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The systems approach is shown to be an extension of design methodology in
that it usually involves more than one discipline, quite frequently requires the
planner or designer to include behavioural policies in the final solution, and
almost always defines the objectives in terms of costs or benefits, rather than in

! technological ideals.

Against the background of the system, characterized by constraints, conflicts,
and compromises, the mathematical model is presented as a device to formalize
and standardize the treatment of design problems varying widely in both type
and scope. The search for an optimal solution provides the motivation for the
study of various techniques of operations research. Linear and non-linear
programming techniques are discussed in some detail along with dynamic
programming, network theory, and decision theory.

The final chapter is devoted to a small number of artificially contrived ‘case
studies’ and worked examples. This serves to illustrate the general methodology
of problem-solving and the selection of the appropriate techniques for
optimization. Many of the problems are presented in the guise of a series of
technical memoranda from imaginary clients. The client’s description of the
problem is frequently ill-defined and the case studies include the preliminary but
vital stages of defining objectives and identifying necessary data.

The order in which the material is presented in a course may differ from the
sequence used in the book. For example, there is some advantage in dealing with
economic project evaluation (Chapter 9) immediately following Chapter 1, to
allow assignments to incorporate present-value calculations. Also, the
introduction of modelling and simulation (Chapter 10) early in the course
-encourages students to become familiar with computing facilities.

In order to allow meaningful examples in mathematical programming to be
illustrated and studied by the student, a number of computer subroutines are

Xi



provided in an Appendix complete with brief documentation. These routines
have been selected to be compatible with instructional goals and to encourage
discrimination by the user in the use of ready-made software, but are sufficiently
versatile to find application in practical problems. Indeed, it may be argued that
relatively simple optimization techniques are appropriate for the preliminary
analysis and planning of practical problems since in many cases the detailed
design is more efficiently completed by simulation techniques or conventional
methods.

The FORTRAN routines of Appendix A represent a sub-set of routines in the
CIVLIB subroutine library at McMaster University. Readers or instructors who
wish to obtain copies of the library or individual routines, in machine readable
form, should contact the first-named author for details.

Chapter 1
An Introduction to
Systems Engineering

11 ENGINEERING CREATIVITY

The function of a Civil Engineer is still well described by the original charter of the
Institution of Civil Engineers (1 828), viz.

... the art of directing the great sources of power in Nature for the use
and convenience of man ..’

In recent years there has been greater appreciation that ‘use’ must stop short of
abuse and that the ‘convenience of man’ should not imply advantages for one
segment of the community at the expense and inconvenience of another, either
now or in the future.

In carrying out this service function for society the engineer is involved in the
activities of planning and design, and it is the creative nature of this work that
distinguishes the engineer from the scientist. Whereas the latter is concerned with
analysing, understanding, and explaining some observed phenomenon, the
engineer is required to satisfy a perceived need by creating something which has
hitherto not existed. The scientist seeks a unique and comprehensive solution; the
engineer, by contrast, must frequently select from a number of alternatives all of
which may be imperfect to some degree.

Planning and design may be viewed as distinct but often overlapping parts of
the spectrum of creative activity. The planning process involves the setting of
goals, feasibility studies, and the balancing of priorities; design, on the other hand,
is usually taken to mean the more specific determination of the form of the end
product. Both activities are, however, complementary. The planning of a complex
project involves preliminary designs of the various components; design often
proceeds by a series of stages of progressively increasing refinement and detail up
to the point of construction and implementation. In this book, therefore, the
terms planning and design will be treated synonymously and used
interchangeably.



1.2 DESIGN METHODOLOGY
The process of design may be summarized by the following four sequential
activities:

(i) Definition of objectives and identification of design criteria.

(ii) Generation of design alternatives.

(iii) Testing of feasibility of proposals.

(iv) Optimization and refinement of design to maximize effectiveness.

The procedure is illustrated by the flow diagram of‘Figure 1.1 and the separate
steps are discussed in more detail in the following sub-sections.

1.2.1 Definition of objectives

This is often the most difficult or crucial stage in the entire design process.
Mistakes or errors of judgement at this point must inevitably have serious

Identify Objectives

|

Describe the objectives in terms of
suitable criteria

.| Devise plans, methods and policies to
o satisfy criteria

|

Check the feasibility of each plan. Are all
the constraints satisfied?

No Yes
Evaluate the effectiveness of the
Modify proposal in some meaningful way
details of -
the proposals r
/ Has the effectiveness been
maximized?
I Yes

No

Request salary
increase

Figure 1.1 Flow diagram of design methodology
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consequences on the stages which follow. These statements may appear trite or
self-evident, but it is a fact that there exists in the mind of the designer a very
strong and natural tendency to focus on the symptoms of the problem rather than
on the problem itself. Objectives are frequently not obvious, especially to those
who have been closely associated with the problem or with the current ‘solution’
to the problem, and who have thus become conditioned to thinking along
traditional lines. Often considerable pressure may be brought to bear by the
client who has a preconception of the solution. Objectives should be stated in the
most basic and general terms possible and might typically take the following
form:

(a) move traffic,

(b) provide shelter for people,

(c) stop or prevent flooding,

(d) avoid loss of life,

(e) derive profit from an investment,
(f) implement a complex proposal.

In striving to improve on such descriptions of the goals, the designer must
exercise lateral thinking by questioning the background to each perceived need in
order to build up a picture of the problem environment. Following on the
examples of goals listed above one might pose the following questions:

(a) What generates the traffic in the first place?

(b) Where did the unhoused population come from? Is it transient?

(c) Will flood relief at point A cause flood damage at point B to be increased?
What is the real cost of flooding?

(d) Why are lives at risk? Is this risk real or imagined?

(e) Who stands to benefit from profit? Is wealth distributed?

(f) Does the propesal require to be so complex? What are the time constraints?

1.2.2 Identification of design criteria

The general objectives having been determined, criteria must be selected whereby
these goals may be quantified. Often, these criteria may be readily apparent. With
reference to the problem types mentioned previously, the following criteria might
be identified to define the objectives more specifically:

(a) traffic volumes, peak ratios, modal split,

(b) population projections, income distribution, group size,

(c) flood levels and discharges, frequency of occurrence,

(d) earthquake probability, code requirements,

(e) limits to investment, competing rates of return, long or short term,

(f) man-hours of effort, quantities of material, maximum and minimum time for
activities.

The availability and dependability of data from which actual numbers can be



obtained raises queries the answers to which are usually less easy and much more
expensive to obtain. Some thought must therefore be given to what constitute
suitable criteria in terms of the practicality of obtaining a solution within the
constraints of time, resources, and technical knowledge.

1.2.3 Generation of design alternatives

The opportunity to develop a wide range of plans and policies is directly
dependent on the effort made to define the objective in the most general and
fundamental way. For example, the engineer who is instructed to design a new
bridge or culvert has considerably less scope for innovation than if the objective
had been defined more generally in the following way:

Object: Enable vehicular traffic to cross a watercourse in such a way as to
minimize cost and inconvenience to road users, local residents, and taxpayers.

Depending on the scale and nature of this illustrative problem, the designer
should be able to question the cost of interrupting the flow of traffic, to examine
the use of alternative routes, to consider alternative means of moving vehicles
from one side to another, or to estimate the acceptable frequency of flooding on
the road. Clearly, as the objective is broadened the nature of the investigation
moves through a hierarchy of design situations. With reference to the example
mentioned above, Table 1.1 shows the various levels of complexity associated

Table 1.1 Change in scope of the design problem

Level  Objective Scope of problem

1 Design bridge or culvert of Structural and foundation considerations
specified dimensions. only.

2 Design bridge or culvert for Hydraulic performance dictates structure
specified discharge. dimensions.

3 Design bridge or culvert for Hydrology of the catchment included to
25 year flood. relate design flood to return period.

4 Design bridge or culvert to Economic considerations required to
minimize inconvenience and combine construction costs with cost of
construction costs. traffic interruption, thus defining implicitly

the economic return period of the flood.

5 Provide traffic crossing to Other alternatives for traffic crossing may
minimize total costs. now be included in design, e.g. ferry, ford.

Economic return period of design flood
will differ with each proposal.

6 Provide traffic link across or Study may now include traffic analysis of
around watercourse. network of which the stream crossing is
only one link. Re-routing of all or part of
the traffic may eliminate or simplify
project.

with different statements of the objective. It is obvious that such escalation of the
problem may be carried to extremes which are inappropriate for the magnitude of
the project. It is equally the responsibility of the engineer to decide the
appropriate level of sophistication in the design of a project of known
approximate value.

1.2.4 Testing of feasibility

For each alternative proposal which is considered, the first test must be that of
feasibility. Technological constraints will usually be carried out routinely in the
course of the preliminary design. Other constraints of a social, economic,
political, and inter-disciplinary nature may exist and these must be identified and
quantified at this stage. As analysis or design of the proposal proceeds, any
constraint which is violated will result in the scheme being modified or rejected.

1.2.5 Measures of effectiveness

The most important factors in influencing the nature of the final solution are, in
order of importance, the definition of objectives and the selection of an
appropriate measure of effectiveness. In its simplest form the effectiveness of a
design may be measured in terms of the cost of construction or implementation.
In more complex problems account must be taken of the benefits which will
accrue following implementation of the solution. When both costs and benefits
are variable some function of these must be used, e.g.

Effectiveness = Benefits — Costs
or
Effectiveness = Benefits/Costs.

When the benefit—ost ratio is employed care must be taken if certain benefits
are labelled as ‘negative costs’ and vice versa, since this will significantly alter the
measure of effectiveness, and may affect the ranking of competing projects.

The real problem, however, is to ensure that all factors have been included in
the estimate of costs and benefits.

It is rare that society will judge the outcome of a specific project with a totally
unanimous point of view. The greater the complexity of the project the greater the
probability that the community will be divided into a number of groups who see
the problem and its solution in a different light. As far as possible, the various and
possibly conflicting interests of such groups should be expressed by a set of
measures of effectiveness which are then combined by means of some weighting
process which represents the interest of the various groups as equitably as
possible. In attempting to select the necessary weighting factors, the engineer
moves rapidly from the area of technology to the arena of politics.

Returning to the problem of the highway bridge or culvert, one may identify at
least three ‘cost’ measures, each of which can be estimated with different degrees
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of certainty and each of which might be assigned a high priority by different
members of the group participating in the decision-making process, e.g.

(i) The actual cost of construction and maintenance can be estimated with
reasonable accuracy and would influence strongly the view of the local
Council Treasurer.

(i) The cost arising from interruption to traffic can also be calculated but with
less certainty. This factor might figure largely in the thinking of the local
Transport officer. o

(iif) The inconvenience to local residents might take a number of forms, either
during construction, from the generation of heavy vehicular traffic, or the
denial of convenient road access. Such ‘disutility’ costs are rather intangible
but could very well be of importance to the local elected Councillor.

The diagram of Figure 1.2 illustrates a less complex problem. The three
alternative routes are available between points A and B, the time of travel ¢, along

. ()
t,=3x}+x,+1
o t3=x§+2

Figure 1.2 Alternative routes problem

t; =4x} — 5x, +2

each route being a different function of the number of vehicles per hour x,
assigned to that route.

For the functions given in Figure 1.2, the task is to select the ‘best’ distribution
if the total traffic flow is 100 vehicles per hour. Methods of solving this problem
are discussed in Chapter 2 but it is convenient to quote the results here in order to
illustrate the point that the solution is sensitive to the measure of effectiveness
adopted.

If it is desired to minimize the sum of the three travel times, i.e.

3
S A (1.1)
i=1

the distribution should be x; = 39, x, = 51, x, = 10. On the other hand if the
cost to the community in travel time is to be minimized, i.e.

3
cost = ) (xt,) (1.2)

i=1
the optimum split is found to be x; = 39, x, = 45, x, = 16. Finally, if it is decreed
that everyone should spend the same travel time irrespective of route (i..
ty=1t, = t;) then it can be shown that no opportunity for optimization exists and
the unique solution is given by x; = 38.5, x, = 43.6, x, = 17.9 approximately.

1.3 SYSTEMS ENGINEERING

The foregoing discussion on design methodology may be applied almost without
qualification to the subject of systems engineering. This is the currently popular
name for the engineering processes of planning and design used in the creation of
a ‘system’ or project of considerable complexity. The distinguishing feature
between a project design and a system design appears to be in the degree of
complexity as measured either by

(i) the number of different components which act together,

(ii) the number or sophistication of the interactions which take place between
these components, or .

(ﬁi\) the fact that the work involves inter-disciplinary teams of specialists to a
degree which is uncommon in traditional project design.

In so far as civil engineering comprises several relatively distinct sub-
disciplines it may be argued that civil engineers have been practising ‘systems
enginéering’ for some considerable time before the term came into vogue. Certain
distinguishing characteristics may be noted, however, and it is the purpose of this
section to describe these, to relate them to the more basic philosophy of design,
and to set the scene for the development of mathematical modelling as one of the
principal tools of the systems engineer.

1.3.1 The notion of a system

In the most general sense a system may be defined as a collection of various
structural and non-structural (e.g. human) elements which are interconnected
and organized in such a way as to achieve some specified objective by the control
and distribution of material resources, energy, and information. It is a
fundamental characteristic of a properly designed and operated system that the
performance achieved by the whole is beyond the total capability of the separate
components operating in isolation.

A well-known example is the domestic heating system in which the main
objective is the maintenance of a comfortable and healthy environment for
human habitation. Auxiliary objectives may be combined with the main system,
such as the generation of hot water, provision of cooking facilities, and sometimes
the cooling and filtering of the air coupled with control of the humidity. The
devices for producing the heat or power are many and varied, employing different
sources of energy (coal, oil, gas, electricity, or solar heat) even within the same
system. An equally important aspect of the domestic heating system is the
minimization of heat loss consistent with acceptable standards of ventilation and
natural lighting. Control of the system can be completely automatic or manually
adjusted in whole or in part, conditions within the system being monitored either
by sophisticated instrumentation or by the human skin. Finally, the behaviour,
preferences, and living habits of the residents is of fundamental importance in
operating the system at maximum efficiency.



Other examples of systems are easily identified, especially in urban
communities. In teleccommunications, assembly lines, public transportation, and
distribution networks, systems are to be found in every major engineering and
technological discipline as well as management and administrative
organizations.

1.3.2  The function of the systems engineer

Systems usually comprise a number of distinct elements or components each of
which demands a particular type of specialist knowledge. It is the function of the
systems engineer to first identify and define the different areas of expertise, then to
assemble the necessary skills and knowledge either in the form of personnel or
published information, and finally to coordinate the efforts of these various
sections of the team to produce the final result. In his capacity of coordinator, the
systems engineer must, at each stage in the planning process, maintain an overall
view of the whole project and avoid becoming involved in the detailed analysis or
design of any particular component. The details of elements and components of
the system must be studied only in so far as these may affect the performance and
cost of the system as a whole.

These activities may be better illustrated with reference to an example. Figure
1.3 illustrates a hypothetical system involving the creation of a reservoir to serve
the dual purposes of flood regulation and recreation. The involvement of the
systems engineer might typically be summarized as follows:

(a) Identify different components of the system:
(i) catchment basin,
(ii) dam and control gates,
(iii) reservoir,
(iv) flow data transmission.
(b) Define the areas of expertise likely to be required:
(i) structural engineering for dam construction,
(ii) hydrology for flood-frequency prediction,
(iii) instrumentation engineering for flow data,
(iv) fresh-water biologist for possible parasite problems,
(v) economist with special knowledge of recreation parks and auxiliary
operations,
(vi) conservationist — possibly.

(c) Recognize the interactions between the various components and define
parameters which affect the interaction between elements and cost
effectiveness.

(i) height of dam affects cost and storage volume,

(ii) design flood dictates required storage,

(ii1) return frequency of design flood is related to benefits resulting from flood
prevention,

(iv) uncertainty with respect to reservoir level affects cost or use of bathing
beaches in summer periods,

R
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Figure 1.3 A flood control and recreation reservoir

(v) flooding of low-lying ground may promote parasite breeding which
reduces attractiveness of beach,

(vi) flow measurement telemetered from upstream gauging site affects cost
but may give enough advance warning to reduce reservoir size and thus
dam costs. :

(d) Obtain from literature or from consultation with specialists sufficient
information to describe quantitatively the nature of the interactions, cost
curves, and benefit functions in terms of the relevant system parameters.

(i) obtain predictions of probable design floods for various return
frequencies,

(ii) relate storage volume to reduction in flood peak,

(iii) prepare estimates of damage costs downstream as a function of
downstream peak flow,

(iv) get costs of dam for various storage volumes,

(v) estimate advance warning obtainable by flow telemetering and
corresponding possible drawdown in reservoir by emergency releases,

(vi) survey potential demand for recreational beach and estimate annual
income as function of length of beach,

(vii) obtain cost estimates for parasite protection.
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() Fromknowledge assembled in (d) above develop a model of the system to test
interaction of the various components.

The notion of a model is discussed in more detail later in this chapter. For
the moment it will suffice to define the process of system modelling as the
development of an algorithm or computational procedure whereby the
various interactions and trade-off functions can be evaluated for selected trial
values of the main input parameters. The algorithm may be implemented by
means of a computer program, by analogue devices, by graphical
constructions, or by nomograph. Irrespective of the means adopted, the
model must haveits initial conception as a flow diagram. A typical — but not
necessarily complete or ideal — example is illustrated in Figure 1.4.

(f) From the model —as modified and improved in the light of preliminary tests
—test the feasibility of the proposal and obtain a preliminary optimization of
the main system parameters. At this stage it should be possible to reach a

Specify flood Choose dam Install flow
return period height and telemeter
spillway
Obtain design Generate storage Estimate extent to
flood hydrograph level curves which flood storage
may be reduced due
I to flood warning
Route flood to get |« q__J
downstream peak Estimate allowable
flow top water level
Estimate cost of Describe influence of top Obtain
flood damage water level on swamp and available
possible parasites beach
length
| | l
Express flood damage Find cost of Estimate Allow for
as annual cost in control loss of cost of
terms of return period measures revenue beach
due to maintenance
disutility
/
o ; Predict
vztlzgact? income and Capital and
et intangible annual cost
benefits of equipment .

Figure 1.4  Algorithmic model for the example of Section 1.3.2

11

reasonably firm decision concerning the acceptance or rejection of the
proposal.

(g) Assemble and organize the necessary team of talent to carry out more
detailed design of the system components.

(h) Maintain an overall view of the development of the design to ensure that the
flow of information between the different sections of the team is adequate to
ensure interaction without interference, that priorities are maintained, and
that the overall objectives of the project are kept in view.

During the design and implementation stage of the project the system
engineer must be prepared to assume a more administrative role in
coordinating the efforts of the team of specialists, in keeping the various
sections together, and also keeping them apart. The team leader must be
ready to revisé the proposal in the light of any unexpected development in the
detailed design in either the economic, technological, or political sector.

1.3.3 Skills required of the systems engineer

The systems engineer concentrates attention on the overall function of the system
and on the inter-relationships between the individual components. For this
reason his or her primary working medium is mathematics. Physical devices and
processes must be represented by mathematical models; performance is analysed
and objective measures of costs and benefits are obtained by mathematical
approximations; the influence of uncertainty, particularly where human
behaviour is involved, must be modelled by probability distributions where
necessary. Much of the mathematical simulation is implemented by means of
digital computers and, in addition to a basic competence in mathematics, some
knowledge of numerical methods and programming is desirable.

Despite the preoccupation with simulation, the systems engineer is more of an
engineer than a mathematician. The entire process of system design is essentially
practical and, despite the use of modern techniques of operations research, an
injection of engineering common sense in the selection of a compromise solution
is often necessary. Indeed, it has been said that the process of selecting an optimal
policy from a large number of feasible alternatives is as much an art as a science,
particularly when the constraints are not merely technological or economic but
also social, political, or legal.

The inter-disciplinary nature of most large systems demands that the systems
engineer have at least some superficial knowledge of the various areas of expertise
on which he or she will rely. A good systems engineer may be thought of as a T-
'shaped individual with a basic stem of specialization in some discipline to give
professional credibility, topped by a lateral cross-piece representing a working
knowledge of a relatively large number of related disciplines.

1.4 CASE STUDY OF A SYSTEMS PROBLEM

The problem described in this section can scarcely be claimed to be a systems
engineering project since it is relatively simple and falls almost entirely within the
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single sub-discipline of civil engineering hydraulics. Some of the features of a
systems problem are present, however, in that a number of components may be
identified between which there are important interactions. The simplicity of the
problem, on the other hand, allows the quantitative aspects of the problem to be
presented in detail. The reader may visualize elaborations of the situation
described here and one of the case studies considered in Chapter 12 is a more
complex version of the same problem. The following exchanges of
correspondence set the scene and illustrate the process of problem identification
and preliminary design.

141 The Thirstville Project — Preliminary correspondence

To:  Max E. Mizer, City Engineer.
From: Rankine Justice, Chairman, Planning Committee.

At the last meeting of the above committee it was decided to proceed
with the study of the proposed new development at Thirstville. On the
question of water supply, it is estimated that the following fluctu-
ating demand must be provided at an elevation of 300 m:

0900-1809 hours . 0.6 m3/s
1800-0900 hours 0.2 m3/s.

Please let me have your views on the best method of linking the
development with the reservoir at Sparkling Springs.
R.J.

In this initial description of the problem the Planning Committee have not
only stated the objective (to provide a supply of water to satisfy a perceived need)
but have gone beyond the usual statistics of demographic projections to define
the criteria relative to the demand curve which is approximated by a rectangular
function. Moreover, the use of an existing reservoir is suggested in the solution.
The engineer may have alternative ideas on available sources but, as the following
memorandum shows, sets these aside meantime in order to develop preliminary
proposals for this source.

To:  Chairman, Planning Committee.
From: M. E. Mizer, Engineering.

I have determined that a supply of adequate quantity and quality is
available at S.S. Reservoir for the new development at Thirstville.
However, the reliable level is only 10 m above the required pressure
elevation and it appears likely that pumping may be required. The large
variation in demand might best be met by the provision of a balancing
reservoir in the town; I assume this would be acceptable. At some stage
it might be useful to examine the possibility of lowering the peak
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demand by load spreading. I shall have some preliminary figures for

your next meeting.

The city engineer’s first action is to test the feasibility of the suggested source
with respect to quantity, quality, and elevation. He realizes the implication of the
low head and also recognizes the hidden cost in the ‘peakiness’ of the demand.
The situation is one which recurs frequently in planning urban service systems
and it is wise not to overlook possible economies from spreading transient
demands so as to reduce the peaks.

To: Gerrit Startit.
From: Max E. Mizer.

In connection with the Sparkling Springs to Thirstville water main
please look up our old contract documents and let me have estimated
costs for the following. If possible, provide these as fitted curves.

(i) Cost of pipeline as a function of diameter.
(i) Cost of balancing reservoir as a function of volume.
(iif) Cost of pump station as a function of horse-power.

Max

Dr Mizer’s next action has been to identify the major components which
contribute to the performance and cost of the supply system, and also the
parameters which characterize these. Being a chief engineer he is able to delegate
the task of obtaining cost functions for the three components in terms of the
relevant parameters. He will no doubt cast a critical eye over the figures returned
by his subordinate to satisfy himself that they are consistent with his considerable
experience. Mr Startit responds with the cost functions summarized in the
following communication. ?

Dear Dr Mizer,
T hirstville Project
I note below approximate cost functions which should help in the study

of the Thirstville pipeline.

(i) Pipeline C, = 1800 000D — 180 000D*?
D in metres
(i) Tank C, = 820 + 1025V
V in cubic metres
(iii) Pump C, = HP(300 + 1.6(10")
where n=3.0—0.5log(HP)
HP in horse-power.

These figures assume that the tank need not be elevated and that the
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pumps are single stage with normal standby capacity. The figure of 300
in the pump cost represents an estimate of power charges over the life of
the system consolidated into a single lump sum.

Yours obediently,
Gerrit

Having assembled most of the necessary data, the chief engineer assigns the job
of system optimization to Ms Proffet, a bright and promising young graduate
with a flair for computing and numerical analysis.

To: Ms Shona Proffet, Engineering.
From: Max E. Mizer, Chief.

Please find enclosed copies of preliminary correspondence and cost
estimates relative to the proposed trunk main serving Thirstville. It
seems to me that the scheme may take various forms, e.g.

(i) Gravity supply without balancing tank.

(ii) Gravity supply with balancing tank.

(iii) Pumped supply without balancing tank.

(iv) Pumped supply with balancing tank.

I should like you to analyse these various alternatives and let me have
approximate design data for the most economical system.

In addition to the data provided, I have estimated that the friction loss
may be approximated from the flow equation,

Q0 = 0.5D83h}/2
where the pipeline discharge Q is in m?/s and diaméter D and headloss /;
are in metres.

Also, power requirements in a pumpstation can be calculated from
HP =17.5Q(h; — 10) (horse-power)

since the source reservoir has a minimum reliable elevation 10 m above
the required pressure elevation.

Let me have a preliminary report by the 10th of next month.

Max E. Mizer

In his covering letter, Dr Mizer lists what he assesses as the four main options
for the scheme, and adds two vital pieces of information of his own. Firstly, he
suggests a relationship between discharge, diameter, and headloss, since clearly
the choice of resistance law is as much an art as a science and requires the touch of
experience. Secondly, an equation relating pump horsepower, discharge, and
headloss is defined, not from any uncertainty but because Ms Proffet was trained
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in a school which persisted in using non-metric units and she is a bit vague about
conversion factors.

With that, like a good administrator, he returns to his correspondence tray and
puts the project out of his mind until Ms Proffet has come up with some numbers.

142 Design calculations for the Thirstville Project

It is not known what Ms Proffet’s reactions were following receipt of the
memorandum and enclosures from the City Engineer. No doubt after the first
two readings there was a period of quiet contemplation followed by a careful
scrutiny of some of the college notes and texts on hydraulics kept prudently in the
desk drawer against just such an eventuality. The calculation sheets which were
finally submitted are fortunately carefully preserved and it is instructive to look at
the approach to the problem as outlined in the notes illustrated in Figure 1.5.

From the general layout of the system it appears that five design variables
sufficiently describe the system, recognizing that both ¥ and HP may be zero. In
addition to the interactions suggested by the chief, Ms Proffet recognizes the
relationship between the demand curve, the balancing tank storage volume, and
the maximum available inflow Q. For the reasoning given, Q and D are selected as
decision variables. This means that if values are selected or assumed for Q and D
the remaining three variables are uniquely determined, as is the total cost of the
scheme. Clearly there are certain values of Q and D — either separately or in
combination — which result in an infeasible solution or in unbounded costs. The
most obvious constraint of this kind is that Q must be equal at least to the average
demand of 0.35 m3/s.

From the flow diagram, the calculation may proceed in a number of ways. The
dependence of the system on two variables makes it possible to display the result
in either tabular or graphical form, the calculation being carried out by a simple
computer program or by hand calculation aided by graphical constructions. Ms
Proffet chooses the latter and Figure 1.6 illustrates the layout of the graphical
solution.

The solution may be visualized as a cost ‘surface’ plotted relative to the two
independent variables Q and D. Figure 1.7 shows a contour map of this surface
and it is apparent that the minimum cost is obtained when the following values
are used:

0 =035m3/s
D = 0.41 m.

The cost is then found to be just under $1 010 000 and the corresponding values of
the other design parameters are

h; = 5693 m
V = 8100 m?
Power = 289 HP.
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An important characteristic of the solution is the existence of a local minimum
point in the vicinity defined by Q = 0.54 m?3/s; D = 0.5 m. With this design the
storage volume is reduced to V = 1944 m?3/s and with i = 47 m the power
requirement is now increased to 350 HP.

Examination of the contour values (or trial calculations using the equations

given in Figure 1.5) show that the cost at this local minimum is greater than the
global optimum (Q = 0.35 m3/s; D = 0.41 m). However, the surface is almost
certainly quite sensitive to the cost functions employed and, before making a final
recommendation on the case study, it would be desirable to check the effect of progecT:- Thirstville Water Supply pestened: 9. Proffet

small changes in some of the values used to compute the cost. For example, the T
cost of pumping includes an amount to represent the charges for power (the figure

DESIGN CALCULATIONS SHEET A of 6

of 300) discounted over the anticipated life of the plant. If this sum were reduced, it susJect:-  Preliminary Design CHECKED:
is possible that the ‘local’ minimum would indeed become the true optimum e
design point. This example therefore illustrates two important facts. 1 General Layout - T rEne
(i) The existence of an apparent minimum (or maximum) is no guarantee that a .. ""w. j_/: ray orade storae V
better solution does not exist. This is true in many practical problems in =t S / “
Regervoir = J1om e

which non-linear relationships are involved.

(i) Itis often important to test the sensitivity of the solution to changes in one or @®)
. . . ' » y Q T 1 Q
more of the design or cost parameters in which a measure of uncertainty Pump Hp TOam D > ->
exists. ‘ »
Both of these points will be discussed in more detail in certain of the chapters 2. System Layout
which follow. 7 ' ; ; :
. : . . -m76 Di e in i
The calculation of the surface of Figure 1.7 was obtained using a FORTRAN g o ':d::z_ 0‘4! :wn“: ma.“
subroutine indicated by Figure 1.8; alternatively the same calculation can be DA ) g m,‘m
coded in roughly 100 steps on a programmable pocket calculator. In either case it ' ht -m Head loso in trunk msin
is important to note that the final cost is the objective to be minimized, but the i v - m Storage volume in tank
solutions of interest are the optimal values of the design variables. In the case : HP - HP pump horee -power
illustrated, the independent design variables are transferred by means of the S
subroutine parameters, while other dependent variables are transferred via < 3. Bysten Interactions -
COMMUON block. The advantage of such a procedure will become apparent in () Resistance Law (refer M.E M)
Chapter 5 (Non-linear programming). ' i e .
@a=o05p Bt —
1.5 ECONOMIC ASPECTS OF SYSTEMS EVALUATION i) Power Law (refer ME M.)
In the case study of Section 1.4 it was noted that the solution is sensitive to the ! He s 115 @ (b 10) @
value used to represent the annual cost of pumping compared with other capital { " ' -

costs. Moreover, a point which was overlooked is the fact that the life of certain
components in the system, such as the pipeline or balancing tank, is likely to be

much greater than that of rotating machinery such as a pump set. In planning
projects it is frequently necessary to make a comparison between proposals Figure 1.5 Design calculations for Thirstville Water Supply
involving different proportions of capital investment and operating cost, or to
combine in a rational way the contribution in cost or benefit from components
which have different life expectancies or which are to be implemented in stages
throughout the planned life of the system. In either case it is necessary to be able
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prosecT:-  Thirstville Water Supply DESIGNED: &, Ppoffet
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System Costs:
' Cost = C, (D) + Ca(v) + Ca(HP)

where Cy = 1ox10f D - 48 x10%. o ———@
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where n = 30 -~ 05 log,, (HP)
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Figure 1.5 — continued

Figure 1.5 — continued
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Figure 1.7 Cost surface as a function of diameter and discharge

to relate future and present monetary values in a manner which allows objective
comparison. This aspect of project comparison is examined in more detail in

Chapter 9.

2!

DIMENSION X(2)
COMMON /DESIGN/HP,V,HF
10 PRINT(6,%*)"SUPPLY DISCHARGE AND DIAMETER"
READ (5,%)X (1),X(2)
IF(X(1).LE.0.0) STOP
CALL COST (X, 2,ANS)
WRITE (6,40)HP,V,HF, ANS
40 FORMAT (3F10,1,F15.2)
GOTO 10
END
SUBROUTINE COST(X,N,CST)
C RN RN RN RN RN R RN RN RN RN R R RN XXX XX RRRRRRRRRR RN
C THE ROUTINE CALCULATES THE TOTAL COST OF A SIMPLE
C WATER SUPPLY SYSTEM COMPRISING A PIPELINE, PUMP
C AND BALANCING RESERVOIR. COST FUNCTIONS AS CODED
CRERFBERRRERRRRRERRRRER KRR RRRRRRRRRRRRRRRRRERRRRRRRSR
DIMENSION X(N)
COMMON /DESIGN/HP,V,HF
C THE COMMON BLOCK RETURNS COMPUTED DESIGN VALUES
Q=X(1)
D=X(2)
C CHECK FOR INFEASIBLE FLOW (.LT. AVERAGE)
IF(Q.LT.0.35) WRITE(6,20)Q
20 FORMAT (4H Q=,F10.3,14H NOT FEASIBLE)
IF(Q.LT.0.35) STOP
C CALC. VOLUME OF STORAGE REQUIRED (CHECK FOR V.,LT.0.0)
V=9.0%3600.0%(0.6-Q)
IF(V.LE.0.0) V=0.0
C GET HEADLOSS AND HENCE PUMP POWER REQUIRED.
HF=(2.0%Q/(D**(8.0/3.0)))#*2 0
HPUMP =HF-10.0
IF(HPUMP.LT.0.0) HPUMP=0.0
HP=17.5 *Q*{PUMP
C CALC. COSTS OF PIPELINE, RESERVOIR AND PUMP,
C1=1.8E06%D - 1,8E05*D¥*SQRT (D)
c2=0.0
IF(V.GT.0.0) C2=820.0 + 10,25%/%%1 1
£3=0.0
IF(HP.LE.0.0) GOTO 30
EXPT=3.0 - 0.5%ALOG10(HP)
C3=HP%*(300.0 + 1.6%10, 0¥*EXPT)
30 CONTINUE
CST=C1 +'C2 +C3
RETURN
END

Figure 1.8 FORTRAN program for case study of Section 1.4

1.6 MATHEMATICAL MODELS

Most engineers are familiar with the idea of using models as an aid in predicting
the behaviour of physical devices which may be too costly in time or resources to
test in real life. In systems engineering the projects which require to be simulated
are not only large and costly, but contain elements such as human behaviour,
flow of information, and decision making which cannot be modelled in a physical
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sense. Moreover, the systems engineer is usually not interested in the detailed
working of components but only in the ways in which each component affects the
performance and effectiveness of the system as a whole and interacts with other
components in the system. For these reasons it is.usual to describe the behaviour
of a system by means of a mathematical model which is simply a set of equations
which describe and represent a real system in terms of its physical, organizational,
behavioural, and economic attributes. The model helps to reveal various aspects
of the problem, especially those arising as a result of interaction, allows measures
of effectiveness to be obtained, and also, on occasions, highlights segments of the
system where modification or additional data are required. Of perhaps greatest
importance, the mathematical model allows the systems engineer to examine
methodically a wide range of system parameters in order to achieve optimum
performance and effectiveness.

This process of optimization has already been touched on superficially in the
case study of Section 1.4, but more usually the systems engineer will make use of
one or more techniques of mathematical programming which have been
developed over the last 20 years in the science of operations research. To this end
it is helpful to develop certain standard terms and procedures whereby a
mathematical model is defined.

1.6.1 Statement of the mathematical model
Each mathematical model usually contains the following elements:

(a) A set of decision variables. These are the design variables which may be
controlled freely by the designer or decision maker. In many cases these
variables will all represent physical quantities such as a load, discharge or
dimension. In addition, variables may be numbers representing logical
decisions or parameters describing the state of the system. The set of decision
variables must be selected in such a way that all other relevant quantities
affecting the performance and effectiveness of the system can be evaluated
either directly or indirectly. In the mathematical notation used to describe the
model the set of decision variables is usually denoted as a vector

X =(X;,%p...,%,)7 (1.3)

where n is the number of decision variables. The object of the analysis is to
determine the best possible set of values with respect to system effectiveness.

This is termed the optimal policy and is usually denoted by
-y X)L (1.4)

L *k *
X* = (xF,x3,. .

(b) An objective function. This is the quantity used to measure the effectiveness of
a particular policy, and is expressed as a function of the decision variables, i.e.

z(x). (1.5)

(©
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The aim of the analysis may be either to minimize or maximize the objective
function depending on the nature of the problem. In general, however, a
problem in minimization may be converted to one of maximization simply by
reversing the sign of the objective function. Thus,

Minimum [z(x)] = Maximum [ —z(x)] (1.6)

and problems solved in either form will result in the identical optimal policy.

In some cases the objective function may be defined as being dependent not
only on the decision variables x but also on a set of cost coefficients denoted
by a vector

€ =(Cy5 G505 T 1.7

where k is the number of cost coefficients. For example, in the case study
(Section 1.4)

z=C,(D) + C,(V) + C,(HP)
- = C,(D) + C,(94(Q)) + C4(9,(D, Q)). (1.8)

These cost coefficients and the decision variables may be combined in any
manner whatsoever. In the simplest case the objective function may be
defined as the sum of the products of corresponding terms, i.e.

ZzZ =

ol

(c;x;) 1.9)

i

i=1

and where the vectors ¢ and x are of the same size. In general, however, the
objective function is defined as

z = z(c, X). (1.10)

A set of constraints. Although not mandatory it is usual to find that a
mathematical model contains certain conditions which must be satisfied
before the set of decision variable values can represent a feasible solution.
These feasibility constraints are usually expressed as functions of the decision
variables and may be either inequality constraints, e.g.

g:x)=0 i=12,...,m (1.11)
or equality constraints, e.g.
hix)=0 j=1,2,...,p. (1.12)

The functions g(x) and h(x) may involve any number of the decision variables
as well as other quantities and numerical constants. If the right-hand sides of
the constraints are non-zero, e.g.

g(x) > b (1.13)
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or
h(x) = b (1.14)

these right-hand-side constants are termed stipulations.

In some classes of problem some or all of the design variables are not
permitted to take negative values. This is ensured by including in the
statement of the model the required number of non-negativity constraints of
the form

x, >0, (1.15)

In the case study (Section 1.4) the solution is subject to a number of simple but
essential constraints, e.g.

Power: HP —17.5Q(h; — 10) =0
HP =0
Flow: Q — 0.5D%3pt2 =0
Storage: V=9 x 36000.5 — Q) =0
V=0

0>0.35.

Given a set of decision variables, an objective function, and any necessary
constraint relationships the mathematical model is expressed as a
mathematical programming problem as follows:

-

Minimize z(x, c) (1.16)

X

subject to
g:x)>0 i=1,2....,m
hx)=0 j=1,2,...,p.

In this form the problem of optimization may be tackled in a variety of ways
as described in Section 1.6.3.

1.6.2 Classification of mathematical models

Although mathematical models may generally be described in the format defined
above, it is useful to classify certain categories of model in order to better
understand the applicability of the various techniques available for their solution.
The following grouping is not intended to be exhaustive but indicates the types
which are frequently encountered.

Linear or non-linear models

If the objective function and all of the constraint functions are linear in terms of
the decision variables, the model is said to be linear and special conditions may be
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shown to apply to the solution. If any of the constraints or any part of the
objective function contains a non-linearity (e.g. % X1X,, Or sin x,) the model is
said to be non-linear and the solution technique which must be employed is
generally more complex and expensive. When setting up the model initially it
may be advantageous to examine the possibility of eliminating non-linearities in

order to obtain the advantage of more efficient algorithms.

Deterministic or probabilistic

A model or an element thereof is said to be deterministic if each variable or
parameter can be assigned a definite and repeatable value for any given set of
conditions. Probabilistic models — sometimes termed stochastic models —
contain variables the values of which are subject to some measure of randomness
or uncertainty.

Static or dynamic models

Models which involve time-dependent interactions are said to be dynamic;
otherwise they are static.

Lumped parameter or distributed parameter models

Frequently the characteristics of a component of a system may be described by a
single value either because the component is homogeneous with respect to that
property, because the value represents an acceptable average, or because
insufficient data are available to describe the property in any more detail. In such
cases the system is said to be defined by lumped parameters. In other cases the
property in question — e.g. cross-section, permeability, behaviour, etc. — may
vary quite significantly over the domain of the system component, requiring the
component to be sub-divided into a number of elements to each of which a
specific value of the property is assigned. Such systems and the models used to
simulate them are said to possess distributed parameters.

1.6.3 Methods of finding an optimal solution

Once a system has been successfully represented by a mathematical model, a
number of techniques are available to arrive at the optimal policy which will
maximize the effectiveness of the system. The remaining chapters of this book
with the exception of the last one, deal with many of these techniques. Once again
a complete classification of methods is not given but the following list is broadly
representative of the options available. Obviously certain methods are best suited
for, or indeed restricted to, particular classes of problem. These points are
discussed in some detail in the appropriate chapters and are again touched on in
the worked examples of Chapter 12.
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Calculus

The classical methods of calculus are discussed in Chapter 2. Although of use in
simple problems and of theoretical value in the development of proofs, the
methods of calculus become rather impractical when complicated functions are
encountered. Even if the objective function and constraints are easily
differentiable with respect to the decision variables, the solution frequently
degenerates to the solving of systems of non-linear, simultaneous equations
which require recourse to be made to numerical methods.

Linear programming

Although at first sight it may appear unlikely that the objective function and
constraints can be kept free of non-linearities it is a fact that a very large number
of meaningful problems can be expressed as linear models. When this happens it
is possible to employ extremely fast and powerful solution techniques. Indeed, for
large problems involving many variables linear programming is the only
practical way to obtain a solution and linearizing approximations are frequently
justified. Chapter 3 introduces the general theory of linear programming and in
Chapter 4 a number of applications are described.

Non-linear programming

With the exception of the methods available under the heading of ‘methods of
calculus’, non-linear models must be solved by numerical methods. Probably no
other area of numerical methods has received more attention in recent years than
the research and development of efficient and reliable algorithms for non-linear
programming. Chapter 5 presents an overview of this very large field and
concentrates on one or two popular techniques.

Dynamic programming

Many problems of optimization may be viewed as a series of sequential decisions.
Although primarily developed for problems which are sequential in time,
dynamic programming can be applied profitably to static problems. Dynamic
programming is not so much a technique — more a way of looking at the
problem. For this reason standard computational routines are less common than
in some other areas. Chapter 6 deals with the subject and employs some
elementary software for a particular type of problem.

Simulation

When other methods fail due to system complexity or computational difficulty a
reasonable attempt at a solution may often be obtained by simulation. Apart
from facilitating trial and error design, however, simulation is a valuable
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technique for studying the sensitivity of system performance to changes in design
parameters or operating procedure. Time-sharing computing systems are of
particular value in this type of analysis. Some typical examples of simulation are
described in Chapter 10.

As well as being concerned with particular techniques of optimization, certain
chapters are devoted to studying special classes of problem. Many systems
exhibit both the physical and conceptual properties of networks and Chapter 7
deals with the special theory which can be brought to bear on problems of this
type.

A particular class of organizational network is the critical path problem and
Chapter 8 is devoted to construction management by this technique. Finally, in
many systems, although much may be done mathematically to obtain an optimal
solution, it frequently happens that decisions have to be made in the face of
uncertainty and Chapter 11 discusses decision analysis.

It will be found, not only in studying the remaining chapters but also in putting
the ideas contained therein into practice, that computational routines and
programs play a large part in systems analysis and design. Many of the
techniques described for optimization find expression in standard software
designed for application to a wide range of problems of a particular class. To
facilitate a start being made in this type of application an Appendix is provided
which contains a number of FORTRAN subroutines. These are described,
together with complete documentation, so that they may be added to private
libraries of routines in teaching institutions or professional offices. It should
perhaps be emphasized here that the program coding in many of these routines is
designed with clarity of purpose in mind rather than computational efficiency.
Obviously whole volumes can be (and are) devoted to software of this type and
only a very few representative routines can be included in a text of this scope.
Where appropriate the routines are used to demonstrate worked solutions to
illustrative problems and no doubt the enthusiastic reader will find many
opportunities for modifying or augmenting the routines provided. In so doing it is
hoped that the modular nature of subroutine libraries will be adopted, since it is
but another expression of the philosophy that is systems engineering.
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Chapter 2
Optimization by Calculus

2.1 INTRODUCTION

The object of the present chapter is to develop some understanding about the
properties of the general mathematical model defined in Chapter 1, and to
explore the opportunities for solving such problems using classical methods of
calculus.

First, we restate the problem:

Minimize z(x) X = (X, X5, ..., X,)" (2.1)

subject to
g{x) = b+ H=1,2 00k (2.2)
hx)=0 j=12,...,1 2.3)

The functional forms of the m (= k + [) constraints may be linear or non-linear.
For illustration, consider the following problem involving only 2 variables.

Example 2.1
Miriirilize =% + 2%2 (24)
subject to v
—xI+x,>1 (2.5)
Xq +%, 23 (2.6)

Since only 2 variables are involved, the problem may be displayed graphically as
in Figure 2.1(a).

The inequality constraints (2.5) and (2.6) define respectively the areas above the
lines

R = 13 = 1
and
X,=—x,+3

IR
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Min™
(b) (c)

Figure 2.1 (a) Non-linear minimization in 2 variables. (b) Feasible space of Example 2.1.
(c) Feasible space of Example 2.2

the intersection of which is shown shaded in Figure 2.1(b). Selection from this
feasible space is guided by the objective function which for this case may be
graphed as a series of elliptical contours centred on the origin. By inspection the
point C (x; = 1, x, = 2) is seen to yield the minimum value of z = 9.

Example 2.2

Consider an example in which the signs of the constraints (2.5) and (2.6) are
reversed, i.e.
Minimize z = x2 + 2x3
subject to et
2.7

1
3 (2.8)
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By comparison with the previous example it may be visualized that‘the feasible
space defined by (2.7) and (2.8) is the space below the line FBECG (Flgur‘e 2.1(0)).
This space includes the origin, which now forms the optimum (minimum)

solution.

Example 2.3

If the sign of the x, term in (2.5) is changed, the feasible space is now defined by the
constraints:

x2+x,< -1 2.9)
x; +x, = 3.

A brief examination shows that this feasible space is non-existent and no solution
exists to the minimization problem.

Therefore, it is clear that when a mathematical model includes inequality
constraints:

(i) a solution exists only if the constraints intersect to define a finite feasible
space, . '

(i) the solution may lie on the edge of the feasible space, thus upplymg that at
least one of the constraints is active — i.e. affects the solution,

(iii) the solution may lie in the interior of the feasible space, representing an
unconstrained optimization of the non-linear objective function.

Consider now some variation of the previous examples, to examine the
significance of equality constraints.

Example 2.4

Assume that (2.5)is changed to an equality constraint. The problem now becomes

Minimize z = x? 4 2x2
e

subject to
xt—x,+1=0 (2.10)

X, +x, =3.

With reference to Figure 2.1 it may be seen that the feasible ‘space’ is now
reduced to the two arcs AB and CD. Although only line segments, there is still an
infinite set of feasible solutions, from which an optimal point may be selected. By
inspection, it is apparent that point C is again the minimum.

Example 2.5
Let both (2.5) and (2.6) be converted to equality constraints, to make the problem:

31
Minimize 7 = xf + 2x§
subject to e
X{—Xx,+1=0
X, +x,—3=0. 2.11)

The feasible space is now further reduced to the points B and C and the solution is
obtained by evaluating the objective functions at these two roots of the
simultaneous equations. Optimization in the usual sense is not possible.

Note that if a further equality constraint is added to the problem, e.g. x, =0,
then, in general, the feasible space is empty and no solution is possible. Only in
coincidental cases, e.g. x; =1, will a feasible point be defined.

It can be seen that the nature of the solution depends on the number of
variables n and the number of equality constraints .

For I>n no solution exists in general.

For/=n one or more discrete points (depending on the degree of the
constraint equations) are uniquely defined at which the objective
function may be evaluated and a solution obtained by inspection.

For I <n the feasible space (if it exists) may contain an infinite number of
solutions and an optimal solution, either on the edge or in the
interior, must be determined by search or other techniques.

In this connection it may be noted that any inequality constraint may be
converted into an equality constraint by the introduction of a slack variable. For
example

—-x]+x,>1
is equivalent to
—x}+x,—x, =1 2.12)

Thus a problem involving n decision variables, k inequality constraints, and [ /
equality constraints may be converted into a problem with (n + k) variables and
(I + k) = m equality constraints. The significance of the relative values of / and n
discussed above is therefore unaffected by the value of k.

22 UNCONSTRAINED FUNCTIONS OF A SINGLE VARIABLE

A function of a single variable may be examined by means of differential calculus
to see if an extreme value (i.e. a maximum or minimum) exists. For this to be
possible the function must be:

@) continuous within the feasible domain of the variable,
(ll) d}fferentiable once to locate critical points, and
(iii) differentiable twice to determine the sense of the critical points.

In general if a function z = F(x) exists then the values of x at which critical
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points may exist are defined by setting the first derivative to zero, i.e.
dz
Fi 0. (2.13)

Let one such solution of (2.13) be x*. Then the nature of the critical point is given
by evaluating the second derivative of z at x = x*. Thus for:

d?z . . .
P (x*) <0 the critical point is a maximum
d’z - P -
re (x*) > 0 the critical point is a minimum.

Temporary lapses of memory in recalling this rule may be aided by the picture of
Figure 2.2 in which the contents of an inverted or upright wine glass are
considered as analogous to the sign of the second derivative.

Min™

<] =

Max™

Figure 2.2 Wine-glass analogy

For the case in which the second derivative is zero at the stationary point some
further analysis is necessary. Find the lowest derivative which is non-zero at the
stationary point, ie. d"z/dx"(x*) # 0. If n is odd (n =1, 3, 5,...) the solution
found is a point of inflection or a saddle point. If niseven (n = 2, 4, .. .) the rules of
the wine-glass analogy may be used as before.

