B alrededor del eje del solenoide, por fuera del mismo. Este efecto se hace
despreciable para solenoides con gran número de espiras (mayor de 500).

Variación del campo a lo largo del eje

Para tener una idea como varía el campo a lo largo del eje de un solenoide, vamos a graficar
la expresión (2) para el caso en que RL ⋅= 4

                                                     
5 Podemos decir que el error disminuye a medida que aumenta la longitud relativa del solenoide. Para tener una idea,
si consideramos que la diferencia entre el radio menor y el radio mayor de las capas es alrededor de un 10%, el error
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Líneas de campo B en un solenoide

SOLENOIDE LARGO

En los casos en que el solenoide considerado posea un radio mucho más pequeño que su
longitud, LR 〈〈 , se denominan solenoide largo, y esta característica nos permite efectuar algunas

simplificaciones. Como LR 〈〈 , podemos considerar que 2R  es despreciable frente a 2L , esto nos
permite efectuar algunas simplificaciones, y las expresiones (3) y (4), quedarían:

Para  2
LxP =    :

L
NiB 0µ≅  (5)

Para  0=Px  , ó LxP =   :
L
NiB

2
1

0µ≅ (6)

Analizando estas expresiones, se destaca que el campo en un extremo es muy
aproximadamente igual a la mitad del campo en el centro del solenoide, resultado que se puede visualizar
gráficamente ya que la acción generadora del campo en un extremo se produce solamente hacia un solo
lado del eje (supuesto el solenoide infinitamente largo)6. También nos podemos dar cuenta que en estas
expresiones no aparece el campo como función del radio del solenoide; esto nos permite decir que el
cálculo del campo con estas ecuaciones es válido aún cuando el solenoide largo posea varias capas de
devanado.

                                                                                                                                                                          
cometido en el cálculo es inferior al 0,22% para L = R/5. Este error se hace inferior al 0,06% para L = 5R. Se puede
observar mas adelante, que en el cálculo del Campo en un Solenoide Largo, ya no interviene el valor de R.
6 En el caso del campo en el interior de un solenoide largo, se llega al mismo resultado aplicando la Integral de
Ampere, por un procedimiento bastante más sencillo.
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r0

Ni

Comparación de resultados

Vamos a comparar los valores obtenidos en el cálculo del campo B para un solenoide en el
punto medio del mismo ( 2

LxP = ) utilizando la expresión (3) que nos dá el valor exacto, y la expresión

(5) que nos dá el valor aproximado. Para ello tomaremos diferentes longitudes relativas. Calcularemos el

último factor del segundo miembro de (3) (

14

1

2

2

+
L
R

 , llamado también factor de forma) sabiendo que

para (5) este factor es igual a uno.

Longitud
relativa

factor
de forma

1=R
L 0,45

2=R
L 0,71

3=R
L 0,83

4=R
L 0,89

5=R
L 0,93

10=R
L 0,98

10〉〉R
L 1

Como podemos ver, el factor de forma tiende rápidamente al valor 1. Esto significa que si
utilizamos la expresión (5) para el cálculo del campo B cuando la longitud es por lo menos 10 veces el
radio del solenoide (o 5 veces su diámetro), el error cometido es inferior al 2 %.

BOBINA CORTA

Si tenemos el caso de una bobina cuya longitud L sea mucho mas pequeña que el radio de la
misma, podemos adaptar para el cálculo la expresión (2) en donde para RL   〈〈  queda:












+−⋅=

R
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R
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L
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2
1
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
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








⋅=

R
L

L
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2
1

0µ

R
NiB

2
1

0µ=

que es el valor del campo B  hallado oportunamente para una bobina plana, el campo en el
centro de una espira multiplicado por N.

f.f.

L/R