Example 2.6

Traffic passing through a road tunnel is causing a bottleneck and some form of
access control or speed control is considered as a means of maximizing the
capacity. A survey indicates that the headway (H miles) between vehicles is
related to the speed (V mph) by the empirical relation

0.4

“s0_7 (2.14)
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ke’
. . ; 1 50-v
density D (vehicl le)=-=_=emid
ensity D (vehicles/mile) 04 (2.15)
or
D =125 -25V.
The traffic flow Q (vehicles/hour) is then given by
Q =DV =125V — 2.5V2 (2.16)
The maximum flow is thus given by the critical point defined by
do
chle_SV:O (2.17)
or
V* = 25 mph.
Since
d2

the flow is a maximum when
Q =125 x 25 — 2.5 x 25% = 1562.5 vehicles/hour.

Steps might be taken to maintain traffic speed as close to 25 mph as possible (by
controlling access). On the other hand, the headway at this speed (84.5 ft) seems
somewhat excessive and may be attributable to other factors such as poor
illumination or a greasy surface, which could be the real reason for the bottleneck.

2.3 PROBLEMS INVOLVING SIMPLE CONSTRAINTS

Few problems in optimization may be stated as a pure unconstrained
mathematical model. The presence of constraints may or may not complicate the
method of solution depending on whether:

(i) The constraints are equalities or inequalities.
(i) The equality constraints allow explicit evaluation of one variable.

Consider first the case of simple equality constraints, such that one variable may
be eliminated from the objective function for each equality. This type of
manipulation has already been illustrated in the example of Section 1.4. Other
examples are given here, in which classical methods of calculus lead to a solution.

Example 2.7

A rather old riveted, steel plate storage tank has an unfortunate habit of ‘popping’
corroded rivets, issuing a jet of water on the adjacent work area. A small wall is to
be located to retain the ponding. If the total depth is H determine the maximum
distance x from the tank wall where the jet may strike the ground (Figure 2.3).
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Figure 2.3 Problem of the leaking tank

Let the sprung rivet be at depth Y below the free surface. The jet issues with

velocity V = \/ 2gY.
The model may be stated as

Maximize X = f(Y) (2.18)
s.t. g
V=f(Y) or V=297 (2.19)
X="Vt (2.20)
(H — Y) = 0.5g1%. 221)

The model contains 4 variables: X, Y, V, and t; H and g are known constants (i.e.
| = 3; n = 4; therefore [ < n).
The trajectory time ¢ is given by (2.21)

t=/2H =Yg
and substituting in (2.19) and (2.20) gives
X = /297 J2H = Y)jg =2/ YH - Y). (2.22)

The function is now unconstrained since the 3 equality constraints have been
incorporated in the objective function to eliminate 3 of the 4 variables. A solution
may now be found by differentiation.

/H Y _ / (2.23)

therefore

or
Y= Hj2.

2.4 UNCONSTRAINED FUNCTIONS OF SEVERAL VARIABLES
Given a function

F(x) where x = (x,, X5, - - -, X,)T (2:24)

> n
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for which all the first partial derivatives exist at all points within the feasible
domain of the function, a necessary condition for a stationary point is

oF ,
=0 =L (2.25)

Such a stationary point may be a minimum, a maximum, or a point of inflection.
Moreover, the possibility must be considered that two or more such stationary
points may exist.

In order to test the nature of the stationary point it is necessary to evaluate all
the second derivatives at the point, i.e.

0*F

m i,j=1,2,...,n. (226)

These second derivatives may be assembled in a Hes51an matrix, thus:

[ o2F 0’F 0*F
ox?  Ox,0x,  0x, 0x,
o°F 0°F &°F
H= |0x,0x, 0x3  x,0%, | (227)
F &*F 0°F
ox,0x, Ox,0x,  OxZ

It will be noted that H is symmetric since

0*F ’F
Ox; 0x; 0x;0x;
A sufficient condition for the stationary point to be a minimum is that all the
second derivatives exist at the point, and that all the principal minors are positive.

(This implies that H is positive-definite.)
The principal minors of a matrix 4 are defined as follows:

Py =044,
a a
_ @11 942
D, =
ayy Adpp

P3 = |Gy; Gy; Qy; (2.28)

=|4|

Where the symbol | | means ‘the determinant of .
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The corresponding condition that the stationary point is a maximum is that
the even-numbered principal minors (p,, py,...) are positive and the odd-
numbered principal minors (p,, ps, Ps, - - -) are negative. (This implies that H is
negative-definite.) If stationarity exists but the sufficient condition is not satisfied,
then the nature of the point is indeterminate and must be investigated by other
means (e.g. numerical).

Another method of describing the sufficient condition is in terms of the

eigenvalues of the Hessian matrix evaluated at the stationary point.

(i) Ifalleigenvalues of the Hessian are negative at x* then the stationary point is
a local maximum. Clearly if all the eigenvalues are negative for all possible
values of x the point x* is a global maximum.

(i) Ifall eigenvalues of the Hessian are positive at x* then the stationary pointisa
local minimum. Similarly, the point is a global minimum if the eigenvalues
are positive for all possible values of x.

Example 2.8

A rectangular, open-topped reservoir is to be proportioned. The flowrate, and
thus the cost of supplying water to the tank, is inversely proportional to the
storage volume provided. Typical figures are as follows:

Volume (m?) Flow (m3/s) Supply cost ($)

100 0.65 10 000
500 0.50 2000
1000 0.40 1000
2000 0.35 500

The cost of constructing the tank is based on the following rates:

Base $2/m?
Sides  $4/m?
Ends  $6/m>.

Find the dimensions for least cost.

The supply cost may be approximated by the function
o = 108
1™ Volume in m*"

Letting the dimensions of the tank in metres be x, y, and z (z being the depth) the
construction cost is given by

¢, = 2xy + 8yz + 12xz.

Thus the mathematical model may be stated as

6
Minimize C = 2xy + 8yz + 12xz + & 2:29)
xXyz

3

Within the domain of interest defined by x, y, z > 0, the necessary conditions for
a critical point are given by

ac _5 12 10°

ittty Z_xzyzzo (2.30)
gy 1O

ay— X + Z_WEZO (2:31)
ac 108

e 8y + 12x — e =), (2.32)

From these, the following set of simultaneous equations may be obtained:

108
(2.30) » 2xy + 12xz = — (2.33)
xyz
10¢
(2.31) > 2xy + 8yz = _— (2.34)
xyz
108
(2.32) » 8yz + 12xz = — (2.35)
| xyz
(2.33) and (2.34) - 12xz = 8yz - (2.36)
| (2.33) and (2.35) > 2xy=8yz - (2.37)
(2.34) and (2.35) > 2xy=12 xy. - (2.38)
or
12x — 8y =0
2x — 8 =0
2y —12z =0
But n /)
e 2 —% - 0 ) . 19fin
2 0 —Bl=g T
0 2 —12
hence no solution is possible. However, from (2.36), (2.37), and (2.38) we have,
respectively

y=2x; z=1ix; y=6z /

Using any two of these relations, we may substitute in (2.30), (2.31), or (2.32) to

elti)rtni.nate two of the three variables. For example, eliminating y and z in (2.30) we
Obtain

10°
R B

2.3x + 12.4x — — =
X7.2X.4X

(2.39)
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or
6
3x + 3x = (§3)-10" 3):;10
or
o5 o8 10°
T 3x6

giving x* = 13.48 m, y* = 20.21 m, and z* = 3.37 m. The total cost is then
C = 544.86 + 544.86 + 545.12 + 1089.22

= 2724.07.
To confirm the nature of the critical point we examine the Hessian matrix:
[ /2 x 108 109 105 |
—— oo 124+ —
<xyz> <2+xyz> < x*yz
10° 2 x 108 106
= 8 +
1 Crem) () ()| e
108 10° 2 x 10°
<12 i x2y22> <8 i xyz3> < xyz >
=2 )
therefore
12 6 36
H(x*, %, 2% = | 6 533 24|, (2.41)
36 24 192

The principal minors are:
p, =12
p, = (12 x 5.33) — (6 x 6) = 27.96

ps = 12[(5.33 x 192) — (24 x 24)] — 6[(6 x 192) — (36 x 24)]
+ 36[(6 x 24) — (36 x 5.33)] = 1916.64.

Since p,, p,, and p; are all positive, the matrix H(x*, y*, z*) is positive-definite
and the critical point is a minimum.

25 TREATMENT OF EQUALITY CONSTRAINTS

In Section 2.3 it was demonstrated that problems involving simple constraints
may be reduced to an unconstrained form by the method of substitution. This has
the double advantage of eliminating one of the constraints and also reducing, by
one, the number of variables to be optimized.

In the present section a more general technique is examined which may be
applied to constraints of a more complex functional form. In common with the
rest of the chapter, however, solutions may be obtained only when the objective
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function and the constraint function are differentiable with respect to the
variables being optimized.
The modified problem may be restated thus:

Minimize z = F(x), X = (x;,X,,...,x,)

x*

subject to
hix)=0 j=1,2,...,1

For the moment, consider a problem in which n = 2 and [ = 1. Thus

Minimize z = F(x,, x,) (2.42)
subject to "
h(x,, x,) = 0. (2.43)

A new function L — called the Lagrangian — is created such that

L(x,, X5, 4) = F(x,, X,) + A[h(x,, x,)] (2.44)

where the term A is the Lagrangian multiplier.

It will be noted, however, that the number of variables is now increased by one,
compared with the original problem of (2.42) and (2.43).

The inclusion of the additional term in (2.44) will have no effect on the result as
long as the constraint is satisfied, since for

h(x,%,) =0
then
L%y %5, A) = B(%4%,);

Now, as described in Section 2.4, the necessary conditions for a stationary point
of the Lagrangian L are given by:

oL _ oL oL _ . >
ax, ox, 0% (2:45)
or by expanding

OL _OF  , oh _

OL _OF ., oh _ .
ax, = ox, Thax, = 247)
oL

- hioeys35) = 0, (2.48)

The solution of these three simultaneous equations will yield the location of one

Or more stationary points which may be examined to obtain a minimum for L and
thus z.
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2.5.1 Optimum sizing of a sedimentation tank

Example 2.9

A sedimentation tank is circular in plan with vertical sides above ground and a

conical hopper bottom below ground, the slope of the conical part being 3

vertically to 4 horizontally. Determine the proportions to hold a volume of

4070 m* for minimum area of the bottom and sides (see Figure 2.4).

Figure 2.4 Hopper-bottomed sedimentation tank

From Figure 2.4 it is clear that

D = 0.75R
and

L =1.25R.
Thus the volume is given by
V = nR?H + iDnR?
= nR*H + 0.257R3.

The cost is similarly a function of R and H.

Cylindrical: A4, = 2nRH
Conical: A, = nRL = 1.257R>.

The model may be set up as follows:

Minimize 4 = 2nRH + 1.257R> (2.49)
subject to o
nR*H + 0.257R3 = Volume V. (2.50)
Forming the Lagrangian, we obtain
L =2nRH + 1.257R? + A(nR*H + 0.257R3 — V). (2.51)
The necessary conditions are given by
dL 0L 4L
R " O0H ™ 01~
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e

oL

3R = 2nH + 2.57R + 2nRAH + 0.75nR?A =0 (2.52)

oL

3= 2nR + nR?A =0 (2.53)

oL .

7= 7R?H + 0.257R3® — V =0. (2.54)
From (2.53)

A= —2/R.
Substituting for 4 in (2.52) gives

2nH + 2.57R — 4nH — 1.57R =0
or
H = R/2.
Then from (2.54)
nR*(R/2) + 0.257R* — V=0
or
0.75nR* =V

therefore
R* = (V/0.75m)*/3.

For the specified volume of V= 4070 m?

R*=120m

and thus
H* =6.0m.

The corresponding value of A* = —0.167.

The observant reader will have noticed that although the initial problem
appears somewhat complex, the constraint is in fact linear in H so that, by direct
substitution, the objective function may be reduced to an unconstrained function
in a single variable R which is easily solved by differentiation. The Lagrangian
technique is used here for illustrative purposes.

It is also useful to examine the problem graphically. Figure 2.5 shows a number
of relations with respect to R and H in the neighbourhood of the solution. The
following points may be noted.

() The solid line indicates the locus of points which satisfy the volume
constraint.

(i) The dotted contours show the surface of the unmodified objective function 4
to be monotonic and increasing from the origin as R and H increase. It is
seen that the constraint line is approximately tangential to the iso-cost lines
at the solution, as it should be.

(iii) The chain lines indicate contours of the Lagrangian L(R, H, A¥) plotted for
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Figure 2.5 Lagrangian and cost surfaces for Example 2.9

A*¥ = —1/6. It is apparent that the surface is a saddle point in the vicinity of
the solution.

The last-mentioned point is very significant in that it serves to emphasize that

the Lagrangian provides a method of identifying the stationary points and is not

itself a method of defining the optimum. The Lagrangian should not be viewed as
a modified objective function. The additional terms are not penalty terms (as
discussed in Chapter 5), the magnitude of which is proportional to the extent of
constraint violation. This is clearly illustrated by the negative sign of the
multiplier 1* = —1/6.

The magnitude of the Lagrangian multiplier is of significance in interpreting
thgglutiqn. The fact that A*is non-zero is an indication that the constraint is
active —i.e. that a lower value of the objective function (area A) could have been
located had it not been for the volume constraint. This, of course, is common
sense in this problem but may be less obvious in more complex problems. The
magnitude of the multiplier may be interpreted as a ‘shadow price’ — i.e. the
extent to which the cost value of the objective function could be ‘improved’ by
relaxing the constraint. For example, if an alternative solution R = 11.9, H = 5.9
is examined, the following results are obtained, in comparison with the optimum
solution R* = 12.0, H* = 6.0:

R H ‘cost” A Volume V
12.0 6.0 1017.876 4071.504
11.9 59 997.244 3948.318
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The amount by which the constraint is ‘relaxed’ is 123.186 and the consequent
saving, or improvement, in the objective function is —20.632 — a ratio of
—0.167 = A*.

2.6 EXTENSION TO MULTIPLE EQUALITY CONSTRAINTS

The treatment of Section 2.5 may be generalized as follows. Consider a problem
involving n variables and [ equality constraints. The optimization model may be
stated (assuming minimization)

Minimize z = F(x) x = (x,x,,..., x,)"

subject to
hix)=0 j=1,2,...,I<n.

The Lagrangian must combine the objective function Fi (>) with every constraint
equation, each constraint being modified by an appropriate multiplier A ;
GESNN2NNNIA Thus

l
Lx, A) = F&x) + Y A,(hx)) (2.55)
j=1

X =(x;,X,,...,x,)7
j=12,...,l<n.

The necessary conditions for a stationary point are then:

oL _
a—xi=0 =12, 50 (2.56)
oL ,
=0 j=12..,1 (2.57)
Thus ’
GF ,
ot ,;1 Aj0h;fox, =0 i=1,2,...,n (2.58)
and
1
,;1 h;04;/04, =0 k=1,2,...,1 (2.59)
where

0A;/04, =1 forj=k
=0 forj+k.

2.7 OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Consider a problem involving an inequality constraint and an equality constraint
10 terms of two variables. The model may be stated in general terms as follows:
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Min*irilize z = F(x,, x,) (2.60)
subject to =
h(xy,x,)=0 (2.61)
and
g(xy, x,) = b. (2.62)

It has been demonstrated that the equality constraint (2.61) may be incorporated
in a Lagrangian. Equation (2.62) may be converted into a second equality
constraint by introducing a new variable  which is required to be real and which
is defined by (2.63) -

0> = g(x,, x,) — b. (2.63)
Obviously if (2.62) is violated then g(xy, x,) < band 0 is imaginary. The problem

may thus be revised as follows:

Min*irilize = Fx .%,)
subject to .
(g, %5) =0
and
6> — g(x,, x,) + b =0.

From this model the following Lagrangian may be formed:
L(xy, X5, 0, 44, 4,) = F(xy, x,) + A,h(x,, x,) + 2,[0% — g(x,, x,) + b].(2.64)

Asin Section 2.6, the following necessary conditions for stationarity are obtained:

oL _ oF oh dg
E—EHIE—%Eﬂ (2.65)
oL _oF _ oh . o .
E_E'FAE_}?E:O (2.66)
oL

o, hixy, x,) = 0 (2.67)
oL .

L, = 6 —glxy, x,) +b=0 (2.68)
oL

0 = 24,0 = 0. (2.69)

The only gddition to the case considered in the previous section is equation (2.69).
Two possibilities must be examined in solving for the 5 unknowns.

Case I 0 =0, in which case the inequality constraint represented by (2.68)
reduces to the form

g(¢1:%,) =b.
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Thus the solution must lie on the constrained boundary (ie. the

constraint is active or binding) and the multiplier A, will be non-zero,

representing the ‘shadow-price’, or the rate at which the objective

function may be improved by relaxing the constraint by one unit.
Case 2 A, =0, in which case 0 # 0 and thus

g(xy, x,) =b+ 0*>b

i.e. the inequality constraint is inactive and the solution lies in the
interior of the feasible space (relative to (2.62)).

Example 2.10

A temporary precast concrete operation is to be set up to produce 70, 180, and
120 units respectively for use in the months of June, July, and August. Due to the
need to employ more formwork and overtime labour when production rates are
high, the production cost is a quadratic function of the number of units produced
in a month, i.e.

Production cost/month = 1.75x2

where x = number of units produced in that month. Some economy can be
achieved by spreading production more evenly and storing units. Due to double
handling, the cost of storage for one month (or any part)is a linear function of the
number of units stored, i.e.

Storage cost = 10x.

Determine an optimum production schedule to minimize the total cost.
The model may be set up as follows:

Minimize z = 1.75(x} + x5 + x;) ... production
+ 10(x; — 70) ... storage in June (2.70)
+ 10(x, + x, — 250) storage in July
subject to ‘
x; =270 (2.71)
X, + x, > 250 2.72)
X, + x, + x5 = 370. (2.73)

Constraints (2.71) and (2.72) may be rewritten as equality constraints. Thus
62 —x, +70=0 (2.74)

02 — x, — x, + 250 = 0. 2.75)

§ B
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The Lagrangian is then constructed as follows:

L(x,, X, X3, Ays gy A3, 0, 0,) = LT5(x3 + x5 + x3)

+ 10(2x, + x, — 320)

+ Ay x5 + %5 —370)
+ 1,(0? — x, + 70)

+ A4(05 — x, — x, + 250).

(2.76)

A total of eight simultaneous equations are necessary to define a stationary point:

oL

Gr =35 H 2040 =1y =y =0
%:3.5x2+10+zl — i, =0
;TI;=3.5x3 +11‘7 =0
gTLl=XI+x2+x3—37O =10
STLZ=6f—x1+7O =10
%=0§—x1—x2+250 =0
%:20,12 -0
(%:20213 =0

@.77)

2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

Because two inequality constraints have to be considered, there are four cases to
be examined. The table below summarizes the possibilities arising from (2.83) and

(2.84).
Case 0, 0, A, Ay Active constraints
1 0 0 finite finite Equations (2.71) and (2.72)
2 0 finite finite 0 Equation (2.71) only
3 finite 0 0 finite Equation (2.72) only
4 finite finite 0 0 Neither (2.71) nor (2.72)

Case 1 0, =0;0, =0 thus

x, =170
and
X, + x, =250

therefore x§ = 70

therefore x5 = 180

from (2.80)

therefore

P e
/

( Case 2.0, = 0; 2, = 0 thus

therefore

X; + x, + x5 =370 therefore

z = 1.75(70% + 180% + 120?)
= 90 475.

(2.78) = 3.5%, + 10+ 4, =0
(2.79) - 3.5x, +4,=0
(2.80) - x, + x, =300

3.5(300) + 10 + 24, = 0
@.77) 5 265 A) < 4, =0
(2.78) -
2.79) -
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x¥ =120

xf = JOSEEE

i = —530
¥ = —265
X% = 148.57
X =151.43

(2.82) » 05 = x; + x, — 250 therefore 62° = —31.43

therefore the solution is infeasible.

Case 3 \92 = 0; 4, = 0 thus

(2.82) - x, + x, = 250
(2.80) -

2.79) -

(2.77) - 3.5x, — 400 = A,

(2.78) — 3.5x, — 410 = A, therefore 1% = 32.5

(2.81) » 62 = x, — 70 = 53.57.

The solution is feasible and

= 80 430.36.

K‘C/"/ase 4 13 =0; 4, = 0 thus
ORI + R78) + (2.79) - 3.5(x, + x, + x3) +304+32, =0

therefore

therefore

2F = —441.67
x* = 12048
x¥ =123.33
XX =126.19

0% = x, — 70 = 50.48
67 =x, + x, — 250 = —6.19.

The solution is infeasible.

x¥ =120

A= —420
x¥ = 123.57
X = 12643

z=1.75(123.57% + 126.432 + 1202) + 10(53.57)
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The optimum feasible policy is then given by
xt =123.57; x% =12643; x¥=120.

It will be found that rounding the values of x, and x, to the nearest integer above
or below results in an increase in cost, e.g.

x, =123; x,=127; x,=120 - z = 80431.50
x; =124; x,=126; x, =120 - z = 80431.00.

28 THE GENERALIZED NEWTON-RAPHSON METHOD

From the previous examples it is obvious that, even with relatively simple
functional forms in the objective function and constraints, the identification of
stationary points by the Lagrangian function frequently results in the solution of
sets of simultaneous equations. When these are linear the solution is relatively
simple by substitution, but when non-linear equations are encountered some
form of numerical solution may be required. One such method is a multi-variable
generalization of the Newton—-Raphson method, described in almost any book on
numerical approximations. Consider the solution of an equation of a single
variable of the form

F(x) =0.

With reference to Figure 2.6, assume that an initial guess x,, is used as a starting
point. Evaluation of F(x,) shows the estimate to be in error since F(x,) < 0 (in this
sketch).

F (x)

Slope F’ (xg)

\ Solution

F (Xo) T =

Figure 2.6 The Newton-Raphson method for a function of a single variable

However, the function has a positive slope F'(x,) at x, so that some
improvement in the estimate of x may be based on

(i) the error in the function value,
(ii) the slope of the function.

Specifically, a new estimate may be calculated as
X, = xo — F(xo)/F'(x,)-
Successive improvements may be made using the Newton—Raphson iterative
formula
X, 41 = X%, — F(x,)/F'(x,). (2.85)
Generalization of the approach to functions of several variables is presented
here because of the relevance to the solution of systems of simultaneous, non-

linear equations.
Let the system of equations be represented by two functions in x and y, i.e.

Fi(x,y)=0
Fz(x’y) =0

and let an initial approximation to one of the roots be (x,, y,). Improvement in
the solution may be based on the expansions

oF OF
Fi(xy, y1) = F,(xp, ¥o) + W: 0xq + Wol 0y, (2.86)
oF OF
Fy(xy, y1) = Fy(xg, ¥o) + Wj 0xy + WOZ 0Yo- (2.87)
Consider specifically the two equations
F(x,y)=x*—y+1=0 (2.88)
F(x,y)=x—y*+3=0. (2.89)
Let (x4, yo) = (1, 1); then
oF oF
B, =1 6—x1=2x =2; 6—y1= -1

G =0 bx
Fy(xg, ¥o) = 3; W_l’ W——ZJ’— 2.

Therefore, since the right-hand sides of both F, and F, are zero,
1+ 26xy— 0y, =0
3 4 dx, — 26y, = 0.

These linear equations yield a solution

5 0y =

0 =
wln

0x, =
Thus
X, =X, + 0x, = 1.33

Vi = Yo + 0y, = 2.67.
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The same process repeated with (x,, y,) as the starting point yields the next
iteration x, = 1.16, y, = 2.11, which is converging on the root (1, 2).

For larger systems of equations, the process is more easily described in matrix
form. Thus for a set of equations

Fx)=0 i=12,...,n and 3.5 (K, Kigaes s 35 Hgh
the initial estimate of the solution is given by (x), where
(3, == (603 Fig - = 5 0)
The vector of corrections dx is defined by the equation
F(x,) +J(X0)(0%), = 0 (2.90)

where J(x) is the Jacobian matrix of first derivatives, i.e.

oF /ox, OF,/0x, dF ,/0x,
oF,/ox, OF,/ox, ... OF,/ox,

IR e ! @91
oF Jox, @F,ox, ... OF,/ox,

The vector of corrections is thus given by

(6x), = =T 1(x,).F(x,) (2.92)
in which the system of linear equations in (dx) is solved by matrix inversion.
Occasionally, the system of linear equations may be solved by substitution. In

any event, the iteration must proceed until all of the corrections (6x), are
acceptably small. An illustration of the method is given in the following example.

Example 2.11 A traffic flow problem

Three alternative routes between the origin—destination pair A-B have travel
times which as a first approximation may be related to the volume rate of flow
(Figure 2.7).If x, (i = 1, 2, 3) represents the number of vehicles per unit time (some
arbitrary time interval) the travel times are given by

£ =3% + 5%, —2
t,=4x; —2x,+1

t,=x3+4

“ ()

Figure 2.7 The alternative route problem (again!)

S

If 100 vehicles per unit time leave A, determine the optimal division of traffic
between the three routes.

As mentioned in Chapter 1, the solution to a problem such as this is very
dependent on the choice of objective function by which the effectiveness of the
policy is measured.

Qne possible objective might be to minimize the sum of the three travel times.
This would result in the following model:

Mi:li*m*ize z=t +t,+t, (2.93)
subject to T
t, =3x3 + 5x, — 2 (2.94)
t, =4x5 —2x, + 1 (2.95)
t,=x3+4 (2.96)
x; + x, + x5 = 100. (2.97)

The first thrge equality constraints are easily incorporated into the objective
functlop by direct substitution. The fourth equality constraint is linear in each of
the variables x,, x,, and x; and may also be substituted, e.g.

X, =100 — x, — x,.

This .rc?sults In an unconstrained function in x, and x,, for which the necessary
conditions for a stationary point are obtained as follows:

0z

B, = 14%, — 607 + 6x, =0 (2.98)
0z 2
B, = 335 + 6% — 605 + 6x, = 0. (2.99)

The splution is obtained by substituting for x, in the second equation to obtain a
quadratic in x5 which yields the result

x¥ =10.17
from which

x¥ =39.00
and

xF = 50.83.

A sli‘ghtly more meaningful objective — and a more complex problem — is
Obtained by attempting to minimize the total disutility in commuter-hours, i.c.

Mxi?xi:r‘lize Z =Xty + Xyt + X,t, (2.100)
subject to i
Xy + %5 4 x5 = 100. (2.101)
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Once again, substitution would be possible, but for purposes of illustration a

solution will be obtained by means of a Lagrangian, i.e.

L(x,, X5, X3, 4) = F (%) + F(x,;) + F5(x3)

53
This yields
R
01 i 2: N @.111)
00 0 i; ) _51_ i; Sl = 1u

(ii) The fourth column of the Jacobian is simplified by reducing the fourth row
element to unity by division and then subtracting proportional parts from the

first three rows. Thus we obtain

+ Ax; + x, + x; —100) (2.192)
where
Fi(x,) = 3x3 + 5x3 — 2x, (2.103)
Fy(x;) = 4x3 — 2x2 + x, (2.104)
and
Fy(x3) = x§ + 4x,. (2.105)
The necessary conditions for a stationary point are given by:
OL/0x, = OF Jox, + A =f=0 (2.106)
O0L/0x, = OF,/0x, + A =f,=0 (2.107)
OL/0xy = OF;/0x; + A =f,=0 (2.108)
OL/0A = x, + x, + x; —100=f, =0 (2.109)

from which values may be obtained for x,, x,, x,, and 1.

Solution of these four simultaneous non-linear equations is somewhat
daunting and — as in many such cases — recourse must be made to numerical
techniques. Here we may conveniently use the generalized Newton—Raphson
method since all of the functions are easily differentiated.

The process of iteration starts from the initial approximation (x;), (i = 1, 2, 3)
and A, -

Improved estimates of the variables are then obtained by computing the
changes dx; (i = 1, 2, 3) and 64 from the set of equations represented by (2.90), i.c.

70 0 1| [ox, .

0 £ 0 1] |ox 7
o == (2.110)
0 51 1| |éx, 7

111 0] |& 1

The Jacobian of (2.110) is of a particularly simple form since the functions f,, f,,
and f; contain terms in the single variable x,, x,, and x, respectively, in addition
to A. Solutions for dx,, 0x,, 6x;, and 64 may be obtained by row operations
relatively simply instead of having to invert the Jacobian. The following steps
illustrate the procedure.

(i) Thefirst three rows are divided respectively by f; (i = 1, 2, 3) following which
the fourth row is simplified by reversing the sign and adding all four rows.

1 0 0| |ox, b,
01 0 0| |ox, b, -
0 0 1 0 |dx;]  |bs @112)
0 001 Lél b,
where
b, =f/fi —bufi (i=1,23)
and

3 3
m=(;mmrﬁy;am>
Equation (2.112) yields the corrections to be applied to x;, x,, x3,and 4. Using the
revised values the process is repeated by re-evaluating f;and f/ (i = 1, 2, 3, 4) for
the new values of the variables. The iteration is continued until ox; (i =1, 2, 3)
and 64 are all acceptably small.
Using arbitrary values for x,, x,, X, and A the solution converges in 4 iterations

as shown below.

Iteration 1 2 3 4
Xy 33.00 40.88 43.41 44.33 44.41
%, 33.00 35.38 38.20 38.95 39.02
X 34.00 23.74 18.39 16.72 16.57
A 1.00 —14 886 —17 337 —18119 —18193

Programming of the calculation is well within the scope of the more advanced
programmable pocket calculators.

2.9 EXERCISES
29.1 The workability of an experimental paving material is found to be a
function of time. Experimental measures of density may be approximated

by the expression
z=—3t*+4 +2.
Determine the optimal time.
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2.9.2 The percentage removal of impurities in a water treatment process can be
improved by the addition of two agents. The percent removed can be
expressed as
r =60 + 8x, + 2x, — x} — 0.5x2
where x, and x, are the percentage doses of the two agents. Determine the
optimal level of dose for each agent.
2.9.3 Determine the position and nature of the stationary points of the
following function:
z=Xx] —x;X, + x5 —2x, + 3x, — 4.
2.9.4 Profit from the manufacture and sale of two products is given by the
function
z= —x} —x3+ 2x,x, + 6x,
where x, and x, are, respectively, the numbers of each product. Resources
limit the total number of units (i.e. product 1 plus product 2) to 300.
Determine the best distribution.
2.9.5 Solve Exercise 2.9.2 subject to the constraint
40x, + 20x, + 20 < 160.
2.9.6 Solve Exercise 2.9.5 subject to the additional constraint
50x, + 35x, + 40 < 240.
29.7 A bridge over a ravine comprises three spans and two intermediate
columns as illustrated in Figure 2.8. The total span is 100 m and the
- loom
[} \ L
=
H
VP = B+2y It 22
A = Y ( 64 2 Y) Figure 2.8 Bridge profile for Exercise 2.9.8

topography of the ravine is such that column height H may be expressed
as a function of the distance L from the west abutment, thus:

H =20+ 0.5L — 0.0045? (m).
The cost of beams is given by:

Cb = 100)(2

29.8

294

29.10
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where x is the span of the beam. The cost of columns is simply
C. = 5000H.
Determine the optimum spans for minimum cost.

A proposed water supply to a factory comprises a pipeline terminating in a
balancing tank adjacent to the factory. The purpose of the balancing tank
is to allow for a fluctuating demand whereby the factory is to be supplied
with 0.28 m>/s over an 8 hour period in each 48 hours. The flow is zero for
the remaining 40 hours. Details of the costs and other specifications are
given below. Obtain an optimal design by selecting 2 or 3 values of
diameter and solving for the other variables. State whether or not the
objective function is convex or concave with respect to pipe diameter and
state the significance of this on the selection of an optimal solution.

Project Specification
Pipe length = 1830 m

Flow capacity Q (m3/s) = 2.75D%/2.
The tank is to be square in plan with vertical sides and an open top.

Calculate costs in terms of the net internal dimensions with no freeboard

allowance.
Pipe cost/m length = $45\/ D (m)

Tank base cost/m? = $10.50
Tank wall cost/m? = $32.25.

An open channel cross-section is to be proportioned as a symmetrical
triangle such that the section area is 46 m?. Also, as the velocity is to be
maintained below a value of 2 m/s the wetted perimeter must be not less
than 30 m. If excavation costs C,; = $35/m? and the lining of the inclined
banks costs C, = $21.50/m?, determine the proportions for minimum
cost.

Water supply for a community is available from any or all of three
potential sources, the cost of each supply being described as a quadratic
function of the flow rate. Thus:

C, = 6000 + 100Q, + 1002
C, = 5000 + 80Q, + 2002
C, = 7000 + 1200, + 502

where C is the cost and Q is the flowrate. Determine the optimal
development policy to meet a total demand of 100 units. Discuss briefly
how the method of solution and the resulting optimal policy might be
modified if the following constraints apply:

g, £50; 0,<d40; Q<65
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Chapter 3
Linear Programming —
Part 1

3.1 INTRODUCTION

The next two chapters deal with linear programming (LP) problems and
associated solution techniques. The present chapter serves as a general
introduction to LP and begins with a graphical method of solution for problems
involving two variables. This approach provides a vital clue to a more general
and more powerful method of solution known as the simplex method which is then
described in detail. The topics of degeneracy, sensitivity analysis, and duality are
then briefly described with the aid of simple examples. Finally, a short but useful
computer program based on the simplex method is presented and used to solve
several civil engineering problems.

Many civil engineering problems involve the allocation of limited and/or
costly resources in order to obtain the best possible results from their use. The
term be§t _possible use’ usually means that the aim is to maximize profits or
minimize costs. It also implies that several possible alternatives exist whereby a

specific objective may be accomplished. Thus, the problem is to allocate specific
amounts of resources to satisfy a given goal in such a way that profits are
maximized or costs minimized for the feasible alternatives under consideration.

Linear Programming is probably the best known and most widely used

opt1mlzat10n techg;que for solving certain types of resource- -allocation problems.
It may be used to solve a wide variety of practical civil engineering problems and
can be rapidly programmed for solution on digital computers. Several conditions
must be met, however, before LP can be adopted. First, the problem under
consideration must be concerned with the specification of non-negative values of
a set of variables that optimize a linear function expressed in terms of these
variables. Secondly, the optimization of this function must also satisfy one or
more linear constraints which mathematically describe the availability or
requirements of the resources.

The first formal presentation of a linear programming problem and an efficient
technique for solving it was made by Dant21g at the US Department of the Air

1%
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Force in 1947. The first published work on the topic was by Koopmans™® in 1951.

Dantzig’s method, known as the simplex method,?~* has subsequently been
revised in order to make it computationally more efficient, but the basic approach
is the same.

The problems of initial concern were associated with resource allocation and
were characterized by very large numbers of decision variables and/or
constraints. However, application to civil engineering extends to a>br07ader area
of problem solving and design. In problems involving water resources the
selection of flows or discharges in a complex network of conduits may often be
described by linear relationships. Transportation problems similarly involve
multiple applications of the law of continuity which in turn leads to linear
constraints. The analysis of forces in a structure can frequently be described in
terms of linear algebra (elastic systems involve a basic premise of linearity). Even
where strict linearity may not be assumed over the entire range of values of design
variables, the power and efficiency of linear programming methods may make
justifiable the assumption of approximate linear relationships over a restricted
range of variable values.

For the moment, two relatively simple linear programming problems are
considered which illustrate the general characteristics of the problem type. The
solutions to these and other problems will be discussed in detail later in the
chapter.

(@ Conerete Block glerablen:

A concrete products manufacturer makes two types of building blocks: type A
and type B. For each set of 100 type A blocks the manufacturer can make a profit
of $5 whereas for each set of 100 type B blocks he can make $8. Furthermore,
there is a very large market for such blocks nearby and it can be assumed that all
blocks which are produced can be sold.

It takes 1 hour to make 100 type A blocks and 3 hours to make 100 type B
blocks. Each day there are 12 hours available for block manufacture.

A set of 100 type A blocks requires 2 units of cement, 3 units of fine aggregate,
and 4 units of coarse aggregate; whereas a set of 100 type B blocks requires 1 unit
of cement and 6 units of coarse aggregate.

Each day, 18 units of cement and 24 units of coarse aggregate are available for
block manufacture. There is no restriction on the availability of fine aggregate.

How many type A and type B blocks should be manufactured in order to
maximize profits?

(b) Portal Frame Design

The fixed-base rectangular portal frame ABCD shown in Figure 3.1 is subjected
to a vertical load V' at the centre of the beam BC and a horizontal load H at the
top of column CD. The frame is to be designed for minimum weight using plastic
hinge methods. The lengths and fully plastic moments of the column (beam) are
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Figure 3.1 Rectangular fixed base portal frame

given as L. (L,) and M. (M,) respectively. All joints are rigid and it may be
assumed that the weight of each frame member is proportional to the fully plastic
moment of the member multiplied by its length. Assume that the values of V, H,
Ly, and L. are specified. The problem then reduces to one of finding the plastic
moments My and M. which result in a frame of minimum weight.

3.2 GENERAL FORM OF AN LP PROBLEM

In Section 1.6 the concept of a mathematical model and some related notation
were introduced. This section describes the special case of a LP problem.
In its general form an LP problem can be written as follows:

Minimize the objective function
Zi=1G X4 €%, Fu b €, (3.1)

subject to m constraints of the form

Ay Xy +a3,%, +...+a,x, <b

[

Gy %y F AyyXy Fivut@y.%, < b,y

and subject to the non-negativity conditions

o T R > |

in which'c, are known as the cost coefficients, x,, . . . , x, are structural variables, b,
are the rlght hand sides or stipulations of the constralnts and are positive by
convention, and each q;; is a structyratoefgff cient of structural variable x; in the
ith constraint.

Equation (3.1) can be written more compactly as

Minimize z(x) (3.2)
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subject to
g:x)<b, i=12,....,m
with x > 0
where z and\ g; are linear functions of x = (x, x,, ..., x,)T.

The m < inequality constraints in (3.1) can be converted to equations by the
inclusion of non-negative slack variables x,,, , ..., x, ., so that it is possible to
write

Minimize z = ¢,x, + ¢,x, +...+ ¢,x, (3.3)
subject to
Xy +ax, +.oo+a,x, +x,,,=b,
Ay1Xy +a55%; +...+ayx, +X,,,=b,
amlxl + am2x2 +...t+ amnxn e Xn+m - bm
and

Xys Xy e s Xy = 0.

The LP problem is now in the canonical form — that is, each constraint is an
equation which contains a variable with a unit coefficient. Elsewhere in the other
constraints and the objective function this variable has a zero coefficient. (For
complete generality the objective function of equation (3.3) should include
products for c,,x,,; to ¢,,,.X,+, In problems such as batch mixes certain
resources may be surplus to the finished mix and have some finite cost for their
disposal.) Thus, the addition of the slack variables to the < inequality constraints
has automatically produced the canonical form. To convert LP problems with
equality and ‘greater than or equal to’ type constraints into the canonical form,
another approach is required. This will be dealt with later in Section 3.8.

It should also be noted that a maximization problem can conveniently be
converted to a minimization problem by noticing that maximizing z’ is precisely
the same as minimizing z = —7'.

33 A TWO-VARIABLE EXAMPLE

A two-variable example will now be described which will be used later to
illustrate both a graphical and the simplex method of solving LP problems.

A local authority is planning to build an industrial waste processing plant at
minimum expenditure on land adjacent to two main roads, a canal, and a railway
track as shown in Figure 3.2. The unprocessed and processed waste will be
transported to and from the plant via the main roads and therefore two access
roads will be required. The plant location is given by the coordinates (345 x5)
measured from an origin at the junction between the railway and the canal as
shown in Figure 3.2. The zone of possible plant locations is limited by several
considerations:
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Figure 3.2 Plant location example
(1) The railway track on the western side of the land limits the zone of possible
plant locations to
x; =20 (3.4)

as shown in Figure 3.3(a). ,
(2) The canal on the southern side of the land limits the zone to

x,=0 (3.5)
as shown in Figure 3.3(b).
X, = 0
Y
B X;
4
/
(a)
X2
x; =0
7. F I EE /4
(b)

Figure 3.3 (a) Constraint imposed by railway track. (b) Constraint imposed by canal
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(3) The local authority boundary line imposes another restriction on the zone of
possible plant locations. Figure 3.4t shows this boundary line represented by
the equation

3x, + 5x, = 3000 (3.6)
thus limiting the zone of possible plant locations to

3x, + 5x, < 3000. (3.7
A

3x1 + 5x2$ 3000

X1
-
T

~
Figure 3.4 Local authority boundary constraint

(4) Precast pile foundations are required for the plant as the soil conditions are
very poor on the site, and because of transportation difficulties it has been
decided to limit the average pile length to 16 m.

The solid rock lies 6 m below ground level at the S.W. corner of the site and
dips 1 in 150 in the East direction and 1 in 50 in the North direction. The
depth d to bedrock can thus reasonably be represented by the equation

g= X %

Gotsot 6. (3.8)

Since d < 16 m, a further limit is placed on the zone of possible plant
locations, i.e.

=tz +6<16 (3.9)

which can be re-written in a more convenient form as
x; + 3x, < 1500 (3.10)

as shown in Figure 3.5.

T A linear equation Ax, + Bx, = C can be drawn on the graph as a straight line P, P, as follows:
(i) Find the point P, where the line intersects the x,-axis; that is put x, = 0 into the equation and
solve for x,.
(ii) Find the point P, where the line intersects the x ,-axis.
(iii) Join points P, and P, with a straight line.

e —
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x, + 3x2 <1500

Figure 3.5 Precast pile constraint

(5) The final restriction on the zone of possible plant locations is imposed by the
presence of a green belt zone in which the construction of any industrial
building is forbidden. The green belt zoning line cuts across the land under
consideration and can be represented by the equation

3x, + 2x, = 2100 (3.11)
thus limiting the zone of possible plant locations to
3x, + 2x, < 2100 (3.12)

as shown in Figure 3.6.

A %

N

3x,+2x,< 2100

~

Figure 3.6 Green belt zone constraint

By superimposing all of the constraints the zone of possible plant locations
Whlch satisfies all of the constraints can be represented by the shaded zone in
Figure 3.7. In LP problems such a zone is known as the feasible region.
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3x;+2x, = 2100

X, +3x5 = 1500

Feasible
region
3x;+5x5 =
A = 3000 G
0 500 1000 %

Figure 3.7 Feasible region for plant location problem

The breakdown of the total cost of the industrial waste processing plant is as
follows:

£405 000 for the plant structure
x x
1500 =L 4+ =2 for the pi i
+ <150 + 30 + 6) or the pile foundations
+ 210(1000 — x,) for the Eastward access road
+ 210600 — x,) for the Northward access road.

Therefore the objective function for the problem can be expressed as the total
cost:

150 ™ 30
= (405 000 + 9000 + 210 000 + 126 000) + (10 — 210)x, + (30 — 210)x,
= 750 000 — 200x, — 180x,.

z = 405 000 + 1500("‘1 P S 6> +210(1000 — x,) + 210(600 — x,)

The problem can thus be written in the general form described in Section 3.2:

Minimize z = 750 000 — 200x, — 180x, (a) (3.13)
subject to )
/3x, + 5x, < 3000 (b)
x; + 3x, < 1500 ©
3x, + 2x, < 2100 (d)

and x, =20, x,>0.

()
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It should be noted that the objective function and the constraints are all linear
functions of x, and x,, and also that the non-negativity condition on x, and x,
applies.

(An observant reader may have noticed that two constraints have been
omitted:

x, < 1000
< 600.

X3

However, these constraints are automatically satisfied by the three constraints
which have been included.)

34 A GRAPHICAL METHOD OF SOLUTION

In this method, a two-variable LP problem can be solved graphically; the
solution procedure is summarized in Figure 3.8.

1. Determine the objective function and constraints.

|

2. Set up a graph and plot the constraints.

3. Define the feasible region i.e. the region in which all con-
straints are satisfied.

4. Obtain the contours of the objective function.

|

5. Test the vertices of the feasible region to find the optimum
solution.

Figure 3.8 Flow chart for the solution of a 2-variable LP problem using a graphical
method :

Consider the problem outlined in Section 3.3. The feasible region (i.e. the region
within which all constraints are satisfied) is shown in Figure 3.9.

Graphically z = 750 000 — 200x, — 180x, can be drawn as an infinite number
of parallel lines corresponding to different values of z, the total cost. For example,
if z is arbitrarily set equal to £705 000 then the equation of the corresponding
straight line contour is

705 000 = 750 000 — 200x, — 180x, (3.14)
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Figure 3.9 A graphical solution to the LP problem

or

200x, + 180x, = 45 000. (3.15)

The intersection of this line with the x,-axis occurs at point K (x, = 225,
x, = 0) while its intersection with the x,-axis is at point L (x, = 0, x, = 250). If
points K and L are joined together an iso-cost line (or objective function contour)
is obtained. Note that the 705 000 iso-cost line is a linear equation that can be
expressed as x, = 45 000/180 — (200/180)x,. That is, it has a slope of —200/180.
All other iso-cost lines have the same slope and are therefore parallel.

Similarly, other iso-cost lines can be drawn yielding different cost levels. For
example, line EM in Figure 3.9 represents a 660 000 iso-cost line. Lines EM and
KL are parallel but the cost associated with line EM is lower than that of KL. It is
possible to continue drawing such iso-cost lines for lower costs as long as the line
remains in the feasible region.

Eventually, when either a corner point of the feasible region or one of its
boundary lines is reached, no further feasible iso-cost lines can be drawn. In either
case the optimal solution(s) has (have) been found.

In the present case if iso-cost lines are drawn on the graph it will be seen that the
lowest value of the objective function within the feasible region occurs at vertex C.
This point gives the optimal solution which corresponds to x, = 500 m,
x, =300m, and z =596 000 with constraints 3.13(b) and (d) satisfied as
equalities. In fact, it can be proved that, provided the feasible region is convex, the
optimal solution will always lie at a vertex (see Figure 3.10 for definition of
convexity). To provide extra evidence to support this statement, it is suggested
that the reader attempts a graphical solution to the plant location problem with
various objective functions. For example, in the unlikely event of the road cost
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Convex sets

S

Nb

Non-convex sets

Figure 3.10 Examples of convex and non-convex sets. Convexity in a set of points means
tha}t the segment or line joining any two points in the set is also in the set. Here the set of
points consists of all those points which satisfy all of the constraints i.e. the feasible region.

being reduced by £90 per metre it may be seen that the solution changes to point B
in Figure 3.9. This exercise will also help prepare the reader for the section on
sensitivity. Figure 3.11 also gives some further graphical solutions to a number of
different LP problems involving two variables. A more rigorous proof that the
optimum solution will always lie at a vertex of the feasible region can be obtained
from a standard text on linear programming.®

The result of the graphical solution to the plant location problem provides a
vital clue to the solution of the general LP problem.

The simplex method proceeds by systematically searching adjacent vertices of
the feasible region in an attempt to improve and eventually obtain the optimum
solution. Thus, the solution would start at point A in Figure 3.7 for the plant
location problem and proceed to adjacent point B rather than point E as point B
gives a greater improvement in the objective function. The solution would then
compare points A and C and subsequently move to point C. At this point no
further improvement would be found so that the solution at point C would be
taken as optimal.
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Figure 3.11 Graphical solution to various LP maximization problems

3.5 INTRODUCTION TO THE SIMPLEX METHOD

The simplex method is the most general and powerful of all the various methods
of solving LP problems and its main advantage lies in the fact it can provide quick
solutions to large problems with the aid of the computer. It not only solves the
given LP problem but by simultaneously solving the dual problem (Section 3.11)
it provides useful information for sensitivity analysis (Section 3.12).

The simplex method is based on the main theorem of LP which states that

(a) a vertex of the feasible region represents a basic solution, and
(b) one or more vertices will yield an optimal solution.

As mentioned previously, the simplex method can be considered as a systematic
means of examining the basic feasible solutions starting with an arbitrary initial
basis of m variables where m is the number of constraints. Slack and artificial
variables (Sections 3.7 and 3.9) help in the quick generation of an initial basic
feasible solution. If this solution is not optimal the search for an optimal solution
continues in an orderly fashion to another vertex with a lower value of the
objective function. Such improvement between successive solutions is indicated
by the signs of the simplex criteria for the non-basic variables (Section 3.7). The
solution continues to move from one corner point to another as long as each
move results in an improvement (reduction) in the objective function. Since the
number of vertices is finite the simplex method guarantees that the optimal

Contour of objective
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1\*: Obtain the canonical form of the LP problem

|

1. Locate a vertex of the feasible region (which is known to be a basic
feasible solution)

2. Examine other vertices of the feasible region adjaqent to theyedex
o= used in the previous step. Is an improvement in the objective
function possible at one of these vertices?

Yes No

3. The optimal solution has
been obtained

4. Choose the vertex that permits the Iargest‘imprqvement to be
made and call that the current basic feasible solution

Figure 3.12 General flow chart for the solution of LP problems

solutions will be obtained in a finite number of iterations. The solution procedure
is summarized in Figure 3.12.

3.6 BASIC SOLUTIONS

Consider the problem described in Section 3.3. If each of the inequa!ity
constraints (excluding the non-negativity condition) is repla(_:ed by an equation
by introducing slack variables, then the problem can be written as

Minimize z = 750 000 — 200x, — 180x, (3.16)
subject to
3263+ DX, =06, = 3000
Xq 35 + x, = 1500
3x, + 2x, + + x5 = 2100
and
x,20,...,x5=0.

The significance of the slack variables will be discussed later. It is impossible to
solve the constraint equations since there are five unknowns buF iny three
equations. However, if two (i.e. 5 — 3) variables are set equal_ to zero it is possible
to solve the resulting equations. The solutions obtained in this manner are known

as basic solutions.
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If such a solution also lies within the feasible region, it is known as a basic
feasible solution. It will be demonstrated that basic feasible solutions occur only
at the vertices of the feasible region. Further, as shown in the section on the
graphical method, the optimum solution occurs at the vertex of the feasible
region and is therefore a basic feasible solution. The variables in a basic solution
which are non-zero are termed the basic variables, whereas the zero-valued
present problem there are 5!/3! 2! = ten basic solutions. The linear simultaneous
equations and solutions corresponding to each of the 10 basic solutions will now
be examined.

Basic solution I Basis (x,, x,, X3) (3.17)
3x, + 5x, + x5 = 3000
x, + 3x, = 1500
3x, + 2x, = 2100
x, =4712, x,=342%, x,=—128% x,=0, x;=0.

This solution, which is infeasible since x, is negative, corresponds to point F in
Figure 3.7.

Basic solution 2 Basis (x,, x,, X,) (3.18)
3x, + 5x, = 3000
x; + 3x, + x, = 1500
3x, + 2x, = 2100

x, =500, x,=300, x;=0, x,=100, x;=0.

This solution, which is feasible, corresponds to point C in Figure 3.7 and is, in
fact, the optimum point.

Basic solution 3 Basis (x,, X,, X) (3.19)
3x; + 5x, = 3000
x, + 3x, = 1500

3x; + 2x, + x5 = 2100
x, =375 x,=375 x3;=0, x,=0, x5=225

This solution, which is feasible, corresponds to point D in Figure 3.7.
Basic solution 4 Basis (x,, x5, X,) (3:20)

3x, + x5 = 3000
x, + x, = 1500
3x4 = 2100
x; =700, x,=0, x;=900, x,=2800, x5=0.
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This solution, which is feasible, corresponds to point B in Figure 3.7.

Basic solution 5 Basis (x;, X5, X5) (3213
3x, + x5 =3000
X, = 1500
3x; + x4 = 2100

x, =1500, x,=0, x3=—1500, x,=0, x;= —2400.

This solution, which is infeasible, corresponds to point G in Figure 3.7.

Basic solution 6 Basis (x,, x,, Xs) (3.22)
Sy = 3000
x, + X, = 1500
3x; + x5 = 2100

x, =1000, x,=0, x;=0, x,=500, x;= —900.

This solution, which is infeasible, corresponds to point H in Figure 3.7.

Basic solution 7 Basis (x,, X5, X,) (3.23)
5%, + X3 = 3000
Tk, 4x,  =1500
2x; = 2100

x; =0, x,=1050, x,=—2250, x,= —1650, x=0.

This solution, which is infeasible, corresponds to point I in Figure 3.7.

Basic solution 8 Basis (x,, x,, X5) (3.24)
5%, = 3000
3x, + x, = 1500
2%5 e = 2100

x, =0, x, =600, x;=0, x,=-300, x5=900.

This solution, which is infeasible, corresponds to point J in Figure 3.7.

Basic solution 9 Basis (x,, X3, X5) (3.25)
5x, + X5 = 3000
3x, — 1500
2%5 '+ Xy = 2100

x; =0, x,=500, x;=500, x,=0, xs=1100.

This solution, which is feasible, corresponds to point E in Figure 3.7.
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Basic solution 10 Basis (x5, X, X5) (3.26)
X, = 3000
x, = 1500
x5 = 2100

x; =0, x,=0, x;3=23000, x,=1500, x,=2100.
This solution, which is feasible, corresponds to point A in Figure 3.7.

It should be noted that the five basic feasible solutions correspond to the
vertices of the feasible region. The remaining five basic solutions violate the non-
negativity condition. All of the basic solutions are summarized in Table 3.1.

Table 3.1 Basic solutions for the plant location problem

. Vertex
Solution (Refer to
number Xy X5 X5 X, Xs z Figure 3.7)
1 4713 3428 —128% 0 0 F (infeasible)
2 500 300 0 100 0 596 000 C (feasible)
3 375 375 0 0 225 607 500 D (feasible)
4 700 0 900 800 0 610000 B (feasible)
5 1500 0 —1500 0 —2400 G (infeasible)
6 1000 0 0 500 —900 H (infeasible)
il 0 1050 —2250 —1650 0 I (infeasible)
8 0 600 0 —300 900 J (infeasible)
9 0 500 500 0 1100 660 000 E (feasible)
10 0 0 3000 1500 2100 750000 A (feasible)

3.7 SIMPLEX COMPUTATION — MINIMIZATION

As mentioned in an earlier section, the simplex method can be considered as a
systematic means of examining the set of basic feasible solutions, starting at an
arbitrary initial basis of m variables where m is the number of constraints. If the
initial basic feasible solution is not optimal, a neighbouring basis is examined by
replacing one of the basic variables, and so forth, until no further improvement
can be obtained. This solution procedure for a minimization problem is
summarized in Figure 3.12.

The plant location problem introduced in Section 3.3 will now be solved to
illustrate the main steps in the simplex method. It should be noted that this
problem involves minimization. Problems involving maximization will be
discussed in Section 3.8.

3
Step 1 Formulate the problem
The general LP form of the plant location problem can be written as
Minimize z = 750 000 — 200x, — 180x, (3.27)
subject to
3x, + 5x, < 3000
Ix, + 3x, < 1500
3x, + 2x, < 2100
and
Xqs Xy 2 0:

[Note that we use the notation 1x, instead of x, so that we can identify the
coefficients in tableaux later.]

Step 2 Convert all constraints to obtain the canonical form

Before proceeding with the simplex method it is necessary to transform the LP
problem to its canonical form. This is achieved in this problem by introducing
slack variables x,, x,, and x, so that the problem can be rewritten as

Minimize z = 750 000 — 200x, — 180x, (3.28)
subject to
3x; + 5x, + 1x, = 3000
Ix, + 3x, + 1x, = 1500
3x; + 2x, + 1x5 = 2100

Xy, Xy, Xy, Xy, X5 = 0.

A cost coefficient is assigned to each slack variable. Slack variables usually have a
physical meaning and their significance in the present case can best be
appreciated from the graphical solution. Any solution on a constraint line (i.c. a
line on which the constraint is satisfied as an equality) means that the value of the
corresponding slack variable is zero and the constraint is fully utilized. Any
solution within the limits of the feasible region means that all the slack variables
are positive.

Because it is convenient to solve the constraint equations using matrix algebra
it is possible to write the constraints in the problem as follows:

T'xl"
3 5 1.0 0 |% 3000
1 301 0 |x; = [1500]. (329)
3200 1] |x, 2100

| X5 ]
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Step 3 Construct tableau

After putting the constraints into matrix form, a tableau that summarizes all
information relevant to the problem is constructed. The initial tableau shows

(i) which variable is associated with each column in the matrix,
(ii) the right-hand sides or stipulations,

(iii) the cost coefficients of the basic variables, and

(iv) the basic variables.

The initial tableau, which is still incomplete at this stage, is given as

¢ —200 —180 0O 0 0 b.
c® Basis b, v, v, v, v, Vs d
3000 3 3 1 0 0
1500 1 3 0 1 0
2100 3 2 0 0 1
Here the tableau contains the three constraints with slack variables. The five
column vectors v; (j=1,2,...,5) denote respectively the column of structural
coefficients a;; (i =1, 2, 3) associated with each decision variable X The row
vector¢;(j =1,2,..., 5)defines the cost coefficient associated with each decision

variable. Other terms are defined in subsequent steps.

_Step 4. Generate an initial basic feasible solution

The iterative process of determining an optimal solution to an LP problem is
initiated by selecting a known basic feasible solution. Such a solution can easily
be obtained using only slack variables if the values of the other variables (the non-
basic variables) are taken as zero. Thus the initial basis consists of x,, x,, and x;
and from (3.28) it can be seen that if x;, = 0 and x, = 0 then, without actually
having to solve the equations,

x; = 3000, x,=1500, x,=2100, and z =750 000.

This initial basic feasible solution is represented by point A in Figure 3.7 and is
recorded in the following tableau:

¢, =200 —180 0 0 0 .
. a
c® Basis b; v, v, v, v, Vs
Xy 3000 3 5 1 0 0
X 1500 1 3 0 1 0
X 2100 3 2 0 0 1
750 000
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The value of the objective function in the initial tableau is given by
z=Y c%, + z,

The column labelled ‘Basis’ shows the basic variables for the present solution.
The cost coefficients ¢ define the cost coefficient of the ith variable in the basis
and are here all equal to zero. To obtain the total cost z for a given solution the
cost coefficient ¢ in each row is multiplied by the value of the basic variable
associated with that row which is given by the value b; and added to z, which is
the constant term in the objective function. In most LP problems z,, will be equal
to zero but in the present case z, = 750 000 (see (3.28)). Thus

z=12z5+ ), c%, (3.30)

and the result is given in the last row of the tableau as indicated.

Step 5 | Check for optimality and selection of incoming variable

It is now necessary to check whether the present solution is optimal. This is
accomplished by calculating a simplex criterion or coefficient for each non-basic
variable. The criterion relates the net change in the objective function per unit of a
non-basic variable hypothetically introduced into the basis. The variable causing
the greatest improvement is selected to be the incoming variable. Only one
variable will be dropped from the basis at each iteration.

The simplex criterion for non-basic variable x; is given by

Az;=¢; - .; a,;c¥ =¢; -z (3.31)
where
Az; = the value of the simplex criterion for the non-basic variable x; and
represents the net change in the objective function by making x; = 1
¢; = the cost coefficient of the non-basic variable x;
@ — the cost coefficients of the basic variables obtained from the ¢® column of
the simplex tableau.

Note that here ¢! is the cost coefficient associated with the basic variable of the
first row, ¢'® the cost coefficient associated with the basic variable of the second
row, etc.

a;; = the coefficient of the ith row and the jth column in the present tableau.

Toillustrate the evaluation of the simplex criteria, the effect of introducing a non-
basic variable x, into the basis is first considered. From (3.28) it can be seen that a
movement of the factory by 1 metre in an eastwards direction from its present
location at x, =0, x, =0, to a new locdﬁf)ml =1, x, =0, will mean a
decrease of £200 in the cverall cost. However, this would involve deleting three
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units of x;, one unit of x,, and three units of x5 in order to balance the equality
constraints in (3.28). The contribution of this reduction in x;, x,, and x, to the
total cost is thus

aj ¢V +ay, ¢ +ay,c® =a,,c; +ayc, +aycs
= 3(0) + 1(0) + 3(0) = 0. (3.32)

Thus the net effect of a unit increase in x, (i.e. the simplex criterion for x, ) is given
by

Az; =c; —z; = 1(—200) — (3(0) + 1(0) + 3(0)) = —200.  (3.33)
o it A g

incoming outgoing total cost
total cost

The current total cost is £750 000 and consequently if x,; took a value of 6 then the
new total cost would become

z'= % -+ Az, 0 (3.34)
1
current total increase in total
cost . cost for x; =0

= 750 000 — 2006.

Similarly, if the factory is moved one metre in a northwards direction from its
initial position the simplex criterion is

Az, = ¢, — 2, = ¢; — (81,6 + a,,¢P + a,,cD)

= ¢, — (a1,¢3 + a,,¢, + a5,¢5) (3.35)
—180 — (5(0) + 3(0) + 2(0))
= —180.

I

Thus if x, took a value of 0 then the new total cost would be
7z =2+ Az,0
= 750 000 — 1806. (3.36)

A negative value of Az; indicates that a potential improvement can be made by
the introduction of one unit of x; into the basis. Hence the following optimality
criteria are adopted:

solution is not optlmal If all Az; are non-negative the solutlon is opt1mal

It follows that for maxlmlzatlon problems, if one or more simplex criteria Az;
are positive, the solution is not optimal. If Az is negatlve for allj then the solut1on
is opt1ma1 .

Occasionally, a simplex criterion for a non-basic variable will have a value of
zero. In this case it is possible to substitute the non-basic variable for one of the
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basic variables with no change in the objective function. Hence the existence of a
zero-valued simplex criteria for a non-basic variable means there are multiple
solutions to the problem. In geometric terms, multiple solutions occur when an
iso-cost line of the objective function is coincident with (or parallel to) an active
constraint so that infinitely many points are optimal solutions to the problem.

Another difficulty can be encountered when two (or more) non-basic variables
have identical values of Az;. It is suggested that either variable can be chosen
arbitrarily to enter the basis when ties are observed.

When one or more of the simplex criteria are negative, an improvement in the
objective function can be made by introducing a new variable into the basis. To
make the greatest improvement in an objective to be minimized, the entering
variable should be the non-basic variable with the smallest (i.e. most negative)
Az;. In addition this variable must have at least one a;; greater than zero. (The
reason for this will be discussed in step 6.)

To bring a new variable into the basis, the column vector v ;associated with the
variable must be transformed into a vector with zero coefficients except for a
single coefficient of 1. The column vector of the incoming variable will be referred
to as the ‘pivot column’.

The two negative simplex criteria —200 and — 180 indicate respectively the
magnitude of the potential improvement in the objective function by the
introduction of 1 unit of variable x, and x, in the new basis. Only one variable
can be brought into the basis at one time and since the largest rate of
improvement is associated with variable x , this variable should be brought into
the basis first.

—

Step 6 | Selection of outgoing variable

Having established that x, is the incoming variable it is now necessary to select
the outgoing variable. The row containing the outgoing variable is called the
pivot row and its selection is made so that values of all basic variables in the
solution are non-negative.

As x, increases (with x, equal to zero) in (3.28) x3, x,, and x, become zero
respectively when x; = 3000/3 = 1000, x, = 1500/1 = 1500, and x, = 2100/3 =
700. The variable x5 becomes equal to zero when x; = 700 and if x, is increased
further x will become equal to a value less than zero thus contravening the non-
negativity condition. Thus it appears that x should be the variable to leave the
basis to make way for the incoming variable x,. Row 3 of the simplex tableau is
associated with variable x, and thus becomes the pivot row.

The pivot row can thus be determined by examining the ratios of the
stipulations b; to the corresponding a;; term in the column vector of the incoming
variable. A decision is made to remove the variable which has a b, /a;; with the
smallest positive value, where j indexes the terms in the column of the entering
variable.
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The updated version of the initial tableau can then be written as:

C; —200 —180 0 0 0

J b'_
& Basis b, v, v, v, v, vs ij
0 Xy 3000 3 5 1 0 0 1000
0 X, 1500 1 3 0 1 0 1500
0 X5 2100 2 0 0 1 700
/ x5 leaves

z; 0 0
Az; 750000 [/—200 —180

PRUNY \pivot X, enters

The tableau shows that x, (associated with v,) enters the basis and xg
(corresponding to v5), which had been in the basis, is leaving. The coefficient at the
intersection of the pivot column and pivot row is normally called the pivot. In the
present tableau the coefficient in this position is a5, = 3. The next step is to
transform the coefficient matrix so that the pivot equals 1 and all other elements
in the pivot column are zero.

Two points should be noted regarding the interpretation of the value of b, /a;;.
Firstly, since the stipulations are non-negative by definition, the algebraic sign of
a;; is important. If a;; < 0 then it would be possible to increase x; indefinitely so
that the objective function would have a value of — co in a minimization problem
or a value of + oo in a maximization problem. (If a;; = 0, then b, /a;; is undefined.)
Therefore the coefficient in the column vector of the incoming variable must
contain at least one a;; > 0 and in identifying the pivot row only positive a;; need
be examined.

Secondly, if the minimum value of b;/a; occurs at two (or more) rows then
an arbitrary choice of the pivot row can result in a condition known as cycling
in which there is an endless looping through a set of basic feasible solutions
with no convergence towards an optimal solution. A method of avoiding this
difficulty is given in Section 3.10.

7~ —
( Step 7) Construction of the simplex tableau for improved solutions

A Gauss—Jordan elimination procedure is used to obtain a pivot column vector
with 1 as the new pivot element and zeros elsewhere. The Gauss—Jordan method
is summarized in Figure 3.13. The new pivot row is obtained first by dividing the
old pivot row by the pivot. Thus in the present case row 3 is divided by the pivot
which has a value of 3. To obtain a zero in the element at the junction of the first
row and the pivot column, 3 times the new pivot row is subtracted from the first
row of the previous tableau. The value 3 is the old row number in the pivot
column. Similarly to obtain a zero in the element at the junction of the second row
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Transformation of Pivot Row

Divide all numbers in the pivot
row by the pivot

Transformation of the non-pivot rows
Subtract from the old row the product of the new pivot row
and the old row number in the pivot column

new row = old row — new pivot row x old row
number in pivot column

Figure 3.13 Gauss-Jordan method for obtaining simplex tableau for improved
solutions

and the pivot column, 1 times the new pivot row is subtracted from the second
row of the previous tableau.

In addition, it is necessary to update the entries in the ¢ and basis columns in
the tableau. It should be noted that x, has replaced x in the basis column. At this
stage the new tableau can be written as:

¢ ~200 -180 0 0 0
¢ Basis b, v, v, v, v, Vs .
0 X5 3000 3 5 1 0 0
—3(700) —-3(1) —3(.667) —3(0) —3(0) —3(.333)
=900 =0 =3 =1 =0 =-1
0 x, 1500 1 3 0 1 0
—1(700)  —1(1) —1(667) —10) —10) —1(333)
=800 =0 =27333 = =i =—0.333
—200 x, 2100 3 2 0 0 1
=3 +3 -3 +3 -3 +3
=700 =1 =0.667 = =0 =0.333
750 000
—200(700)
=610 000

To check whether an optimal solution has been obtained it is necessary to
calculate the simplex criteria Az, for the non-basic variables. Using (3.31) for non-
basic variable x,, the simplex criterion is given as

== W _ @y _ G = ¢, —
Az, =c, —ay,¢ a,,C a5 =c, — 2,

= —180 — 3(0) — 4(0) — %(—200)
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= —180 + %3¢
= —46.67.
Similarly the simplex criterion for non-basic variables x is given as
Azg=c5—a,;5¢V —a,5¢® — ay5¢® =5 — 2,
=0 — (=1)(0) — (—3)(0) — 5(—200)
= 66.67.

Thus the present basic feasible solution is not optimal.
The current tableau can be presented as:

¢, =200 —180 0 0 0 .
. y
c® Basis b; v, v, vy v, Vg
0 X5 900 0 ©) 1 0 =] 300
0 X, 800 0 2.333 0 1 —0.333  342.86
—200 Xy 700 1 0.667 0 0 0.333 1050
z; 610 000 —133.3 —66.67
Az —46.67 66.67
X, enters

As can be seen from the tableau, to determine the variable leaving the basis the
ratios b, /a;; are calculated. The smallest positive ratio is associated with the first
row and hence x; leaves the basis to make way for the entering variable x,. The
first row is the pivot row, the second column v, is the pivot column, and 3 is the
pivot.

The new value of the objective function is given as

z=12y+cVb, + b, + b,
= 750 000 + 0(900) + 0(800) — 200(700)
= 610 000.

In this solution the factory is sited 700 metres east and O metres north of the origin
at a cost of £610 000, corresponding to point B in Figure 3.9. Thus the variable
coming into the basis is x,. To determine the variable leaving the basis the ratios
b,/a;, are calculated. The smallest positive ratio is associated with the first row
and hence x, leaves the basis to make way for the entering variable x,. The first
row is the pivot row, the second column v, is the pivot column, and 3 is the pivot.

By applying the Gauss—Jordan procedure once more to obtain a pivot column
with 1 as the new pivot element and zeros elsewhere, the following tableau is
obtained:

81
¢ —200 —180 0 0 0 b
‘ 2

¢® Basis b, v, v, v, v, Vs
—180 X5 300 0 1 0.333 0 —0.333

0 X4 100 0 0 —0.778 1 0.44
—200 X, 500 i} 0 —0.222 0 0.556

z; 596 000 —15.6 —51.1
Az, 156 511

No negative coefficients

As all the simplex criteria are non-negative, an optimal solution has been
obtained,

X, =500, x,=300, x;=0, x,=100, x5=0 (337)
and
z=2y5+cMb, + ®b, + b,

=zy+c,by + b, + b,
750 000 + (—180(300) + 0(100) — 200(500))
= 596 000.

In other words the factory should be built 500 m to the east and 300 m to the
north of the junction of the canal and the railway which was taken as the origin. In
the graphical solution shown in Figure 3.9 this solution corresponds to point C at
the junction of the two constraint lines associated with slack variables x, and x.
Hence these variables take zero values as confirmed by the fact that they are non-
basic variables in the optimal simplex tableau.

The rules which have been applied in this section are applicable generally for
minimization problems and are summarized in Figure 3.14.

Consider Figure 3.15 which shows a three-dimensional view of the feasible
region. The progress of the solution from point A to point B and then to C can be
compared to the rolling of a ball-bearing down the edge of the feasible region with
the greatest slope.

With reference to Figure 3.15 the solution at point A has the alternative of
moving from A to B or A to E, the former having the most attractive slope; from
point B the alternatives of moving from B back to A or B to C clearly leave only
one possible choice for improvement of the solution since BC is the only edge with
a negative slope. Finally at point C both the slopes CD and CB are adverse and
the optimal solution or lowest point has been found.

3.8 TREATMENT OF MAXIMIZATION PROBLEMS

Many LP problems in civil engineering involve maximization (e.g. of profits)
rather than minimization of costs. There are three basic approaches for dealing
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Obtain the canonical form of the
LP problem

. Set up initial tableau
Examine simplex criteria

.| 2. Are there any negative No 3. Optimal solution is
simplex criteria? obtained. Read val-
ues in basis from the
column of constants.

-

Yes

4. Select the most negative
element. The pivot element
comes from this column

5. Are there any positive ele- No | 6. Select another nega-
ments in the pivot column? tive cost coefficient. If
no such coefficient
exists the solution is
9. Produce a unbounded.
new tab- Yes
leau

\

7. Divide the column of constants by the
corresponding positive elements in the
pivot column. Ignore non-positive ele-
ments in the pivot column.

8. Examine the ratios in the previous
step. The pivot element comes from
the smallest ratio; encircle it.

Figure 3.14 Flow chart for the simplex method (minimization)

with maximization problems:

(i) Change the simplex procedure as described in Figure 3.14 to deal with the
maximization problem.

(i) Convert the maximization problem to a minimization problem and solve as
indicated by the procedure in Figure 3.14.

(iii) Solve the dual problem (which is a minimization problem) as indicated by the
procedure in Figure 3.14.

The significance of the dual problem is much greater than just a means of
solving maximization problems. It will be discussed later in Section 3.11 and
consequently nothing further will be mentioned regarding method (iii) at present.

As mentioned in Section 3.7 the only difference between solving a
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f705, 000 isocost
line

£660,000 isocost
line

Figure 3.15 Isometric view of the objective function over a two-dimensional feasible
space in the plant location problem

maximization and a minimization problem using the simplex method is the sign
of the simplex coefficient used in testing for optimality. Thus in method (i), for a
maximization problem if one or more of the simplex criteria Az; are positive, the
solution is not optimal. If Az; is negative for all j the solution is optimal.

In method (ii) the conversion from maximization to minimization involves
three main steps:

(i) Multiply the objective function by —1.
(i) Solve the problem as a minimization problem.
(iif) Multiply by —1 the optimal value obtained by solving the minimization
problem. This gives the optimal value of the original objective function.
Thus Minimum (z) = Maximum (—z)
or Minimum (—z) = Maximum (z). (Refer Section 1.6.1(b).)

39 A METHOD FOR DEALING WITH
EXCESS AND ARTIFICIAL VARIABLES

Up to this point, only less-than-or-equal-to (<) inequality constraints have been
considered. For problems involving greater-than-or-equal-to (=) inequality
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constraints and /or equality constraints it is necessary to introduce excess and /or
artificial variables in order to obtain the canonical form. For example, consider
the constraint

a;, %, +a,%, +...+a,x, = b, (3.38)

" 'n

This inequality can be transformed into an equation by the introduction of a non-
negative excess variable x, so that

@; %y + @%; +. ..+ agx, —x,= b, (3.39)
However, a problem containing an equation of the above form is not in the
canonical form because of the negative sign in front of the unit coefficient of x ,. A
problem containing an equality constraint (without a slack variable) would also
not be in the canonical form. For such constraints to conform to the canonical
form it is necessary to add an artificial variable to each equation without a slack
variable. For example (3.39) would then become

A Xy + X, +.. .+ a,x, —x, +x,=b, (3.40)

in which x,_ is the artificial variable.

Having obtained the canonical form there still remains the problem of finding
an initial basic feasible solution and eliminating the artificial variables as soon as
possible. One simple, if inelegant, approach will be illustrated with the following
trivial example. (Note: this could also be solved by substitution for one of the
variables using the equality constraint). The problem is given as

Minimize z = 3x; + 2x, (a) (3.41)

subject to
Ix, +1x, =10 (b)

1xy =>4 ()
x;, 20, x,=20.

By including an excess variable x, in (3.41)(c), the LP problem can be
written as

Minimize z = 3x, + 2x, (a) (3.42)
subject to
Ix, + 1x, =10 (b)
1%, —1x;=4 (o)
X, %, =0.

To obtain the canonical form it is necessary to introduce artificial variables x,
and x, into both of the constraints so that the LP problem can now be written as

Minimize z = 3x, + 2x, (@) (3.43)
1xy+ 1x, + 1x, =10 (b)
1%, — Loy +1x,=4 (c)
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Having obtained the canonical form it is now necessary to find an initial basic
feasible solution. In this problem, the so-called ‘big M method’ is employed. First
the artificial variables are included in the objective function with large pénalty
cost coefficients M and the simplex method is used to solve the resulting problem
This has the effect of quickly forcing the artificial variables to zero, at which poin£
they can be discarded. When all of the artificial variables have been eliminated an
initial basic feasible solution will result and the solution proceeds in the usual
manner.

In the present problem if M is taken as 10 then the problem can be re-written as

Minimize z = 3x, + 2x, + 10x, + 10x; (a) (3.44)
Ix, + 1x, + 1x, =10 (b)
Ix; — X, + 1x,= 4 ()
Xy, X%, = 0.

The simplex tableaux for the present problem can be then written as:

bi
@ Basis b, v, v, 0, ” o a;j
10 X 10 | 1 0
I 4 1 0 10
10 Xs 4 1 0 ~1 0 1 4
z 20 10 —-10
Az 140 —17 -8 10
10 x, 6 0 1 1 - 6
L 4 1 0o - o
2 10 7 -
Az 72 -8 =7 17
2 X 6 0 1 —
111 2 1 1
3 x 4 1 (| SR |
Zj = 2 1
Az, 24 8 9

Thus the solution is x; =4, x, =6, x; =0, x, =0, x; =0, and z = 24. The
fact that neither of the artificial variables appears in the final solution confirms
that the solution is feasible. The flow chart for the big M method is shown in
Figure 3.16.
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3.10 DEGENERACY

Degeneracy is a condition sometimes encountered in solving LP problems.©
To demonstrate degeneracy and a simple procedure for dealing with it,
consider the concrete blocks problem described earlier in Section 3.1. If x4
is the number of sets of 100 type A blocks and x; is the number of sets of 100
type B blocks produced each day then the LP problems can be written as

Maximize z' = 5x, + 8x, (3.45)
subject to
4x, + 6x, <24
2x, +1x, < 18
Ix, +3x, <12
Xy, %X, = 0.

The first simplex tableau for this problem is shown below (note that the problem

has been transformed to a minimization problem in which z = —Zz'):
¢ 0 0 0 -5 -8
. a,
¢ Basis b, vy v, Vs v, v,
0 X, 24 1 0 0 4 6 4 ¢
I 0 x, 18 0 1 0 9 11~ 18
0 X 12 0 0 1 1 3 4
z 0 0 0 0 0
Az 0 0 0 0 -5 8

The layout of the tableau has been slightly modified to simplify the explanation
of the procedure for dealing with degeneracy but does not alter the
computational problem to be used in solving the problem. The change is simply
that the slack variable columns have been entered in the tableau first. The
coefficients of the objective function row indicate that x, is the variable which
should join the basis in the second tableau. As usual, to obtain the variable
leaving the basis, the values b;/a;; are calculated for column 2. In this case,
however, there is a tie between the first and third row. This is the condition known
as degeneracy and implies that when the variable x, enters the basis it will replace
not one but two variables which simultaneously reduce to zero.

The flow chart for dealing with degeneracy is outlined in Figure 3.17. In the
present case the first step is performed as follows: moving from left to right,
column by column, divide each number in the two tied rows (corresponding to x,
and x,) by 6 and 3 respectively (i.e. the values in these rows in the v, column). This
operation results in the following two sets of ratios corresponding to rows 1
and 3:
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1. Introduce excess variables into con-
straints of ‘=" and ‘=" form and slack
variables into constraints of ‘<’ form

l

2. Introduce artificial variables into all con-
straints with no slack variables

|

3. Include artificial variables in objective
function with a large penalty cost coeffi-
cient M

4. Enter simplex algorithm and solve in the
usual manner n.b. when an artificial vari-
able leaves the basis it can be dropped
from further computations

Figure 3.16 Flow chart for the ‘Big M Method’

1. Moving from left to right, column by col-
umn, divide each number in the two tied
rows by its corresponding ajj value

2. Compare the ratios obtained in step 1,
column by column, from left to right; the
firsttime that the ratios are unequal, the tie
is broken.

3. Select as the variable to be replaced in the
basis the variable with the algebraically
smaller ratio

Figure 3.17 Flow chart for procedure for dealing with degeneracy®

100 4 6
R s, 2 2 2 0
oL 56 e

00113
Row3 33333

These ratios are then compared column by column from left to right. The first
time that a pair of ratios are found to be unequal the tie is broken and the variable
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to be replaced in the basis is the variable with the algebraically smaller ratio.
Here, the tie is broken with the first pair of ratios. The variable x, therefore
replaces x5 in the second tableau as shown below:

¢ 0 0 0 I
| a
c® Basis b, vy v, Vs v, v,
0 X, 0 1 0 -2 2 0 0
o 0 X, 14 0 1 —-13 53 0 45
8 %, 4 0 0 1/3 1/3 1 12
z; 0 0 —8/3 —-8/3 -8
Azj -32 0 0 8/3 -7/3 0

Once the tie has been broken and degeneracy resolved, the technique for
completing the second tableau is identical to that given previously in Section 3.7.
From the objective function row of the second tableau, it can be seen that x, will
join the basis in the third tableau. When considering which variable should leave
the basis it is usual to choose the variable associated with the smallest non-
negative value of b;/a;;. In the present case, the smallest value is equal to 0 and is
associated with basic variable x,. The next tableau can be completed in the usual
manner and is given below:

¢ 0 0 0 =5 =B
c¢®  Basis b, v, v, Vs v, v,
-5 X, 0 12 0 ~1 1 0
III 0 X, 14 —5/6 1 4/3 0 0
—8 X, 4 —1/6 0 2/3 0 1
z 76 0 —13 -5  —8
A, -3 76 0 13 0 0

Thus the optimal solution implies that no type A blocks should be produced
whereas 400 type B blocks should be produced, thus enabling a profit of £32 to be
made each day.

Finally, it should be noted that if a tie exists in the simplex criteria row, either of
the tied variables may be chosen to join the basis in the next tableau. The choice in
some cases may affect the number of iterations required to complete the solution
but never the final result.

311 DUALITY

The maxim that ‘there is more than one way of looking at a problem’ holds true in
linear programming. Each LP maximization problem has its corresponding dual,

T
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a minimization problem. Conversely, each LP minimization problem has its

corresponding dual, a maximization problem. It is possible to solve either the

original problem (called the primal) or the dual to obtain the desired answer.
If the primal problem is given as

Xy
L. X3
Maxitilize z = (¢ys 655 02 :58,) | (3.46)
Xn
subject to
iy A Ain X1 b,
a a a, X b
21 22 :n 2 = 2
A1 Opa Ay Xn by,
and
;=20 (i=12,...,n)
then the dual problem can be written as
Y1
L V2
Minimize 4 = (b;, b,,...,b,)| ~. (3.47)
VYm
subject to
iy Gy oo+ Gy V1 ¢
Ay Gyy oo Gy Y2 €2
12 s E
aln a2n e amn y"l C"
and

;20 (j=1,2,...,m)

J

The co-existence of the primal and dual problems can be demonstrated by
means of the concept of the Lagrangian multiplier, discussed in Section 2.6.
Equation (3.46) may be stated more concisely as follows:

n
Maximize z =} ¢;x;
g=d
subject to

M=

laijxj=bi fori=1,2,....,m

J

and in which the vector x = (x;, x,, ..., x,)T now includes the necessary slack
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variables to convert the ‘<’ constraints to equalities. The Lagrangian may be
formed as

Lx,y)= ). c;x; + > y,-<z aijxj—bl.) (3.48)
j=1 i=1 j=1

in which the vector y = (y,, y,, ..., ,,) represents the Lagrangian multipliers.
The necessary conditions for an optimum are given by

oL .
B =0 J=12. (3.49)
oL .
a_y.=o i=1,2...,m (3.50)
Solving (3.49) gives
oL “
8_xj =¢; i; y:ia;; =0
or
cj=—z Vi j=12,...,n (3-51)
i=1
Solving (3.50) gives:
oL &
E='Z1aijxj—bi=o i=12,...,m (3:52)
i J=

Now substituting (3.52) in (3.48) gives

L= 'Zl C;x; + 'Zl :(0)
j= i=

=z (the original objective function).

Also, substitution of (3.51) in (3.48) gives

Therefore by equating the two expressions for L.

= —'Zl b,y, = .Zl 8% (3.53)
i= 3=

Equation (3.53) represents the objective function of the dual problem in which y,
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(i=1,2,...,m)arethe variablesand b, (i = 1, 2, . . ., m) are cost coefficients. The
difference in sign in (3.53) implies that since the primal is a maximization problem,
the dual is a minimization problem.

There are several interesting relationships between the optimal solutions for
both the primal and dual:

(i) Minimum value of 4 = Maximum value of z.

(i) If a slack or excess variable occurs in the kth constraint of either system of
equations then the kth variable of its dual vanishes.

(iii) If the kth variable is positive in either system, the kth constraint of its dual is
an equation.

(iv) The coeflicients of the kth slack or excess variables in the simplex criteria row
of the optimal tableau in either system correspond to the optimal values of
the kth variable of its dual.

The primal-dual relationships can often lead to a problem formulation which
is computationally more convenient than the original problem. For example, the
dual formulation might involve fewer constraints and avoid the need for excess
and artificial variables. However, the primal-dual relationship can also lead to
considerable insight into various aspects of LP problems and their optimal
solution and, in this context, the concept of marginal value is particularly useful.
From the foregoing proof and recalling the discussion following the example of
Section 2.5.1, it is clear that the variables in the dual problem represent shadow-
prices with respect to the resources of the primal.

To demonstrate the primal-dual relationships consider the primal LP
problem®

Maximize z = 4.5x, + 5x, (3.54)
subject to
3x, +2x, <24
<4

4x, + 5x, <40

Xqy Xy 20

With reference to (3.46) and (3.47), the corresponding dual problem can be
written as
Minimize A = 24y, + 40y, (3.55)
subject to
3y, +4y, =45

2y, + 5y, 25
ylsyz 20

The optimum value of a dual variable indicates the rate of change in the value
of the objective function if resources associated with the corresponding primal
constraint could be increased. For example, if y, = 5/14 in the optimal dual
solution of the above problem it would be possible to increase the primal
objective function by 5/14 units for each unit increase in the available resource in



92

the first primal constraint. Thus the optimal value of the ith variable in the dual
reflects the marginal value of the ith resource in the primal.
In order to solve the primal problem the LP problem expressed by (3.54) must
be written in the canonical form, i.e.
Minimize z' = —z = —4.5x, — 5x, (3.56)
subject to
3x, +2x, +x;, =24
4x, + 5x, + x, =40

Xy Ky Xgs X 2 0,

The simplex tableaux for this problem are given as:

c; —4.5 -5 0 0

J bi
) Basis b, v, v, vy v, v
; 0 X, 24 3 2 1 0 12
0 x, 40 4 5 0 1 8
z 0 0 0 0 0
Az —45 -5 0 0
1 0 X3 8 14 0 1 —-04 5.71
-5 X5 8 0.8 1 0 0.2 10
7 —40 -4 —1
Az, —-05
1M1 —4.5 X 5.71 1 0 0.71 —-0.29
-50 X, 3.43 0 1 —0.57 0.43
z; —42.8 —0.357 —-0.357
Az, 0357 0857

Thus, the optimal solution is z = —z' = 42.8, x; = 5.71, and x, = 3.43. The
dual form given by (3.55) can be written in canonical form:

Minimize A = 24y, + 40y, + My, + My, (3:5%)
subject to
3y, +4y, —y; +ys =45

2y, + 5y, =y +ys=5
y13'~'7y6>0

where y, and y, are excess variables and y; and y, are artificial variables.
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Using the big M method described in Section 3.9, the simplex tableaux for this
problem are given as:

o 24 40 0 0 M M

J b;
¢ Basis b, v, v, v, v, Vs Ve v
I M oy 4.5 3 4 -1 0 1 0 1.25
My 5.0 2 5 0 -1 0 1 1.0
A; 9.5M SM M -M -M
AA4; 24—5M  40-9M M M
1 My 0.5 1.4 0 -1 0.8 1 0.8 0.36
40 y, 1 0.4 1 0 0.2 0 0.2 25
A; 40+05M 16+14M -M 08M-38 8§—-0.8M
A4; 8§—1.4M M 8§—-0.8M © 1.8M—8
I 24y, 0.357 1 0 —0.71 0.57 071  —-0.57
40y, 0.857 0 1 029 —-043 —029 0.43
A; 42.8 —-571 =343 5.71 343
AA4; } 5.71 343 M M
=571 =343

It is interesting to compare the optimal solutions to the primal and the dual:

(i) Minimum value of A (= 42.8) = Maximum value of z (= 42.8).

(i) In both optimal solutions the slack and excess variables in the optimal
solutions are zero, which implies that none of the variables x,, x,, y,, or y,
vanish.

(iii) Inthedual problem y, and y, are positive and equal to 0.357 (5/14) and 0.857
(6/7) respectively which implies that the first two constraints in the primal
problem are satisfied as equalities. In the primal problem x, and x, are
positive and equal to 5.714 (40/7) and 3.429 (24/7) respectively which implies
that the first two constraints in the dual problem are satisfied as equalities.

(iv) The simplex criteria of the first and second slack variables of the optimal
solution in the primal problem correspond to the optimal values of the first
and second variables y, and y, of the dual and are equal to 0.357 and 0.857
respectively. The simplex criteria of the first and second excess variables of
the optimal solution in the dual problem correspond to the optimal values of
the first and second variables x; and x, of the primal and are equal to 5.714
and 3.429 respectively.

(v) Since the optimal dual solution is y, = 0.357 and y, = 0.857 the marginal
value of resource in the first and second primal constraint is 0.357 and 0.857
respectively. The primal objective function could be improved (i.e. increased)
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by these amounts for each additional unit of resource made available in the
first and second constraints, respectively.

From (iv) it can be seen that it is not necessary to solve the dual, just to obtain
the optimal values of the dual variables; they can be determined directly from the
simplex coefficients of the primal solution.

3.12 SENSITIVITY ANALYSIS
In linear programming problems, there are three groups of parameters:

(i) ~the cost coefficients in the objective function c;,
(i), the constants or stipulations in the constraints b;, and
(iii)) the coefficients of the variables in the constraints a;;.

Some of these parameters may be subject to known variations in time or it may be
possible to determine them only within certain limits. Consequently, from a
practical point of view it is important to explore the sensitivity of the LP solution
to changes in these parameters.

One method of estimating the effect of parameter change is to solve a new
problem from the beginning whenever one of the coefficients is changed. In this
section a different approach known as sensitivity analysis will be briefly
illustrated.

The important idea associated with sensitivity analysis is that in such an
analysis it is not necessary to re-analyse the entirc problem from the very
beginning each time a check is made on parameter changes.

In this section the sensitivity of the optimal solution to changes in the
stipulations b; and the cost coefficients in the objective function ¢; is examined. As
no profits are included the interested reader wishing to study sensitivity analysis
in greater detail is directed to other texts®> where the topic is given a more
comprehensive treatment.

3.12.1 Changes in the cost coefficients

It may frequently be important to consider the effect on the optimal policy
(solution) of changes in the objective function. This is particularly significant in
situations where cost estimates are subject to uncertainty or fluctuation.
Although the value of the objective function is likely to change, the planner or
designer is more concerned with the possibility of a change in the optimal policy.
The aim then is to determine the limits within which each of the basic variable
cost coefficients may vary without altering the optimal policy.

This aspect of sensitivity may be examined by means of the optimal simplex
tableau, and reference will be made to the plant location example of Section 3.7 to
illustrate the discussion.

For convenience of reference the tableau is reproduced here:

Y
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¢,  —200 —180 0 0 0
e® Basis b, v, v, v, i vs !

—180 %5 300 0 1 0.333 0 —0.333
0 Xy 100 0 0 —0.778 1 0.44

—200 X, 500 1 0 —-0.222 0 0.556
z, 596000 ~156 511
AZ, 156 s1.1

No negative coefficients

For a problem of minimization, the optimal tableau must contain only positive
simplex coefficients Az, for the non-basic variables. Before the optimal policy can
be changed, one of these simplex coefficients must be driven to a zero or negative
value by adjustment of one of the basic variable cost coefficients c®.

For example, to find the highest allowable value of ¢, (= c¢*® in the tableau)
which will not drive any of the Az, less than zero, a search is made for positive
values of the structural coefficients a5; (j = non-basic). In this example only a,
(= 0.556) > 0. Now for Az = 0 the requirement which defines Maximum c, (or
Maximum ¢®) is given by

—eWg  — 2y By =
¢cs — a5 —ca,s —max cPay s =0

1€
Azg 4+ Pays — max ¢®Pa, =0
or
max ¢® = ¢® 4 &%
a3s
e.g.
51.1
= 200+ 20 o _
max ¢ + 0556 108.1.

Had there been more than one a;; > 0 the value of max ¢'® would have been
dictated by the non-basic variable with the smallest change. Thus in general:

. . . | Az,
max ¢ = ¢® 4+ min [—Zl:| for a;; >0 j = non-basic. (3.58)
aij

The converse argument may be developed to find the lowest permissible value of a
cost coefficient which will leave the optimal policy unaffected. Thus
iy 0 s g0 Az . ;
min ¢ = ¢ + max | | fora; <0 j=non-basic. (3.59)t
aij

1In (3.59) ‘max’ means algebraic maximum and not absolute.
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For example,

min ¢, = min ¢® = —200 + max [%} j=3

= —200 —70.3
= —270.3.

The reader should confirm that this value results in a (near) zero value of Az,

Thusif ¢, and ¢, remain unchanged, the value of ¢, may lie in the range —270.3 <

¢; < —108.1 without altering the optimal policy x} = 500; x} = 300; x* = 100.
In the same way the allowable range of ¢, may be calculated as follows:

max ¢, = max ¢’ = —180 + min [(%J j=23

—180 + 46.8
—1332

min ¢, = min ¢ = —180 + max [%:I J=5

—180 — 1533
= —3333.

The allowable range is given by —333.3 < ¢, < —133.2. The result may be
demonstrated graphically in Figure 3.18 on which are plotted iso-cost lines
corresponding to the four objective functions:

z =750 000 — 270.3x, — 180x,
z = 750 000 — 200x, — 133.2x,

2:750 000 -270.3x, - 1800x,
or
2750000 - 200.0x, - 133.2x,

Z=750000'1081Xf408012
or
z=750000 - 200.0)(1 -333.3)(2

Feasible
region

I N

Figure 3.18 Sensitivity analysis with respect to cost coefficients (plant location problem)
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z =750 000 — 108.1x, — 180x,
z = 750 000 — 200x, — 333.3x,

It will be noted that the first pair of objective functions have the same slope and
are thus represented by a single iso-cost line. Similarly the second pair of
functions are represented by a second iso-cost line. Each iso-cost line is coincident
with one of the edges of the feasible space adjacent to the optimal vertex, thus
representing the marginal condition at which the optimal sclution is on the point
of migrating to an adjacent vertex.

3.12.2 Changes in the stipulations

Any change in the stipulations b, of the primal is equivalent to a change in the cost
coefficient of the dual (see Section 3.11) and may be treated as such. However,
such changes can be treated without considering the dual.

Changes in the b; affect the solution values of the basic variables and the
objective function. At the outset it may be helpful to visualize the effect of changes
on the graphical solution. In the previous section it was seen that the effect of
altering a cost coefficient c; was to change the slope of the iso-cost line but leave
the feasible region unchanged. By contrast, changes to the stipulations do not
change the slope of the iso-cost line but alter the shape of the feasible region. Since
the values of the simplex criteria are unaffected, the existing basis remains optimal
until the solution becomes infeasible. Thus upper and lower limits may be
established for each b; within which the current basis remains both optimal and
feasible.

Before the calculation of these limits is described, some definitions are required.

Let the matrix of coefficients in the last (optimal) tableau under the variables of
the initial basis (not including the simplex criteria row) be defined as R. Thus in
the factory location problem where the initial basis is [x5; %4 %2] thén

rll 7'12 r13 0333 0 —0333 } «— x2
R= |Tyy Ty T3] = |—0778 1 0.44 o (3.60)
r31 r32 r33 _0.222 0 0556 «— Xl
T ) )
U3 D4 US

Also, let the optimal values of the basic variables in the last tableau be represented
by the vector q. Thus in the factory location problem

q = [4,, 9,, 951" = [300, 100, 150]". (3.61)
Finally let the vector of stipulations be given as b. Thus in the present problem,
b = [b,, b,, b;]T = [3000, 1500, 2100]". (3.62)
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For the upper limit on b, for both minimization and maximization cases

max b, = min {bi - f—’} for r; <O. (3.63)
Jji
For the lower limit on b,
min b, = max {bi - ﬁ} for r;; > 0. (3.64)
ri

Consider the evaluation of the upper limit on the stipulation of the first constraint
b, in the factory location problem,

by~ 91— 3000~ 2% y
b, by 3000 0333 > lgnore ry; > 0
i 4, 100
max b, = min | b, r‘—m = 3000 0778 — 3128.6 (3.65)
q 150
b, — 2 = — e = .
\__1 T 3000 —0o7) 3675.0 E
= 3128.6.
Similarly the lower limit on b, is given as
300
b, = max {(3000 — m) = 2250} (3.66)

= 2100.0.

The effect of changing the stipulation is to move the constraint to a new
position parallel to its old position. Thus with reference to Figure 3.19 when
b, = 3128.6, the optimal solution changes to point F. When b, = 2100.0 the
optimal solution changes to point E. While 2100.0 < b, < 3128.6 the optimal
solution will be at some point D’ along line EF. If 2100.0 < b; < 3000 then D’ will
lie on line DE and if 3000 < b, < 3128.6 then D’ will lie on line DF. This is shown
graphically in Figure 3.19. It is left to the reader to examine the effects of changing
b, and b,.

A more comprehensive method of dealing with the effects of changes in
parameters a;;, b;, or ¢; is known as parametric analysis. However, this is beyond
the scope of the present text and will not be dealt with here and the interested
reader is directed elsewhere.®)

313 COMPUTER SOLUTIONS TO LP PROBLEMS

It will be readily apparent that the type of tabular calculation described in Section
3.7 is somewhat impractical for problems of any size. The method described in
detail is ideal for implementation in a computer program, thus facilitating the
rapid solution of linear problems involving hundreds of variables and

99
%
1000
500
' ¢ At 3x2 = 1500
Feasible
region 3x,+ 5x, =3000
O 4
0 500 1000 13
(i) b, remains unchanged
Xp
1000
500
Feasible 3x,+ 5x, = 3128.6
_region
A
0 z >
0 500 1000 X,
(i) b, =31286
Xs
1000
500
3x,+ 5x, = 2100
0
0 500 1000 X,
(iii) b, = 2100
Figure 3.19 Sensitivity analysis of plant location problem — stipulation b, (plant

location problem)

constraints. The simplex method has been implemented in many such programs
and improved algorithms (e.g. revised simplex) have also been developed. One
implementation of the standard simplex method is described here and full details
of the listing and documentation are given in Appendix A (Subroutine listings).
The program is based on one presented by Claycombe and Sullivan.®
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The program comprises the following parts:

MAIN —a driver program provided by the user.
SIMPLEX —a subroutine with full dynamically dimensioned arrays for the
implementation of the simplex algorithm.

Eh — Three auxiliary subroutines called by SIMPLEX to print out the
TABI1 . A .
TAB) tables at each iteration if desired by the user.

LPDATA —a subroutine to simplify the input of data from a time-share
terminal. (It may also be used for batch runs.)

The program is designed primarily to facilitate the understanding of the simplex
method by providing a means of generating full solutions with tableaux for
problems of modest size. The routines are dimensioned for up to 15 variables
(including slack and artificial variables) although these statements could be easily
modified. The program in addition has the following limitations:

(i) The algorithm is designed for minimization only. Problems of maximization
must be re-cast by reversing the sign of the cost coefficients.

(i) The constraints must be presented in the form of equalities including all
slack, surplus, or artificial variables as may be necessary.

(1)) The objective function must be modified to include any artificial variables
with appropriate penalty cost coefficients (the ‘big M’) with the correct sign
(e.g. positive for minimization).

(iv) The method does not check for infeasible, degenerate, or unbounded
solutions. Infeasible solutions may be indicated by non-zero artificial
variables in the solution. Unbounded solutions will generally result in
machine overflow. Degenerate solutions will seldom give trouble due to
machine representation of numbers.

(i) The stipulations must be specified as positive.

(vi) No provision is made for numerical constants in the objective function (e.g.
the 750 000 in the problem of Section 3.3).

The computer solution of the plant location problem could be obtained by
means of the program in Figure 3.20. Note that arrays have been dimensioned for
the maximum of 15 variables although this is not required here. Refer to the
documentation of subroutines SIMPLEX and LPDATA (Appendix A) for
definition of the parameters.

The results of a run are shown in Figure 3.21. It will be noted that the objective
function of — 154 000 is the amount by which the constant of 750 000 is reduced.

3.14 PORTAL FRAME DESIGN EXAMPLES — SOLUTION

The portal frame design problem described in Section 3.1 is now solved using
program SIMPLEX. Let the decision variables be x, = M, and x, = M,
respectively. Recall that it may be assumed that the weight of each frame member
is proportional to the fully plastic moment of the member multiplied by its
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DIMENSION A(225),B(15),C(15),X(15),NBASIC(15),SIMCO(15)
LOGICAL ITAB
NTAPE=5
WRITE(6,10)
10 FORMAT (" SUPPLY N,M...2I5")
READ(5,20 )N, M
20 FORMAT (2I5)
CALL LPDATA(N,M,A,B,C, ITAB,NTAPE)
CALL SIMPLEX(N,M,A,B,C,X,ANS,ITAB,NBASIC,SIMCO)
WRITE (6,607)
607  FORMAT(1X,8HVARIABLE ,4X,5HVALUE)
DO 6 I=1,N
WRITE (6, 608)I,X(I)
608 FORMAT (1X, 2HX(,I3,4H) = ,F12.3)
6 CONTINUE
WRITE(6,610)ANS
610  FORMAT(1X, 10X, 30HOBJECTIVE FUNCTION VALUE IS ,F15.5)
STOP '
END
Figure 3.20 FORTRAN program for linear programming solution
length.®? Thus the objective is to minimize the frame weight or
Minimize z = 02l.x, + olyX,. (3.67)

As the constant of proportionality « does not affect the final solution it will be
ignored so that the objective can be expressed as

Minimize z = 2l.x, + lyx,. (3.68)
The frame will be safe or just on the point of collapse provided that
w; = w, (3.69)

where, for each possible collapse mechanism, w; is the internal plastic work done
at the plastic hinges and w, is the external work done by the applied loads. Figure
3.22 shows the six possible collapse mechanisms for the rectangular portal frame
under the loading shown in Figure 3.1.

Thus the objective (3.68) is subject to the following constraints for each
mechanism:

4x, = Vli,/2 Mechanism 1 (3.70)
2x, +2x, = Vi,/2 2
2x, +2x, = HI, 3
4x, > HI, 4
2x, +4x, = HI. + V)2 5
4x, +2x, = Hl. + Vi, /2 6
and the non-negative condition:
X, X, = =0. (3:71)
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SUPPLY N,M...2I5

? 5 3
ARE TABLES REQUIRED?...YES/NO
? YES
SUPPLY ¢(I),I =1, 5...7F10.5
? -=200.0 -180.0 0.0 0.0 0.0

SUPPLY A(I,J),Jd= 1, 5 AND B(J)...7F10.5
FOR EQUN.( 1)

? 3.0 5.0 1.0 0.0 0.0 3000.0
FOR EQUN.( 2)
? 1.0 3.0 0.0 1.0 0.0 1500.0
FOR EQUN. ( 3)
2 3.0 2,0 0.0 0.0 1.0 2100,0
THE INITIAL TABLEAU
1 2 3 4 5
OBJ FNCTN -200.000 -180.000 0,000 0,000 0.000
3000, 000 3.000 5.000 1.000 0.000 0.000
1500.000 1.000 3.000 0,000 1.000 0,000
2100, 000 3.000 2.000 0.000 0.000 1.000
SIMPLEX C -200,000 -180.000 0,000 0,000 0.000
OBJECTIVE FUNCTION VALUE IS 0, 00000
TABLEAU NO. 2
STIP 1 2 3 4 5
X( 3) 900,000 0,000 3.000 1.000 0,000 -1.000
X(u) 800. 000 0.000 2.333 0.000 1.000 -.333
XC 1) 700,000 1.000 .667 0,000 0.000 +333
SIMPLEX C 0,000 -46,667 0,000 0.000 66.667
OBJECTIVE FUNCTION VALUE IS -140000,00000
TABLEAU NO. 3
STIP 1 2 3 4 5
X( 2) 300.000 0.000 1.000 333 0.000 -.333
X( W 100,000 0.000 0,000 -. 778 1.000 L huy
XC 1) 500.000 1.000 0,000 -.222 0.000 .556
SIMPLEX C 0,000 0.000 15.556 0,000 51,111
OBJECTIVE FUNCTION VALUE IS -154000,00000
VARIABLE VALUE
Xt 1) = 500, 000
X( 2) = 300,000
X( 3) = 0,000
X( 4) = 100.000
X( 5) = 0.000
OBJECTIVE FUNCTION VALUE IS , -=154000,00000
Figure 3.21 Computer solution of the plant location problem

If ,=2,1.=1,and V = H = 1, then the problem can be expressed as

Minimize z = 2x; + 2x,
subject to
4x, > 1

2x, +2x, 2 1

(3.72)
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20 20

@) Mg >Mp: aMp=Vip /7, (i) Mg>Mp: 2Mc*2Mb=Vlb/2

Beam mechanism

— <

(i) Mg> My, : 2Mr2M=Hl (iv) Mg<Mp: 4M=Hlg

Sway mechanism

i v

Vv
—»H —»H
2 29,
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(v) Mg>Mp: 2Mg+4Mp=
Hig+Vip/,

(vi) Mc<Mp:4Mc +2Mp =
Hlg ¢V'b/2

Combined mechanism
) Figure 3.22 Collapse mechanisms for rectangular portal frame

and
Xy, X%, = 0.

This may be solved by a variety of linear programming techniques: graphical
solution, simplex, and dual simplex. Figure 3.23 shows the graphical solution
which gives the optimal solution A:

[ —
xl—

Wl

b J—
, 2T =

[N

L —
) xz_

W=



104

N\
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X N\ -Contour of objective function
1
B (" xa")

=(15,713) N\
1,
N

.
0 1/4 1/2 3/4 1

Figure 3.23 Graphical solution for design of rectangular portal frame

Failure in the optimal minimum weight frame takes the form of either mechanism
(4) or mechanism (5).

In order to solve this problem using the SIMPLEX program the > inequalities
must be converted by the introduction of excess variables x;, X,, ..., xg and
artificial variables xg, x,,...,x;,. The ‘big M’ method is then used and
Xg, X1, - - - » X1, are introduced into the objective function with a large penalty
coefficient M:

Minimize z = 2x; + 2x, + M(xg + X4 + X, + X1, + X5 + X;,) (3.73)

subject to
4x, — x4 + X =]
2x, +2x, —X, +X0 =1
2x, +2x, —% +Xxq4 =]
4x, —Xs +tX, =1
2x, +4x, —%4 +X3 =2
4x, +2x, —Xg +x,,=2
with
X5 X5 w5 55 X4, = O

The driving program illustrated in Section 3.13 may be used in this example
also. Adopting an arbitrary value of M = 10, the input and output is as shown in
Figure 3.24. From this it can be seen that the optimal solution is identical to that
obtained using the graphical solution.

The dual of (3.72) may also be solved using program SIMPLEX and takes the
form
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SUPPLY N, M...2I5
2 14 6
ARE TABLES REQUIRED?...YES/NO
? NO
SUPPLY C(I),I = 1,14...7F10.5
? 2.0 2.0 0.0 0.0 0.0 0.0 0.0
2 0.0 10.0 10.0 10.0 10.0 10.0 10.0
SUPPLY A(I,J),J= 1,14 AND B(J)...7F10.5
FOR EQUN.( 1)
2 0.0 4.0 -1.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0 0.0
2 1.0
FOR EQUN.( 2)
? 2.0 2.0 0 -1.0 0.0 0.0 0.0
7 0.0 0.0 1.0 0 0.0 0.0 0.0
2 1.0
FOR EQUN.( 3)
? 2.0 2.0 0.0 .0 -1.0 0.0 0.0
? 0.0 0.0 0.0 1.0 .0 0.0 0.0
? 1.0
FOR EQUN.( 4)
4 4.0 0.0 0.0 0.0 0 -1.0 0.0
? 0.0 0.0 0.0 0.0 1.0 0.0 0.0
2 1.0
FOR EQUN.( 5)
? 2.0 4.0 0.0 0.0 0.0 0 -1.0
? 0.0 0.0 0.0 0.0 0.0 1.0 0.0
4 2.0
FOR EQUN.( 6)
? 4.0 2.0 0.0 0.0 0.0 0.0 .0
? -1.0 0.0 0.0 0.0 0.0 0.0 1.0
? 2.0
VARIABLE VALUE
XC 1 = .333
X( 2) = .333
X( 3 = .333
X(C 4) = +333
X( 5) = 333
X( 6) = 333
XC 7) = 0.000
X( 8) = 0.000
X(C 9) = 0.000
X( 10) = 0.000
X(C11) = 0.000
X( 12) = 0.000
X( 13) = 0.000
X(C 14) = 0.000

OBJECTIVE FUNCTION VALUE IS 1.33333

Figure 3.24 Computer solution of the portal frame example by the ‘Big M Method’

Maximize z' =y, + Y, + V3 + Vs + 2Vs + 2y, (3.74)
subject to
2y, + 2y, + 4y, + 2ys + 4y, <2
4y, + 2y, + 2y, +4ys + 2y, <2
and

VisVass a5V 2-0:
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In order to solve the problem using the SIMPLEX program the < inequalities
must be converted by the introduction of slack variables y, and ys. The
maximization problem is converted to a minimization problem so that the dual
may be written as

Minimize A = —y, — ¥, — V3 — V4 — 2Vs — 2V (3.75)
subject to
2y, +4y; +4y, + 2y + 4y +y, =2
4y, + 2y, + 2y, + 4y + 2y, + yg =2
and

Vi> V-5 Yg = 0.

SUPPLY N, M,...2I5

2 8 2

ARE TABLES REQUIRED?...YES/NO

? YES ‘

SUPPLY C(I),I = 1, 8...7F10.5

?  -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 0.0
2 0.0

SUPPLY A(I,J),J= 1, 8 AND B(J)...7F10.5
FOR EQUN.( 1)

? 0.0 20 2.0 4.0 2.0 4.0 1.0
? 0.0 2.0

FOR EQUN.( 2)

? 4.0 2.0 2.0 0.0 4.0 2.0 0.0
? 1.0 2.0

THE INITIAL TABLEAU
1 2 3 4 5
6 7 8
OBJ FNCTN -1.000 -1.000 -1.000 -1.000 -2.000
-2.000 0.000 0.000
2.000 0.000 2.000 2.000 4.000 2.000
4.000 1.000 0.000
2.000 4.000 2.000 2.000 0.000 4.000
2.000 0.000 1.000

SIMPLEX C -1.000 -1.000 -1.000 -1.000 -2.000
-2.000 0.000 0.000
OBJECTIVE FUNCTION VALUE IS 0.00000
TABLEAU NO. 2
STIP 1 2 3 4 5
6 7 8
X(7) 1.000 -2.000 1.000 1.000 4.000 0.000
3.000 1.000 -.500
X( 5) .500 1.000 .500 .500 0.000 1.000
.500 0.000 .250
SIMPLEX C 1.000 0.000 0.000 -1.000 0.000
-1.000 0.000 .500

OBJECTIVE FUNCTION VALUE IS -1.00000
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TABLEAU NO. 3
STIP 1 2 3 y 5
6 7 8
X( W) .250 -.500 .250 .250 1.000 0.000
. 750 .250 -.125
X( 5) .500 1.000 .500 .500 0.000 1.000
.500 0.000 .250
SIMPLEX C .500 .250 .250 0.000 0.000
-.250 .250 .375
OBJECTIVE FUNCTION VALUE IS -1.25000
TABLEAU NO. y
STIP 1 2 3 u 5
6 7 8
X( 6) .333 -.667 =333 .333 1.333 0.000
1.000 .333 -.167
X( 5) .333 1+333 .333 .333 -.667 1.000
0.000 -.167 .333
SIMPLEX C .333 .333 .333 .333 0.000
0.000 +333 .333
OBJECTIVE FUNCTION VALUE IS -1.33333
VARIABLE VALUE
X(C 1) = 0.000
X( 2 = 0.000
X( 3) = 0.000
X( 4 = 0.000
X( 5) = .333
X( 6) = 333
XC 7) = 0.000
X( 8) = 0.000
OBJECTIVE FUNCTION VALUE IS -1.33333

Figure 3.25 Computer solution of the portal frame example dual method

Again the driving program illustrated in Section 3.13 may be used in this example
also. The input and output is as shown in Figure 3.25. From the output the
optimal solution may be interpreted from the final tableau as described earlier.
From the positive variables x5 and x, in the dual, only the 5th and 6th
constraints are active.

Several assumptions and approximations have been made in this problem:

(i) The weight of each frame member is proportional to the fully plastic moment
of the member multiplied by its length.

(i) There are an infinite number of section sizes available corresponding to any
value of plastic moment.

(iii) Although not stated explicitly it is implied that the total cost of the portal
frame is heavily dependent on the frame weight.

(iv) The only important constraints are those associated with frame collapse.

In Section 12.6 these approximations and assumptions are discussed further
and some of them are examined in detail.



108

3:15:1

3:1.5:2

3.15 EXERCISES

Max E. Mizer is planning for a Civil Engineers’ conference. Someone has
stolen all the beer but he has available the following amounts of
alternative liquid refreshments:

Amount (in fluid ounces) Liquid
84 Vermouth
60 Bourbon
56 Scotch
48 Vodka

In addition, he has an unlimited supply of lemons, limes, orange juice,
bitters, and other accompaniments.
Max mixes these masterpieces:

Masterpiece Ingredients

Manhattan 1 ounce Vermouth
14 ounce Bourbon

Rob Roy 2 ounce Vermouth
14 ounce Scotch

Scotch-on-the-rocks 2 ounces Scotch

Martini 1 ounce Vermouth

1 ounce Vodka
Max E. Mizer’s appetizer 15 ounce Bourbon

Screwdriver 1% ounce Vodka

Each drink will sell for $2 and Max knows he can sell as many drinks as he
can make up. Which Masterpiece should Max mix in order to maximize
his gross income?

The Abacus (‘You can count on us’) Cement Company has the
opportunity to supply various concrete mixes to a nearby construction
project. The company, because it is a low-cost operation, has the option of
selecting the mixes it finds most profitable to itself, subject only to the
restriction that it supply a minimum of 600 cubic metres of 3-4-2 (3 parts
cement to 4 parts gravel and 2 parts sand) each day at one site and 200
cubic metres of 3-0-2 each day at another site.

The concrete company will realize a profit contribution of $3.00 per
cubic metre from the 3—4-2 mixture and $5.00 per cubic metre from the
3-0-2 mixture.

The plant can obtain for each day’s operation a total of 3600 cubic
metres of cement, 4000 cubic metres of gravel, and 3000 cubic metres of

3.15.3

3.15.4

3.15.5

3.15.6
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sand. The plant is situated on a stream so that water is no problem.
The plant manager needs to know what proportion of his production
should be the 3-4-2 mix and what proportion of the 3-0-2 mix in order to
realize the highest possible profit.
Set up a linear programming model to help the manager determine the
optimal production strategy. Explain to the manager all of the
information that is made available by this model.

A factory produces two types of concrete block. A ton of the first type
requires 2 batches of gravel, 2 bags of cement, and 4 batches of sand. A ton
of the second type of block requires 4 batches of gravel and 2 bags of
cement but no sand. There are 20 batches of gravel, 12 bags of cement, and
16 batches of sand available. How many tons of each type of block should
be manufactured so that maximum profit may be achieved?

It is assumed that the first type of block yields $2 profit per ton and the
second type yields $3. Solve this problem using the simplex method and
check your solution graphically.

A rectangular fixed based portal frame similar to the one shown in Figure
3.1 has the following dimensions and load intensities: [, = 40, I, = 20,
V= 2,and H = 1. Determine the plastic moment capacities M, and M, for
a minimum weight frame using

(i) a graphical method,
(i) the simplex method.

A two-span beam is shown in Figure 3.26. Determine using a graphical

1unit 2 units

= A
e
~ |

Figure 3.26 Two-span beam (Example 3.15.5)

method the plastic moment capacities in the left-hand and right-hand
spans (M, and M, respectively) for minimum total beam weight. Note
that the weight of a beam per unit length is directly proportional to its
plastic moment capacity. Give the dual form of the above problem. Why is
it more advantageous to use the dual rather than the primal form when
using the simplex method to solve problems of the type given above?

The Singleton Concrete Products Company plans production of three of
their products A, B, and C. The profits on these products expressed in $100
units are 2, 3, and 1 respectively, and they require two resources — labour
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3.15.7

and materials. The company’s production manager formulates the
following linear programming model for determining the optimal product
mix:

Maximize z' = 2x, + 3x, + x,
subject to

1 1 1 i
3X; + 3%, +3%x3 <1 labour constraint
<

1
ix, + %x, + 3x5 <3 material constraint
X5 X9 X5 2 0
where x,, x,, and x; are the number of products A, B, and C produced.
This problem is converted to its canonical form and treated as a
minimization problem. The optimum solution is given by the following
tableau in which x, and x, are the slack variables:

¢?  Basis b, v, v, vy v, vs
2 x, 1 1 | g =i
3 x, 2 0 2 91 =1 1

-8 0 0 3 5 1

(i) Interpret the optimal solution from the above tableau.

(i) If the profit on product C is increased from 1 to 6 what is the new
optimal solution?

(i) For what range of profits on product A does the solution in the above
tableau remain optimal?

(iv) How many additional units of labour must be made available in
order to change the current optimal product mix?

Convert the following problem into standard linear programming format
and then solve it (i) graphically and (ii) using the simplex method.

Maximize z = 3x; + 8x,
subject to

x, 20, x, unrestricted in sign.

(Hint: For the simplex method solution, let y, = x,,x, =y, — y5. Thus
the problem may be expressed as

Minimize z = -3y, — 8y, + 8y,
subject to

Vi> Y2 Y3 = 0)
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3.15.8 This example is included to illustrate how techniques such as linear

programming may be used to determine the load-carrying capacity of a
structure. 112

A symmetric three-bar truss is subjected to a horizontal load x,and a
vertical load x, at point D as shown in Figure 3.27. The cross-sectional

Figure 3.27 Three-bar truss (Example 3.15.8)

areas of bars 1,2,and 3 areequal to b, b,, and b, respectivelyand b, = b,.
From the matrix theory of elastic structures it may be shown that the
horizontal displacement z, and the vertical displacement z, at point D
may be obtained from the matrix equations

V2E[(b, +by) (b, —bs) 7| _ [
40 | (b, —by) (b, +bs+2/2b,) ||z, | |x,
where E is the elastic modulus of the truss member material. Certain
constraints are imposed on these displacements and are given as
|zl =25 <0
|z, =25 <0
where z} and z§ are specified upper bounds on z, and z, respectively.
The stress in each member may be calculated by evaluating the strain in

terms of the nodal displacements and then by using Hooke’s Law to
obtain

for member 1 o, = E__(leg Z)
Ez

f ber 2 =2

or member 2 6, = 45

for member 3 o, = izzz—o_z—l)

Certain constraints are also imposed on these stresses and are given as
o, =0 <0
lo,| —05<0

los] — 03 <0
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where a¥, i =1, 2, 3 are the allowable stresses specified for each member.
Show how linear programming techniques may be used to find the
maximum value of P (= x, + x,) which the structure may support.
Assume that x, x, > 0.
Hint: To deal with the absolute value signs in a constraint, say

|z, =2z <0
impose two equivalent constraints

Z, £ 2
and

it a
zy < z.

3.15.9 Solve Exercises 3.15.1-3.15.8 using program SIMPLEX.

Note that other sources of linear programming applications associated with

civil engineering systems may be found in references 5 and 10 to 14.

10.
11.
12.
13.
14.
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Chapter 4
Linear Programming —
Part 11

4.1 CLASSIFICATION OF SPECIAL FORMS
OF LP PROBLEMS

Some special types of LP problems can be solved by the use of computational
procedures which are more efficient than the simplex method described in the last
chapter. Transportation problems are a special class of LP problems which
frequently occur in civil engineering systems and they can be solved by a purpose-
built algorithm known as the transportation method which is dealt with in Section
4.2.

An important class of transportation problems, known as assignment
problems, can be solved by an even more specialized algorithm known as the
assignment method. This method is described in Section 4.3.

In some LP problems, only integer-valued variables are allowed and
consequently require the specialized techniques of integer programming for their
solution. One of these techniques, known as the cutting plane method, will be
briefly discussed in Section 4.4.

4.2 TRANSPORTATION PROBLEMS
4.2.1 Introduction

In a transportation problem”~> it is necessary to assign quantities of a single
commodity from various origins to certain destinations. The objective is to find
the transportation route which gives minimum costs or maximum profit. The
problem is defined by the amount and location of the available supplies and the
quantities demanded. Furthermore, a value (usually a cost) associated with the
effort required to transport supplies from their origin to their destination must
also be determined.

A transportation problem, in which there are m origins and n destinations and
in which the total amount of resource available exactly balances the total amount
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of resource required, can be written in LP form as

m n
Minimize z =), ) ¢

i=1j=1

. (4.1)

subject to the constraints

Y x,=s, fori=12,...,m

and all

o

X;; >
where
Xx;; = amount transported from origin i to destinatiqn ] . = hepald
c;; = cost of transporting 1 unit of resource from origin i to destination j

d; = number of units required at destination d;

s; = number of units available at origin (source) i
z = total transportation cost

m = number of origins

n = number of destinations.

4.2.2 The Hardy Ready-Mix Concrete Company

The transportation problem may be illustrated by the following example
inspired by an example presented by Levin and Kirkpatrick®. The Hardy
Ready-Mix Concrete Company has received a contract to supply concrete for
three bridges on the north Wessex motorway extension. The bridges are
located at Mellstock, Blackmore Vale, and Casterbridge and it has been
estimated that the following amounts of concrete will be required at the three
sites.

Weekly requirement

Bridge site Location (m? concrete)
A Mellstock 50
B Blackmore Vale 90
C Casterbridge 60
Total required 200

The Hardy Company has three ready-mix concrete plants located in the towns
of Exonbury, Sandbourne, and Emminster. The chief dispatcher at Hardy has
calculated the amounts of concrete which can be supplied by each plant:
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Amount available/week

Plant Location (m? concrete)
I Exonbury 70
II Sandbourne 100
111 Emminster 30
Total required 200

In this problem it is fortunate that the total amount of resource required is exactly
equal to the total amount available. Such a problem is known as a balanced
transportation problem and is very unlikely to occur in actual practice. However,
it allows the basic ideas of the transportation method to be described. The
unbalanced case in which supply and demand are unequal will be described in
Section 4.2.9.

The transportation costs per m* of concrete from each plant to each bridge
have been calculated as follows:

Cost per m® of concrete

From plant To Bridge A To Bridge B To Bridge C
I 4 16 8
II 8 24 16
III 8 16 24

If the amount of concrete required at each bridge site and the amounts
available at each plant are given, the problem becomes one of calculating how
much concrete should be transported from each plant to each project in order to
minimize the total transportation cost within the constraints imposed by the
plant capacities and the project requirements. The problem is illustrated
graphically in Figure 4.1.

Amount available / week Weekly requirement

3

70m3 Plant I $4/m Bridge A —3 50m®
16
8

8
100m? Plant T 2a N Bridge B ——3 90m?3
16,
il
8 16
3 24 - : 3
30m Plant Il Bridge C 60m

Figure 41 Hardy Ready-Mix Concrete Company Example
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Table 4.1 The transportation matrix
Destination (Bridge site)
(Plant) m? of concrete
Origin A B C available
I —4’ ﬁ—l —_s—l 70
I _Tl ﬁ‘l T’ 100
111 _‘ﬂ T| T‘ 30
3
" rzgﬁci)rlgirete 50 920 60 200 e

4.2.3 The transportation matrix

The previous information may be displayed in a transportation matrix such as
the one shown in Table 4.1.

In the transportation matrix, each row represents an origin and each column a
destination. The cell at the intersection of each column and each row includes the
transportation cost to link that origin—destination. The cost is shown in the left
side of the cell. The remaining space in the cell will be used to allocate the amount
of concrete transported between the given origin and destination.

Quantities available from the ready-mix plants are shown in the far right
column. Site requirements are noted in the bottom line. These conditions are
usually referred to as rim requirements. The transportation problem can therefore
be summarized as the identification of the minimum cost (or maximum profit)
solution which satisfies the rim requirements.

4.2.4 The initial feasible solution — the Northwest Corner Rule

Having established the transportation matrix, the next step, as shown in Figure
4.2, is to develop an initial feasible solution. This is achieved by allocating
quantities so that

(i) the rim requirements are satisfied,
(ii) the number of allocations is one less than the number of origins plus the
number of destinations i.e. (m + n — 1).

The initial solution in the transportation method may be obtained by a
systematic procedure known as the northwest corner rule which is summarized by
the flow chart in Figure 4.3(a). The results of applying the rule to the problem
described in Section 4.2.2 are shown in Table 4.2.

An explanation of each assignment made by the northwest corner rule is now
presented:

CELL 1A Starting in the upper left-hand corner (the northwest corner), the
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1. Enter supply, demand, and
cost relationships in a trans-
portation matrix

2. Determine an initial feasible

solution
| 3. Is the feasible solution opti- Yes 5. Determine the approp-
mal? riate  transportation

route

C

4. Determine a new feasible
solution

Figure 42 Flow chart for the Transportation Method

quantity of concrete available at plant I (in m3) is compared with the quantity
required at bridge A (50 m?). The requirement for bridge A is met completely by
plant I leaving 20 m> extra concrete for the other bridges. The next step is to move
to the right along the same row to the second column i.e. cell IB.

CELL IB Theremaining 20 m> available at plant I can now all be allocated to
bridge B. This leaves bridge B short of 70 m? of concrete. However, since all of the
concrete from plant I has been used, the next step is to move down to the next row
in the same column to cell IIB.

CELL IIB  Bridge B still requires 70 m* of concrete and this concrete can be
supplied by plant IT which leaves 30 m? available to supply the remaining bridge.
The next step is therefore to move along to the next column to cell IIC.

CELL 1IC The 30 m> of concrete remaining at plant Il can now be allocated to
bridge C leaving an outstanding 30 m* still required at bridge C. Therefore, the
final step is to move down to the last row to cell IIIC.

CELL I1IC The 30 m* of concrete remaining at plant I1I is allocated to bridge
C thus completing the rim requirements.

Thus the initial feasible solution can be summarized as:

Quantity of

Plant Bridge concrete (m?)
I A 50
I B 20
11 B 70
II C 30
111 C 30




118

1. Starting at the upper left hand corner (northwest
corner) of the table, the supply available at each row
must be exhausted before moving down to the next
row, and the rim requirements of any column must
be exhausted before moving right to the next col-
umn.

2. Check to see that all rim requirements have peen
satisfied and that m+n—1 non-zero allocations
have been made.

(a)

1. First allocation is given to the cell with the
lowest transportation cost. This cell is given
largest allocation within the constraints of the
rim requirements.

2. The next lowest cost cell is

given its maximum alloca-
> tion. If a tie between lowest
cost cells exists, judgement
decides the issue.

No I

3. Are m+n—1
cells
occupied?

I Yes

4. Initial feasible solution obtained

(b)

Figure 4.3 (a) Flow chart for the Northwest Corner Rule. (b) Minimum cost method for
obtaining an initial basic feasible solution

Table 4.2 The initial basic feasible solution

Destination
m? of concrete

Origin A B C available

70

I _TI 50 6] 20

I 48‘ 24] 170 1 30 100

EEE

11 __sl 16 30 30

m? of concrete 200

required 50 90 60 200 S
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The cells with finite values (e.g. cell_IA has a value of 50) are known as basic cells
and the remaining cells are non-basic cells. The allocation in non-basic cells is
Zero.

The cost of the solution can be obtained by multiplying the allocations in the
basic cells by the associated unit transportation costs as shown below:

Quantity of concrete

Basic cell transported X Unit cost = Total cost
1A 50 4 200
1B 20 16 320
1B 70 24 1680
IIC 30 16 480
IIIC 30 24 720
Total transportation cost $3400

In the initial feasible solution, the number of basic cells should be equal to one
less than the number of origins and destinations. In the present case this
condition is satisfied, but if a solution (initial or otherwise) does not obey this rule,
it is said to be degenerate. A procedure for dealing with degeneracy will be
discussed in Section 4.2.13. However, it is important to note that each solution
should be tested for degeneracy.

4.2.5 An alternative method of obtaining an initial feasible

solution — the minimum-cost method

Another method of obtaining an initial feasible solution, the minimum-cost
method, is now briefly described. In this method as much allocation as possible is

\ made to the cell with the minimum cost. Then as much allocation as possible is

made to the cell with the next lowest cost, and so on. As before, in each allocation
the rim requirements must be satisfied. The flow chart for this method is shown in
Figure 4.3(b). In general this method will yield initial feasible solutions which are
much closer to the optimal solution than solutions obtained by the northwest
corner rule. This is to be expected since the northwest corner rule uses only the
rim requirements and makes no use of the cost information in the original
transportation matrix.

4.2.6 Testing a solution for possible improvement

Having obtained an initial solution, the next step is to ascertain whether this is the
optimal solution. This can be achieved by examining the non-basic cells in the
transportation matrix to determine if it is possible to make a shipment to one of
them and also reduce the total transportation cost. Two procedures will be
examined in Sections 4.2.7 and 4.2.12 respectively: '
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(i) The stepping-stone method.
(ii) The modified distribution (MODI) method.

The stepping-stone method has been replaced by the quicker and more
convenient MODI method, but it will be presented here as a useful introduction
to the MODI method.

4.2.7 The stepping-stone method

In the stepping-stone method, every cell which contains a non-zero allocation is
known as a stepping stone and the cells containing zero allocation are known as
waters. By placing one unit in any of the waters and adjusting other allocations to
satisfy the rim requirements it is possible to determine the associated change in
the overall transportation cost. This operation can be formalized in a simple way
as shown in Figure 4.4. For example, if a quantity 0 is sent down route IIA, then a
similar quantity must be subtracted from IA in order to maintain the column
constraint. Likewise 6 must be added to IB and subtracted from IIB in order to
maintain the balance. '

Thus, 80 — 40 + 160 — 246 = — 46 will be added to the total cost. If 6 consists
of 1 unit (1 m? of concrete in the present case) the total cost of the operation will be
decreased by 4 units, and therefore the new solution will be better than the initial
basic feasible solution. This change in the total cost is known as the improvement
index and can be calculated for each water cell in turn. For example, the
improvement index for cell IIIA can be obtained by the closed path shown in
Table 4.3. Note that an improvement index is essentially the same as the simplex
coefficient described in Chapter 3, with the simplification that the structural
coefficients have values of +1. The improvement index for water cell IIIA is

Ciua — Ciic + Cuc — Cup + Cig — Cia
=8—-244+16—-24+16—-4= —12.
The improvement index for water cell IC is
Cc—Cp+Cip—Chyc=8—-16+24 —-16=0.
The improvement index for water cell IIIB is
Ciis — Cuic + Cyc — Ciip = 16 — 24 + 16 — 24 = —16.

The improvement index for each of the water cells is now summarized:

Water cell Improvement index Closed path
IT1A -4 ITA - IIB - IB - IA
IITA =12 IITA —» IIIC - IIC - IIB —» IB —» IA
I11B —16 IIIB — IIIC — IIC — IIB
IC 0 IC - IB —» IIB - IIC
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1. Choose the water cell to be evaluated.

2. Beginning with the selected water cell trace a closed
path (moving horizontally and vertically only) from this
water cell via stone squares back to the original water
cell. Only one closed path exists for each water cell in
a given solution. Although the path may skip over
stone or water cells, corners of the closed path may
occur only at stone cells and the water cell being
evaluated. Only the most direct route is used.

I

3. Assign + € and — O alternately at each corner cell.
The direction of assigning these signs may start either
in a clockwise or anticlockwise direction.

|

4. Assume O = 1, determine the net change in costs as a
result of the changes made in tracing the path. Com-
pare the additions to cost with the decreases thus
giving the improvement index.

l

5. Repeat the above steps until an improvement index
has been determined for each water cell.

6. Are all the improvement indices greater than or equal
No to zero?

Yes

7. Optimal solution

Figure 4.4 Stepping-stone method for testing a solution for possible improvement®

Each negative improvement index represents the amount by which the total
transportation costs could be reduced if 1 m? of concrete were transported by that
origin—destination. Given three routes with negative improvement indices, which
route should be chosen? It is usual to choose the route with the most negative
improvement index, in the present case IIIB. The next question to be considered
is ‘How much concrete can be re-routed via cell IIIB? This can be ascertained by
referring to the associated transportation matrix in Table 4.4. If 6 is greater than
30 then the allocation IIIC becomes negative, which is not allowed. (This is
equivalent to the minimum b, /a;; value of Section 3.7, step 6.) Consequently, 30 is
the maximum amount of concrete which may be re-routed via cell IIIB. Thus, the
second feasible solution can be written in matrix form as shown in Table 4.5.
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Table 43 Evaluation of the improvement index for cell IIIA

Bridge
Concrete
Plant A B C available
I 4 50—-6 | 16 20 + 60 8 70
11 8 24 70 -6 | 16 30 +6 100
111 8 +0 | 16 24 300 30
Concrete 200
required 50 90 60 200

Table 4.4 Evaluation of the improvement index for cell IIIB

Bridge
Concrete
Plant A B C available
I 5 50 16 20 8 70
I 8 24 70 — 6 | 16 30+ 0 100
III 8 16 +0 |24 30—0 30
200
Concrete 50 90 60 200 :
Table 4.5 Second feasible solution
Bridge
Concrete
Plant A B C available
I 4 1 50 16 | 20 8 70
I 8 | 24 | 40 16 | 60 100
III 8 J 16 l 30 24 30
Concrete 200
required 50 920 60 200

It will be noted that in this second feasible solution the rim requirements are
satisfied and there are m + n — 1 = 5 stone cells. The cost of the solution can be
obtained as before by multiplying the allocation in the stone cells by the
associated unit transportation costs:
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Quantity of concrete

Stone cell transported X Unit cost = Total cost
1A 50 4 200
IB 20 16 320
IIB 40 24 960
I1IB 30 16 480
IIC 60 16 960
Total transportation cost $2920

It can be seen immediately that a substantial saving of $3400 — $2920 has been
made in the second feasible solution. This solution must now be tested to see if it is
possible to further reduce the total transportation cost. Thus, the improvement
indices for each water cell are evaluated by exactly the same method as that used
previously to obtain the second feasible solution. These improvement indices are
as follows:

Water cell Improvement index Closed path
ITA , 8—-24+16—-4=—4 IIA - 1IB - IB — 1A
II1A 8§8—16+16—-4= 4 IITA — IT1IB - IB - IA
IC 8§—-16+24—-16= 0 IC - IB - IIB — IIC
ITIC 24 —-16+24—-16= 16 IITIIC - IIC - IIB — IIIB

Only route ITA may be chosen to re-route the concrete so that the total
transportation cost can be reduced. The amount of concrete which can be re-
routed via cell IIA can be determined by referring to the associated
transportation matrix shown in Table 4.6.

If 0 is greater than 40, then a negative allocation results and this is not allowed.
Consequently, 40 is the maximum amount of concrete which may be re-routed

Table 4.6 Evaluation of the improvement index for cell ITA

Bridge
Concrete
~ Plant A B C available
1 4 50—-060 | 1 20+ 6 8 70
40 — 0

II Tl +6 m 50 100
I _8, 1 30 —24—| 30

Concrete 200
required 50 920 60 200

EEE
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Table 4.7 The third feasible solution

Bridee Concrete

Plant A B C available
I ‘T] 10 -1?] 60 T] 70
11 *8| 40 T’ T\ 60 100
I 48] TI 30 T|- 30

Seoqrfirree? 50 90 60 200 2%

via cell ITA. Thus, the third feasible solution can be written in matrix form as

shown in Table 4.7.

It will again be noted that in the third feasible solution the rim requirements
are satisfied and there are m + n — 1 = 5 stone cells. The cost of the solution is:

Quantity of concrete

Stone cells transported X Unit cost Total cost
IA 10 4 40
IIB 40 8 320
IB 60 16 960
IIIB 30 16 480
IIC 60 16 960
Total transportation cost $2760

It can be seen that a further saving of $2920 — $2760 has been made in the third
feasible solution. As before, this solution must now be tested to see if any further
reductions in the total transportation cost can be obtained. The improvement
indices for the non-basic cells in Table 4.7 are:

Water cells

Improvement index

Closed path

IIB
IC
IITA
ITIIC

4
=4
4
12

IIB - IB - IA - IIA
IC - IA - IIA - IIC
IITA - IIIB — IB — IA

IIIC - IIC - ITA - 1A - IB - IIB

Route IC is chosen in order to re-route the concrete so that the total
transportation cost can be reduced. The amount of concrete which can be re-
routed is again determined by referring to the associated transportation matrix

shown in Table 4.8.
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Table 4.8 Evaluation of the improvement index for cell IC
Bridge
Concrete
Plant A B C available
I 4 10 -0 16 60 8 0
| + 70
II 8 40 + 6 24 16 60 — 0 100
III 8 16 30 24 30
Concrete
required 50 90 60 200 20
Table 4.9 The fourth feasible solution
Bridge
Concrete
Plant A B C available
I 4 16 60 8 10 70
11 8 50 24 16 50 100
II1 8 16 30 24 30
Concrete 50 90 60 200 o

If O is greater than 10, then a negative allocation results and this is not allowed.
Consequently, 10 is the maximum amount of concrete which may be re-routed

via cell IC.

Thus the fourth feasible solution can be written in matrix form as shown in

Table 4.9.

Rim requirements are satisfied and the number of basic cells in the fourth
feasible solution is equal to m + n — 1 = 5. The cost of the solution is:

Quantity of concrete

Stone cells transported X Unit cost = Total cost
1A 50 8 400
1B 60 16 960
I11B 30 16 480
IC 10 8 80
IIC 50 16 800
Total transportation cost $2720
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A further saving of $2760 — $2720 has been made in the fourth feasible
solution. To check whether this solution is optimal, the improvement indices for
the water cells in Table 4.9 are as follows:

Water cells Improvement index Closed path

IA 4—-8+16—28 =4 IA->TIA - IIC - IC
IITA 8§ —-16+16—-8+16 —8=38 IITA — IIIB - IB - IC - IIC - IIA
1B 24 —-16+8 —16 =0 IIB - IIC - IC—>1IB
IIIC 24 —-8+16 —16 =16 IIIC—-IC—IB—IIIB

Since all of the improvement indices are greater than or equal to zero, the
fourth feasible solution is optimal. In other words, no further reduction in the
total transportation cost can be obtained by re-routing concrete. The optimal
solution can thus be summarized as:

Each week deliver
50 m3 concrete from Sandbourne (Plant II) to Mellstock (bridge A)
60 m> concrete from Exonbury (Plant I) to Blackmore Vale (bridge B)
30 m? concrete from Emminster (Plant III) to Blackmore Vale (bridge B)
10 m? concrete from Exonbury (Plant I) to Casterbridge (bridge C)
50 m? concrete from Sandbourne (Plant II) to Casterbridge (bridge C)

The total transportation cost is equal to $2720.

4.2.8 Alternative optimal solutions

It will be noted that the improvement index for water cell IIB is equal to zero in
the fourth and final solution to the transportation problem which has just been
solved. A zero improvement index for a water cell implies that if this route were
brought into the solution, the allocation would change but the total
transportation cost would remain constant. Thus, an alternative optimal solution
exists. To complete the solution to the transportation problem this other optimal
solution should be found, as this solution may be more convenient than the
optimal solution already found. The amount of concrete which can be re-routed
via IIB can be determined by referring to the associated transportation matrix
given in Table 4.10.

If 0 is greater than 50, then a negative allocation results and this is not
permissible. Consequently, 50 m? is the maximum amount of concrete which may
be re-routed via cell IIB. Thus the fifth possible solution can be written in matrix
form as shown in Table 4.11.
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Table 4.10 Evaluation of the improvement index for cell IIB
Bridge
Concrete
Plant A B C available
I 4—] 16] 60—0 | 8| 10+0 70
II 81 50 | 24 l +6 |16 ! 50 — 6 100
111 8 \ 16 l 30 24 30
Concrete 200
required 50 920 60 200
Table 4.11 Fifth possible solution
Bridge
Concrete
Plant A B C available
I 4 16 10 8 60 70
II 8 50 24 50 16 100
III 8 16 30 24 30
Concrete 200
required 50 920 60 200
The cost of this solution is:
Quantity of concrete
Stone cell transported X Unit cost = Total cost
IT1A 50 8 400
1B 10 16 160
1IB 50 24 1200
IIIB 30 16 480
IC 60 8 480
Total transportation cost $2720

The total transportation cost is identical to that for the other optimal solution
(the fourth feasible solution). It is important to check whether this solution can be
improved upon by evaluating the improvement indices for the water cells.
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Water cell Improvement index Closed path
IA 4-8+24—-16= 4 IA - IIA - IIB — IB
ITA 8—-16+24—-8= 8 IIIA — IIIB — IIB — IIA
IIC 16 -8+16—-24= 0 IIC - IC - IB — IIB
ITIC 24 -8+4+16 —16 =16 IIIC — IC - 1B — IIIB

As none of the improvement indices are less than zero, the fifth basic feasible
solution is also optimal. This solution can be summarized as:

Each week deliver
50 m? concrete from Sandbourne (Plant II) to Mellstock (bridge A)
10 m® concrete from Exonbury (Plant I) to Blackmore Vale (bridge B)
50 m? concrete from Sandbourne (Plant II) to Blackmore Vale (bridge B)
30 m3 concrete from Emminster (Plant III) to Blackmore Vale (bridge B)
60 m3 concrete from Exonbury (Plant I) to Casterbridge (bridge C)

Alternative optimal solutions provide the decision maker with greater flexibility.

429 Unbalanced transportation problems

Unbalanced transporation problems in which supply and demand are unequal
can be solved by introducing dummy origins or destinations. The optimal
solution identifies the requirement which cannot be satisfied or the location of
available supplies which remain unused.

A dummy origin is added to the transportation matrix when requirements are
greater than supplies available. The cost of shipping from this origin to each
destination is zero. The excess requirement is entered as a rim requirement for the
dummy origin.

A dummy destination is included in the transportation matrix when supply is
greater than demand. The cost of shipping from each origin to this destination is
zero. The excess supply is entered as a rim requirement for the dummy
destination.

Examples of dummy origins and destinations for the Hardy Ready-Mix
Concrete Company example are shown in Figures 4.5(a) and 4.5(b) respectively.

42,10 Maximization

Transportation problems are usually posed as cost minimization problems.
Sometimes, however, transportation profits rather than costs are associated with
each route and the object is to maximize the total profit. To solve such problems,
the profits in each cell are replaced by the amount by which the profit for that cell
falls short of the largest profit in the transportation matrix. This gives a measure
of the lost opportunity and the problem may then be treated as a minimization
problem by the procedures outlined in the previous sections. Finally, the total
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Origins Destinations
3
70m A —¥» 60m3
100m? B |—» 90m®
30m?® c > som?
10m®
Origins Destinations
7Om3 | 4 16 A ——>5om3
8
8 3 N /S
3 N2 3
100m I QUAN B 90m
16
B N
130m?3 n 02“\\ ¢ |—»60m3
Dummy —» 100m?3
(b)

Figure 4.5 (a) Example of a dummy origin. (b) Example of a dummy destination

profit for the allocations is calculated by replacing the adjusted ‘profit shortfalls’
in the transportation matrix by the original profits.

4.2.11 Prohibited and fixed shipment routes

Sometimes it is not possible to transport commodities via a certain route in a
transportation problem. To model such a situation it is necessary to introduce an
associated fictitious cost M which has a very large value compared with the other
costs, so that all shipment via the route is avoided.

Another possibility is that a fixed shipment S via a certain route is required for
some reason. Problems of this nature are first transformed to prohibited
shipment problems by subtracting from the associated rim requirements the fixed
shipment S. The problem is then solved as a prohibited shipment problem as
outlined above.

A fixed shipment of zero should result for the route in question. This allocation
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should then be supplemented by the actual fixed shipment S required. It should
be remembered that the total transportation cost should be supplemented by the
additional cost due to the fixed shipment.

Flowcharts for methods for dealing with both prohibited and fixed shipment
routes are given in Figures 4.6(a) and 4.6(b) respectively.

1. For the route which is prohibited, increase the unit
transportation cost to a value M which is much larger
than other unit transportation costs

2. Solve as a conventional transportation problem

Figure 4.6 (a) Method for dealing with prohibited shipment routes in transportation
problems

1. For the fixed shipment route, subtract the fixed ship-
ment S from the associated rim requirements

2. Solve the resulting problem as a prohibited shipment
problem

3. The final allocation should be supplemented by the
actual fixed shipment S required. Also increase the
total transportation cost by the additional cost due to
the fixed shipment.

Figure 4.6 (b) Method for dealing with fixed shipment routes in transportation
problems

4.2.12 The modified distribution (MODI) method

Compared with the stepping-stone method, the modified distribution (MODI)
method is a more efficient method for solving transportation problems. The main
difference is that it provides a quick and simple means for obtaining improvement
indices for water cells. Figure 4.7 shows a flowchart for the MODI method which
will now be used to solve the concrete distribution problem described in Section
4.2.2. It will be assumed that the initial feasible solution has been obtained by the
northwest corner rule. The next step is to calculate the dual variables u; and v , for
each row i and column j by use of the equation

u; +v; =¢; (the cost at stone cell ij). 4.2)

Asthere are only m + n — 1 stone cells and m + n dual variables it is necessary to
arbitrarily set the first dual variable u; = 0 so that the other dual variables can be
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1. Obtain an initial feasible solution

2. Foreach solution calculate the dual variables uand v
values for the tables using the equation:
uj + vj = cjj (the cost at the <t
stone cell ij)
n.b. forconvenienceinrow 1 uq isalways setto zero.

3. Calculate the improvement index for all water cells
using the equation:

improvement index = cjj — uj —

Yes | 4. Are all the improvement indices greater than or equal
to zero?

No

5. Trace the closed path for the water cell with the most
negative improvement index

6. Modify the solution as with the stepping stone method

»| 7. End of solution.

Figure 4.7 Flow chart for the modified distribution (MODI) method

‘calculated. In the problem given in Section 4.2.2 the following values for the dual

variables can be easily calculated:

By definition u=0

From stone cell IA Uup+vy=Cpor0+uvy,=4 C.oa=4
From stone cell IB up+vg=Cppor0+ovg=16 .o p=16
From stone cell IIB Uy + vg = Cyg Or uy + 16 =24 Cooup =8
From stone cell IIC Uy + ve = Cyc or 8 + vc = 16 C.ove=28
From stone cell ITIC U +vc=24o0rupm+8=24 . um = 16.

This result is written in the transportation matrix shown in Table 4.12. Note
that, in general, u; + v; # ¢;; for the water cells.
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Table 4.12 The evaluation of the dual variables

Destination
A B C
m? concrete
Origin o Y 4 16 8 available
I 0 4 50 16 20 8 70
I 8 8 —| 24 \ 70 16| 30 100
111 16 8 16 24 30 30
m? concrete 200
required 50 920 60 200

The improvement indices can now be easily obtained using the equation
Improvement index = ¢;; — u; — v;. 4.3)

Thus the improvement indices for all of the water cells are immediately available:

Water cell Improvement index
I1A 8—-8+4) = —4
ITIA 8§—-(16+4) =—12
I11B 16 — (16 + 16) = —16
IC 8—8+0 = 0

As with the stepping-stone method, the water cell with the most negative
improvement index is chosen and as much concrete as possible is re-routed via
this cell while simultaneously satisfying the rim requirements and maintaining
non-negative allocations in all of the affected cells. The procedure at this stage is
identical to that described earlier for the stepping-stone method shown in Table
4.4 and results in the new feasible solution shown in Table 4.13. The dual
variables are again calculated using equation (4.2) for each stone cell.

The improvement indices can again be evaluated for the water cells:
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Table 4.13 The second feasible solution using the MODI method

Destination
A B C
= m? concrete
Origin j 4 16 8 available
I 4 50 16 20 8 70
11 8 ﬁ‘l 40 16 | 60 100
111 8 16 30 24 30
m?3 concrete 200
required 50 90 60 200

Table 4.14 The third feasible solution using the MODI method

Destination
A B C
m? concrete
Origin 4 16 12 available
| 4 10 16 60 8 70
II 8 40 24 16 60 100
III 8 16 30 24 30
m? concrete 200
required 50 20 60 200

The associated improvement indices are:

Water cell Improvement index
Water cell Improvement index
II1A 8—0+4) = 4
A 8—@B+4)=—4 IIB 24—-(16+4)= 4
II1A 8—-0+4) = IC 8§—0+12)= —4
IC 8—8+0= 0 IC 24—-(0+12)= 12
IIIC 24— (0+8)= 16

The negative improvement index associated with cell IC means that an optimal
solution has not yet been reached. Upon re-routing as much concrete as possible
via cell IC the fourth feasible solution is obtained as shown in Table 4.15.

The new feasible solution and the associated dual variables are shown in
Table 4.14.
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Table 4.15 The fourth feasible solution using the MODI method
Destination
A B C
= m? concrete
Origin | ] 0 16 8 available

I 0 4 T‘ 60 —8—| 10 70
I 8 8 | 50 ﬁ"! Tl 50 100
I 0 8 _T[ 30 m 30

m?3 concrete 200
required 50 90 60 200

The associated improvement indices are:

Water cell Improvement index
IA 4—-0+0 = 4
IITA 8§—0+0 = 8
IIB 24 -8 +16)= 0
IIIC 24 —-(0+38) =16

As there are no negative improvement indices, the solution given in Table 4.15
is the optimal solution and is identical with that given by the stepping-stone
method in Section 4.2.7.

4.2.13 Degeneracy

Degeneracy occurs at any stage in the solution of a transportation problem when
there are fewer than m + n — 1 stone cells. When the northwest corner rule is used
to obtain an initial basic feasible solution, degeneracy occurs when the
assignment to any cell (except the last cell (m, n)) satisfies both of the associated
rim requirements. To overcome this problem it is usual to assign either of the
adjacent cells (to the right or below) as a stone cell with zero allocation.

When degeneracy occurs in an iteration, it is because a tie exists between the
stone cells of the entering stone cell’s loop (i.e. the stone cells which have —0
added to them). The procedure for dealing with this difficulty is to assume that all
but one of these cells remain as stone cells with zero value. Flowcharts for dealing
with both types of degeneracy are shown in Figures 4.8 and 4.9.

1L2)5)

1. Identify the cell which causes the degeneracy. (N.B. The assignment
to this cell satisfied both of the associated rim requirements and the
cell is not the last cell (m,n) in the transportation matrix.

2. Assign either of the adjacent cells (to the right or below) as a stone cell
with zero allocation.

|

3. Proceed as usual.

Figure 4.8 Flowchart for the procedure for dealing with degeneracy which occurs when
using the northwest corner rule

1. Identify the stone cells which lead to the degeneracy i.e. those cells
which become equal to zero during an iteration.

2. Assume that all but one of these cells remain as stone cells with zero
value.

3. Proceed as usual.

Figure 49 Flowchartfor the procedure for dealing with degeneracy which occurs during
an iteration

43 THE ASSIGNMENT METHOD
4.3.1 Introduction

This section describes a method for solving a special kind of transportation
problem known as an assignment problem. In an assignment problem only one
unit of resource is available at each origin and only one unit of resource is
required at each destination.

In an assignment problem there are m = n origins and destinations and the
total amount of resource available exactly balances the total amount of resource
required. The problem can be written in LP form as

M=

CijXij (4.4)

Minimize (Maximize): z =
i 1

m

]

0 1j
subject to

o

<
]

o
\

X =1 fori=1,2,...,m
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Mz

x;=1 forj=1,2,...,m

1

x;;=0or1 foralliandj.
(N.B. It is simply a special case of the transportation problem defined by (4.1) with
;=1 i=12...,m
d=1 j=12,...,m)

As assignment problems are a special case of LP problems, the simplex method
could be used to solve them. However, this would be inefficient. Furthermore, if
the transportation method was used to solve problems, degeneracy would occur
at each iteration thus leading to an inefficient solution. A more efficient method
for solving assignment problems known as the Hungarian method of assignment
(or the assignment method) will now be illustrated by means of an example.

4.3.2 Example — The Crane Problem

A contractor has one crane available at each of four building sites at which work
has just been completed. One crane is required at each of four new sites. The
distances between the old and new sites is:

New site
Old site A B C D
I 21 24 19 40
1I 30 33 37 32
III 42 36 35 33
v 11 17 29 21

The problem is to make an assignment of the cranes from old sites to new sites
which minimizes the total distance moved by the cranes.

A flowchart for the assignment method is shown in Figure 4.10 and this will
now be used to solve the crane problem. The first step is to determine the so-called
opportunity—cost table from the table of distances given above. By subtracting
the lowest entry in each column of the table from all entries in that column the
following table is obtained:

A B @ D

I 10 7 0 19
I 19 16 18 11
III 31 19 16 12
v 0 0 10 0
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1. Determine the opportunity-cost table

(i) Subtractthe lowest entry in each column of the given
cost table from all entries in that column

(ii) Subtract the lowest entry in each row of the table
obtained in part (i) from all numbers in that row.

2. Can an optimal assignment be made?

L Draw straight vertical and horizontal lines through the rows
and columns in the opportunity-cost table so as to
minimize the number of lines necessary to cover all zero |
squares. An optimal assignment can be made when the
number of lines equals the number of rows or columns. If
the number of lines drawn is less than the number of rows
or columns, an optimal assignment cannot be made and
the problem is not solved.

No Yes

3. Revised opportunity-cost table

(i) Select the smallest number in the table not co-
vered by a straight line and subtract this number
from all numbers not covered by a straight line.

(i) Add this number to the numbers lying at the
intersection of any two lines.

4. Make optimal assignment

Make assignments so that one and only orne zerois [
used in each row and column.

Figure 4.10 Flow chart for the assignment method®

By subtracting the lowest entry in each row of the above table from all entries in
that row the opportunity—cost table is obtained:

A B C D

I 10 7 0 19
II 8 5 7 0
III 19 7 4 0
v 0 0 10 0

This table is now examined o determine whether an optimal assignment can
be made. Straight horizontal and vertical lines are drawn through the rows and
columns of the opportunity—cost table so as to minimize the number of lines
necessary to cover all zero-valued cells. As the number of lines (= 3) is less than
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the number of rows and columns (=4), an optimal assignment cannot yet be
made and a revised opportunity—cost table must be obtained:

A B C D
I + - & .
1 8 5 7
I 19 7 @
v 8 6 16 -

The revised opportunity—cost table can be obtained by selecting the smallest
number in the table not covered by a straight line. This number (4) is then
subtracted from all numbers not covered by straight lines and added to the
numbers lying at the intersection of any two lines. Thus the revised opportunity
cost table can be written as

A B C D

I 10 7 0 23
II 4 1 3 0
111 15 3 0 0
Iv 0 0 10 4

The table is then re-examined to determine whether an optimal assignment can
be made. In the present case it cannot, since the number of straight lines required
to cover all zero-valued cells is equal to 3.

A B @ D
I 10 7 2
I 4 &)
I 15 3
v o o + 4

A revised opportunity—cost table must now be obtained using the same
procedure as before. The smallest number (1) in the table not covered by a straight
line is subtracted for all numbers not covered by straight lines and added to the
numbers lying at the intersection of any two lines. This leads to the following
revised opportunity—cost table:

A B C D

I 9 6 0 23
II 3 0 3 0
III 14 2 0 0
v 0 0 11 5
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Using this table it is possible to make an optimal assignment since the
minimum number of lines required to cover all zero-valued cells is equal to the
number of rows or columns.

The assignments are made so that one and only one zero is used in each row
and column.

Thus, the optimal assignment is obtained from the last opportunity—cost table.

A B C D
I 9 6 © 23
I 3 ©) 3 0
11 14 2 0 ©)
v ©) 0 11 5

Therefore,
The crane at old site I goes to new site C a distance of 19 miles
The crane at old site II goes to new site B a distance of 33 miles
The crane at old site III goes to new site D a distance of 33 miles
The crane at old site IV goes to new site A a distance of 11 miles
Total distance travelled by all cranes = 96 miles.

44 INTEGER PROGRAMMING
4.4.1 Introduction

Integer programming’1? is required when decision variables (*;) must assume
integer values. For example, in deciding how many precast prestressed beams to
produce, it seems sensible to express the optimal production mix in integer
quantities. In this section, Gomory’s cutting plane algorithm for dealing
with integer programming will be described and illustrated by an example.

An integer programming problem is basically a special LP problem which can
be written as

Minimize z = j; &% (4.5)
subject to

n
Z a;x(=,=,<), i=12,...,m
j=1

X; 1s a non-negative integer

in which ¢ > @i and b ; are known constants as defined in the previous chapter and
x; are the variables to be evaluated.
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4.4.2 Example — Excavation Equipment

A typical integer programming problem will now be described. A contractor
wants to hire some special excavation equipment for a large earthmoving job.
Two types of suitable excavators are available and each requires the following
manpower:

Skilled Unskilled

operators assistants
Excavator 1 1 5
Excavator 2 2 4

The contractor can use no more than 6 skilled operators and 20 unskilled
assistants. After taking rental and labour costs into consideration, the contractor
finds that by using either type of excavator he can make a profit of $10/hr. How
many units of each type should he hire to maximize his hourly profit? This
problem is clearly an integer programming problem since for a realistic solution
the number of units of each excavator must be an integer.

4.4.3 Graphical solution

If x; and x, are the respective number of units of excavators of types 1 and 2 to
be hired, then the excavation equipment problem can be expressed in the
following integer programming form:

Maximize z' = 10x, + 10x, _ (4.6)

subject to

X, X, are non-negative integers.

The graphical solution to the excavation equipment problem is shown in
Figure 4.11. The overall optimal LP solution is a non-integer solution and is of no
practical value.

Three alternative optimal integer solutions exist, each yielding an hourly profit
of $40. From this graphical solution it can be seen that a straightforward
application of the simplex method described in Chapter 3 would lead to the non-
integer solution: x, = 8/3, x, = 5/3, z = 130/3. Rounding up to the nearest
integer would give a result: x, =3, x, =2, z= 50 which is unfortunately
infeasible; in other words there would not be enough operators and assistants to
run the excavators. Truncating to the integer value below the solution resultsin a
new solution: x; = 2,x, = 1,z = 30 which although feasible gives less profit than
could be achieved without breaking any constraints. Consequently there is a need
for an algorithm which is able to find optimum integer solutions. Such an
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A %2 ® Integer solutions
Optimum integer solutions
Xp =2, x2=2

xp=3, xp=1 Z = $40

X =4, x=0

Sxp+ 4x3 <20

Optimum non- integer solution

8 5 130
X,=T,X2-‘7.z=#-§—-

Figure 4.11 Graphical solution to excavation equipment example

algorithm is described in the next section and used to solve the excavation
equipment problem.

444 Gomory’s Cutting Plane method

Many algorithms for the solution of integer programming problems
have been proposed. In this section Gomory’s cutting plane method? is
illustrated using the problem outlined in Section 4.4.3. This method gradually
reduces the feasible region by sequentially introducing additional constraints

1. Solve the associated non-integer LP problem using
the simplex method

2. Is this solution an all-integer solution?

No Yes

3. Introduce a new constraint (cut)

4. End of solution

Figure 4.12 Simplified flow chart for cutting-plane method
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—_

. Solve the LP problem without the integer restriction on the
variables using the simplex method.

Yes

2. Is the previous simplex solution an all-integer solution?

No

3. Eliminate all artificial variables from the last simplex tableau
of the previous simplex solution. From this solution select a
variable vj which does not have an integer value. (If there is
more than one select the variable with a resource |imit
with the largest fractional part).

4. The variable Xj has a coefficient of unity in one of the
equations, say equation Ey, in the last simplex tableau of the
previous simplex solution, and a coefficient of zero in each of
the other equations. Replace each coefficient in Ej and the
associated resource limit with their fractional part, e.g. re-
place 2% by %, -V by -Va, -4 by 0, -7z by -2, etc.

|

5. Add 1 to each negative fractional result from the previous
step. Write the resulting equation as a greater-than-or-
equal-to constraint.

6. Insert this constraint after the last equation in the last tableau
of the previous simplex solution. Transform to the canonical
form and solve using the simplex method.

7. End of solution.

Figure 413 Detailed flow chart for Gomory’s cutting-plane solution for integer
programming

(cuts) until an optimal solution of the integer programming problem is obtained.
The most important, feature of this method is the technique adopted for
constructing the new constraints.

Figure 4.12 shows a simplified flowchart for the cutting plane method. A more
detailed flowchart is given in Figure 4.13.

Using the cutting plane method, the first step is to solve the associated LP
problem in which the integer restriction is dropped. Equation (4.6) can be
written in canonical form by changing to a minimization problem and adding

143
slack variables x; and x,:
Minimize z = —10x, — 10x, 4.7
S5x, + 4x, + x4 =20
x, + 2x, +x,= 6
X, %X, = 0.

The simplex method is now used to solve this problem. The simplex tableaux are:

¢ -0 -10 0 0 b,
. g ij

c? Basis b, v, v, v, v,
I 0 X, 20 5 4 1 5
0 x, 6 1 2 1 3

z 0 0 0 0 0

Az 0 —-10 —-10

I 0 X, 8 3 { = g
~10 X, 3 1 1 1 6

z -30 -5 -5

Az —30 -5 5

o 10 X, g 1 1 —2

-10 %y 3 1 =% -

Zj . = -3

Azj _1_gg % %

Thus the solution is

13

(=]
Wl

4.8)

As this is not an integer solution it is necessary to introduce a cut in order to
reduce the feasible region thereby forcing an integer solution. Both variables have
non-integer values at the current optimal solution. The next step is to select a
non-integer-valued variable — it is usual to choose the variable with the largest
fractional part. In this case, as both x, and x, have the same fractional part, x, is
chosen arbitrarily. The new constraint is obtained in the following manner. The
equation in the last tableau of the previous simplex tableaux in which x, has a
unit coefficient can be written as

— — 8 -
z= X =3 X =

w’

Ix, + 0x, +3x; —2x, =& 4.9

Consider only fractional parts. Upon adding 1 to coefficients with a negative
fraction part, (4.9) can be re-written with a greater-than-or-equal-to constraint:
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Ox, + Ox, + 3x; + 3%, = % (4.10)

This constraint is now added to the last set of equations in the previous simplex
tableau:

Minimize z = —13% + Ox, + 0x, + 3%, + 3x, (4.11)

1 2
X%q 0%, 3%, —

W
=
~

1 S
Ox, + x, —gx; +3x,

-
Wi Wk Wl

0x, + Ox, + 3%; + 3

g
IN
V

This problem can be transformed into its canonical form by adding an excess
variable x5 and an artificial variable x to the added constraint. The problem can
then be solved using the big M method as described in the previous chapter:

Minimize z = —13% + Ox, + 0x, + 3x; + 3x, + Ox5 + Mx, (4.12)

x; 4+ 0x, +2x; — 2x, + Ox, + Ox,

0x, + X, —&x; + 2x, + Ox5 + Ox;

Il
W Wk W

1
Oxg +0x; +H3%s + 20, — % + X
X5 o e X 240

The last equation is used to eliminate x from the first equation and the resulting
set of equations can then be solved by the simplex method.

¢ 00 $-M3  $-M3 M 0 b.
. , a
c¢®  Basis b; v; v, vy v, Vs Vg
. 1 3 i 3 —2 8
I 0 X, = 1 -1 = =10
0 Xg 2 o : ~1 1 2
z; —13%42M/3 0 0 0
Az 0 (-M3+% (-M3+H M
0 X, 2 1 -1 1 -1 -2
II 0 X, 2 1 1 -1 1 2
$-M/3 x, 2 1 1 -3 3 2
I S_M3  —-5+M (5-M)
Az, 5—2M/3 0 5 (M-5)
Thus the solution is
z=—-40 x, =2 x,=2 (x3=2) (4.13)

which is the integer solution which was required.

145

X2

Optimum integer solutions
Xy = 2 a XD =2
xy=3, x3=1 Z=$%40

5x; +4x, < 20
X]=4 " X2=0

Cutting - plane
X +Xy<4

Figure 4.14 Optimal integer solution using Gomory’s cutting plane method

(It should also be noted that an alternative optimal solution exists since a zero
cost coefficient exists in tableau II.) This solution is expressed graphically in
Figure 4.14. Note that in Figure 4.14 the cutting plane is expressed in terms of x;
and x, using the first two constraints in (4.11).

45 EXERCISES

4.5.1 A concrete transit-mix company owns three plants with capacities and
production costs as follows:

Daily capacity Production cost
Plant number (m?) ($/m?3)
I 160 10
I 160 9
111 80 13

The company is under contract to supply concrete for a bridge
construction and is scheduled to deliver to the various job sites the
following quantities of concrete:
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Job site Amount (m?3)
1. South bank pier 100
2. South bank abutment 40
3. North bank abutment 80
4. North bank pier 140

Based on distance, traffic, and site delays, the following transportation
costs are estimated:

Transportation cost ($/m?)
Plant number

Job site

number I 1I 111
1 1 1 3
2 1 2 3
3 2 1 2
4 3 2 1

Schedule tomorrow’s production to minimize total cost to the company.
This example is taken from Meredith et al™®.

A contractor has five locations A, B, C, D, and E on a road contract to
which crushed stone is to be delivered. The stone, which is all of the same
quality, is to be supplied from three quarries 1, 2, and 3. The table shows
the relative costs per cubic metre of transporting stone from each source to
each location, the quantity of stone which is required at each location, and
the quantity which will be available at each quarry.

Treat this as a transportation problem and allocate quantities of
stone from each quarry to each location for the least value of total
transportation cost.

Location Quarry
output
Quarry A B C D E (m3)
Relative transportation
costs
1 9 10 12 11 10 120
2 12 8 6 3 7 255
3 10 9 4 13 6 150

45 105 150 135 90
Quantity required at
each location (m?)

£.5.3 The Brunel Gravel Company has received a contract to supply gravel for

three new construction projects, located in the towns of I, II, and III.

' 454
R
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Construction engineers have estimated the required amounts of gravel
which will be needed at three construction projects:

Project Location Weekly requirement
A I 72
B II 102
C II1 41

Total 215

The Brunel Gravel Company has three gravel pits located in towns 1, 2,
and 3. The gravel required for the construction projects can be supplied by
these three plants. Brunel’s chief dispatcher has calculated the amounts of
gravel which can be supplied by each plant and the unit transportation
costs:

Amount available/week

Plant Location (truckloads)
w 1 _ 56
X 2 82
Y 3 77
Total available 215

Cost per truckload

From To Project A To Project B To Project C
Plant W $4 $8 $8
Plant X $16 $24 $16
Plant Y $8 $16 $24

Given the amounts required at each project and the amounts available at
each plant, the Company’s problem is to schedule shipments from each
plant to each project in such a manner as to minimize the total
transportation cost. Solve using the transportation method.

In the above problem, suppose that Plant W has a capacity of 76
truckloads per week rather than 56. The Company would be able to
supply 235 truckloads per week. However, the project requirements
remain the same. Solve this unbalanced transportation problem.
Examples 4.5 and 4.6 are based on examples presented by Levin and
Kirkpatrick®.

Figure 4.15 represents a railway network. The points labelled a, b, c, and d
represent collieries and those labelled A, B, and C represent the coke ovens
of a steelworks. The rail mileages from these points to the junctions of the
network, and from one junction to another, are shown by the number on
the lines. The collieries can supply the following amounts:
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4.5.6

Figure 4.15 Railway network

a 3000 tons/month
b 2000 tons/month
¢ 8000 tons/month
d 3000 tons/month.

The requirements for coke ovens are:

A 2000 tons/month
B 4000 tons/month
C 6000 tons/month.

If the transportation cost is £3 per ton mile, find that distribution of
coal from the collieries to coke ovens which minimizes the total
transportation cost.

This example is adapted from one given by Woodward®¥.

A company produces a special type of precast concrete component for use
in prefabricated construction. The company has three factories, A, B, and
C which supply five contractors (working on different sites) with the
precast components. The production capacities of the factories and the
demands of the contractors —assumed constant —and distribution costs
are given below. How should the components be distributed in order to
supply. the contractors with their demands in the cheapest way?

Production capacity

Factory (000’s per month)
A 5
B 10
C 10

4.5.7
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4.5.9
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Distribution costs per unit
Contractor
Factory a b c d e
A 5 7 10 5 3
B 8 6 9 12 4
C 10 9 8 10 1S
Contractor’s requirements 3 3 10 5 4
(000s)

Example 4.5.6 is based on an example presented by Haley®.

Industries I, I,,and I, require 80, 30, and 90 ( x 10°) cu ft of water per day
respectively to be supplied from three reservoirs R,, R,, and R,.
Reservoir R, can supply 100 ( x 10°) cu ft per day.
Reservoir R, can supply 25 (x 10°) cu ft per day.
Reservoir R, can supply 75 (x 10°) cu ft per day.
Given the following transportation cost matrix, show how to obtain an
allocation of water to minimize the total transportation cost.

Transportation cost matrix

11 12 13
R, 5 10 2
R, 3 7 5
R, 6 8 4

This example is inspired by one in the book by Stark and Nicholls®).

An engineering firm produces a steel structural component for use in
offshore oil production platforms. Three work centres are required to
manufacture, assemble, and package the product. Four locations are
available within the plant. The materials handling cost at each location for
the work centres is given by the following cost matrix. Determine the
location of work centres that minimizes the total materials handling costs.

Location
1 2 35 4
Manufacturing 18 18 16 13
Assembly 16 11 X 15
Packaging 9 10 12 8

The symbol x implies that assembly cannot be performed in Location 3.

A civil engineering consulting firm has a backlog of four contracts. Work
on these projects must be started immediately. Three project leaders are
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4.5.10

4.5.11

available for assignment to these contracts. Because of varying work
experience of the project leaders, the profit to the consulting firm will vary

based on the assignment:

Contract
Project leader 1 2 3 4
A 13 10 9 11
B 15 17 13 20
C 6 8 11 7

The unassigned contract can be assigned by sub-contracting the work to
an outside consultant. Determine the assignment which optimizes the
overall profit.

An aggregate producer has four identical mobile crushing—screening
plants and four sources of raw material which he can use during the
coming construction season. Given the following profit matrix, how many
plants should be assigned to each site?(®

Profit matrix

Raw-materials site

No. of plants

assigned 1 2 3 4
1 47 39 24 35
2 81 62 47 51
3 105 62 47 61
4 132 91 87 68

The following matrix gives the cost of using each of five different earth-
movers to perform five separate jobs on a civil engineering site. Assign one
job to cach carth-mover in order that the total cost is optimized.-

Job
Earth-mover A B C D E
1 10 5 9 18 11
2 13 19 6 12 14
3 3 2 4 4 5
4 18 9 12 17 15
5 11 6 14 19 10

4.5.12 A construction company has to move four large cranes from old

construction sites to new construction sites. The distance (in miles)

4513

4.5.14
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between the old locations and the new are given in the following matrix:

New construction sites
Old construction

sites N, N, N, N,
0, 25 30 17 43
0, 20 23 45 30
0, 42 32 18 26
0, 17 21 40 50

Any of the cranes work equally well on any of the new sites. Determine a
plan for moving the cranes that will minimize the total distance involved
in the move.

An engineering firm wishes to assign five of its personnel to the task of
designing five projects. Given the following time estimates required by
each designer to design a given project, find the assignments which
minimize total time:

Project
Engineer 1 2 3 4 5
1 3 10 3 1 8
2 7 9 8 1 7
3 5 7 6 1 4
4 3 3 8 1 4
5 6 4 10 1 6

This example is based on one presented by Stark and Nicholls®,

A contractor wants to hire some special excavation equipment for a large
earthmoving job. Two types of suitable excavators are available and each
requires the following manpower:

Operators
Excavator 1 5
Excavator 2 2

The contractor can use no more than 17 operators. After taking rental and
labour costs into consideration the contractor finds he can make a profit
of $10 per hour on excavator 1 and $3 per hour on excavator 2. Use
Gomory’s cutting plane method to find how many units of each type he
should hire to maximize his hourly profit. (N.B. Having worked out the
first cut constraint, rework the simplex method from the beginning.)
Check your answer graphically.
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15 Large orders for four steel components to be used on North Sea oil rigs are
to be assigned to four man—machine centres. Some machines are better
suited to produce certain components and their operators are more
proficient at producing some components then others. The costs to
produce each component at each centre are:

Component MMC1 MMC2 MMC3 MMC4
Cl1 12 9 11 13
C2 8 8 9 6
C3 14 16 21 13
Cc4 14 15 17 12

(i) Which component (C) should be assigned to each man—machine
centre (MMCQC)?

(ii) Following a union agreement man—machine centre MMC2 cannot
be used to produce component Cl. How does this affect the
assignment of components to machines?

(i) Assume a new machine (MMCS5) has been added to the facilities
above. One old machine is to be phased out. The operator on the old
machine will operate the new one if it can lead to an assignment
which is less expensive than the assignment made in part (i). The
estimated cost using the new machine is

Component C1 cC2 C3 C4
Production cost at MMC5 11 7 15 10

Ignoring the union agreement in (ii), should the new machine be used? If
so, which component should it produce?
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Chapter 5
Non-Linear Programming

5.1 INTRODUCTION AND SCOPE

The formal definition of a non-linear programming problem is the determination
of a set of design or decision variables x = (x, X,,...,x,)T that provides a
solution for the problem T

Minimize z(x) (5.1)
subject to
9;x)=0 i=1,2,...,m

in which some or all of the problem functions z or g, are non-linear with respect to
the variables.

It will be recalled that a maximization problem may be cast in this form by
reversing the sign of the objective function z (see Section 1.6.1(b)) and in the
remainder of this chapter minimization will be implied.

Within this broad classification of mathematical programming problems it is
possible to identify several special cases dependent on the distribution and nature
of the non-linearities within the problem functions. For example, an important
group of problems concerns a non-linear objective function subject to strictly
linear constraints. Then again, the ability of the objective function to be separated
into distinct terms, each dependent on a single design variable, may affect the
method of solution. The nature of the constraints, whether they be concave,
convex, or linear, may also allow the development of a special problem-solving
algorithm for a particular sub-class of problem. A wealth of literature exists
concerned with these various aspects of non-linear programming (see Section
5.11 for a few examples) and it would be naive to assume that within the scope of
the present work anything more than a very superficial treatment of the subject
could be attempted.t Non-linear problems are sufficiently important, however, to
prohibit the total omission of the subject from this book and it is hoped to give an
overview of problem classification which will at least allow recognition of the
major problem types and some of the better known solution techniques. In

T An excellent review of different non-linear programming techniques is given by Siddall
(Chapter 7).
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addition, a few of the commoner algorithm types are developed in detail and
presented with illustrative examples and documentation to enable the reader to
obtain solutions to practical problems of modest size and complexity.

Optimization of a function of a single variable may be achieved relatively easily
by tabulation or graphing. Depending on the problem, the design and cost
calculation associated with each point on such a table or graph may be tedious,
but the availability of calculators, especially of the programmable type, has
substantially reduced this problem. When possible, there is really no substitute
for being able to display graphically the dependence of a cost function on a design
parameter. Not only is the identification of the optimal point confirmed by
inspection, but the-designer obtains valuable insight into the sensitivity of the cost
to any changes in the design parameters. In cases where such an optimization must
be carried out repeatedly for a range of parametric values, or as a component of a
more complex design calculation, it may be helpful to apply an automatic routine
(such as subroutine GOLDEN discussed later) which will locate a minimum
point of an arbitrary cost function.

When two variables are involved, the method of tabulation or enumeration
leads to the generation of a surface which may be depicted by graphing contours
or iso-cost lines. Figure 5.1 illustrates such a situation in which the optimum cost
value (minimum) is obtained at point A, from which the optimal values of the
design variables x; and x, may be obtained.

S_m—————o

N %

b
]
]
1
\
\
| By

Figure 5.1 Iso-cost lines for an objective function of 2 variables

When more than two design variables are involved, the labour of tabulation or
enumeration becomes too costly and other strategies must be devised. This
chapter explores the various methods by which this may be done.

5.2 EFFECT OF NON-LINEARITIES ON
THE SOLUTION

When the objective function and also the constraint functions of the problem of
(5.1) are all linear in the design variables, the problem reduces to one of linear
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Figure 5.2 Effect of non-linearities. (The constraints illustrated here are all inequalities;
the arrow indicates the feasible side of the constraint boundary)

programming which is described in Chapter 3. It is instructive to recall certain
properties of the solution to the linear problem and to examine to what extent
these are changed by the introduction of non-linearities in the problem functions.

These various changes are illustrated in the four diagrams of Figure 5.2, in
which for simplicity it is assumed that the problem is two-dimensional (the design
variables being x, and x,) and the objective function may be represented by the
contours of a surface in one quadrant of the x,—x, space.

In Figure 5.2(a), both objective function and constraints are linear in x, and x,.
The linear constraints define a convex space. The linear objective function may be
visualized as an inclined plane such that the iso-cost contours are all straight,
parallel, and uniformly spaced. Even without the more detailed treatment of
Chapter 3, it can be intuitively seen for this simple case that the minimum cost
solution must lie on one of the vertices of the feasible space.

Figure 5.2(b) illustrates essentially the same problem in which one of the
constraints is now non-linear. The existence of a linear objective function ensures

1157/

that the solution remains on the exterior of the feasible space, but now there is the
possibility that the solution may be found at any point along the edge of the space
bounded by the constraints and not necessarily at a vertex.

The introduction of a non-linear objective function changes the character of
the iso-cost lines. What was previously a plane surface may now exhibit
curvature, saddle points, and turning values. In Figures 5.2(c) and (d), the same
non-linear objective function surface is seen in relation to different sets of
constraints. In Figure 5.2(c) the constraints are not active and the solution is
found in the interior of the feasible space. In Figure 5.2(d) one of the constraints
has become active and the solution occurs on the edge of the feasible space.

Intermediate cases may occur in which the objective function, although non-
linear, may be shown to possess special properties which allow particular
properties of the solution to be predicted. For example, it may be shown that if an
objective function is composed of separable, concave, monotonic cost functions
and is subject to linear constraints, then the solution must lie on one of the
vertices of the feasible space. In general, however, no such helpful assumptions
may be made, and the entire feasible space must be searched for the solution.
Also, it is quite common to find a surface which exhibits not one but two or
more ‘minima’ and the identification of local minima from the overall or global
minimum is one of the more intractable aspects of non-linear programming.

53 OPTIMUM-SEEKING STRATEGIES

When the objective function and constraints take a simple, differentiable and
easily manipulated form it may be possible to employ methods of calculus to
locate and identify turning points. Some of these techniques are described in
Chapter 2. In general, however, as the objective function and the associated
constraints become more complex, the opportunity to use classic analytical
techniques becomes rare and recourse must be made to numerical methods. Two
general approaches will be discussed in some detail here but many special
strategies and techniques exist.

Both methods require a starting point to be assumed — i.e. some initial trial
values for the design variables which have to be optimized. They then attempt to
improve on this solution by selecting a direction of search, through or towards
the feasible space, represented by successive sets of values for the vector of design
variables represented by x = (x,, X,, ..., x,)".

Gradient methods select the direction of search on the basis of evaluation of the
objective function and also derivatives of the objective function at the current
position.

Direct search methods rely solely on evaluation of the objective function at the
current position together with experience gained from previous trial positions.
No derivatives are involved.

In examining these techniques it is convenient to consider first unconstrained
problems and then study methods to introduce the constraint relationships of
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constrained problems. Also it is usually helpful for both explanation and

visualization to tackle problems involving functions of a single variable before

extending the arguments and methods to functions involving several variables.
Accordingly, the layout of the chapter will follow the headings:

(i) Unconstrained function of a single variable.
(i) Unconstrained function of several variables.
(iii) Constrained function of a single variable.
(iv) Constrained function of several variables.

54 UNCONSTRAINED FUNCTION OF
A SINGLE VARIABLE

54.1 Gradient methods

Figure 5.3 illustrates a function z(x) of the single design variable x. The function is
assumed to be unimodal —i.e. the function possesses only a single turning value
in the interval of x within which interest is concentrated. Moreover, it is assumed
for this case that the turning value is a minimum and occurs at a value

x=

Also shown in Figure 5.3 is the first derivative of the function, z'(x), from which it
is observed that z'(x) = 0 at x = x*, or

dz(x)

dx

0. at. x=x* (5.2

A z(x),z'(x)

2

Figure 5.3 Minimizing a function of a single variable by the Newton-Raphson method

This gives an implicit definition of the point x* which may be obtained by a trial
and error procedure, or an iterative technique such as the Newton-Raphson
method (see Section 2.8). With reference to Figure 5.3, the process starts by
assuming an initial starting point 1 from which successive improved estimates 2,
3, etc., are obtained by the relation

159
A z'(x)

(a)

(b)

Figure 5.4 Examples of non-convergence using the Newton—-Raphson method

_ Z(x)
r Z”(Xr) s

(5.3)

xr+l

Unfortunately, as illustrated in Figure 5.4, the success of the Newton—Raphson
method is very dependent on the shape of the function; the process may converge
to the wrong root, or it may converge only very slowly, or not converge at all,
depending on the initial guess x; and on the possible existence of turning values
or points of contraflexure in the function. Figure 5.4(a) shows an objective
function z(x) which results in a curve of z'(x) which exhibits a point of
contraflexure near the solution. The process may cycle indefinitely around the
solution unless steps are taken to detect and break the oscillation. A similar
situation is shown in Figure 5.4(b) resulting from a turning value in the z'(x) curve.
Conditions such as these can rarely be foreseen by an examination of the
objective function.

It will be observed that the process of determining a-turning value in z(x)
reduces to the location of roots of the equation

Z(x)=0

for which the Newton—-Raphson method is but one of several available
techniques.

The secant method (or method of false-position) is obtained by replacing the
second derivative z”(x) by the secant slope defined by two points on the z'(x)
curve. These points are, in general, the current position and the preceding
position, and it is necessary to provide two initial guesses in order to start the
iteration.

Thus, if

() o 20D 2 20) (54)
X = Xy
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the improved iteration by the secant method is given by

(e, = x,_)2(x,)
o) —zx%._y)
The method of interval halving (or bisection) may be employed if it is known in
advance that x* lies in the interval x, < x* < x,. If the function z(x) is indeed

unimodal this means that z/(x) changes sign once, and only once, in the interval
(x, — x,). Also if the turning value of z(x) is a minimum it can be stated that

xr+1

Z(x) <0 for x, < x < x*
and
Z(x) >0 for x* < x < x,.

The algorithm is described by the flow diagram of Figure 5.5.
The methods described all represent some form of root-solving technique

Define initial interval of uncertainty by limits
Xg and xp (xg < Xp)

Set xm = (Xg + Xp)/2 and calculate the first
derivative of the objective function z'(x).

Y

Z'(xm) < 0?
Yes No
Solution must lie in interval Solution must lie in interval
Xp — Xm. Set xg = Xm. Xm — Xa. Set xp = Xm.

L

Check for convergence by testing
interval of uncertainty.
[Xb — sa| > €?

NI ST

Yes No

*
X* =Xm

Figure 5.5 Flow chart of interval-halving algorithm
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applied to the first derivative of the objective function. The derivative may be
obtained analytically or numerically depending on the nature and complexity of
the cost functions. Appendix A contains documentation and listing of a
FORTRAN subroutine called BISECT which employs the interval-halving
procedure described here. The routine contains a preliminary coarse search
procedure to define the initial interval of uncertainty and also a test to distinguish
between a true root and a function discontinuity. Although the routine may be
used for normal root-solving problems, it is applied in the following example to a
problem of cost minimization.

5.4.2 Optimization of a sedimentation process
Example

The cost of processing an industrial waste by means of sedimentation is known to
depend on the retention time ¢ in hours, adopted for the design of the plant. Three
cost components are identified, which are dependent on the flow capacity Q:

(i) A fixed charge of 3Q cost units.
(ii) Plant cost defined as 0.8Q%¢>-2°,
(iii) A tax or penalty cost dependent on the quality of the effluent and which can

be described by the exponential term 14Q e™".

The objective function may thus be represented as the sum of these three terms
and the aim is to find a value of ¢ for which the cost is a minimum, when the value
of Q is (say) 5 m3/s. That is,

Minimize z = 206*%° + 70e™" + 15 (5.5
1*

subject to
t>0.

The constraint is rather self-evident and the problem may be treated as one of
unconstrained minimization of a function of a single variable.

For fixed cost coefficients the problem is probably most easily solved by
tabulation and graphing; Figure 5.6 shows the nature of the objective function
and the fact that it is indeed unimodal with a minimum near ¢t = 0.75 hr.
However, if it is intended to test the sensitivity of this result to changes in the flow
rate Q, or if the result of the optimization is to be incorporated in a more complex
design calculation, it may be desirable to use one of the algorithms described in
the previous section.

Solution by Newton—Raphson method The objective function in this case is quite
simple and the first and second derivatives may be obtained directly by
differentiation. Thus

z= 202 4]0 +:15 (5.6)
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A z(t)
z'(t) /
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/ t hours
]

0

Figure 5.6 Sedimentation process — objective function z(f) and derivative z'(t)

Z' = 65t>2° — 70e"" (5.7)
Z" = 146.25t2% + 70e™". (5.8)
The iteration scheme obtained by the Newton-Raphson method is
by =t — Z()/Z'(,)

The following sequence of values is generated by starting with t, = 1.0:

n Ly Z'(t,) Z"(t,) At, L4

1 1.000 39:25 172.00 —0.228 0.772
2 0.772 3.94 138.15 —0.029 0.743
3 0.743 0.06 134.22 —0.0004 0.7429

In this example the function is well conditioned and converges rapidly for any
initial approximation greater than the root. For very small positive initial values,
the first iteration yields a value close to unity since

’ "

Z~—z7" fort>0~0.

Negative values of ¢ are of course both practically and mathematically infeasible.
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Solution by interval halving Determination of the root of the equation formed by
setting the first derivative of the objective function equal to zero may be carried
out by the method of interval halving without the need for second derivatives z”.
This involves finding the solution of the equation

Z = 65t225 —70e~* = 0 (5.7)

assuming an initial interval of uncertainty given by 0 < ¢ < 2.0. The sequence of
iteration is tabulated, convergence being assumed when the interval reduces to
less than 0.01.

tA ts (ts —ta) t,=(ta +1tB)/2 Z'(t,) Remarks
0.000 2.000 2.000 1.000 39.25 tg =1,
0.000 1.000 1.000 0.500 —28.79 A=t
0.500 1.000 0.500 0.750 0.96 tg =1,
0.500 0.750 0.250 0.625 —14.89 ta=t,
0.625 0.750 0.125 0.688 - 722 ta=t,
0.688 0.750 0.063 0.719 — 3.20 ta=t,
0.719 0.750 0.031 0.734 — 1.14 th=t,
0.734 0.750 0.016 0.742 — 0.09 ta=t,

Thus t* ~ (0.742 + 0.750)/2 = 0.746.

Note that the relative efficiency of the Newton—Raphson method is not
proportional to the number of iterations but rather to the number of function
evaluations.

Solution by the secant method The secant or false position method is again a
technique for determining the root of the equation z'(t) = 0. Trial points at
, = 0.0 and ¢, = 1.0 are used yielding the following sequence of iterations. Note
that the method does not require the initial trial values to be chosen such that
LobsStE S 1y

n tn Z’(tn) (tn - tn—l) (tn+1 i tn)
0 0.000 —70.00

1 1.000 39.25 1.000 —0.359
2 0.641 —13.01 —0.359 0.089
3 0.730 — 1.69 0.089 0.013
4 0.744 0.09 0.013 —0.001
5 0.743 0.00 —0.001

In terms of the number of function evaluations the secant method is
comparable with the Newton—Raphson method, but only because the objective
function can be differentiated twice analytically. In the case of an objective
function which cannot be differentiated by calculus, the derivatives must be
determined by finite differences. In general this involves two evaluations of the
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objective function for the first derivative and three for second derivatives, etc.
Thus for each iteration the Newton—Raphson method requires at least three
function evaluations. The secant and interval-halving method require only two
evaluations per iteration, but in this example convergence requires twice as many
iterations. The routine BISECT described in Appendix A may also be used to
solve the same problem, as illustrated below.

Solution by routine BISECT The user must provide a suitable driving program
and also a subroutine to generate values of the function the root of which is being
sought. In the coding illustrated in Figure 5.7, it is assumed that the objective
function may not be differentiated so that the first derivative must be
approximated by a forward finite difference quotient. The interval used to
generate the derivative is taken to be of the same order of magnitude as the
acceptable interval of uncertainty at convergence.

It will be noted that routine BISECT employs a coarse search procedure to
detect an initial interval of uncertainty within which the sign of the function
changes. The starting point and direction of this coarse search must be specified
in the calling statement. The program is written so that the coefficients of the
objective function may be easily changed.

The results obtained are shown in Figure 5.7. It will be noted that during the
coarse search the function (i.e. dz/dt) changes sign between ¢t = 0.6 and 1.4 which
becomes the interval of uncertainty for the fine search.

5.4.3 Direct search methods

All direct search procedures are characterized by the fact that no evaluation of
derivatives is involved, the movement towards the solution being guided solely by
evaluations of the objective function at the current and previous positions.
Considering a function of a single variable, Figure 5.8 illustrates a unimodal
function z(x) with a minimum within an initial interval of uncertainty defined by
x, < x* < x,. Two additional points are selected arbitrarily at x, and x, such
that

X < Xy <Xy < Xy

Function evaluations are then obtained at the two new points and on the basis of
this information one or other of the outer segments of the range may be discarded
by the following argument:

(i) Ifz(x,) < z(x,) then x* must lie in the range x, < x* < x,. Thus the segment
X, to x, may be eliminated from the search by setting x, = x,.

(i) If z(x,) > z(x,) then x; < x* < x, and the segment x, to x, may be discarded
by setting x, = x,.

When the interval |x, — x,| is acceptably small the process may be assumed to
have converged.
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PROGRAM TST(OUTPUT,TAPE6=OUTPUT)
C  PROGRAM TO COMPUTE OPTIMUM SEDIMENTATION TIME

EXTERNAL DERIV

COMMON /COEFsS/C1,C2,C3

Q=5.0

C1=0.8%Q*Q

C2=14.0%Q

C3=3.0%*Q

TSTART=0.0

DT=0.2

EPS=0.001

CALL BISECT(DERIV,TSTART,DT,EPS,1,SOLN)
C GET COST FOR OPTIMUM TIME

CALL COST(SOLN,CST)

WRITE(6,10)SOLN,CST
10 FORMAT(6H AT T=,F8.4,10H MIN COST=,F10.3)

STOP
END

C
SUBROUTINE COST(T,CST)
COMMON /COEFS/C1,C2,C3
CST=C1*T#%3,25 + C2¥EXP(-T) + C3
RETURN
END

C

SUBROUTINE DERIV(X,DFDX)
EPS=0.001

CALL COST(X,FX0)

CALL COST(X+EPS,FX1)
DFDX=(FX1-FX0)/EPS

RETURN

END
IN BISECT 0.0000 -70.0000
IN BISECT 0.2000 -55.5724
IN BISECT 0.6000 -17.8222
IN BISECT 1.4000 121.3185
IN BISECT 1.0000 39.3345
IN BISECT 0.8000 7.9609
IN BISECT 0.7000 -5.5638
IN BISECT 0.7500 1.0272
IN BISECT 0.7250 -2.3105
IN BISECT 0.7375 -0.6523
IN BISECT 0.7437 0.1848

AT T = 0.7437 MIN COST = 55.9143

Figure 5.7 FORTRAN code for solution of the sedimentation problem

The effectiveness of such a search procedure may be measured either by the
number of function evaluations required to reduce the interval of uncertainty to
an acceptable size, or by the maximum interval of uncertainty which can remain
following a prescribed number of trial evaluations. Clearly such a measure of
effectiveness will depend on the strategy or policy adopted for positioning the
trial points within the current interval of uncertainty.

One very efficient method involves the use of the Fibonacci constant or Golden
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Solution lies in this

interval since z,>2

2

X
a

Figure 5.8 Direct search minimization of a function of a single variable

Section. The Fibonacci series is generated by starting with 1 and defining
succeeding terms by the rule

Nog =k Mg
Thus the series is uniquely defined as
1,1,2,3,5,8,13,21, 34, 55,89.....
... 75025,121 393,196 418 . . . .

The Fibonacci constant is obtained from two adjacent terms in the series and
for higher-order terms in the series approaches a constant value defined as

F="r _T+1_ | _ 0618033989

nr+1 nr

The rather fascinating property that F?> = 1 — F provides (among many other
aesthetic and scientific facts) a means of positioning the trial points so that
although only one new point need be added at each iteration, the proportions of
the subdivided interval of uncertainty remain constant. Figure 5.9 illustrates the
process with respect to an interval of 1.0. Function evaluations are made at
x; =0 and x, = 1.0. Two additional trial points at x; and x, are located
symmetrically within the interval 0.0 < x < 1.0 such that

(x, = x3) = (x4 — x;) = 0.618(x, — x,)

and the function is evaluated at these new points.
Now by the same reasoning as presented before, since z(x;) < z(x,) the segment
from x, to x, may be discarded, as indicated in iteration 1 (see Figure 5.9).
The interval of uncertainty is now reduced to 0.618 and contains three function
evaluations at x,, x,, and x,. A fourth point is added at x, such that

(x4 — x5) = (x5 — x;) = 0.618(x, — x,).

Note that the three segments of the interval (x,—x,) remain in the same
proportion (0.382:0.236:0.382).
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0.1 012 0.3 0.4 0.5 0.6 017 0.8 0.9 1.0
1 1 1 1 1 1 | 1 -
L4 0 1 |l —
0.618
0.618
Discard Z,¢2y
0.090056j0090] Discard z3<zg
Discard; zz<z5 0.146 |0090| 0.46
0.236 0.146 0.236 Discard XqXo3 2382,
0.382 (38.2%) 0.236 (23.6%) 0.382 (38.2%) —I

Figure 5.9 Direct search using the Fibonacci constant (Method of Golden Section)

A second iteration results in segment (xs—x,) being discarded, reducing the
interval of uncertainty to 0.382 or (0.618)%. A third and fourth iteration are
completed, each by the addition of only a single point and each reducing the
interval of uncertainty by a factor of 0.618. It can easily be shown that in n
iterations a total of (3 + n) function evaluations are required and the initial
interval of uncertainty is reduced by a factor of (0.618)". In the example of Figure
5.9 after four iterations only seven points have been evaluated on the objective
function and the interval of uncertainty is reduced to 0.146 or (0.618)*.

An algorithm based on the above argument is presented in subroutine
GOLDEN, which is described in Appendix A. The following example illustrates
the use of this routine.

5.4.4 Design of a short concrete column
Example

A short, square-sectioned, reinforced concrete column is to be designed for
minimum cost. The axial collapse load is to be 3.2 MN and is given by the
following expression:
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w=04f,A4. + 0.67f, As (U.K. practice)

w = 0.7(0.85 fo, Ac + f; Asc) (N. Amer. practice)
where

Jeo = ultimate compressive strength in concrete
A. = cross-section area of concrete
Jy = characteristic (tensile) strength of compressive steel
A, = cross-section area of compression steel.
Proportion the column section for the following cost and stress data:
Jew = 37.5 MN/m? (4000 psi)
f, = 420 MN/m? (60 000 psi)
C, = cost of steel = £0.15/kg
.C. = cost of concrete = £11.00/m?
C; = cost of forming = £5.00/m*

The following example illustrates the design in U.K. practice. If the side of the
cross-section is d metres the cost per metre of the column can be calculated as
follows:

z=A.7830 x 0.15 + A..11.0 + 4d.5.0

where the unit weight of steel is taken as 7830 kg/m>. Strictly speaking this
objective function is to be minimized subject to certain constraints, i.e.

15.04, + 28144, =32

and
A, + A —d? =0.0.

Also
A, As, and d = 0.0.

Because of the simple nature of these constraints it is a simple matter to
incorporate them in the objective function by substitution, thus eliminating two
of the three variables.

For example, selecting A4, as the main design variable we obtain by substitution

Ay = (3.2 — 15.04.)/281.4
and
d=(Ae + A)Y2.

These substitutions can be carried out in the coding of a cost subroutine,
including any necessary checks to ensure that the variables are non-negative.
Typical coding for the main program is given in Figure 5.10.

The cost subroutine can be written in a very general way since all relevant data
are transferred in through the labelled common block. Notice that this method
also allows calculated values of other design parameters (e.g. side and steel area)
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C MAIN PROGRAM FOR R.C. COLUMN DESIGN
EXTERNAL COST
C SET UP COMMON BLOCK FOR USE BY ROUTINE COST
COMMON /DATA/ASC,D,CS,CC,CF,FCU,FY,W
C DEFINE COST, STRESS AND LOAD DATA
CS=0.15
CC=11.0
CF=5.0
FCU=37.5
FY=420.0
W=3.2
C SET INITIAL, INCREMENTAL VALUES FOR AC
ACMIN=0.1
DAC=0.01
CALL GOLDEN(COST,ACMIN,DAC,0.001,1,AC,CMIN)
C CONVERT ASC TO SQ.MM
ASC=ASC¥*1.0E6
WRITE(6,10) CMIN®
10 FORMAT (16H MINIMUM COST/M=,F12.2)
WRITE(6,20)D,AC,ASC
20 FORMAT(7H SIDE =,F10.3,2H M,/
+ TH CONC =,F10.3,3H M2,/
TH STEEL=,F10.3,4H MM2)
STOP
END

SUBROUTINE COST(AC,CST)
C FINDS COST PER UNIT LENGTH FOR A SHORT R.C. COLUMN.
C DUPLICATE COMMON BLOCK STATEMENT IN CALLING PROGRAM
COMMON /DATA/ASC,D,CS,CC,DF,FCU,FY,W
C CALCULATE REQUIRED STEEL AREA
ASC=(W-0.4*FCU*AC)/(0.67*FY)
C CHECK THAT ASC NON-NEGATIVE
IF(ASC.LT.0.0) ASC=0.0
C CALCULATE SIDE
D=SQRT (AC+ASC)
C COMPUTE COST PER UNIT LENGTH
CST = 7830.0%ASC*CS+AC*CE+U ,0*¥D¥#CF

RETURN

END
IN GOLDEN 0.1000 14.7082
IN GOLDEN 0.1100 14,4766
IN GOLDEN 0.1262 14.0783
IN GOLDEN 0.1524 13.3823
IN GOLDEN 0. 1947 12.1551
IN GOLDEN 0.2633 13157
IN GOLDEN 0.2209 1.8300
IN GOLDEN 0.2371 12.3461
IN GOLDEN 0.2047 11.8505
IN GOLDEN 0.2271 12.0285
IN GOLDEN 0.2085 11.7328
IN GOLDEN 0.2071 11.7778
IN GOLDEN 0.2185 11.7536
IN GOLDEN 0.2080 11.7500

MINIMUM COST/M = 11.73
SIDE = 0.456 M

CONC = 0.209 M2

STEEL= 285.160 MM2

Figure 5.10 Main FORTRAN program, subroutine and typical results for column
design example (Section 5.4.4) using routine GOLDEN
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Fx) at (x,)y

l —

(a)
Figure 5.11 (a) Objective function of equation 5.9 (fixed-step gradient method shown).

to be transferred back to the calling program for inclusion in the solution. The
routine is listed in Figure 5.10.

The subroutine GOLDEN is added at this point in the program deck or
alternatively may reside in a source or semi-compiled library of subroutines for
inclusion either during compilation or loading.

The results obtained are shown in Figure 5.10 and show five increments in
the coarse search, followed by a further eight iterations converging to the
solution.

For this example it is sufficient to incorporate in the main program a number of
statements defining the load, stress, and cost data. Should one or more of these

17

F(x) at (x,)q

/x1
»

(b)

Figure 5.11 (b) Objective function of equation 5.9 (variable-step gradient method and
Hooke-Jeeves pattern search shown)

require to be changed repetitively, the input might be more conveniently made by
means of a ‘read’ or ‘input’ statement for use in either batch or time-sharing mode.

55 UNCONSTRAINED FUNCTION OF SEVERAL
VARIABLES — GRADIENT METHODS

In this and the following section, attention is directed at the optimization of a
function of several variables, free from constraints. The present section is
concerned with methods involving the calculation of gradients or derivatives.

It is helpful to consider initially two-dimensional problems which can be easily
visualized and depicted. Figure 5.11(a) illustrates a surface generated by the
function
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2 =252 — x,2 + (1 — x,). (5.9)

Also shown against each axis are plots of the function along lines drawn parallel
to the axis through an initial trial point [(x,),, (x,),].- These plots may be
visualized as sections produced by cutting planes along the lines x, = (x,), and
X, = (%,),-

The process of finding a minimum involves the selection of an initial trial point,
followed by a series of moves aimed at improving the approximation to the
solution. The strategy used to determine the move to be made comprises two
distinct decisions:

(i) In what direction should the move be made?
(i) By how much should the point be moved?

5.5.1 Direction of search

Let the coordinates of the new approximation be given by

[(xl)p (xz)l] = [(xl)o T Axl, (xz)o 7t sz]-

It is clear from the gradients of Figure 5.11(a) that the same amount of
movement in the two coordinate directions will result in different degrees of
improvement (i.e. reduction) of the function z.

In general the change in z may be approximated by

0z 0z

A (=g = — R
z == dz 5 Ax, + 7, Aoy (5.10)

For a given total movement defined by
h = (Ax3 + Ax2)!/2

the orthogonal components Ax, and Ax, must be proportioned so as to
maximize the change in z. This situation may be visualized by approximating the
surface z in the vicinity of the point [(x,),, (x,),] by a plane the contours of which
will be straight, parallel, and equally spaced as in Figure 5.12.

The total change in z can be expressed as

0z
0x,
which will have an extreme value when d(dz)/d(Ax,) = 0 or

0z 0z 2Ax,
ax, ~ o, 2 — Axy = 0 ()

5}
dZ=—zAx1 +

o (h? — Ax2)12 (5.11)

therefore
Aﬁ _ (0z/0x,)

Ax, (0z/ox,)
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\ Surface approximates to
N N plane for small values
VN Ny \\ of step size h

Figure 5.12 Defining the direction of search

Thus the search direction which will result in the largest change in z is the line of
greatest slope.t

5.5.2 Fixed step size

The simplest strategy to determine the amount by which the point should be
moved is to adopt a constant, arbitrary step size h. The incremental change in
each variable can then be calculated as a function of the gradients. Thus
0z 0z
E Axl + 672 sz =0
or
Ax;  (0z/0x,)
Ax, ~  (0z/ox,)
The direction of the dip, or line of greatest slope, is given by the negative
reciprocal of the contour direction. Hence, with reference to Figure 5.12
Ax, (0z/0x,)

Ax, (0z/0x,)

0z 0z \? 0z \? |12
e

0z 0z \? 0z \* |2
= e (55 + (2

in which the positive and negative signs apply respectively to maximization (‘hill-
climbing’) and minimization of the objective function. As illustrated in Figure
5.11(a), the path taken by the search responds to changes in the direction of
greatest slope if the step size & is not too large. Once the search has reached the

(5.13)

T The direction of a contour may be defined by the condition that dz = 0, i.e. from equation (5.10).



174

vicinity of the solution no further improvement can be found with the current step
size and h must be reduced by some arbitrary factor (say 0.1 to 0.5) until the region
of uncertainty is acceptably small.

The process works reasonably well on surfaces with gentle curvature but in
steep-sided valleys the step size may be prematurely reduced in size and the
iteration proceeds by a large number of small oscillatory moves.

If sharp-edged valleys are encountered during the search, the method may
terminate prematurely without locating the true minimum, since from points on
either side of the valley ridge the direction of steepest slope yields no prospect of
improvement. This fault can be particularly serious when the surface of the
objective function is modified by the addition of penalty terms to ensure
feasibility in the presence of constraints (see Section 5.9).

5.5.3 Variable step size

An alternative strategy is to maintain a given direction of search until no further
improvement in the function can be found. For a known initial (or current)
position, the gradients (0z/0x,) and (0z/0x,) are known. The coordinates of the
next position may now be defined as

(x1)y = (x1)o — (0z/0x,)p (5.14)
(x3); = (x3)g — (02/0x,)p

_n 0z \? 0z \*' |12
p=fli o=t # (5.15)

and minimization is assumed. The value of the function z, at the new location is
now dependent on the single variable p and the optimum value of p is implicitly
defined by the condition (0z/dp) = 0. For this optimization of p to be carried out
analytically the objective function must be simple and easily differentiated
so that a solution to the problem might be more easily obtained by classical
methods of calculus. For more practical problems, p must be optimized by a one-
dimensional search technique such as the one used in subroutine GOLDEN.

The FORTRAN code illustrated in Figure 5.13(a) shows how this might be
done for the objective function of equation (5.9).

The results obtained by means of this program are also shown in Figure 5.11(b).
One significant feature of the strategy is that successive search directions must be
mutually at right angles. It is analogous to the progress of a skier who maintains
his or her initial direction until all sustaining gradient is lost, at which point the
skis are re-aligned down the direction of greatest slope. Considering the number
of function evaluations required to optimize the step size, the strategy may prove
rather inefficient and depending on the shape of the surface the technique may
prove equally hazardous for both numerical optimization and skiing.

The results obtained are shown in Figure 5.13(b).

where

(o ¥ e

aanaaaaaa
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DIMENSION X(2),DFDX(2)
COMMON /GLDEN/ X,DFDX
COMMON /DRIVS/ NX,EPS
COMMON /NCALLS/ NCNT
EXTERNAL FUN2
NCNT=0
NX=2
EPS=0.001
INITIALIZE VARIABLES
X(1)=-0.5
X(2)= 1.0
NPRINT=1
5 CONTINUE
COMPUTE DERIVATIVES TO DEFINE DIRECTION OF
SEARCH FOR USE IF ROUTINE FUN2
CALL DERIVS(X,DFDX)
USE ROUTINE GOLDEN TO OPTIMIZE RHO
CALL GOLDEN(FUN2,0.0,0.1,0.005,0,RHO,RMIN)
UPDATE VALUES OF VARIABLES X()
AND EVALUATE OBJECTIVE FUNCTION
DO 20 IX=1,2
X(IX)=X(IX) - RHO*DFDX(IX)
20 CONTINUE
CALL COST(X,FNEW)
IF(NPRINT.GT.0) WRITE(6,30)X,FNEW
30 FORMAT(3X,5F11.4)
SUMSQ=0.0
DO 40 IX=1,2
SUMSQ=SUMSQ + DFDX(IX)*DFDX(IX)
40 CONTINUE
GET STEP SIZE TO CHECK CONVERGENCE
H=RHO*SQRT (SUMSQ)
IF(ABS(H) .GT.EPS) GOTO 5
WRITE(6,50)NCNT,X ,FNEW
50 FORMAT(" SOLN. IN",I5," COST CALLS",/,5F10.3)
STOP
END

SUBROUTINE COST(X,F)
s e i e il
THIS IS A USER DEFINED ROUTINE TO COMPUTE THE
VALUE OF AN OBJECTIVE FUNCTION AS A FUNCTION OF
A VECTOR OF ARGUMENTS.

X = ARRAY CONTAINING CURRENT VALUES OF
ARGUMENTS
F = COMPUTED OBJECTIVE FUNCTION

3 36 36 36 3 38 36 3 3 36 36 3 36 3 38 36 36 30 3¢ 3 3 36 30 3 30 3 3¢ 36 3 30 36 3 36 36 36 36 6 30 3k 36 3 36 30 3¢ 30 3 30 2 0

DIMENSION X(1)

COMMON /NCALLS/ NCNT

X1=X(1)

X2=X(2)

F1=X1¥X1 - X2

F=2.5*%F1*F1 + (1.0-X1)*(1.0-X1)

Figure 5.13 (a) Minimization of (5.9) by variable-step gradient method
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NCNT=NCNT+1
RETURN
END

SUBROUTINE FUN2(RHO,ANS)
RN NN NN RN RN RN RN RN NN
THIS ROUTINE EVALUATES THE OBJECTIVE FUNCTION
COST(X,F) AT A TRIAL POINT A DISTANCE RHO FROM
THE CURRENT POSITION ALONG THE DIRECTION OF
GREATEST SLOPE. THE ROUTINE IS USED BY GOLDEN
TO OPTIMIZE THE STEP SIZE RHO.
RHO = TRIAL VALUE OF STEP SIZE
ANS = COMPUTED VALUE OF COST AT TRIAL PT.
FEIR00 006000000000 03000 00 630 36 06 06 00 36 06 00 90 00 00 00 00 00 0 30 06 96 90 36 06 36 96 36 36 36 36 2 36
DIMENSION X(2),DFDX(2),X2(2)
COMMON /GLDEN/ X,DFDX
DO 10 IX=1,2
X2(IX)=X(IX) - RHO*DFDX(IX)
10 CONTINUE ’
CALL COST(X2,F)
ANS=F
RETURN
END

SUBROUTINE DERIVS(X,DFDX)

TR0 T30 00 00000 0000000 000000000 00000 0 3000003000 00 0 02000 00 00 0000
THE ROUTINE CALCULATES DERIVATIVES OF A USER
DEFINED OBJECTIVE FUNCTION COST(X,F) WITH RESPECT
TO EACH OF THE ARGUMENTS X(). THE FORWARD DIFF-
ERENCE EPS AND THE NUMBER OF VARIABLES NX MUST BE
PASSED THROUGH LABELLED COMMON BLOCK /DERIVS/

X = ARRAY OF CURRENT VALUES OF ARGUMENTS
DFDX = ARRAY CONTAINING COMPUTED VALUES OF
DERIVATIVES.

USES LABELLED COMMON BLOCK:-
COMMON /DERIVS/NX,EPS
S0 0000000000000 00 0000 00 0000 6360000 0600 00 0300000 00000 06
DIMENSIONX (1) ,DFDX (1)
COMMON /DRIVS/ NX,EPS
CALL COST(X,CSTO)
DO 10 IX=1,NX
X(IX)=X(IX) + EPS
CALL COST(X,CST1)
X(IX)=X(IX) - EPS
DFDX(IX) = (CST1-CSTO)/EPS

10 CONTINUE

RETURN
END

Figure 5.13(a) — continued
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-.6104 476 2.6075
.6632 <2732 .1829
.6194 .3563 . 1467
.6919 .3729 .1229
.6768 .4380 .1055
.7291 .14181 .0908
.7196 .5017 .0793
L7634 .5095 L0694
.7532 .5492 .0617
.7882 .5580 .0549
L7797 .5905 .0493
.8095 .5989 .0ub2
.8012 .6268 .0401
.8281 .6341 .0362
.8189 .6597 .0331
.85k .6649 .0301
.8391 L6779 .0276
.9288 .7991 .0152
.9113 8112 .0088
.9100 . 8264 .0081
.9168 .8267 L0074
.9989 1.0097 .0004
1.0031 1.0073 .0000
1.0025 1.0065 .0000
1.0024 1.0047 .0000
1.0021 1.0047 .0000
SOLN. IN 384 COST CALLS
1.002 1.005 .000

END OF PROGRAM
Figure 5.13(b)  Result of minimization of (5.9) by variable step method

5.5.4 Extension to n variables

Development of either of the foregoing gradient search methods for multi-
variable problems presents little difficulty. The constant step size technique
possesses the advantage of simplicity and in some cases may even be more
efficient, and is therefore considered here.

The objective function may be expressed as

2(x) where X =(X),%5, .o .5%,)%

An initial position is selected at x, for which a vector of gradients may be
calculated. Assuming minimization, the new position of the search is then
defined as

X,.; =X, — hd, (5.16)

n 2 11/2
=5 &) ] 61

and h is the specified stepsize.
This procedure is continued until no further improvement can be found with
the current step size, at which point the step size his reduced by a fractional factor,

where



178

Initialise variables, stepsize h and
reduction factor r

|

»| Calculate gradients by forward
differences

Calculate incremental changes in
design variables

Updgte Calculate new position vector and
function corresponding function value.
value Print out if required
‘ |
- 1S Has function been
reduced?
No

Restore position vector to old
value. Reduce stepsize
h=rh

No Is stepsize less than
acceptable tolerance?

Yes

Output results

Figure 5.14 Flow diagram of gradient method (fixed step-size)

typically in tl}e range 0.1 to 0.5. A further search is initiated and the whole process
repeatec.i until the step size is smaller than the specified acceptable interval of
uncertainty. The algorithm is summarized in the flow diagram of Figure 5.14.

5.6 UNCONSTRAINED FUNCTION OF SEVERAL
VARIABLES — DIRECT SEARCH METHODS

As in the case of single-variable functions, direct search techniques rely on the
current position together with information from previous positions to plan
st.rategies for future moves. No calculation of gradients is involved. A great many
direct search algorithms have been developed and in this section it will be possible
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to give only a brief classification and description with detailed consideration
given to one specific technique.
A broad classification of methods might be as follows:

(i) Tabulation —exhaustive trials of all possible solutions.

(i) Random search —variables selected at random in an effort to shrink the
zone of uncertainty.

(iii) Directed vector —strategy adopted to select directions for search.

These are considered briefly, following which a particular directed vector search
algorithm is presented.

5.6.1 Tabulation

The simplest but computationally most expensive procedure is to tabulate all
possible combinations of variable values. The range of uncertainty for each
variable is defined as

(Xiow) < X < (Xnigh)

where x = (x;, X5, ..., x,)"

If the kth variable has the range (Xpig )i — (xiow )k divided into r, equal intervals
then the objective function z(x) must be evaluated at (r, + 1) points. Extending
this to n variables the total number of function evaluations is given by

ﬁ (r; + 1)
i=1

To gain some impression of the magnitude of such a task, a problem involving
10 variables, each of which is subdivided in 9 intervals (i.e. r = 9), requires 10*°
function evaluations. If each calculation requires 0.01s of machine time,
tabulation will take over 3 years! For problems with only 2 or 3 variables,
however, the method may be competitive with other search techniques especially
if the function is of complex or multimodal shape (i.e. more than one turning
value).

5.6.2 Random search

It is assumed once again that upper and lower limits may be specified for each of
the variables. Random numbers uniformly distributed in the interval

O0<p <1

are generated for each variable x;. A trial point is then defined by the position
vector

X; = (X;)ow — P[0, )high — (x,')lovv] (5.18)
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The method is time-consuming but may be useful for escaping from a local
optimum or in searching for a function with several false optima. After (say) 100
trials, the range may be shrunk around the minimum and the process repeated.
Such a search is sometimes used following a gradient or directed vector search to
provide some guidance as to whether or not the solution is indeed global.

5.6.3 Direction vector methods

These are techniques in which a set or sequence of directions is selected according
to some strategy and a search initiated along these directions. Usually provision
is made for varying the direction during the course of the search.

One method of alternate variable search involves holding constant (n — 1) of
the n variables, the objective function being minimized with respect to the single
variable. Thus the search is parallel to each coordinate axis in turn, changing
direction each time a minimum is located. The method results in a zig-zag,
oscillating search and may be very slow if one of the principal axes of the objective
function is not approximately parallel to one of the axes, as shown in Figure 5.15.

Figure 5.15 Alternating-variable search applied to a function of two variables

= 5.7 PATTERN SEARCH

One popular directed vector method is the pattern search algorithm developed by
Hooke and Jeeves (1957).") The technique is designed to define a search direction
by establishing a series of position vectors b,, called base points, which tend to
follow a principal axis. Each move involves an extrapolation of any success
achieved by moving from the previous base point to the current one, followed by
an exploration of the surface around the extrapolated point to provide
corrections for local conditions. The algorithm thus employs a double strategy
and the rth iteration comprises

() a pattern move from base point b,_, to a new trial centre €5
(i) a local exploration around the trial centre ¢, as a result of which a new
basepoint b, is established.
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These position vectors may be defined as
b, = [(B), (B3),s - -, (B,),]7
cr = [(Cl)r’ (Cz)r7 . 2 = (cn)r:IT

in which
(b,), = the value of the ith variable at the rth basepoint
(c;), = the value of the ith variable at the rth trial centre.

The sequence of operations is described in detail in the flow diagram of Figure
5.16 and later illustrated by reference to a two-dimensional problem.

With reference to Figure 5.17, the pattern search algorithm may be easily
visualized with respect to a two-dimensional problem. The initial position is
located at point 1 which becomes the first basepoint b,. Since no previgus
basepoint and therefore no pattern exists, the pattern move or .extrapolatlo'n
results in zero change and c, is also at point 1. The local exploration about this
trial centre involves function evaluations at points 2, 3, and 4 resulting in a new
basepoint b, at point 4. The second iteration commences with a finite pattern
move to trial centre ¢, (point 5) and after an exploration at points 6, 7, and 8 the
basepoint b, is established (point 8). 4 .

The third iteration proceeds in the same way leading to basepoint b, (pom_t 11),
but it is found that z(b,) « z(b,) so that b, is abandoned and relocated at point 8,
the pattern is lost (since now b, = b,), and a new direction hgs to be squght.

Iteration four has a zero pattern move and terminates in basepoint b,
(point 13). .

Similarly the fifth and sixth iterations lead to basepoints b, (point 15) and by
(point 22). .

Iteration seven commences with a pattern move to a trial centre ¢, (point 23),
but local exploration around ¢, results in basepoint b, being located at point 25
which is coincident (in this case) with point 22 and basepoint b. At this stage, the
search can proceed no further with the present size of increment. The procedure
from this point would involve a reduction of step size (assuming that the
convergence criterion dx < 0Xy;, had not yet been met) and a recommencement
of the search from basepoint b, (point 25). These subsequent moves are not shown
on Figure 5.17 but may be visualized as a repetition of the procedure from the
initial basepoint by,

5.7.1 Implementation of Pattern Search algorithm

The Hooke and Jeeves pattern search strategy is implemented in a FORTRAN
subroutine HIMIN, the listing and documentation for which is f:o'nta.med in
Appendix A. As with other routines mentioned in this chapter, provision is 'made
for the name of the objective function routine to appear in the argument list. In
application, it is necessary for the user to provide a calling or maip program anda
subroutine function. The main program carries out the following functions:
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Initialise trial position vector xq, and values for the incremental changes
8x. The reduction factor p by which the increments are reduced, and a
measure of convergence e must also be specified.
Calculate the vector of minimum increments defining the acceptable
region of uncertainty at convergence, i.e.
Xmin = €.6x

Set the first basepoint by = xg and iteration counter r=1.

Carry out apattern move by extrapolating from the current base point bya

vector equal to the difference between the current and previous base

points. This leads to a new trial centre defined by the position vector
Cr=Dbr—q + (b1 - br_p) = 2b,_¢ - br_p

Update Carry out alocal exploration about ¢, by perturbing successive variables
counter by + &xj and —&x;.
r=r+1 Denoting

2% = z (e (2)r - (Gl + 8% ... (cn)y]

25 =z [(c1)r (C2)r .. (Ci)r — 8 ... (cp)f)

the trial centre is updated and the new basepoint defined as follows:

If 2% < z(ey) (bir = () = (i) + 8
If 275 < z(ep) <z (bi)r = (ci)r = (ci)r — 8%
If 275 = 2(cy) =< 2 (bi)r = (Ci)r

If by = by_1 this means that no change in position has resulted from
either pattern move or local exploration, and search has terminated with
current size of increment.

No Yes
v Check for improve- Check for conver-
es ) i
ment in function i.e. gence of search by
if z(by) < z(by_1)? testing if 8x < dxmin?
No No Yes

Abandon pat- Reduce size Return
tern by setting of increment values
by = by_4 -t X = p.6x X" = by

Figure 5.16 Flow diagram of the Hooke and Jeeves algorithm

(i) Set up storage for variables and increment sizes.

(if) Cause variables and increment sizes to be initialized and assign values to the
increment reduction factor, the convergence criterion, and the maximum
number of function evaluations to be allowed.

(i) Call HIMIN.

(iv) Output results as required.
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Figure 5.17 Hooke and Jeeves pattern search applied to a function of two variables

The objective function routine may have any name, as long as this appears as
an EXTERNAL statement in the calling program, but must have only a single
input parameter consisting of a vector of design variables. Any additional data
required by the objective function routine must be either built-in to the body of
the routine or transferred from the calling program through common block
(preferably labelled). The following examples illustrate the applicatiop of the
method to simple problems. In practice, of course, the objective function may
involve quite complex design calculations involving many ad hoc subroutines.

5.7.2 Example

Find the minimum of the following two-dimensional function by means (_)f tl}e
HIMIN routine, making provision for the coefficients to be varied easily in
successive runs:

z(x) = 2.5(x% — x,)* + (1 — x,)%

The FORTRAN code of Figure 5.18 should be self-explanatory. The results of
the analysis are shown plotted in Figure 5.11(b).

5.7.3 Optimum design of a reinforced concrete tank

Example

A reinforced concrete water tank is to be designed to hold 1500 m?. The tank. isto
be rectangular, open-topped and sunk flush with existing ground level (see Figure
5.19). Freeboard of 0.3 m should be allowed.
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C PROGRAM TO ILLUSTRATE USE OF HJMIN
C SET UP STORAGE ARRAYS
DIMENSION VAR(2),DVAR(2)
C DECLARE EXTERNAL FUNCTION
EXTERNAL COST
C INITIALISE DATA
DATA VAR/-0.5,1.0/
DATA DVAR/0.01,0.01/
C SET PARAMETERS FOR HJMIN2
RHO=0.5
EPS=0.01
NPRINT=1
NMAX=200
CALL HJMIN(VAR,DVAR,2,ANS,RHO,EPS,COST,NPRINT,NMAX)
WRITE(6,30)ANS,NMAX,VAR
30 FORMAT(9H MINIMUM=,F12.3,9H FOUND IN,1I5,
+ 12H EVALUATIONS,/,15H OPT. POLICY IS,2F14.4)
STOP
END
SUBROUTINE COST(X,FX)
DIMENSION X(2)
X1=X(1)
X2=X(2)
F1 = X1¥X1-X2
FX = 2.5*F1*%F1 + (1.0-X1)%(1.0-X1)
RETURN
END

Figure 5.18 FORTRAN code for minimization of (5.9) by routine HIMIN

— Freeboard 0.3m

o Storage
[=—— volume
: 21500 m®

| Breadth B ‘
I 0.25 m average
thickness

Figure 5.19 Reinforced concrete water tank

The floor is priced for an average thickness of 0.25 m and the wall thickness is
estimated from the resistance moment equation

BM = 0.4 x 10°.bd? m-N.

Cost of construction is based on the following rates:
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Item Unit Rate
Reinforced concrete m? 18.00
Forming unexposed surfaces m? 2.70
Forming vertical internal surfaces m? 4.50
Excavation and disposal m3 1.25

Let the inside dimensions of the tank be B, L, and (H + 0.3) m (i.e. water depth
is H m). Since the wall thickness can be designed for a specified water depth H, all
costs can be calculated from these three variables. The problem may then be
stated as

Minimize z = z(B, L, H)
B*H*,[*
subject to
BLH = 1500.

Due to the simple nature of the constraint, any one variable may be expressed
easily in terms of the other two, so that the problem may be reduced to an
unconstrained objective function in only two variables.

The steps in the cost calculation may be summarized as follows:

(i) Select or obtain values for B and H.

(i) Calculate L = 1500/(BH).

(iii) Calculate bending moment for wall for the case of water of depth H with no
outside backfill. (This will usually be the severest test of an open-topped
water-retaining structure since earth pressure moments are usually smaller
and need not be designed for no cracking.) i.e. BM = yH?3/6 where y = unit
weight of water.

(iv) Design wall thickness from

d = (BM/400 000b)*/2.
(v) Obtain cost of concrete, formwork, and excavation.

Coding for the solution of this problem may be organized as shown in Figure
5.20.

The calling statement is designed to suppress printout of intermediate
basepoints prior to the final solution and the results obtained are illustrated in
Figure 5.20. As might be expected, the plan shape of the optimized tank is nearly
square since for any depth this minimizes the perimeter. Clearly if this fact were
used in the design, the problem would reduce to an optimization of a function of a
single variable, the water depth, with the other two dimensions given by

B =1L = (1500/H)'2.

58 CONSTRAINED FUNCTION OF A SINGLE VARIABLE

In most practical problems of optimization the model will include constraints.
These may be either equality or inequality constraints.
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C COST MINIMIZATION OF WATER TANK

SET UP STORAGE ARRAYS, COMMON BLOCK FOR USE

C BY COST ROUTINE AND DECLARE EXTERNAL ROUTINE
DIMENSION VAR(2),DVAR(2)
COMMON /DESIGN/ CRC,CFORMO,CFORMI,CEXC,XL,D
EXTERNAL COST

C INITIALISE DATA
DATA DVAR/10.0,2.0/
DATA DUAR/0.25,0.1/
DATA RHO,EPS,NMAX/0.25,0.01,200/

C SPECIFY COSTS
CRC=18.0
CFORMO=2. 20
CFORMI=4.50
CEXC=1.25
CALL HJMIN(VAR,?2,DVAR, ANS, RHO,EPS,COST,0, NMAX)
WRITE(6,10)NMAX,ANS

10 FORMAT(" AFTER",Il," COST EVALNS. MIN.COST=",F12.2)
WRITE(6,20)VAR(1),XL,VAR(2),D
20 FORMAT(10X,"BREADTH =",F10.3,/,

a

+ 10X,"LENGTH =",F10.3,/,
+ 10X,"DEPTH  =",F10.3,/,
+ 10X,"WALL TH.=",F10.3)
STOP

END

C OBJECTIVE FUNCTION SUBROUTINE
SUBROUTINE COST(VAR,CST)
R R R RN RN RN R RN RN R NN RN R RN R AR R RRARRRRRRRRRRR
C ROUTINE EVALUATES TOTAL COST OF WATER TANK BASED
C ON TRIAL VALUES OF BREADTH AND DEPTH.
C VOLUME OF STORAGE =1500.0 CUB. METRES
C VAR(1) INSIDE BREADTH
C VAR(2) INSIDE DEPTH INCL. FREEBRD.
C
C
C
C

CST = COMPUTED COST
REQUIRES LABELLED COMMON BLOCK /DESIGN/ I.E.
COMMON /DESIGN/CRC,CFORMO,CFORMI, CEXC,XL,D
ER RN R RN RN RN R R R RR RN RN R R RN RRRRRRRRRRRRRRRRRNRRR

DIMENSION VAR(2)
COMMON /DESIGN/ CRC,CFORMO,CFORMI,CEXC,XL,D
B=VAR(1)
H=VAR(2)
XL=1500.0/(B*H)

C NOTE: XL TRANSFERRED BACK TO CALLING PROGRAM

C VIA COMMON BLOCK
BM=1000.0%9.81*H*H#*H/6.0
D=SQRT(BM/400000.0)
HTOT = H+0.25+0.30
CONC=(0.25%B¥XL) + 2,0%(B+XL+D)*HTOT#*D
FORMO=2.0%(B+XL+2.0%*D) ¥*HTOT
FORMI=2,0*(B+XL)*(H+0.30)
EXC=(B+2.0%D) *(XL+2.0%D) ¥HTOT
CST=CRC¥CONC + CFORMO¥*FORMO + CFORMI¥*FORMI + CEXC*EXC

RETURN
END
AFTER 103 COST EVALNS. MIN.COST = 8343.45
BREADTH = 24,875
LENGTH = 24,903
DEPTH = 2.422
WALL TH.= .24

END OF PROGRAM
Figure 520 FORTRAN code for the water tank problem (Section 5.7.3)
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A zx)

Solution

' >

X

* Xspec

Figure 5.21 Equality constraint on function of a single variable

If the objective function z(x) depends on only a single variable x then clearly the
imposition of an equality constraint dictates a unique solution, with no
opportunity to modify the objective function. Figure 5.21 illustrates the situation.

It should be noted that when the constraint is of the general form

h(x) = 0

this may always be transformed into one or more simple equality constraints of
the form

X = (xspec)i 1= 1, 2, e

where (X, ); represent the real roots of the function A(x). If more than one real
root exists then each must be tested to obtain the constrained value of x for which
z(x) is a minimum. For example,

Minimize z = x> + 2x + 4
X*
subject to

Thus
x=4+2, -2

Z(+2)=127 Z(—2)=4a x*= -2 and Zin = 4.

The existence of inequality constraints on the other hand need not reduce the
feasible region to one or more points. As with equality constraints, inequality
constraints of any arbitrary functional form applied to an objective function of a
single variable may always be reduced to one or more simple constraints of the
form

or
X < Xax-

Asillustrated in Figure 5.22, the constraints may or may not be active, i.e. the
optimum solution may or may not be affected by the presence of the constraints.
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z(x) Inactive constraint

N Active constraint

Solution

Unconstrained minimum

—

X X

min max

Figure 522 Active and inactive inequality constraints on a function of a single variable

Two strategies may be employed in the solution of such problems:

(i) At each iteration of the design variable x, check if any of the inequality
constraints are violated. If so, set the variable equal to the stipulation. Using
this procedure, if two successive values of the variable differ by less than an
acceptable amount, the search has converged.

The algorithm is illustrated in the flowchart of Figure 5.23.

Initialise x, and set
iteration counter r=1

l

Calculate correction Axy
and hence improved value
Xr+1 = Xr + AXp

Yes
r=r+1 Xr+1 = Xmax?
No _
Xr+1 = Xmax.
X — X < €?
No Pr+1- x| Yes

*

X =X

r+1

Figure 523 Flow diagram illustrating incorporation of a simple inequality constraint
(function of a single variable)

(i) A more general approach involves a modification of the objective function by
the addition of penalty terms the values of which are proportional to the
degree by which the constraints are violated. For minimization the penalty
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terms are positive, thus forcing the solution away from infeasible regions.
Thus the following model would be transformed from a constrained to an
unconstrained problem by creating an artificial objective function:
Minimize z(x)
. x*
subject to

XX xmax

<
X > Xmin -
Alternatively,
Minimize Zmoda = 2(x) + 10%(x — Xmax)d; + 10%(Xmin — X)J, (5.19)
where
6, =1 for (x — xp) >0

=0 for (x — Xpu) <0
d,=1 for (Xpm—x)>0
— 0 for (xmin e x) < 0

The terms 8, and 8, are included simply to express mathematically the fact that
the terms (X — Xp,,) and (xmin — X) are included only when positive. In practice it
is likely that such a strategy would be used only in a computer-coded solution in
which the necessary logic can be easily incorporated in the objective function
subroutine, e.g.

SUBROUTINE FUN(X,Z)

L= Yoo e e o) lote) eiviororeTatels (suitable coding)
PEN1=1000.0*(X-XMAX)

PEN2=1000.0* (XMIN-X)

IF(PEN1.LT.0.0)PEN1=0.0
IF(PEN2.LT.0.0)PEN2=0.0

Z=Z+PEN1+PEN2

RETURN

END

The penalty term strategy has the effect of erecting very steep ramps on top of
the unconstrained objective function as illustrated in Figure 5.24.

59 CONSTRAINED FUNCTION OF SEVERAL VARIABLES

When a function of several variables is to be optimized subject to constraints, the
model takes the following general form:

Minimize z = z(x) X = (x;, Xp,...,X,)"

X*

subject to
gx)=0 i=12,...,r

gifx) €0, =1 % 1, F $:2su vy Pk S,
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z(x)

X

Penalty
term

Objective function

X

L ! o
>

Xmin X max

Figure 5.24 Inequality constraints simulated by penalty terms

The type of constraint may be either equality or inequality. The functional
form g(-) of the constraint may be linear or non-linear, explicit or implicit, and
may involve any number of the n design variables. It should be noted that
inequality constraints may be written either as ‘greater than’ or ‘less than’
constraints simply by reversing the sign of the function g(-) and it is good practice
to adopt a particular format as standard.

5.9.1 Equality constraints

In general, when equality constraints are encountered the objective function and
the functional form of the constraint should be carefully examined to check
if the constraint may be incorporated into the objective function by
substitution for one of the design variables. This has the advantage of reducing
the number of design variables by one for each equality constraint so treated. This
device is simple if the form of the constraint is such that one of the variables may
be expressed explicitly in terms of other variables and/or known numerical
constants. The example of Section 5.7.3 is typical. For the constraint

BLH = 1500

any one of the three design variables can be expressed in terms of the other two.

In cases where the functional form of the constraint g(x) is more complex and is
not amenable to manipulation into an explicit form, it may be computationally
advantageous to solve for one of the design variables in terms of the others by
some iterative procedure. The case study of Section 12.5 provides a typical
illustration of such an approach.

Frequently, however, the equality constraint is too complex to allow
substitution in this way and it is necessary to adopt the device of the penalty term.
As for functions of a single variable, this involves creating an artificial objective
function by the addition of terms which have an arbitrarily high value when the
constraint is violated and zero value when the constraint is satisfied. The sign of
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this penalty term will be positive for problems of minimization and vice versa. To
reduce the effect of the discontinuity on the objective function ‘surface’ it is usual
to make the magnitude of the penalty term proportional in some way to the
extent to which the constraint is violated. Indeed, there may be cases where the
form of penalty term is designed to provide a gentle transition between the
original surface of the objective function within the feasible region a_md the steep
gradients arising from the penalty term. The following examples illustrate the
procedure.

Example

The functions of this example are extremely simple so that visualization of the
problem is made easier. As a result, direct substitution would be possible but is
not employed.

Minimize z = (x; — 10)*> + (x, — 5)
subject to g
X, +2x, = 14.

Figure 5.25 shows the contours of the objective function which form a series of
concentric circles around the point x = (10, 5)T with a value of z corresponding to

the square of the radius.

A %2 10
— — 8
:’—-—«::\/ 6
7~ s ///,——\\:\/ g
i \)(V\/‘)/_
\ \\|
5 patl
// ///I
//:///

Solution

>
10 14 1

Figure 5.25 Spherical objective function subject to a single equality constraint

The constraint appears on Figure 5.25 as a straight line passing through .the
points (0, 7) and (14, 0) and since the solution must satisfy this equality constra%nt,
the feasible space becomes the set of points forming that line. Clearly the solution
must be at that point on the line which is tangent to one of the circles, and could
be found for this simple problem by coordinate geometry. The solution may be
visualized as the lowest point on the section produced by a cutting plane along
the line x, + 2x, = 14.
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To apply the device of penalty terms the objective function is modified to the
following form:

Minimize z, = (x; — 10)* + (x, — 5)* + 10%|(x, + 2x, — 14)|
XT.%3
where |-| denotes the absolute value. Thus the penalty term will have a non-zero
value for any point not satisfying the constraint. The constant multiplier of 10? is
somewhat arbitrary but certain problems may be sensitive to the scaling of the
penalty term in relation to the objective function. Figure 5.26 shows the resulting
surface of the now unconstrained function Zy. It will be appreciated that the

Figure 526 Contours of artificial objective function

adoption of too large a multiplying constant on the penalty term may mask to a
great extent the influence of the real objective function making a search procedure
inaccurate or even impossible. As a general guide, the penalty term should
increase the objective function by only one or two orders of magnitude in the
vicinity of the solution. Even with this precaution it is good practice to evaluate
the final optimum value of the objective function by means of the real objective,
unmodified by penalty terms.

5.9.2 Imequality constraints

The treatment of inequality constraints is similar to the previous example with
the difference that the feasible region is usually not reduced to a line segment and
therefore a portion of the real objective function ‘surface’ is unaffected by the
penalty terms. The situation is best illustrated by a modified form of the previous
problem.

Example

Minimize z = (x, — 10)* + (x, — 5)?

* %
X19%)
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bject to
] x, +2x, = 14.

The constraint may be re-written as
14 —x, —2x, <0
and the modified objective function becomes

Zan = (%, — 10)* + (x, — 5)* + 6,.10%(14 — x; — 2x,)
where
60,=1 for (14 —x, —2x,)>0
=0 for (14 — x, —2x,)<0.

As mentioned in Section 5.8, the inclusion of the term'é1 is a ma.tl?ematical
formality and in practice the same result is achiev;d by a simple conditional test
in the coding of the objective function subroutine. Flgure 5.27(a) shows: the
contours of the artificial objective function and it is obvious that the constralpt is
inactive and the solution x* = (10, 5) is identical to that for the unconstrained

function.

A% :
Surface of ] = Solution
original objective /x//
San
\7 1 T2, B
25719 /
5 -

+ penalty term

(a)

Surface of objective
+ penalty term

Solution

Surface of _/ <

original objective X

-

14

o
g

(b)
Figure 527 (a) Inactive inequality constraint. (b) Active inequality constraint



194

As a second example, consider now the effect of reversing the sign of the
constraint, so that the problem becomes

Minimize z = (x; — 10)*> + (x, — 5)*
subject to v
x; + 2x, < 14
or
X, +2x, — 14 <0,

Thus, the equivalent unconstrained function becomes

Zan = (xy = 10)* + (%, = 5)* + 6,.10%(x; + 2x, — 14)
where
6, =1 for(x, +2x, —14) >0

=0 for (x, +2x, —14)<0.

The corresponding surface is shown in Figure 5.27(b), from which it is seen that
the solution is the same as in the problem of Section 5.9.1 with the equality
constraint.

5.9.3 A transitional penalty term

From the illustrations of the previous two sections it will be readily appreciated
that the intersection of the surface of a real objective function with the steep ramp
resulting from a penalty term will frequently produce a very sharp-edged, steep-
sided valley. Although special algorithms have been developed to negotiate such
surfaces—notably by Bandler”—the search strategy used in algorithms similar
to Hooke and Jeeves may well be frustrated by such discontinuities. The hazards
can be reduced to some extent by careful weighting of the penalty terms to ensure
that the influence of the real objective function is dominated but not completely
lost. A further refinement is possible by designing a penalty term which is not
linear in terms of the extent of violation, but provides a gentle, curved transition
at the edge of the feasible region, something like a cove at the junction between
floor and wall.

Many alternatives are possible and the following approach is suggested for
purposes of illustration. Consider the problem represented by the following
model:

Minimize z = z(x) (5.20)

subject to
9:x)<0 i=1,2,...,s.

This may be converted to the unconstrained objective function:

Minimize zu = z(x) + ). dc,(e™ — 1) (5:21)
x* i=1

195

where
6=1 forg,x)>0

or 0=0 otherwise

and
¢; = a weighting factor for the ith constraint.

By this device, the penalty term has zero value at g,(x) = 0, and disappears also
for g,(x) < 0, but the magnitude of the penalty increases in a smooth exponential
transition as the extent of constraint violation increases.

For equality constraints the form of the penalty term becomes

r

Y e (e — 1) (5.22)
i=1
where || implies the absolute value.

With this arrangement there is the possibility that the solution obtained by a
search procedure may violate a constraint by a very small amount. However, the
chances of the search being prematurely terminated in a sharp valley are
considerably reduced and the relative benefits and disadvantages must be
weighed by the engineer in each case. As mentioned previously (Section 5.9.1) it is
important to obtain the final evaluation of the objective function with the
unmodified expression — i.e. without penalty terms — to avoid small residual
penalties artificially increasing the true optimum value.

A more rigorous approach employing non-linear penalty terms has been
suggested by Fiacco and McCormick® in which penalty terms are added both
inside and outside the feasible space. Thus with reference to (5.20) an artificial
unconstrained objective function is formed as follows:

i s S, 1

Mln::mze Zan = 2(X) — k i; e
in which the value of k is positive and approaches zero. Inside the feasible region
g(x) < 0 and the penalty is large and positive. As k — 0 the minimum is swept
closer and closer to the constraint. Outside the feasible region g(x) > 0 and the
penalty is large and negative, thus forcing the solution towards the constraint.
Good explanations of the methods are given by Aoki and by Daellenbach and
George.??

(5.23)

510 EXERCISES

5.10.1 A two-bar cantilever is to be designed to support the vertical load W
(=500 kN) at a distance L (=3 m) from the wall as shown in Figure 5.28.
The members AB and BC are to be tubular in section, of diameter D and
wall thickness T. The working stresses in the two members are given by

f(tension) =125 N/mm?
f(compression) = 125(1 — 0.01L/D) N/mm?.
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5102

5.10.3

W = 500kN

¢ L =3m

.

Figure 528 Two-bar cantilever

The vertical deflection of point B should be not greater than 15 mm
assuming a modulus of elasticity of 200 kN/mm?. Determine a design
which will minimize the total weight of material assuming D and T to be
continuous.

A roof member is to be formed as a folded plate with the cross-section
shown in Figure 5.29. The member is to support a superimposed load of

Figure 5.29 Folded plate roof member

3500 N/m? over a simply supported span of 4 m. The maximum allowable
working stress is 100 N/mm? and the mid-span deflection due to
superimposed load only is to be not greater than 1/180 of the span. The
properties of one complete ‘wave’ of the member may be approximated by
the following expressions:

A = 2bt + 2(h — t)(t/sin 0)
I = 2bt(h/2)* + (t/sin O)(h — t)3/6.

Assuming an elastic modulus of 200 kN/mm? design the dimensions for
minimum weight.

Figure 5.30 shows the cross-section of a mass concrete wall to retain a
height of H = 3 m of soil. For simplicity the pressure distribution on both
front and rear faces may be assumed to be linear and given by:

Pactive = 03)’1’1
ppassivc == 18')’]’1

—

H
et A
e
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Active Pressure

Figure 5.30 Mass concrete retaining wall

where y is the specific weight of the soil (14 kN/m?). Friction on the rear
face may be ignored but on the base a coefficient of 0.35 should be used.
The wall is to be designed for the following criteria:

Omux < 100 kPa
O min 2 0
Factor of safety against sliding = 2.

The cost of construction may be estimated on the basis of concrete and
formwork using the following rates:

Concrete $120/m3
Front face forms  $ 30/m?
Rear face forms $ 15/m2.

Proportion the dimensions a, b, ¢, and d for minimum cost (weight of
concrete = 23 kN/m?> approximately).

5.10.4 Figure 5.31 shows the arrangement of sheet piling, waling beam, and struts

to brace an excavation. The pressure distribution (greatly simplified for
this analysis) is assumed to be uniform from the surface down to a point A

Strut ULSIA
‘ru 7 N B & 4 B
{ s
12m g - ¢

A A
g

. el I Shear Bending
Hinge -4—4\ Pressure p

Figure 5.31 Sheet piling system




198

which represents a virtual hinge. The pressure is 30 kN/m2. Costs for the
three components are given (per metre length of trench) in terms of the
force actions resisted by the members. Thus:

Piling: C, ($/m) = 60 + M,/40 (M, in kN-m/m of trench)
Wale: C, ($/m)= 4 + M, /20 (M, in kN-m)
Struts:  C; ($/m) = 124/S + F/20  (F in kN/m of trench)

where M, and M, are the moments in the piling and waling beam
respectively, F is the thrust per metre of trench, and S is the strut spacing in
metres.

Determine the optimal values of the height H (m) and strut spacing S
(m) and hence the minimum cost per metre of trench. (Adapted from Stark
and Nicholls.®)

5.10.5 A catchment has been found to have an instantaneous unit response

function as defined below, the values being at equal time intervals of 1
hour.

u( )=20.0 0.0 0.0464 0.0976 0.1585
0.1464 0.1196 0.0988 0.0773 0.0572
0.0428 0.0379 0.0304 0.0237 0.0173
0.0132 0.0106 0.0079 0.0059 0.0036
0.0025 0.0018 0.0009.

It is intended to model this as the response of a cascade of 4 linear
reservoirs and a linear channel in series. If the lag times of the reservoirs
arerespectively K, K,, K;,and K, and the channel lag is K, the response
can be expressed as follows:

ut,)=0 fort,=t—K,<0

u(t,) = ), [K;?—l e—:./Kj/l_[ (K; — Ki)J fort, =t—-K,>0

j=1 i=1
i#j
in which n = 4 for this case.
Determine the optimal lag values which best represent the observed
response (Smith and Kimmett®).

5.10.6 Solve the problem of Section 1.4 by direct search.
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Chapter 6
Dynamic Programming

6.1 INTRODUCTION

Various mathematical programming models for civil engineering systems have
been described in Chapters 3,4, and 5. Such methods are mainly suited for single-
stage decision problems. Many civil engineering systems, however, involve
multistage decision problems in which the outcome of a decision at one stage
affects the subsequent decision for the next stage and so on. Consider the
following examples of multistage problems which are encountered in certain civil
engineering systems:

(i) In the design of a trunk sewer, the selection of a steep gradient in one reach
will result in cost reduction for that particular reach but may incur a cost
penalty in downstream reaches as a result of the lowered invert level of the
pipe.

(ii) The selection of floor, column, and foundation elements for a simple
structure must involve not only the cost minimization of each component
but also the effect of increased self-weight on ‘downstream’ elements. For
example, reinforced concrete columns may be the cheapest type of column
support, but savings may be offset by the added cost of foundations to
support the increased transmitted load.

(iii) If several activities (for example, irrigation schemes) compete for a limited
resource (for example, money or water) then each activity may be considered
in turn using an arbitrarily chosen sequence. The decision regarding the
amount of resource to be used in a given activity will affect the remaining
amount available for activities considered after it. A problem of this type is
described later in detail together with a useful computer program for its
solution.

(iv) In selecting a path through a network (in order to minimize or maximize
time, cost, distance, etc.) the choice of direction at any particular node in the
network will affect only the path through the remaining nodes. A pipeline
network problem is described in detail in Section 6.2. It should be noted that
alternative methods for dealing with network problems can be found in
Chapters 4, 7 and 8.
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Techniques for solving multistage decision problems usually involve the
breaking down of the system into stages, the formulation of recursive equations
based on the serial relationships between the stages, and the sequential solution
of these equations.

Dynamic Programming (DP)-7, which is a general approach to the solution
of multistage decision problems, will be described in this chapter with the aid
of a number of examples and a small computer program. DP was developed
originally by Bellman‘? and fellow workers at the Rand Corporation in 1957
and it has since found many applications in a wide variety of fields including
those of direct interest to civil engineers.

6.2 A PIPELINE NETWORK PROBLEM

To demonstrate the DP approach, the simplified pipeline network problem
shown in Figure 6.1 is considered. Town A requires a new source of water from
river E. The terrain between the town and the river is such that a variety of
alternative routes are available, each involving different levels of expenditure. It
has been decided that there are four possible locations for the intake of water
fromriver E (at points EI-E4) and 12 possible intermediate locations for the three
pumping stations (B1-4, C1-4, and D1-4) through which the pipeline must pass
as shown in Figure 6.1. The numbers attached to cach pipeline link represent the
construction cost and the number in each box is the cost of the pumping station.
The problem is thus one of finding the pipeline route linking river E with town A
resulting in minimum total cost.

In this small example it is simple (if tedious) to find the cheapest route by
evaluating all possible routes. This procedure, known as enumeration, becomes
almost impossible to apply for larger problems. A more efficient solution for such
problems can be obtained using DP.

6.3 SOLUTION OF THE PIPELINE NETWORK PROBLEM

The pipeline network can be considered as a multistage process in which each of
the four stages involves the choice of a direction (e.g. northeast, east, or southeast)
for the pipeline route, from any one of a number of possible starting points (i.e. a
pumping station or, in the case of the first section, the origin at town A).

Consider now a sub-problem comprising, for example, the continuation of the
pipeline from station B2; the problem can again be regarded as a multistage
process which has the same kind of structure as the original problem, i.e. each
stage involves the choice of a pumping station site and the associated pipeline
section. In this case, only three stages remain to be completed. An identical
observation may be made not only for all other sites of the first pumping station,
but also for the second, third, and fourth, except that fewer stages are left to be
completed.

Assume that by some means, as yet unspecified, the minimum cost is known for
completing the pipeline to the river E from each of the four alternative sites B1,
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Figure 6.1 A pipeline network problem

B2,B3,and B4. The costs are (say) 54 from site B1, 57 from site B2, 59 from site B3,
and 60 from site B4. See the table below for details:

Minimum
Cost of completion
Origin Route Destination pipeline cost from B Total cost
Al N B1 12 54 66
Al NE B2 8 57 65
Al SE B3 7 59 66
Al S B4 8 60 68

It is now a simple matter to find the minimum cost from town A.
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The lowest cost is obtained by the section from A1 to B2 then by taking the
optimal route from there. It would therefore be possible to find the best route
from the origin at town A to river E, if the optimal route to station E from each of
the sites for station B was known. However, the problem of completing the
pipeline from each site for station B is also a multistage process. It would thus be
possible to adopt the same technique as before if the minimum cost of completing
the pipeline from each of the four sites for station C was known.

This leads to the fundamental idea behind DP. Starting with only one stage to
be considered, the minimum cost of completing the pipeline from each site for
pumping station D is found. Then working in reverse order, stage by stage, the
minimum cost of completing the pipeline from each site of the preceding station is
evaluated until the origin at town A is reached and the overall minimum cost
solution is found.

The solution for the whole network is summarized in Figure 6.2. First, the cost
is noted for each of four possible sites for station E at the river. These costs are
recorded in the large boxes representing sites E1-F4.

C1 D2 E2
10+8+36 945425 941+ 7
min min min min 7
10+7+42 9+6+21 9+10+ 6
= 54 = 36 = 25 =7
B2
g1]_8 [c1] 5 [o7] 1 El
12 + 54 10 9 9 7
7 6 10
i 8.57 C1 D3 E2
7+59 11+10 +36 [12+10+25] 7+9+7
8 + 60 min [11+7 +42 min | 12+10+21 min|7+8+6 min 6
11+6+ 45 1248422 7+10+8
= 65 R 3
= 57 = 42 = 21 = 6
10 10 9
B2 i D2 8 E2
12 1 7 6
6 10
8 C4 E2
10+9+42 13+12+21 6+10+6
A1 min [10+8+ 45 min [13+10+22 min[6+9+8 min 8
7 1047 +42 1349430 6+10+9
= 59 = 22 = 8
9 10
8
83 8 ca 10 D3 g E3
10 13 6 8
7 9 10
Cé D3 E3
12+9+45 8412+ 22 12+10+8
min min min min 9
1246 +42 8410430 1241149
= 60 =42 = 30 = 9
9 12 o1 1Y)
BL 6 Cd 10 D4 1 E4
12 I 8 I | 12 I

Figure 6.2 Pipeline network solution
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Next, the best decision (i.e. route) for each site for station D is evaluated. For
example, from D1 the following choices are available:

Station Cost of Completion
Origin Route  Destination D1 pipeline from E Total
D1 E El 9 11 7 27
D1 SE E2 9 10 6 25

The optimal decision at site D1 is a pipeline routed southeast (SE) to site E2 ata
cost of 25 monetary units.* These calculations are shown in the box associated
with site D1. The label E2 above this box signifies the best destination for the
pipeline to take next.

The three other sites for station D are considered next; the reader can verify the
calculations shown in Figure 6.2.

As the optimal route from each possible site for station D is now known, the
optimal decision for each site of station C can be obtained in a similar manner. In
this way it is possible to eventually evaluate the minimum cost for town Al.

The minimum cost route from A1l can now easily be found; it takes the form

From Al Northeast to B2
From B2 Northeast to C1
From C1 Southeast to D2
From D2 East to E2.

64 DYNAMIC PROGRAMMING TERMINOLOGY

The commonly used symbols and terminology in DP® are described in this
section with reference to the pipeline network problem in Section 6.2.

6.4.1 Stages or components

Consider a sequential system consisting of n stages or components. In DP,
optimization is frequently carried out by considering these stages in reverse order
and so it is convenient to number the stages in the same manner. A stage or
component corresponds to a point in time or to a specific milestone on the
solution route. At each stage the engineer must decide on, or adopt, a policy for
proceeding along a specific route to the next stage. Typically, stage i is denoted
by a box as shown in Figure 6.3.

6.4.2 State

At each stage, a system is found to be in one of several possible conditions or
states which are described by state variables. In other words, each stage is
associated with either a finite or an infinite number of states. The decision of how
*£1000=1 monetary unit.
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i Stage or component i

Si! Input state variable S_i or
R Si output state variable Si
‘¢d| Decision variable dj
Si Specified state variable
IOR Si fixed in value
Si Specified state variable
oR Si with  multiple values
\l/ri Stage return function r;

Figure 6.3 Notation used in dynamic programming

to move from one stage to another may frequently be a decision of how to
transform the system from one state to another. On other occasions, the state
variable may represent an important effect of the decision made in the previous
stage or activity, the result of which is to impose some penalty or constraint on
‘downstream’ or subsequent activities (e.g. in the illustrative problems of Section
6.1 the depth of the sewer pipe, or the self-weight of the structure, may be seen as
state variables). The optimal solution to the DP problem is a choice of the best
transformations that take the engineer from the initial state to the final state.

In the pipeline network problem there are four possible states at the
commencement of stage 1: i.e. states coinciding with station sites D1, D2, D3,
and D4.

6.4.3 State variables

State variables carry information from stage to stage and are denoted by a half
arrow as shown in Figure 6.3. Consequently, a state variable is an output from
one stage and an input to another. The input state variable to stage i is denoted by
S;. The output state variable, S—,., from the same stage, is related to the input state
variable S; and to the decision variable d; through the state transformation
function T, by the expression

S; = T(S;, d). 6.1) -
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6.4.4 Decision variables

The decision variable d; at stage i is symbolized by a full arrow. This is an input
variable which supplies information to the system or describes a course of action
which should be taken during the activity represented by the present stage.

Thus for a given state at stage i indicated by input state variable S, and for a
given value of the decision variable d, at stage i, the state transformation function
T,(S;, d;) gives the output state variables S, which in turn indicates the new state
reached by the solution at stage i — 1. T, may be a mathematical function or
matrix or, more simply, a set of rules governing the transformation from one state
to another state at adjacent stages as in the pipeline network problem. Thus, for
example, the input state variable S, at stage 1 in the pipeline network problem
can take the values D1, D2, D3, or D4 and the output state variable S , can take
the values El, E2, E3, or E4.

If the decision d, may take one of the three values Northeast (NE), East (E), or
Southeast (SE), the state transformation function T,(S,, d,) may be represented
by the following matrix:

dl
S, NE E SE
D1 — El E2
D2 El E2 E3
D3 E2 E3 E4
D4 E3 E4 —

6.4.5 Stage return function

A stage return function r; at stage i, which is represented by an open arrow as
shown in Figure 6.3, measures the effectiveness of the decision d, for any specified
value of the input state variable S; and is given as

R; =r1{S;, d;). (6.2)

This function R; may be available as either:

(i) A mathematical function or set of functions which can be presented
graphically as r; against d; for a set of state variables S,.
(ii) A set of discrete values in the form of a matrix.

The return functions in the pipeline network problem, which are given discretely
because of the nature of the problem, are shown in Figure 6.2. For example, the
return (in this case a cost) for stage 2 (station C to station D) may be represented
by the following matrix:
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d,
8, NE E SE
ci - 14 15
C2 2 2 20
C3 25 23 22
C4 20 18 —

Note that each return (e.g. 14) comprises a component which is the cost of
occupying a particular value of S, (e.g. 9 at station C1) and a further cost as a
consequence of the decision d, (e.g. link cost of 5).

The total return-is given as the sum of the stage functions

M=

R =

i

T (6.3)

i
1

Whether the function r, is available in form (i) or (ii) it is usually tabulated for
discrete values of §; and d,. Intermediate values can then be obtained by recourse
to the original mathematical function, if it exists, or by linear interpolation.

6.4.6 Policy

A set of sequential decision rules covering each stage of the system is called a
policy. For example in the pipeline network problem a typical — though non-
optimal — policy might be represented by the decisions SE, NE, SE, E.

6.4.7 Optimal policy

A policy which optimizes the total return (e.g. cost) of the entire process (e.g.
pipeline network) is called an optimal policy. The optimal policy in the pipeline
network problem is (NE, NE, SE, E).

6.4.8 Specified state variables

The value of one or more state variables may frequently be specified. The
specification of a variable is denoted by a vertical with one or more cross lines as
shown in Figure 6.3. The input state variable S, at stage 4 in the pipeline network
problem is specified as A1 since the pipeline must finish at town A. This is known
as an initial-value problem.

6.5 THE PRINCIPLE OF OPTIMALITY

Bellman’s Principle of Optimality states that: ‘An optimal policy (set of decisions)
has the property that whatever the initial state and decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting
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from the first decision.” Dynamic programming is based on this principle.

It is instructive to re-work the pipeline network problem using the standard
notation and thereby develop the recurrence equations of dynamic
programming.

6.5.1 A re-examination of the pipeline network problem

The desired objective is to minimize an n-stage objective function which is given
by the sum of the individual stage return functions. Such a problem can be written
as follows:

Minimize z = [r,(S,,d,) +7,_,(S,_,d,_ ) +...+r(S;, d,)]. (6.4)

d

Figure 6.4 shows a diagrammatic representation of an n-stage pipeline network
problem using the notation described in Section 6.4. It can be seen that the stages
are numbered in reverse order to simplify notational problems in dealing with the
end stage first.

dn

oo

"_x n l_~_~ i

Sn Sn1 Si Si- Si-2 S So

(=1

di d4

Tn Fi Fi-1 T
Figure 6.4 An n-stage minimization problem

Two important characteristics of the DP problem should be emphasized at this
point:

() The general objective function should be capable of decomposition into n
separable return functions each of which depends on a single decision
variable. Moreover, each decision variable must appear in one and only one
return function.

(i) The problem should be capable of being described in a purely serial or
sequential way. No ‘feed-back’is allowable, whereby a decision at some stage
may affect the outcome of another stage which has previously been
considered.

The analysis begins with the sub-optimization of stage 1 as shown in step 1 of
Figure 6.5. This involves the solution of the problem

H:Iin [ry(Sy, d1)] = f5(S,): (6.5)

The best value of the design variable, denoted as d;, and the value of the
minimum itself, denoted as f¥, depend on the condition of the input state variable
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Step 1 lm

Sy
|
-
Step 2 rZ r’*
Sy
S
2 5 f1%(S,)
Step 3 d3 do* di*
+ y
=~ 3 2 1
= s, /]
S3
L}
fo*(S,)
Step N dn dnq* dn-2* dn-3* dq*
j‘,t_‘ h n-1 n2 n—3%1 %
Sn—‘l
Sh
M
frz % (Sha)

Figure 6.5 Sequence of sub-optimizations

that this last stage receives from stage 2 (i.e. on S,). This dependence can be
denoted symbolically by d(S,) and f*(S,). Since the particular value of S, which
occurs in the overall optimal policy cannot be known at this step in the solution,
this initial sub-optimization problem is solved for the range of possible values of
S, and the results tabulated.

For example, in the 4-stage problem discussed in Section 6.3, S, can take the
values of D1, D2, D3, or D4. The decision d, can take the values (i.e. the compass
directions) NE, E, or SE. For the 4 values of S, the optimal values are given by
(6.5) and these results together with the corresponding optimal decision are
tabulated as follows:
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Stage 1

Sy, dy) + fK(S,) for d; =

S, NE E SE fr dr
D1 — 9+114+7=27 9+10+6=25 25 SE
D2 T+9+7=24 7+8+6=21 7+10+8=25 21 E
D3 6+10+6=22 6+9+8=23 6+10+9=25 22 NE
D4 12+104+8=30 12+411+9=32 — 30 NE
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Stage 2
r,(S,,d,) + fX(S,) for d, =

S, NE E SE Ay
Cl1 — 9+5+25=139 9+6+21=36 36 SE
C2 12+4+104+25=47 12+10+21=43 12+8+22=42 42 SE
C3 13412+21=46 13+10+22=45 13+9+30=51 45 E
C4 8+12+22=42 8+10+30=48 — 42 NE

By inspection of the cost figures in Figure 6.1 it will be seen that each of the
calculations involves three components:

(i) the cost of being at state S,

(i) the cost of making decision d,, and

(iii) the minimum cost of completing the pipeline from the downstream state S,
which results from §; and d,, ie. S, = T,(S;, d,).

The next step in the DP solution is to combine the last two stages. The principle
of optimality states that the design variables d, and d, must be adjusted so that
stages 1 and 2 taken together are sub-optimized with respect to the input state
variables S, as shown in step 2 of Figure 6.5. This sub-optimization can be written
as follows:

I;lin [ry(S,, d,) +7r,(S1, )] = 155(S,)

or (6.6)
min [rz(Sz, d,) + min {r (S,, d1)}:| = f(S,)

However, the optimal solution for stage 1 for various values of the input state
variable S, is available from the table of f;* against S,. Thus the optimal solution
f¥(S,) may be substituted in (6.5) so that

IIZin [72(82, dz) +f1*(S1)] =f2(S2). (6-7)

By making use of the state transformation function

Si-y = TS, d) (6.9)

13

(6.7) can be written entirely in terms of S, and d, as

n;in [ra(S, dy) + [ (TS, dy))] = f35(S)). (6.9)

2

For the 4 values of S, the 4 corresponding optimal values can be tabulated as
follows, noting that:

S, = TS, dy). (6.10)

It should perhaps be emphasized here that the number of variables that need to
be considered during minimization has been reduced from 2 (i.e. d, and d,) to 1(
ie. d,) and reference to stage 1 is now through the table of f;* against S, rather
than through a separate minimization problem.

The next step is to consider the last three stages in combination. The principle
of optimality states that the design variables d,, d,, and d, must be adjusted so
that stages 1, 2, and 3 taken together are sub-optimal with respect to the input
state variable S; as shown in step 3 of Figure 6.5.

This sub-problem can be written as

dn;ig [r3(83, d3) + 15(S5, dy) + 74(S}, d,)] = f3K(S5) (6.11)
ot ¢ S e §
n:in l:r3(S3, ds) + Znin {ry(S,, d,) + ry(Sy, dl)}:l =13(S3)
or finally

n;in [r3(S3a d3) +fz*(S2)] =f3*(S3)-

For the 4 values of S, the corresponding optimal values can be tabulated as
follows:

Stage 3

r3(S3, d3) + £55(S,) for dy =

S5 NE E SE o af

B1 10 + 8 + 36 = 54 10+7442=59 54 E

11+ 10 + 36 = 57

B2 / 11+7+42=060 11 +6+45=62 57 NE
B3 10 +9 +42 =061 10 +8 +45 =63 10+7+42=59 59 SE
B4 12+ 9445 =66 12+ 6 + 42 =60 — 60 E

The final stage in the solution is to consider all four stages taken together. This
sub-problem can be written as

min [r,(S,, d,) + r4(S;, dy) + r5(S,, dy) + 1,(S,;, d,)] =fXS,) (6.12)

d,,dy,d,,d

4,83,42,44
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or

rr;in [r4(S47 d4) + f3*(S3)] = f4*(S4)~

The process may be visualized as the last step of Figure 6.5in which n = 4. For the
single value of S, the corresponding optimal value can be tabulated as:

Stage 4

r(Sy d,) + f5(S;) for d, =

S, N NE SE S fx dr

Al 12+ 54 =66 8 + 57 =65 7+ 59 =66 8 + 60 = 68 65 NE

Having assembled the four tables describing the optimal performance at each
of the four stages, it is possible to identify the minimum cost and also the optimum
sequence of decisions which lead to this result. Although the least-cost path was
identified in Section 6.3, it is instructive to note how the information contained in
the tables is used to ‘unroll’ the optimum policy. The following steps describe the
process:

(i) From the table for stage 4, only one input state (A1) is possible and the
minimum cost is immediately given as 65 monetary units.

(ii) The optimum decision in stage 4 is a move in the NE direction. The state
transformation function (as defined in Section 6.4.5) is rather self-evident in
this case but may be formally described as

§% = T.(S%, d2)

where the asterisks denote that the values are associated with the optimal
policy. Here,

S* = T,(Al, NE) = B2.

(iii) From the table for stage 3, the optimal decision for an input state variable of
B2 is NE. This in turn leads to

§* = T,(S* = B2,d} = NE) = Cl.

(iv) Repeating the process, using the tables for stages 2 and 1, the remaining
optimal decision and also the optimal terminal state is found, e.g.

S§* = T,(S% = Cl, d} = SE) = D2
S* = T,(S* = D2,d} = E) = E2.

6.5.2 Generalization of the process

The development of the recurrence relationships may now be summarized.
Suppose that this sub-optimization sequence has been carried on to include i — 1
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of the end stages and the next step is to sub-optimize the i end steps as indicated
by the equation

) dmin ) [r(S,d) +r_ (S ,di_ )+ +71(S,d)] =£*S,). (6.13)
Since by this time the i — 1 end stages have already been sub-optimized, the
function

: min [(r(S;_,d;_) +...+7r(S;,d)] =1%(S;_,) (6.14)
is available and hence may be used to reduce the dimensionality of the ith-stage
sub-optimization (i.e. the numbers of decision variables) to

min [ri(Si’ di) +fl>i 1(Si- 1)] :fi*(si) (6.15)

i

or again by making use of the state transformation function

mdin [ri(S;, d,) + £ {T(S;, )} ] = f(S)) (6.16)

Once again it should be noted that an i-dimensional optimization problem has
been reduced to a 1-dimensional optimization problem by means of a series of
solutions to the downstreamt sub-optimization problem. The sequential sub-
optimization strategy of dynamic programming is shown in Figure 6.5 in which it
should be noted that the design variables are analysed one at a time rather than
simultaneously.

In DP solutions the following points should be considered:

(i) Any optimization technique may be used to solve the recursive equation at a
given stage.

(ii) Generally, the solution of equations of the type given in (6.13) requires
tabular-type computations in which the optimal decision variables, and the
optimal return functions, are in discrete form.

(iii) The use of tabular-type computations is obligatory when either the state
variables are inherently discrete quantities or when the analytical
representation of the return function is impractical. For the latter case, the
state variables must be artificially discretized at each stage.

(iv) In formulating problems for solution by DP it is advisable to follow a
standard procedure. Some elements of this have been introduced in Section
6.3, in particular the definition of stage, state, etc. However, the pipeline
network problem was deliberately chosen for its simplicity and many
features associated with it could be regarded as obvious whereas in other
problems these same features require definition. Figure 6.6 shows a
flowchart indicating a disciplined approach to formulating DP problems.

T The term refers to stages i — 1,..., 1 occurring after stage i; see Figure 6.5.
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1. List the terms stage, state, action, return, optimal value of a
state and against each write down the interpretation of that term
in the current problem together with the symbol used to denote
the relevant quantity.

2. Construct the multistage decision problem diagram. In case of
difficulty, try to draw a network diagram with all the states at
each stage clearly indicated.

3. Write down the following explicitly:

(i) The recurrence relation (6.13)
(i) The stage transformation functions (6.1)
(iii) The return function (6.2)
(iv) Theconstraints associated with the input and output state
variables and the decision variables.

4. Is this a multistage decision problem for which DP is suitable?

Yes No

5. Solve 6. Stop

Figure 6.6 Dynamic Programming problem definition flow chart

Table 6.1 Specification of the pipeline network problem

Stage A pipeline section from one pumping station site to an i
adjacent site (i = number of stages remaining)

State A pumping station site
Decision Taking a particular pipeline route from a pumping station
site

Return Cost of constructing a pipeline section and the pumping r(S,, d,)
station at the upstream end of the pipeline section defined
by S,

Optimal value  Cost of constructing the pipeline network from the f*(S,)
of a state corresponding pumping station to the pumping stations
at the river E under an optimal plan
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—

1. PHASEI —Compute tables of optimal performance for each activity. Set stage counter
=1

—2. For ith stage tabulate all feasible values of input state variable Si=Sij
(j=1,2,3::3)

—3. Select input state variable S;;

4. For selected S;; tabulate all feasible values of decision variable d; = d,,
k=1,2,3..)

— 5. Select devision variable d,,

6. Calculate return function r(S;;, d;)

7. Find resulting downstream state S;_, from state transformation function
Si—y = TSy dy)

8. Obtain minimum cost for downstream stages f;* (S,_,)
9. Combine costs to get fi(S;;, dy) = r(S;;, dy) + f%,(S;_})

10. Repeat steps 5 to 9 to obtain vector of costs f;(S;;) for all feasible decisions
dy (k=1,2,..)

11. Select f;*(S;;) = min [f(S;;)] and note corresponding optimal decisions ay

12. Repeat Steps 3 to 11 to obtain vectors of f;* and d* as functions of S,;0=12,
3..)

13. Repeat Steps 2 to 12 for stages i, i+ 1,i+2, ..., n.

14. PHASE II — ‘Un-roll’ Optimal Policy. Obtain optimal system cost as min f*
15. Note optimal decision d, * for n' stage and corresponding input state variable S*
dy)

17. Look up tables for next downstream stage n — 1 to get optimal decision d*_,
corresponding to input state variable S*

n—:l

16. Compute optimal downstream state variable S¥_, = 7,(S*

n>

18. Repeat Steps 16 to 17 until all n stages have been examined and all n
optimal decisions identified. Optimal policy is d¥, d*_, d¥_,,..., d3,d}.

nvn= 1%

Table 6.1 shows a summary of the DP terms used in the pipeline network
problem.

No standard form of DP model exists and consequently it is impossible to have
a completely general computational tool such as the simplex method in LP which

Figure 6.7 A two-pass algorithm for dynamic programming problems

was described in Chapter 3. However, all of the essential steps are represented in
the problem of Section 6.5.1 and may be summarized in the two-pass algorithm
described in Figure 6.7. In the remaining sections of this chapter some typical DP
problems will be described with the aid of worked examples. In the next section, a
general formulation of one-dimensional allocation problems is presented and
then two typical DP problems will be considered.

6.6 ALLOCATION PROCESSES
6.6.1 General formulation

An allocation problem is an example of a single-period deterministic
multiactivity process that can be transformed by DP into a multistage decision
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process with a finite number of stages. Only one-dimensional allocation problems
will be considered in which a certain limited quantity Q of an economic resource
(e.g. labour, land, machines, or water) is to be allocated among some potential
recipients. The resource, which is used in the production of certain products or
services, can be used in two or more alternative ways. Each possible use is called
an activity and each single activity, where the resource is used, yields a return. The
problem is how to allocate the resource to the alternative activities (or to users)in
such a way that the total return is maximized. By the nature of the problem it is
less likely that an allocation problem will be associated with the minimization of
cost, hence the departure in this section from the standard practice of expressing
problems as minimization models. It is, of course, a simple matter to employ the
equivalence

min z ~ max (—z)

to change the sense of the problem if desired.
In the solution of allocation problems by DP the following assumptions are
made:

(i) Returnsfrom different allocations can be compared. In other words they can
be measured in a common monetary unit such as the pound or the dollar.

(i) The return from any allocation is independent of the allocations to other
activities.

(iii) The total return that can be obtained is the sum of the individual returns.

The most general mathematical formulation of the one-dimensional allocation
problem involves the maximization of an objective function (total return)
given as

Maximize R = r,(S,,d,) + ...+ 1,(S,, d,) +r,(S,,4d,) (6.17)

subject to the constraint that the sum of the resources allocated to each activity
must not exceed the available resource:

> d,<0(=5,) (6.18)
where

Q0 = §, is the total amount of resources

d, is the quantity of the resource assigned to the ith activity or stage
r{(S;, d;) is the return of the ith activity

n is the number of possible activities or stages.

If the objective function is linear, then the allocation problem reduces to a
linear programming problem and may be solved by the simplex method which
was outlined in Chapter 3. However, in the more general case, where the objective
function can take any form, dynamic programming may be used. First the
problem must be converted to a multistage decision problem as follows:
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(i) The first allocation goes to the nth activity or stage.

(i) Then an allocation is made to activity (n — 1).

(iii) An allocation is then made to activity (n — 2).

(iv) The allocation proceeds in this manner until an allocation is made to
activity 1.

It must be emphasized that the optimal policy will be the same irrespective of the
order in which the activities are considered.

As described in Section 6.4 the allocation problem can be solved using DP by
developing a sequence of recurrence relations.

Let f,*(S,) be the optimal return from an allocation of S, = Q to the n activities.
Assuming r,(0, d;) = Ofor all i, which is usually the case, it follows that £*(0) = 0.
It is also assumed that

Si(8y) =r(S;, dy). (6.19)

Let d, be the allocation made to the nth activity where 0 < d, < Q. The
remaining quantity, in other words the input state variable S, _, to the (n — 1)th
activity, is obtained from the state transformation function

Sn—l = Tr‘l(Sn’ dn)
or
S,.1=8S,—d, (6.20)
=0Q—d,
The quantity S, _, will be used in the (n — 1) remaining activities. If this quantity
S, -1 has already been allocated to the (n — 1) activities in the optimal way and
the allocation yielded a return of f* (Q — d,), then by definition the return from

the allocation of d, to the nth activity is r,(Q, d,). Thus the total return from
allocating Q to all n activities is

R=r(0,d)+f*,(Q—4d,)
or (6.21)
R=r/S,d)+f* (S, —d,)

Usually there are several choices for d, in the nth activity and obviously the
optimal one is that which maximizes R; that is

XS, = , II‘liaX [r(S,.d,) +f* (8, —d)] (6.22)
<d, <0

Thus the allocation problem defined by (6.14) has been replaced by the
problem defined by (6.22). Before this problem can be solved, however, it is
necessary to obtain f* (S, — d,) which can be obtained from the equation

f;l*—l(Sn—l) = n*—l(Sn g dn) = max [rn—l(Sn—l’dn—l) +f;|ﬂ:2(sn—2)]
0<d,_; <S5,
(6.23)
where d,_, is the amount allocated to the (n — 1)th activity. The amount of
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resource available for activity S, _, is obtained by the stage transformation
function

Spoz =T, (S,_y,d,,)

=S,_,—d,_, (6.24)

Note that in (6.21), in order to obtain f* /(S,_,) the value f* ,(S,_,) must be
found. The process continues backwards until the second stage is reached. At the
second stage the optimal result of the first stage f;*(S,)is used and f;*(S,)is given
from (6.19). Thus the entire process can be solved_since f;*(S,)determines f;*(S,),
£5¥(S,) determines f3%(S5), and so on.

6.6.2 A resource allocation problem

Three irrigation projects are competing for capital of $3 million. The allocation is
in discrete units of one million and the return functions are given as follows:

rd,) = %dlz
ry(d,) =24,
6
ralds) = e (dy)!?

For project 1
project 2
project 3

where d; (i = 1, 2, 3) is the number of units allocated to each project.
Thus the profit or return functions may be tabulated as:

d; Ty Ty Ty
0 0 0 0
1 0.67 2.00 3.46
2 2.67 4.00 4.90
3 6.00 6.00 6.00

The transformation functions T;(S;, d;) are simple statements of continuity
So=8,—d; or S,=d,+8S, (6.25)
§;,=8,—d, or §,=d,+ S5,
S,=8;,—d; or S;=d;+8,

where S; and the other variables are as defined in Table 6.2.
In this problem there is also the constraint that the sum of the units of capital
allocated to each activity must not exceed the available capital. Thus

@y £ <8 (6.26)

The sub-optimization of stage 1 is considered initially and this involves the
solution of the maximization problem
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Table 6.2 Specification of resource allocation problem
Stage Allocation of capital to an irrigation project (i = number i
of projects remaining)
State S; units of capital remain to be allocated and i projects S,
remain to be considered
Decision Allocate d; units of capital to project i d
Return Profit from allocation of d; units of capital to irrigation r(S,, d,)
project i

Optimal value
of a state

Total profit when state S, is the starting state at stageiand ~ f;*(S,)
an optimal plan is followed

oy [ry(Sy, d))] =1¥(S)). (6.27)
The decision variable d, can take up to 4 values (0, 1, 2, or 3) depending on S,.

For the 4 values of S, (0, 1, 2, or 3) the 4 corresponding optimal values are given in
tabular form as

Stage 1

R,(S,,d,) for d, =

S, 0 1 2 3 fES)  dr
0 0.00 — — - 0.0 0
1 0.00 0.67 — = 067 1
2 0.00 0.67 2.67 e 26T vy
3 0.00 0.67 267 6.00 600 3

The end-value condition that S, > 0 implies the constraint that

§,—d; =0
or (6.28)
d, <85,

Next the sub-optimization of stages 1 and 2 is performed and this involves the
solution of the problem

max [ir (83, ) +1(S0)] (6.29)

subject to
S, =8,—4d,

The results are again tabulated as follows; note that for S, = 3 there is a tie for
the optimal decision dy = 0 or 3:
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Stage 2

r5(S,, dy) + £¥(S,) for d, =

5, 0 1 2 3 fidy)  dx
0 0.00+0.00 — - = 000 0
1 000+067 200+ 0.00 — — 200 1
2 000+267 200+0.67 400+ 0.00 - 400 2
3 000+600 200+267 400+067 600+000 600 0,3

Finally the three stages are considered together and this involves the solution

of the problem
n?jax [r3(S37 d3) + fz*(sz)] = f3*(S3) (6.30)

subject to
S,=8,—d,

Again the results are presented in tabular form:

Stage 3

74(Ss, d3) + fX(S,) for dy =

8, 0 1 2 5 fidy)  dr
0 0.0+ 0.00 — — — 0.00 0
1 000+200 3.46 + 0.00 — — 3.46 1
2 000+400 3.46+200  4.90 + 0.00 — 5.46 1
3 000+000 346+400 490+200 6.00-+000  7.46 1

Having completed the first pass through the three activities, and generated the
working tables, the maximum return and corresponding optimal policy can be
identified by a second pass through the stages in the opposite direction. Thus:

Maximum return f;5(S;) = 7.46 million.
Fromstage3 S¥=3, df=1, and S;=8%—-di=2
stage2 S¥=2, df=2 and SF=S¥-—-df¥=0
stagel ST=0, df=0, and S§=SF—-df=0.

Thus the optimal policy is dff = 0, d¥ =2, and df = 1.
In performing the ‘second pass’, it will be noted that the only information
which must be recalled are the values of d* as a function of S,.

6.6.3 A waste-water treatment example

Three factories located on a river discharge waste water with varying degrees of
biological oxygen demand (BOD). Each plant can provide alternative levels of
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treatment (primary, secondary, and tertiary) for varying costs, and with varying
degrees of reduction in BOD. The following table shows the details of costs and
reduced BOD:

BOD ppm x;, Installation cost ($1000 units)
Factory Factory
Highest degree
of treatment i=1 i=2 i=3 i=1 ji=12 i=3
j= none 1.2 0.8 1.6 0 0 0
j =1 primary 0.8 0.4 1.2 70 60 90
j = 2 secondary 0.4 0.0 0.8 120 100 140
j = 3 tertiary 0.0 0.0 0.0 170 130 220

If the total BOD should not exceed 1.6 parts per million (ppm), then the
problem is one of finding the policy which minimizes the total cost of
treatment. The specification of the variables in this problem is shown in
Table 6.3.

Table 6.3 Specification of waste-water treatment problem

Stage Factory (i = number of factories remaining) i

State The amount (ppm) of BOD which exists before treatment S;
in the remaining i factories

Decision The highest level of water treatment (none, primary, d,
secondary, tertiary)

Return Cost of water treatment at factory r(S;, d;)

Optimal value
of a state

Total cost when state S, is the starting state at stageiand  f;*(S;)
an optimal plan is followed

(Adapted from Daellenbach and George'”)

An important difference between this problem and the allocation example of
Section 6.6.2 is in the more complex form of the state transformation functions.
For any selected value of the input state variable, each trial decision must be
tested for feasibility to ensure that the downstream state does not exceed the
maximum allowable BOD. Thus, step 4 in the algorithm of Figure 6.7 requires
more than a simple test of continuity (e.g. S;_; = S; — d,,) and involves the use of

the BOD load x,, ie.
S, =S, + xu(d)).

The sub-optimization of stage 1 is considered first and this involves the
minimization problem

Minimize [r,(S,, d,)] = f;*(S,) (6.31)
dl
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subject to
So=8,+x,<16 k=0,1,2,3.

There are 5 possible values of the input state variable S, and the optimal policies
for these values are tabulated as:

Stage 1

ry(S,,d,) for d, =

0 1 2 3

5 1.0 0.8 04 0 f¥S,)  dr
0.0 0 70 120 170 0 0
0.4 0 70 120 170 0 0
0.8 = 70 120 170 70 1

1.2 = L 120 170 120 2

1.6 — — e 170 170 3

Next the sub-optimization of stages 1 and 2 is considered:

Mindimize [rz(Sza dz) +f1*(S1)] =f2*(S2)
subject to ’
S, =8,+x,, <16 k=0,1,2,3.

The optimal policies for the five possible values of the input state variable S, are:

Stage 2

r,(S,, dy) + £558,) for d, =

0 1 2 3

S, 038 0.4 0 0 f¥S,)  dr
00 0+70 60 + 0 100 + 0 130 4+ 0 60 1
04  0+120 60 + 90 100 + 0 130 + 0 100 2
0.8 04170 60 +120 100 + 70 130 + 70 170 0,2
12 — 60+170  100+120  130+120 220 2
16 — - 100+ 170 130+170 270 2

Finally the optimization of stages 1, 2, and 3 is considered:

Minimize [r,(S,, ds) + f(5,)] = £(S,) (6.32)

subject to
S,=8;+x;, <16 k=0,1,2 3.
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Stage 3
(S5, dj) + f35(S;) for dy =
0 1 2 3
S5 1.0 12 8 0 fXSy)  d¥
0.0 0+ 270 90 + 220 140 + 170 220 + 60 270 0
0.4 — 90 + 270 140 + 220 220 + 100 320 3
0.8 e — 140 + 270 220 + 170 390 3
1.2 S — — 220 + 220 440 3
1.6 — e — 220 + 270 490 3

The optimal policy can thus be summarized as
Minimum cost $270 000
§5=00, d; =0 x;;=16
S,=16, df=2 x,;=00
S, =16, df=3.

In other words, there should be no treatment at factory 3, both primary and
secondary treatment at factory 2, and primary, secondary, and tertiary treatment
only at factory 1.

6.7 COMPUTER SOLUTION
6.7.1 Scope of the routines

For obvious reasons the illustrative problems in this chapter have been relatively
simple and of extremely modest size. Application of dynamic programming to
problems of practical size is facilitated by computer routines since in general
the method is recursive. As mentioned in Section 6.5.2, however, dynamic
programming is more an-approach to problem-solving than a specific technique
and a completely general algorithm is almost impossible to implement in a
computer program.

A general class of problem of the resource allocation type can be handled
conveniently, and may even be applied to other problem types with a little
ingenuity. The chief restrictions which apply to the routines illustrated here may
be summarized as follows:

(i) In decomposing the problem into stages, the return or cost of each stage is
assumed to be combined by addition (cf. in estimating probability of failure
by DP the individual stage reliabilities may require to be combined as a
product).

(ii) Each stage involves a decision with respect to a single variable.

(iii) The state and decision variables are assumed to be discrete rather than
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continuous and a single array of values is used to define (each of) the state
variables and decisions at every stage.

(iv) It is necessary for the user to write a main program and also three special
purpose auxiliary routines to describe the return function, the state
transformation function, and also to check the feasibility of selected state
and decision variables.

The main routines are DYNAM and DYNSOL, and both are listed in Appendix
A.Routine DYNAM performs the first pass through the system and generates the
tables of optimum values and decisions for each stage as a function of the input
state variable. Routine DYNSOL operates on these tables to identify the
maximum or minimum return and ‘unroll’ the corresponding optimal policy.
Together, the two routines generally follow the algorithm of Figure 6.7.

6.7.2 Specification of the auxiliary routines

(a) Routine FEASBL is intended to check the feasibility of currently selected
values of the input state variable and the decision variable. Prior to the call of
FEASBL in the main routine DYNAM a penalty term is set to a large
positive or negative value (depending on whether the object is minimization
or maximization respectively). Routine FEASBL should reset the penalty
term to zero whenever a feasible condition is encountered. The coding of
FEASBL may include a call of routine TRANSF to compute the downstream
state variable.

(b) Routine TRANSF describes the state transformation function and computes
the subscript JDS such that the array element STATE(JDS) is the
downstream state corresponding to the currently selected stage, input (i.e.
upstream) state, and decision. The routine may employ a simple utility
subroutine to find the array subscript, the corresponding element of which is
equal to a specified value (routine JSTATE).

(©) Routine RETFUN calculates the cost or return of a particular stage or
activity corresponding to currently selected values for the input state and the
decision variables.

To maintain as much flexibility as possible all of the above routines contain as
input parameters the arrays of allowable state values and decision variables. The
following input parameters are used in all three routines:

STATE —An array of allowable state values

D —An array of allowable decision variables
NSTAGE —The number of stages or activities
NSTATE —The number of state values

ND —The number of decision variables

I —The currently selected stage

J —The currently selected input state is STATE(J)
K —The currently selected decision is D(K).
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The following output variables are used.

In FEASBL:
PEN —A penalty term set to zero if currently selected values represent a
feasible condition; otherwise PEN is left unchanged.

In TRANSF: )
IDS —The element of the array STATE(IDS) which describes the output
(downstream) state.

In RETFUN:
RTN —The return from the current stage I under input state STATE(J) and
decision D(K).

The following sections show the application of the routines to the problems
solved previously. The illustrative coding together with the listings contained in
Appendix ‘A demonstrates the method of use.

6.7.3 The Resource Allocation Problem

The coding and results are shown in Figure 6.8. The main program includes the
necessary dimension statements, an external statement to identify the auxiliary
routines, and statements defining the system parameters. Two calling statements
of DYNAM and DYNSOL complete the main program.

Routines FEASBL and TRANSF are very simple due to the elementary nature
of the state transformation function in this problem. Routine RETFUN contains
special purpose arrays and corresponding DATA statements to define the return
functions. Linear interpolation is employed although in this special case the
return functions could be described in algebraic terms.

The output (which may be suppressed if desired) contains not only the optimal
result and policy but also the tables generated by routine DYNAM. These may be
of use in checking the correctness of the solution.

6.7.4 The Waste-Water Treatment Problem

The main program for this problem differs from the previous case only in the
dimensions of the problem, the sign of the parameter SIGN, and the values of
state and decision variables (see Figure 6.9). The state transformation function is
described in matrix form by the two-dimensional array BOD in routine
TRANSEF. The output state level JDS is set to zero if the allowable BOD level is
exceeded. Otherwise, the appropriate value of JDS is computed by the utility
routine JSTATE. Routine TRANSF thus forms the basis for routine FEASBL.

The return function is quite simple since costs are tabulated for every stage and
decision, thus eliminating the need for interpolation.
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SUBROUTINE TRANSF(STATE,D,NACT,NST,ND,I,J,K,JDS)

C MAIN PROGRAM TO SOLVE THE RESOURCE (I.E. CAPITAL) DIMENSION STATE(NST),D(ND)
C ALLOCATION PROBLEM BY DYNAMIC PROGRAMMING. C DOWNSTREAM STATE IS SIMPLY INITIAL STATE LESS AMOUNT
C REFER TO LISTING OF "DYNAM" FOR DEFINITIONS. C APPLIED TO THIS ACTIVITY,
DIMENSION D(7),DOPT(3,7),FOPT(3,7) STDS=STATE(J) - D(K)
DIMENSION STATE(T7),DSOL(3) CALL JSTATE(STATE,NST,STDS,JDS)
EXTERNAL TRANSF,RETFUN,FEASBL RETURN
NACT=3 END
NSTATE=7 SUBROUTINE FEASBL(STATE,D,NACT,NST,ND,I,J,K,PEN)
ND=7 DIMENSION STATE(NST),D(ND)
C FOR MAXIMIZATION... C FEASIBLE IF ENOUGH CAPITAL AVAILABLE
SIGN=+1.0 IF(D(K).LE.STATE(J)) PEN=0,0
C BOTH DECISION AND STATE REFER TO AMOUNT OF CAPITAL RETURN
C USED OR REMAINING. END
DATA D /0.00,0.50,1.00,1.50,2.00,2.50,3.00/
DATA STATE/0.00,0.50,1.00,1.50,2.00,2.50,3.00/ OPTIMUM COST OR RETURN= .74600E+01
CALL DYNAM(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT, XOPT( 1) = O,
+ FEASBL, TRANSF ,RETFUN) XOPT( 2) = .20000E+01
NPRINT=1 XOPT( 3) = . T0000E+01
CALL DYNSOL(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT,
+ TRANSF,NPRINT,DSOL,ANS) AT STAGE 1
STOP STATE _ DOPT FOPT
END . 0. 0. 0.
SUBROUTINE RETFUN(STATE,D,NACT,NST,ND,I,J,K,RTN) ‘ .50000E+00 .50000E+00 .33500E+00
DIMENSION STATE(NST),D(ND) . 10000E+01 . 10000E+01 .6T000E+00
DIMENSION RFUN(Y4,3),XFUN(4) . 15000E+01 . 15000E+01 . 16700E+01
DATA XFUN/0.00,1.00,2.00,3.00/ .20000E+01 .20000E+01 .26700E+01
DATA RFUN/0.00,0.67,2.67,6.00, .25000E+01 .25000E+01 . 43350E+01
+ 0.00,2.00,4.00,6.00, .30000E+01 .30000E+01 .60000E+01
+ 0.00,3.46,4.90,6.00/
NPTS=z4 . AT STAGE 2
C BEGIN BINARY HALVING INTERPOLATION STATE DOPT FOPT
MIN=1 0. 0. 0.
MAX=NPTS .50000E+00 .50000E+00 . T0000E+01
X=D(K) . 10000E+01 . 10000E+01 .20000E+01
10 CONTINUE . 15000E+01 . 1500C0E+01 .30000E+01
NEXT=(MIN+MAX)/2 .20000E+01 .20000E+01 .40000E+01
IF(X.GT.XFUN(NEXT)) GOTO 20 .25000E+01 .25000E+01 .50000E+01
MAX=NEXT .30000E+01 .30000E+01 .60000E+01
GOTO 30
20 CONTINUE AT STAGE 3
MIN=NEXT STATE DOPT FOPT
30 CONTINUE ‘ 0% 0. 0.
IF((MAX-MIN).GT.1) GOTO 10 .50000E+00 .50000E+00 .17300E+01
XFAC=(X=-XFUN(MIN))/(XFUN(MIN+1)-XFUN(MIN)) . 10000E+01 . 10000E+01 .34600E+01
RFUN 1=RFUN (MIN,I) . 15000E+01 . 10000E+01 .44600E+01
RFUN2=RFUN(MIN+1,I) .20000E+01 . 10000E+01 .54600E+01
RTN=RFUN1 + XFAC*(RFUN2-RFUN1) .25000E+01 . 10000E+01 .64600E+01
RETURN ) .30000E+01 . T0000E+01 .74600E+01
END .

: ; ' . . Figure 6.8 — continued
Figure 6.8 Coding for the resource allocation problem and typical results
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C MA

a

C DE

c TO

aQ

D(

IN PROGRAM TO SOLVE THE B.O.D. PROBLEM BY

DYNAMIC PROGRAMMING. REFER TO LISTING OF "DYNAM" FOR

FINITION OF PARAMETERS.

DIMENSION D(4),DOPT(3,5),FOPT(3,5)
DIMENSION STATE(5),DSOL(3)
EXTERNAL RETFUN, TRANSF,FEASBL
NACT=3

NSTATE=5

ND=U4

MINIMIZE COST...

SIGN=-1.0

) IS LEVEL OF TREATMENT

C STATE() IS RESULTANT LEVEL OF B.O.D.

C RE

C TRANSFORMATION FUNCTION INVOLVES ADDITION OF CURRENT LEVEL

C OF

10

DATA D /0.0,1.0,2.0,3.0/
DATA STATE/0.0,0.4,0.8,1.2,1.6/
CALL DYNAM(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT,

+ FEASBL, TRANSF ,RETFUN)

NPRINT=1

CALL DYNSOL(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT,
+ TRANSF,NPRINT,DSOL,ANS)

STOP

END

SUBROUTINE RETFUN(STATE,D,NACT,NST,ND,I,J,K,RTN)
DIMENSION STATE(NST),D(ND)

DIMENSION COST(4,3)
TURN IS COST INCURRED FOR ANY CHOSEN LEVEL OF TREATMENT
DATA cosT/ 0.0,70.0,120.0,170.0,
+ 0.0,60.0,100.0,130.0,
+ 0.0,90.0,140.0,220.0/

RTN=COST (K, I)

RETURN

END

SUBROUTINE TRANSF(STATE,D,NACT,NST,ND,I,J,K,JDS)
DIMENSION STATE(NST),D(ND)

DIMENSION BOD(4,3)

B.0.D. LOADING TO UPSTREAM STATE OF RECEIVING WATER
DATA BOD/1.2, 0.8, 0.4, 0.0,

+ 0.8, 0.4, 0.0, 0.0,

+ 1.6, 1.2, 0.8, 0.0/
STDS=STATE(J) + BOD(K,I)
IF(STDS.LT.1.6001) GOTO 10
JDS=0
RETURN
CONTINUE
CALL JSTATE(STATE,NST,STDS,JDS)
RETURN
END

Figure 6.9 Coding for the waste-water treatment problem and typical results
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SUBROUTINE FEASBL(STATE,D,NACT,NST,ND,I,J,K,PEN)
DIMENSION STATE(NST),D(ND)
CALL TRANSF(STATE,D,NACT,NST,ND,I,J,K,JDS)

C JDS.LT.0 IS IMPOSSIBLE...JDS.GT.5 IS NOT ALLOWABLE.
IF(JDS.GT.0.AND.JDS.LE.5) PEN=0.0

RETURN
END
OPTIMUM COST OR RETURN= .27000E+03
XOPT( 1) = .30000E+01
XOPT( 2) = .20000E+01
XOPT( 3) = 0.
AT STAGE 1
STATE DOPT FOPT
0. (61 0.
.4LO000E+00 0. 0.
.80000E+00 . 10000E+01 . TO000E+02

. 12000E+01 .20000E+01 . 12000E+03
. 16000E+01 .30000E+01 . 17T000E+03

AT STAGE 2
STATE DOPT FOPT
0. . 10000E+01 .60000E+02
.40000E+00 . 20000E+01 . 10000E+03
.80000E+00 0. . 17000E+03
. 12000E+01 .20000E+01 .22000E+03
. 16000E+01 .20000E+01 .2T000E+03
AT STAGE 3
STATE DOPT FOPT
0. 0. .2T000E+03
.40000E+00 .30000E+01 .32000E+03
.80000E+00 .30000E+01 .39000E+03
. 12000E+01 .30000E+01 .44000E+03

. 16000E+01 .30000E+01 .U49000E+03

Figure 6.9 — continued

6.7.5 The Pipeline Network Problem

Although this is not an allocation problem, a solution is possible by means of
routines DYNAM and DYNSOL by appropriate choice of the decision and state
variables. The coding and solution are shown in Figure 6.10. The directions are
easily defined in terms of degrees azimuth; the states are simply rows 1 to 4 from
furthest north to extreme south. Thus a decision to move at 45° will reduce the
state level by 1, etc. Routine TRANSF is therefore simply expressed, with the
constraint that the downstream state level must be in the range 1 < JDS < 4.
Routine FEASBL is slightly more complicated because 4 decisions are possible at
stage 4 whereas d, must take the values 45°,90°, or 135° at the downstream stages.
The return function (or cost) is defined as a series of cost matrices for each stage,
the tabulated costs including the pump-station cost at the input state level and the
pipeline cost resulting from the decision. For the special case of stage 1, the cost of
the downstream pump-station is also included.
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C MAIN PROGRAM TO SOLVE THE PIPE NETWORK EXAMPLE BY

a

DYNAMIC PROGRAMMING. REFER TO LISTING OF "DYNAM"

C FOR DEFINITION OF PARAMETERS.

SUBROUTINE TRANSF(STATE,D,NACT,NST,ND,I,J,K,JDS)
DIMENSION STATE(NST),D(ND)

JDS=J + (K-2)
IF(JDS.LE.O) JDS=0
IF(JDS.GT.4) JDS=0

DIMENSION D(4),DOPT(4,4),FOPT(L4,4)
DIMENSION STATE(4),DSOL(4)
EXTERNAL RETFUN, TRANSF,FEASBL
NACT=4
NSTATE=4
ND=4
C TO MINIMIZE TOTAL COST...
SIGN=-1.0
DECISION VARIABLE IS COMPASS ANGLE IN MULTIPLES OF
45 DEGREES
STATE() IS "LEVEL" ON THE NETWORK DIAGRAM
DATA D /45.,90.,135.,180./
DATA STATE/1.0,2.0,3.0,4.0/
CALL DYNAM(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT,

aaaQ

+ FEASBL, TRANSF ,RETFUN)

NPRINT=1

CALL DYNSOL(STATE,D,NACT,NSTATE,ND,SIGN,DOPT,FOPT,
+ TRANSF,NPRINT,DSOL,ANS)

STOP

END

SUBROUTINE RETFUN(STATE,D,NACT,NST,ND,I,J,K,RTN)
DIMENSION STATE(NST),D(ND)
DIMENSION COST1(4,4),COST2(4,4),COST3(4,4),COSTL(Y)

DATA COST1/ 0.,27.,25., O.,
+ 23.,21.,25., O.,
+ 22523, 42545 04
+ 30.432., 0.4 0./
DATA COST2/ 0.,14.,15., O.,
+ 227224 20555 0a5
+ 25ev23s 9220 Os s
+ 20.,18:5 0., 0/
DATA COST3/ 0.,18.,17., O.,
+ 20030 18+ ¢ 1T oy Oy
+ 1901y 180 51T ey, Oiciy
+ 215 18ss 055 0o/
DATA COST4/12., 8., 7., 8./

GOTO (10,20,30,40),I
10 RTN=COST1(K,J)
RETURN
20 RTN=COST2(K,J)
RETURN
30 RTN=COST3(K,J)
RETURN
40 RTN=COST4(K)
RETURN
END

Figure 6.10 Coding for the pipeline network problem and typical results

RETURN
END

SUBROUTINE FEASBL(STATE,D,NACT,NST,ND,I,J,K,PEN)
DIMENSION STATE(NST),D(ND)

IF(I.LT.4) GOTO 10
IF(J.EQ.2) PEN=0.0

RETURN
10 CONTINUE

CALL TRANSF(STATE,D,NACT,NST,ND,I,J,K,JDS)

IF(K.LE.3.AND.JDS.GT.0) PEN=0.0

RETURN
END
OPTIMUM COST OR RETURN= .65000E+02
XOPT( 1) = . 90000E+02
XOPT( 2) = .13500E+03
XOPT( 3) = .45000E+02
XOPT( 4) = .90000E+02
AT STAGE 1
STATE DOPT FOPT
. 10000E+01 . 13500E+03 .25000E+02
.20000E+01 .90000E+02 .21000E+02
.30000E+01 .45000E+02 .22000E+02
.40000E+01 .U5000E+02 .30000E+02
AT STAGE 2
STATE DOPT FOPT
. 10000E+01 . 13500E+03 .36000E+02
.20000E+01 . 13500E+03 .42000E+02
.30000E+01 .90000E+02 .45000E+02
.40000E+01 .45000E+02 .42000E+02
AT STAGE 3
STATE DOPT FOPT
. 10000E+01 .90000E+02 .54000E+02
.20000E+01 . U5000E+02 .57000E+02
.30000E+01 . 13500E+03 .59000E+02
.40000E+01 .90000E+02 .60000E+02
AT STAGE )
STATE DOPT FOPT
. 10000E+01 0. ’ . 10000E+11
.20000E+01 .90000E+02 .65000E+02
.30000E+01 0. . 10000E+11
.40000E+01 0. . 10000E+11

Figure 6.10 — continued
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6.8 CONCLUDING REMARKS
6.8.1 Dynamic programming — A computational method

As Daellenbach and George!” point out dynamic programming, unlike linear
programming, is not a mathematical model which may be linked with a special
algorithm and then programmed once and for all to solve every problem that
satisfies the assumption of the model. Dynamic programming is a computational
method which allows a complex problem to be broken up into a sequence of
easier sub-problems by means of a recursive relation which may be evaluated by
stages. For example, dynamic programming solves an n-variable problem
sequentially in n stages where each stage involves optimization over one variable
only.

6.8.2 Computational efficiency

The computational work involved in solving certain problems by dynamic
programming is usually much less than that involved in solving similar problems
by complete enumeration. The main reason for this is that all possible
alternatives need not be examined. Computations increase roughly exponentially
with the number of variables, but only linearly with the number of sub-problems
or stages.

Consider a problem with n variables and assume that each variable can take 10
different values. The total number of combinations in a complete enumeration is
10" If there are only five variables (i.e. n = 5), the total number of alternatives is
10°. If there are, however, twice as many activities (n = 10), then 10*° alternatives
exist, which is 100 000 times more than in the case of five variables.

6.8.3 Problems with more than one state variable

All of the problems in this chapter have involved a single state variable.f
However, in some situations more than one state variable is required to provide a
complete description of the state of the process. Although there are no conceptual
difficulties in dealing with more than one variable there are severe computational
limitations on the viable number of state variables and it is hardly ever feasible to
use more than three.

6.8.4 Second-best policies

All of the problems solved in this chapter have been directed towards finding
optimal policies. However, in the real world of civil engineering there may be
good reasons for not implementing an optimal policy. For example, the model
adopted by the Systems Engineer may ignore certain characteristics which are
difficult to quantify yet important and which may imply that the optimal policy is

1 Do not confuse a state variable with a variable discussed in Section 6.8.2.
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undesirable. Thus it may be useful to examine second-best policies which are not
in any conflict with aspects ignored in the model.

Such an analysis is easily performed: at each stage evaluate the optimal and the
next-best policy. See Figure 6.11 in which the pipeline network problem is
reworked to find second-best as well as optimal policies.

6.8.5 Networks, critical paths, and decision trees

Later in this text various algorithms are presented for networks (Chapter 7),
critical path analysis (Chapter 8), and decision trees (Chapter 11). It should be
mentioned that dynamic programming also has a role to play in solving such
problems. The pipeline network problem discussed in Section 6.2 provides useful
insight into the possible use of dynamic programming for these problems.

6.9 EXERCISES

6.9.1 A contract has been signed for the supply of the following number of
components at the end of each month:

Month Month No.  No. of items
April 1 85
May 2 180
June 3 300
July 4 375
August 5 375
September 6 285

Total 1600

Production during a month is available for supply at the end of the month,
or it may be kept in stock for next month or later at a cost of $1 per item
per month. The cost of production is $900 per batch and $2 per item. In
what month is a batch to be made, and of what size, if the total costs are to
be minimized?

6.9.2 A conduit has to be constructed to convey a given quantity of water from
source A to demand area B. Whereas the starting point of the conduit can
be located usually with a high degree of accuracy, the location of the other
extremity of the conduit may often present a number of alternative
choices. In addition to this, the terrain between source A and demand area
B (its topography, geology, land use, etc.) may present a variety of
alternative routes, each involving different levels of expenditure. This is
shown graphically in Figure 6.12. In this figure, the water conduit (open
channel or pipeline) must link A with either of the three terminal points
B,,B,, or B;. The possible points through which the conduit may pass are

6.9.3

285

Figure 6.12 Water distribution network

numbered from (1) to (11), and the digit appearing on each link joining
these various points represents the expenditure connected with the
construction of this link (in monetary units). Find the path linking A with
B; (i = 1, 2, 3) requiring the minimum expenditure.

The pipe distribution system shown in Figure 6.13 is used to supply water
to an irrigation region composed of 3 separate sub-regions. A total of 3

Outlet 3

Outlet 2

Outlet 1

3 units
Figure 6.13 Pipe distribution system

units of water is available to the region. The table shows the benefits to
each sub-region as a function of the water released to the sub-region:

Benefits
Amount of water released Outlet 1 Outlet 2 Outlet 3
at outlet x; (units) %) (%) )
1 3 1 4
2 6 3 5
3 8 9 6

Allocate the water, using Dynamic Programming, so that benefits from
the 3 units are maximized.
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Note that an excellent source of further DP problems is the Problems Section
of Chapter 8 of reference 8.
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Chapter 7
Network Analysis

7.1 INTRODUCTION

The concept of a network is familiar in situations involving the delivery of any
public service to a population distributed in heterogeneous fashion within a
nation, region, or urban community. Networks of railroads or highways allow
the movement of people and materials; networks of streets facilitate the
development of cities with high-density population. In these same cities the
delivery of electricity, gas, and water involves for each a network of conductors or
conduits. Collection of liquid or solid waste to centralized processing centres
involves a sewerage network or a network of vehicle routes. Communications for
the purposes of telephony, radio, and television require networks of varying
degrees of complexity and visibility.

In addition to these physical manifestations, networks may also be used to
represent the relationship in time of a number of distinct but interdependent
activities which occur in series and/or in parallel. These abstract networks
provide an effective method of planning the activities and operations makingup a
complex project and show how delays or early completion at any particular stage
will affect the remainder of the project. In short, the network is a classic
illustration of a system in that it describes the interaction of many components to
achieve a result which would be unobtainable by the sum of the individual
contributions of the several components.

In the present chapter consideration is given to the modelling and analysis of
networks which have a recognizable physical significance, such as traffic or pipe
networks. In Chapter 8 some of the ideas developed here are applied to the special
case of organizational networks for the purpose of construction management or
project planning.

In the analysis of networks reference will be made to some of the concepts
developed in earlier chapters. The calculation of the shortest path through a
network may be done quite efficiently by methods closely related to dynamic
programming (Section 6.3). Linear programming applications described in
Chapter 4 (Section 4.2) are useful in solving transportation problems and the
concept of the dual problem is of value in assessing network capacity.
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7.2 ELEMENTARY GRAPH THEORY

A network — whetbher it is a physical system for water distribution or a means of
describing the sequence of activities in a complex project —is usually represented
by a linear graph. This does not mean a plot of function against argument but
takes the form of a series of nodes (or vertices) connected by a set of links (or branches).
Figure 7.1(a) shows a typical network in which every node is connected to at least
one other node by a link; such a graph is termed connected. The graph is also

o»—©

Sl

(

Figure 7.1 Cyclic networks and trees

(b)
c)

planar because it can be represented in a plane with non-crossing links. If
additional links were to be added so that there existed at least one link between
every pair of nodes, the graph could then be said to be complete but clearly it
would no longer be planar. None of the links in Figure 7.1(a) have a direction
indicated by an arrowhead, implying that movement may occur in either
direction; the graph is then said to be undirected.

The graph in Figure 7.1(b) has been derived from the previous one by deleting
some of the links and by assigning a specific direction to each of the remaining

239

links as indicated by the arrowhead. Notice that links have been removed so that
there are no loops (or circuits). This graph is called a tree network because of
its branching characteristics. For the selected directions of the links the system
might represent a river with a number of tributaries or a sewerage system for the
collection of waste water or storm water. A particular feature of Figure 7.1(b) is
that every node is still connected; such a graph is called a spanning tree.

By contrast, the directed graph of Figure 7.1(c) shows two sub-graphs of the
original network each of which is also a tree. The direction of some of the links has
been changed and the arrangement might now represent a distribution system in
which two centres (indicated by the double circles) supply the needs of the region.
The supply centres are sometimes called sources or origins and the nodes to which
the movement is directed are termed sinks or destinations. Notice that in the
distribution system of Figure 7.1(c) every node can have no more than one link
entering the node, whereas in the collection system of Figure 7.1(b) every node
can have no more than one link leaving the node.

It is clear that a tree represents the minimal connection of the set (or sub-set) of
nodes which it connects. The removal of any link from a tree would result in a
further disconnection of the graph, while the addition of a link to the same set (or
sub-set) of nodes will result in the creation of a loop. In general, therefore, the
minimum-cost solution for a collection or distribution system will take the form
of one or more trees emanating from the selected service centres.

Because many spanning trees may be identified for a particular set of nodes, it
follows that although the minimum cost solution is a tree, a tree is not necessarily
the minimum cost solution. Such a solution may not always be desirable in
practice. For instance, in a water distribution network it is good practice to
incorporate some additional links to form loops and thus increase the reliability
of the supply to those nodes on the loop. It should be realized, however, that this
increased reliability is obtained at the extra cost of adding the ‘redundant’ link(s).

7.3 NETWORK VARIABLES AND PROBLEM TYPES
7.3.1 Variables

Common to every problem in network analysis are variables of two distinct
types:

(i) Flow variables. These describe a quantity which passes along or through the
link in the appropriate direction.

(i) Potential variables. These are necessary to define the change in state across
the nodes at the start and finish of the link.

Although the potential variable may not be obvious in certain types of network
problem, both types of variable must occur. Moreover, there exists in general a
functional relationship between the flow and potential difference which must be
known if the network problem involves the distribution of flow variables in the
network.
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Table 7.1 Flow and potential variables in different networks

Network type Flow variable Potential variable Link equation

Electrical circuit Current I
Hydraulic network Flow Q

Voltage drop E E=1IR
Pressure drop h; or hy= KQ"
energy drop AE
Energy or cost C AC = ¢(T)
Disutility cost ¢ c=¢(f)

Solid waste collection Tonnage T
Traffic network Flow f

For various types of network, Table 7.1 shows the flow and potential variable
together with a typical form of link equation. The application of Ohm’s Law to a
simple DC electrical circuit is well known. Similarly, the analysis of pipe networks
by the Hardy—Cross or Newton—Raphson method is familiar to civil engineers.
The movement of water through a pipe results in a drop in head or energy across
the link, but the movement of solid waste in discrete containers does not have an
obvious parallel. However, transportation of solid waste requires the expenditure
of time, energy, and resources, all of which can be expressed as a cost, which
typically is found to be a concave, non-linear function of the tonnage to be
transported. Similarly, in a traffic network, the potential variable is usually the
disutility as estimated by the traveller in terms of time, fuel, and wear and tear on
both vehicle and driver. The example of Section 2.8 serves to illustrate the notion
of route attractiveness as an inverse of travel time, the latter being a non-linear
function of flowrate.

7.3.2 Kirchhoff’s Laws

Two laws attributed to Kirchhoff are fundamental to the analysis of networks
whether it concerns the flow of electric currents in a network, the distribution of
water in a system of pipes, or the flow of traffic in a transportation network.

Kirchhoff’s Node Law is a statement of the principle of conservation and states
that the algebraic sum of all the flows entering or leaving a node must be zero. The
law assumes steady flow and implies that the storage capacity of links and node is
invariable with respect to time (e.g. zero).

Kirchhoff’s Loop Law relates to the potential variable of the network and states
that the algebraic sum of the potential differences around a closed loop must be
zero. The loop law applies only to networks in which alternate routes exist
between one or more origin—destination pairs and for which the link-law relating
potential difference and flow variables must be satisfied.

Both laws involve the algebraic sum of quantities which in turn implies that a
consistent sign convention must be adopted when defining link flows. The
procedure is illustrated by the following simple example.
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Supply S1

Demand D 4

Derhcnd D,

Figure 7.2 A simple water supply network

7.3.3 Example 7.1 — Water Supply Network

Figure 7.2 shows an elementary water distribution network in which a single
source 1 supplies two sinks 2 and 4. Node 3 serves merely as a junction. It is
assumed that the system is balanced, i.e.

S, =D, +D,

Flows into the system are assumed positive while flows abstracted from the
system are negative. Similarly link flows into and out of a node are assumed to be
positive and negative respectively. Kirchhoff’s Node Law applied to each of the
four nodes results in the following set of equations:

At node 1 $,-0,—-0,5=0
At node 2 0,—-0,,—-D,=0
At node 3 0,35—05,=0
At node 4 Qs +05,—D,=0.

A brief inspection reveals that because the system is balanced the four equations
are not independent and a further equation is required to uniquely define the link
flows Q,;.

Kirchhoff’s Loop Law is applied assuming any arbitrary starting node and
either clockwise or counter-clockwise direction around the loop. Thus, if the head
loss from node i to node j is defined as AE;; the loop equation is

AE,, + AE,, — AE,, — AE,, = 0.

Note that the negative sign is used when movement around the loopis against the
direction of the flow variable. A link equation of the following general form may
be defined in which n is an exponent, the value of which depends on the
application. Thus

AEij =5 Kij(Qij)n' (7.1)
The required equation is therefore

K1 2(Q12)rl + K24(Q24)'l - K34(Q34)'l = K13(Q1 3)n =0. (7-2)



242

Assume that the following numerical values apply to the given system:
S, =20m*s K,,=10
D,=08m’s K,;;=20
D,=12m?s K;;=30

n=185 K,, =15
The system of simultaneous equations obtained is:
01, +0y3=2
015 =0s,4
0, —0,,=08 (7.3)
Q4+ Q3,=12

1(Q12)1.85 | 3(Q24)1.85 _ 1~5(Q34)1'85 _ 2(Q13)1.85 =0.

In general, the solution to the set of simultaneous, non-linear equations may be
obtained by an iterative technique such as the Newton-Raphson method
(Section 2.8) or relaxation methods such as the Hardy—Cross method. In the
present case substitution allows a function of a single variable (say Q, ) to be
formed. Thus

(2 _ Q13)1.85 + 3(12 _ Q13)1'85 _ 1-5(Q13)1'85 _ 2(Q13)1.85 — O (74)

This may be solved most easily by programming the function in a pocket
calculator and finding Q, ; by trial. This yields the following results:

Q,; =0.76387 m?/s
therefore

0,, =123613m3/s
and

0,, =043613 m3/s.

The potential difference variables can then be calculated by substituting the
known values of K and the computed Q values in (7.1).

AE, 5, = 12151 + 09113 = 2.1264 m
AE, , 4 = 1.4802 + 0.6463 = 2.1265 m.

Note that the absolute value of the potential variable (i.e. energy level) requires
the specification of available or required energy level at one of the nodes.

7.3.4 Types of network problem

Of the many types of network problem only a few can be described within the
scope of this text (see Smith and Tufgar'”, Smith®). It is useful, however, to
classify network problems with respect to:
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(a) the number of origins and destinations,
(b) the use or non-use of the link equation, and
(c) whether analysis or optimization is the goal.

Figure 7.3(a) illustrates a simple directed network with two sources (1, 2) and
three sinks (3, 4, 5). For certain purposes it may be necessary to convert the

(b)
Figure 7.3 Forming a circularized network

problem into one with a single origin and destination. This is easily done by
introducing a dummy origin (or ‘super-source’) and dummy destination (or
‘super-sink’) at nodes 6 and 7 respectively as shown in Figure 7.3(b). The links
connecting the dummy nodes to the real network are pseudo-links in which the
normal physical link equation does not apply. For example, if the potentials (e.g.
energy levels) at nodes 1 and 2 are different then the link equations for links 6-1
and 62 will take the form

AE, ,=E,—E,
AE, ,=E,—E, -
Q61 =8,
0.,=5,.

In the same way, specified potential values at the sinks can be related to each
other by means of the dummy destination 7 and to the source potential by
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means of a further dummy link (shown dotted) from 7 to 6. The circularized form
of Figure 7.3(b) is useful in helping to define the total number of loops or cycles
formed by the network and may be used to estimate the total capacity of a
network.

The role of the link equation is often important in physical networks in which
any change in flow variable is accompanied by a corresponding change in the
potential difference across the link (e.g. electrical or hydraulic networks). In
networks with discontinuous flows (such as traffic networks) the sensitivity of the
potential variable may be significant only when the flow exceeds some threshold
value. Travel time, for example, may be essentially independent of flowrate in
sparsely travelled routes. In many transportation problems, therefore, the cost
coefficients may be assumed to be constant and only Kirchhoff’s Node Law need
be used to ensure continuity at each node.

In other problems the aim is to identify the route of minimum cost between two
nodes. It is assumed that this information will influence the decision of a single
road network user, in an otherwise steady-state situation. The decision is unlikely
to affect flow variables significantly and the disutility cost may reasonably be
assumed to be constant.

Should the minimum cost route prove to be significantly cheaper than other
alternatives it is possible that many users will be attracted by this, with
consequent changes to the flow pattern and thus to the disutility costs. In this
situation, the flows will stabilize when Kirchhoff’s Loop Law (expressed in terms
of the appropriate link equation) has been satisfied for all loops in the network.

As the network approaches saturation level it is likely that the transportation
authority will enforce some form of link capacity constraints (e.g. by entrance
ramp controls or turn prohibition). The user may then be forced to choose aroute
on the basis of feasibility rather than optimality and the loop laws will no longer
be relevant. Thus, network capacity problems require a special treatment, to
obtain flow values which simultaneously satisfy the node (continuity) law and the
maximum flow constraints.

An important distinction must be made between problems of analysis of
networks and those in which some form of optimization is attempted. In the
illustrative example of Section 7.3.3 the system was defined in terms of the
conveyance (or transportation) capacity by specifying the topology of the
network and the parameters of the link equations K;; and exponent n. The aim of
the analysis is to determine the distribution of link flows for specified boundary
conditions of inflow and outflow. For steady-state conditions which satisfy both
node and loop laws, there is a single unique solution to this problem.

Consider now the problem of identifying the minimum-cost solution for the
supply of water to nodes 2 and 4, given appropriate cost functions for the four
links of the network. In general, the cost function for a link (i, j) will depend on the
discharge Q,;, the difference in elevation of the minimum pressure at nodes i and j,
and the length L;;and may involve sub-optimization of the pipe diameter/booster
pump conflguratlon. For simplicity the following cost functions will be assumed:
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Cp = 100(0,. 7
€y = 200(0 )"
Caq = 300(Q,,)"
C34 = 150(Q;3)™

The exponent m will normally be less than unity, thus exhibiting the economies of
scale which one expects in the design of engineering components. For generality,
however, and to demonstrate an important feature of non-linear objective
functions, three cases will be considered in which m =1, m < 1, and m > 1.

When m = 1 the problem is one of linear programming and may be stated as
follows:

Minimize z = 100Q,, + 2000, , + 300Q,, + 1500,,

subject to
Q,+0,3=20
Qi, —0,,=038 (7.6)
O b0 =10

The solution must lie on a vertex of the feasible space and therefore one of the four
flow variables must be zero. Since this problem is a particularly simple one it is
easy to try different values for one particular variable (say Q, ) and to evaluate
the other flows from the constraint equations and thus determine the total cost.

Table 7.2 shows for different values of exponent m (m = 1,0, 0.8, and 1.2) the
total cost as a function of various trial values of the flow Q.

Table 7.2  Sensitivity of cost to exponent m
and independent variable Q,

Cost
Ois m=0.8 m=1.0 m=12
0.0 © 52122 560.00 603.11
0.2 556.62 550.00 553.19
0.4 564.76 540.00 521.85
0.6 562.84 530.00 501.87
0.8 552.62 520.00 492.14
1.0 532.78 510.00 493.49
1.2 488.61 500.00 512:11

For m = 1.0 the minimum cost is obtained when Q,, = 1.2 m?/s, i.e.

0,,=08m?*s Q,,=12m?*s Q,,=00 Q,,=12m3s

and the table confirms the linear nature of the relationship.
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For the case of m = 0.8 the individual cost functions are concave and,
moreover, the total cost is also concave with respect to Q, 5. Thus, the solution
must still lie at a vertex of the feasible space and is in fact identical with the linear
case.

When m = 1.2 the cost functions and the total cost are now convex and it is
apparent that the non-linear cost function has a minimum at a value of Q,
somewhere between the two extreme values of 0.0 and 1.2. In fact the minimum
occurs with the solution

0,,=112m%s Q,;=088m’/s Q,,=032m3s Q,, =0.88ms.

Although a more elegant proof is both desirable and possible, the following
rather significant conclusion can be drawn from this example.

When a network transportation problem involves the minimization of a
separable, concave objective function, subject to the linear constraints of the node
laws, the solution will always lie on a vertex of the feasible space. Since this means
that there will be as many non-zero flow variables as there are nodes, the
minimum cost solution must be a tree of the original graph.

Conversely, when the objective function of a network transportation problem
is convex the minimum cost solution may be non-basic and may therefore involve
loops in the final configuration. If the solution is then to be both optimal and
feasible it is essential that the link equations relating potential difference to flow
variable be satisfied in the design of the link components and subsequent
evaluation of the link costs.

A further complication arises when dealing with non-linear objective functions.
Although the concave minimization problem yields a solution at a vertex there is
no guarantee that the solution is a global one. With the convex minimization
problem, on the other hand, the solution may be non-basic but it can be proved
that any solution found will be a global one.

7.4 MINIMUM-COST ROUTE

One of the most basic decisions in network analysis is the identification of the
sequence of directed links between a single origin and destination which will
minimize some objective function such as distance, time, or cost. The pipeline
network problem discussed in Section 6.3 is somewhat similar with the difference
that costs were incurred not only on the basis of route selected but for the ‘state’
position at which a pump station was to be built. Most ‘cheapest route’ problems
ignore costs associated with the node (an exception is the inclusion of turn
penalties) and, moreover, assume that the link costs are constant. In this section
the problem will be formulated initially as a linear programming problem and
then re-cast as the dual problem. This leads to a re-affirmation of the dynamic
programming recursive principle of optimality and in conclusion a tree-building
algorithm is described and illustrated with a simple example. The algorithm can
be easily encoded and an appropriate subroutine TREE is included in
Appendix A.
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Figure 7.4 Shortest-path in a directed network

7.4.1 Linear Programming approach

The directed network in Figure 7.4 has the link cost c¢;; marked as shown. The
shortest (i.e. cheapest) route is to be found between origin A and destination J.
Assume that unit flow enters at A and exits at J, and that this unit of flow cannot
be sub-divided at branches. If the flow in a link (i, j) is x;; which has values of 0 or 1
then Kirchhoff’s node law can be applied at each of the ten nodes A, B, . . ., J. The
mathematical model is then

Minimize z =} ¥ ¢, x;; (1.7)
subject to Y
Yx;—Xx;=1 fori=A
J i
=0 fori=B,C,D,E,F,G H,I
=—1 fori=]J
and
all x;; > 0.

In matrix form the model statement is as follows:

Minimize z = ¢".x (7.8)
where
T
¢'=103,2,7,2,6,4,1,5,3,4,5,2,6,7,5,7, 3]
X = [ X4, Xac, XAD, XBD» XBE> XDE; XBF, XCF, XEF,
XDG, XDH> XGH» XDI, XEI, XHI, XFJ, le]T
subject to Ax=Db

which is shown overleaf in expanded form.
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link
AB BC AD BD BE DE BF CF EF DG DH GH DI EI HI FJ] D1

nodeA| 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0[xam|=[ 1]
B|-1 1 0o 1 1 0 1 0 0 0 0O 0 0 0 0 0 0]|xp 0
clo-t o 0o 0 0 0 1 0 0 0 O 0 0 0 0 O0]|lxp 0
pj o o0-1-1 0 1 0 0 0O 1 1 0 1 0 0 0 0| xgp 0
E|l 0 0 0 0 -1 -1 0 0 1 0 0 0 0O 1 0 0 0] xg 0
F| o o o o 0 0 -1 -1 -1 0 0 0 0 0 0 1 0f| xpg 0
G| 0o o 0o o o 0 0 0 0 -1 0 1 0 0 0 0 O0]| xp 0
H| o o 0 0 o0 0 0 O O 0 -1 -1 0 0 1 0 0| xc 0
1o o 0o 0 0 0 0 0 0 0 0 0 -1 —1 =1 0 11| xg 0
J Lo 0 0 0 0 0 0 0 0O O 0 0 0 0 o0 -1 —1_j xpG | | -1

XDH
XGH
XDI
XEI
XHI
XFJ
1

The solution of such a linear programming problem could be lengthy as the
number of variables and constraint equations may be large. In this particular case
the solution is readily obtained by inspection, i.e.

Xap = Xpr = X1y = 1

with all the other x terms being zero.

This problem can be formulated in terms of a dual problem and the reader
should refer to (3.46) and (3.47) in Chapter 3 for a statement of the relationship
between variables, coefficients, and stipulations. In this case the number of dual
variables is equal to the number of equations for the nodes in the network. These
variables are not restricted in sign as all constraints in the primal problem are
equations and each of them represents the distance y, from a common reference
point to a node i. Therefore, for the given problem the dual may be defined as
follows:

Maximize z' = y,(1) + y(—1) (7.9)
subject to

Ay <c
ie.

—
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node
A B C D E F G H I 1]

a1 -1 0o 0 o o 0 0 0 0 [yl < 3]
BC 0 1 =1 0 0 0 0 0 0 0]y 7
AD 1 0 0 -1 0 0 0 0 0 0]y 2
BD 0O 1 0 -1 0 0 0 0 0 0]y 2
BE 0 1 0 0 -1 0 0 0 0 0]y 6
DE 0 0 0 1 -1 0 0 0 0 0]y 5
BF 0 1 0 0 0 -1 0 0 0 0]y 4
CF 0 0 1 0 0 -1 0 0 0 O]y 1
EF 0o 0 0 0 1.-1 0 0 0 O0f|mn 2
DG 6 0 0 1 0 00 el 0 ~0R Py 3
DH o 0 0 1 0 0 0 -1 0 of |4
GH o 0 0 0 0 0 1 -1 0 0 5
DI o 0 0 1 0 0 0 0 —1 0 5
EI o 0 0 0 1 0 0 0 —1 0 6
HI 0o 0 0 0 0 0 0 1 -1 0 7
FJ o 0 0 o0 0 1 0 0 0 -1 7
U o 0o 0 o o0 0 0 0 1 —1] 3]

From the constraint equations it is clear that the dual variables have dimensions
of cost or length travelled per unit flow. Also the dual problem may be changed to
minimization by reversing the sign of the objective function and the constraints.
Thus

Minimize z' = y; — ya=y; for ya =0 (7.10)
subject to
Ay = ¢
in which the origin (node A) is given an arbitrary distance of zero.

The solution, as shown in the following, is involved with a systematic search of
the paths from source to sink assuming in each case that y, = 0. As the problem
concerns the determination of the minimum or shortest route, the links incident
with this route and their length are required. If a link does not lie on the shortest
route then it has a slack variable which will be defined as c.

Commencing at the source node A, a forward pass’ is made through the
network system as follows:

Node B: the distance from A to B is
YB=y;\+CAB=O+3=3

where y} is the minimum distance up to and including node A.
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In this case the minimum distance from A to B is 3 as there is only one path
available from the source to node B.

Node C: yc = yg + cgc =3+ 7 = 10.
This is again the shortest route, being the only path available.

Node D: yp=ys +cap= 0+2=2 (minimum yp =2 = yp).

Yyo=ys+cep= 3+2=05
Node E: yg=yg+cge= 3+6=9

VE=yp+cpe= 2+5=7 (minimum yg =7 = yg).
Node F: yp=yp+cpr= 34+4=7

Vp=yc+ceor=10+1=11

V=Yt +cer = 7+2=9 (minimum yr =7 = yF).
Node G: y6=yp+cpg= 2+ 3 =5 (minimium yg =5 = yg).
Node H: yuy=yp+con= 2+4=6

Yu=Y5+ceu= 5+ 5=10 (minimum yyg = 6 = yu).
Nodel: yy =yp+cepr= 24+5=7

n=yg+ca = T+6=13

Vi =yu+cm = 6+ 7=13 (minimum y; =7 = yj).
NodeJ: yy =yr+cm = 7T+7=14

Vi =yt +cy = 7+ 3=10 (minimum y; = 10 = yJ).
The minimum value for each node in the forward pass is placed in the left-hand
box above that node as shown in Figure 7.4. The backward pass is then started by
assuming that yy = yj, and the same procedure is repeated as before.

NodeI: y1 =yf —cy = 10—-3= 7 (maximum y; = 7 = ).
Node H: yy=y{ —cmi = 7—7= 0 (maximum yy= 0= yf)
Node G: yg=)yi—cgu= O0—5=—5 (maximum yg = —5 = y§).
Node F: yp=yf —cpy = 10—7— 3 (maximum yr = 3 = y§).
Node E: yp =y —cr = 7—6= 1

VE=J —Ccer= 3—2= 1 (maximum yg = 1= yg).
Node D: yp=y —ecom = 7—-5= 2

Jo=ya—con= 0—-4=-4

Jop=y6—cpg=—5—3= -8

o=yt —cpe= 1—5=—4 (maximum yp= 2= y¢).

s s
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Node C: yc =y —ccr= 3—1= 2 (maximum yc = 2= y¢).
Node B: yp=yr —cer = 3—-4=—1

Y=yt —cpc= 2—7=—5 (maximum yg = —1 = yg).
Node A: ya=yp—cap= 2-2= 0

Ya=yp —cap=—1—3=—4 (maximum y, = 0= yJ)

A branch lies on the shortest path if, on examining the forward and backward
passes, it is seen to conform with the following conditions:

V==Y
YVi=Y;i=Y;
Vi—yi=Yy;—yi=g¢;
where the subscripts i and j refer to the tail and arrow-head respectively of the
branch.

In this particular problem it is seen that these conditions are met only along
path A-D-I-J which is indicated by a heavier line in Figure 7.4.

7.4.2 A tree-building algorithm

In Section 7.4.1 it was shown that the solution of the dual problem involves a
systematic search for the minimum cost route to any node j from any other node i
such that the recursion equation is satisfied, i.e.

F*(j) = min [ f*(i) + (i, j)] (7.11)
where
f*(n) = minimum cost to node n

and
c(i, j) = cost of link (i, j).

The similarity to the recursion equation of dynamic programming (Section
6.5.2) is apparent. Many ‘cheapest-route’ algorithms are based on successive
applications of the recursion equation, starting from a specified origin or home-
node. The end result will be a spanning tree of the original network which is
constructed link by link. The process is best understood with reference to a
specific example.

Figure 7.5(a) shows an undirected network of 11 nodes and 15 links, the costs
marked against each link being appropriate for either direction. The origin is
taken to be node 1 and is assigned an initial cost of zero.

Step 1 All the nodes directly connected to node 1 are examined to get the cost
based on the cheapest route, and the corresponding upstream node
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Figure 7.5 (a) Undirected network. (b) Spanning tree on node 1
i.e. for nodes j =2 10 11
upstream nodes ug) =1 1 1
minimum cost f() =13 12 5.

Step 2 Scan the list of f(j) values and select the minimum f(11) = 5. This
extends the tree from node 1 to 11.

Step 3 Delete node 11 from the table and add nodes which are directly
connected to node 11

i.e. for nodes j =2 10 10
upstream nodes u) =1 1 11
minimum cost f(G) =13 12 10.

Step 4 Repeat step 2 selecting node 10 as the next extension of the tree. Delete
both references to node 10 and add nodes directly connected to 10

253

i.e. for nodes i =2 2 9
upstream nodes uj) = 1 10 10
minimum cost f(j) =13 16 25.

The process continues until either all nodes in the network have been processed
or until a particular origin—destination route has been added to the tree. The
algorithm may be described in more general terms as follows:

Algorithm

1. Set M = 10°,

Define origin k.

. Set all f*(-) = M to signify non-processed state.

Set f*(k,) = 0.

Identify all nodes j for which c(j, j) is finite and for which f*(j) = M.
For each j from step 5 tabulate the upstream node u(j) and cost

J0) = (), )) + f*w(j)).

7. Scan tables and determine node m such that f(m) = f.,;,.

8. If fuin = M, stop.

9. Set f*(m) = fuin and u*(m) = u(m).
10. Set c(u(m), m) = c(m, u(m)) = 0 to delete link from further consideration.
11. Set all f(m) = M in table to delete node m from further consideration.
12. If m = specified destination node, stop.
13. Set ky = m.
14. If number of tabulated values is less than number of links go to step 5.
15. Go to step 7.

VI NN

Continuing the analysis of the network in Figure 7.5 results in the following
tables which illustrate the algorithm (Table 7.3). The upstream node
corresponding to the minimum cost of any node may be used to trace the
minimum cost route from the origin. For example, the cheapest route from node 1
to 6 is given by the chain

(6,9), (9, 10), (10, 11), (11, 1).

A subroutine TREE is included in Appendix A which performs the algorithm
described above. Apart from specifying the origin and destination (the latter is
optional), the principal input is in the form of a square array which defines the
costs of each link. The connectivity is also defined in a directed sense by setting
coefficients equal to zero where no directed link exists. Thus if a directed link of
cost 20 exists from node 5 to node 6, then

C(5,6) = 20.0

but
C(6,5) = 0.0.
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Table 7.3 Results obtained from the tree-building algorithm

Table Tentative nodal value Opt.
j 2 10 11 10 2 9 3 3
u(j) 1 1 1 11 10 10 2 2
f0) M M M M 25 21 21
j 2 10 11 10 2 9 3 4 5 9
u(j) 1 1 1 11 10 10 2 3 3 10
f0) M M M M 25 M 26 26 25
] 2 10 11 10 2 9 3 4 5 6 8 4
u(j) t 1 1 11 10 10 2 3 3 9 3
f0) M M M M M M 26 26 31 36 26
Jj 2 10 11 10 2 9 3 4 5 6 8 5
u(j) 1 1 1 11 10 10 2 3 3 9 9 3
1) M M M M M M M 26 31 36 26
j 2 10 11 10 2 9 3 4 5 6 8 6 6
u(j) i1 1 11 10 10 2 3: 3. 9" 9 <5 9
1) M M M M M M M M 31 36 36 31
j 2 10 11 10 2 9 3 4 5 6 8 6 71 8 8
u(j) 11 "1 11 10 102" 3 3 9 -9 5 6 -6 9
IO M M M MMM M M M M 36 M 36 39 36
j 2 10 11 10 2 9 3 4 5 6 8 6 71 8 17 7
u(j) 1 1 1 11 10 10 2 3 3 9 9 5 6 6 8 6
1) M MMMMMMMMMM M 36 M 51 36

Clearly for networks of undirected links the array will be symmetrical about the
leading diagonal.

7.4.3 A modified Travelling Salesman Problem

In the classic travelling-salesman problem a minimum-cost route is sought which
passes through every node in a network once and only once, and which forms a
closed loop or cycle by returning to the starting point. A much simpler problem
results if the ‘once and only once’ constraint is replaced by the requirement that
the route pass through each node at least once. The modified problem is of
practical interest in planning solid-waste collection in which no significant
penalty arises from re-visiting a node on a subsequent part of the route. The
problem may be tackled by linear programming in the following way.

Figure 7.6 shows a connected network of 5 nodes. The ‘cost” — in terms of
distance or travel time —is on the links marked and is assumed to be independent
of direction. (A problem with different costs in each direction could be posed in
the same way.) The route is defined by flow variables in each direction of each link
which take the value of 0 or 1.0. For convenience of notation the 14 flow variables
are as indicated on the diagram.
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Figure 7.6 The travelling refuse-truck problem

The linear programming problem is set up with the constraints that the route
must visit each node at least once and that at each node the algebraic sum of
inflows and outflows must be zero. The mathematical model then takes the form

Minimize ) ¢;x; i=1,14 (7.12)

subject to

X, +x;; +x,, =1 atnodel

X, + x, =1 atnode 2

X5+ X9 +x,>1 atnode3

X, + X0+ X3 =1 atnode 4

X+ X, +xg =1 atnode5
and

Xy + X4 +X14— Xy — X5 — %3 =0 atnodel

X +Xy —X, — X4 =0 atnode2

Xs+ X9 +%, —Xg—X;9—X%X;; =0 atnode3

X;+ X0+ X3 —Xg—Xg —X%;, =0 atnode4

X+ X5 +XxXg —X,—X5 —x; =0 atnode5
x; =20 foralli.

Even for this small network, the addition of necessary surplus and artificial
variables increases the problem size to one of 29 variables and 10 constraints. For
the standard travelling-salesman problem no analytical solution is yet available.
Iterative solutions are possible and a good description of one method is given by
Stark and Nicholls (1972).")
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75 NETWORK CAPACITY PROBLEMS

An important class of network problems is concerned with the analysis of flow
capacity when saturation is approached. As mentioned earlier, under such
conditions the loop law may no longer be relevant since other capacity
constraints over-ride the tendency for flows to be distributed until an equilibrium
condition is reached. This problem is illustrated with reference to a typical system
of one-way streets with maximum traffic flow constraints. The problem is
examined first by means of the concept of network cuts. An alternative labelling
technique is then introduced and finally the notion of a dual-graph is presented to
facilitate the solution.

Figure 7.7(a) shows a portion of a street network within a city. The direction of
allowable traffic movement and the maximum capacity of each street segment in
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(b)
Figure 7.7 (a) A one-way street system. (b) The one-way street equivalent network
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vehicles per hour is shown. The directed network corresponding to the physical
problem can now be drawn as indicated in Figure 7.7(b).

The physical system may be altered by increasing or decreasing the capacity
constraints of the streets, e.g. by widening the street and thus allowing more traffic
to flow or allowing parking on one or both sides of the street and hence cutting
down on the allowable flow. It is also possible that a ‘one-way’ street system be
changed to accommodate ‘two-way’ traffic and hence an additional directed link
be introduced as shown in the insert of Figure 7.7(b).

For the network of Figure 7.7(b) the node incidence matrix is given in Table 7.4.

Table 7.4 Node incidence matrix

Branch AD AB BD BE DE DG DH DI GH HI

o3}
—

EF 1IJ BF BC CF FJ

NodeA 1 1 0 0 0 0 0O O O 0 O O 0 0 0 0 0
B 0 -1 1 1 0 0 6 0 0 0 0 0 0 1 1 0 0
cC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 —1 1 0
D -1 -1 -1 0 -1 1 1 1 0 0 0 0 0 0 0 0 0
E 0 0 0 -1 -1 0 0 0 0 0 1 1 0 0 0 0 0
F 0 0 0 0 0O 0 0 0 0 0 0 -1 0 -1 0 —1 1
G 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 -1 0 -1 1 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 -1 0 -1 -1 0 1 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 —1

The rows in this table represent Kirchhoff’s Node Law and may be used in the
solution of the problem. It should be noted that for each link represented by a
column in the table, there can be only one set of coefficients (1, —1)
corresponding to the initial and terminal nodes of the link. The remaining
coefficients for that particular column will be zero. The node incidence matrix
may be related to the flows x in each link and the net inflow or outflow (i.e. the
stipulation b) by the constraint equation

Ax =b. (7.13)

In this case, the stipulations b are zero at all but nodes A and J.
A typical ‘equation’ for node E may be given as follows:

—Oe — Qb + Qur + Qer =0 (7.14)

where Qg, Qpe, etc., are the flows (in this case vehicles per hour) in the links BE,
DE, EI, and EF respectively.

Itis obvious that if street segments BE and DE were used to capacity then there
would still be an excess capacity of 600 vehicles per hour in the combined values
of EI and EF.

The network of Figure 7.7(b) has ten nodes giving rise to ten rows representing
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the equations present in the node incidence matrix. In general, the node
stipulations may not be zero and there may be two opposing directed links
between some nodal points, in which case each equation becomes independent. If
this were not the case then any one of these equations could be obtained by a
linear combination of the remaining nine equations, leaving only nine
independent equations.

To obtain the corresponding equations for the Loop Law we make use of the
topology of the basic loops within the network. In this case ADB and BDE would
be termed basic loops but ADEB would give extraneous information as it already
encompasses the basic loops ADB and BDE. The number of basic loops in a
network can be related to the number of nodes and links as follows. For a
network of N nodes a spanning tree may be formed containing (N — 1) links. If
the network contains L links the (L — N + 1) links not in the tree are called
chords. For each chord added to the tree a loop or cycle is formed. Therefore the
number of basic loops C is given by

G =(L=N-+1) (7.15)

Here C = 17 — 10 + 1 = 8 which is easily confirmed by inspection. In a similar
manner to the node incidence matrix a link coincident with the direction of the
basic loop is denoted by the symbol 1 or —1 depending on its direction. The
incident links for each loop are now entered into a row in the table as shown in
Table 7.5. The coefficients of the loop equation based on Kirchhoff’s Loop Law
are now given by each row in the table. The application of the loop matrix will be
seen later.

Table 7.5 Loop incidence matrix

Branch AD AB BD BE DE DG DH DI GH HI EI EF I BF BC CF FJ

Node ABD 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BDE 0 0 1 =1 1 0 0 0 0 0 0 0 0 0 0 0 0
DGH 0 0 0 0 0 1 -1 0 1 0 0 0 0 0 0 0 0
DHI 0 0 0 0 0 0 1 -1 0 1 0 0 0 0 0 0 0
DIE 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0
BEF 0 0 0 1 0 0 0 0 0 0 0 1 0 -1 0 0 0
BFC 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0
EIJF 0 0 0 0 0 0 0 0 0 0 1 —1 i 0 0 0 —1

7.51 Maximum flow—Minimum cut Theorem

In the traffic network problem in Figure 7.7(b) the traffic enters at source A and
exits at sink J. The planners involved in the design of this project may be
interested in determining the maximum throughput capacity of the street
network, and if necessary improve on the vehicle throughput capacity of streets
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Figure 7.8 (a)Directed network with a single cut. (b) The modified directed network with
three trial cuts

which could be potential bottlenecks. In Figure 7.8(a) the network is cut at some
arbitrary section which severs the sink from the source along every path of
positive capacity. The ‘value’ of the cut is found by the summation of the
capacities of all the links at the cut, i.e.

Obc + Opn + Qb1 + Qs + Orr = QroTaL (7.16)

where Qpg is the maximum capacity of link DG, etc. In this case the value of the
cut is found to be equal to '

1400 + 800 + 600 + 1000 + 1500 = 5300 vehicles/hour.

This value of 5300 vehicles/hour represents the maximum capacity of the
network at the cut intersections. However, the maximum throughput of this
particular network may be controlled by the allowable traffic flow in links
upstream or downstream of the particular cut shown in Figure 7.8(a) and
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therefore a systematic approach is necessary to determine the values of all
possible cuts within the network.

It is obvious that a cut taken across links AD and AB will result in the
minimum cut value, i.e.

1200 + 1000 = 2200.

Therefore, if the carrying capacity of the network is to be increased then the
capacity of these links must be improved. Assume now that the local authority
concerned have decided to increase the capacity of these two streets to 3000 and
3500 vehicles/hour for streets AD and AB respectively. The capacity at the source
of the network is now much greater and if utilized fully would cause considerable
traffic congestion at junctions I and F. Therefore, the next logical step is to
increase the capacities of FJ and 1J to a value commensurate with those streets at
the source of the network.

If this were done another investigation is required to find the value of various
cuts. The modified capacities of the streets are now shown in Figure 7.8(b).
Various cuts have been analysed, e.g.

Cut 1: Qgu + Qpu + Qb1 + Qr1 + Qrr = 700 + 800 + 600 + 1000 + 3500
= 6600 vehicles/hour.
This value could be reduced by cutting the network along links EF, BF, and BC

giving
Cut 2: Ogu + Opu + Qb1 + Qrr + Qrr + Osr + Onc
= 700 + 800 + 600 + 1000 + 1600 + 200 + 800

= 5700 vehicles/hour.

If this process is continued and all possible flow chains within the network are
analysed, it is possible to determine the minimum cut. It should be noted that the
directions of the flows must be taken into account when determining the sum of
the minimum cut. In Figure 7.8(b) the cut 2 which crosses links GH, DH, DI, EI,
EF, etc., has capacities with flows from the source to the sink and are designated
as being positive values. However, in cut 3, which also crosses the first five
branches of cut 2, there are two branches BE and BD which are effectively
crossing the line of the cut in the opposite direction and must be designated zero
values.t This results in the following:

Cut 3: Qgu + Qb + Qo1 + Qe + Qer — Qe — Osp + Oas
= 700 + 800 + 600 + 1000 + 1600 — 0 — 0 + 3500
= 8200 vehicles/hour.

+ It should be noted that zero values are assigned to ‘negative’ links only because these values are
upper limits and not actual flow values. If the results of an origin—destination survey were being
analysed in this way the negative flows would have to be included with the appropriate value in an
algebraic sum.
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This is the maximum cut of the three investigated, and as all the possibilities have
not yet been exhausted the procedure has to be continued until all the cut-sets
have been evaluated. The minimum cut is also the maximum flow allowed in the
network. In other words the maximum flow F’ equals the minimum cut C’ or

Maximum F = F' = C' = Minimum C.

In this example, a total of 40 legal cuts are shown in Figure 7.9. These are
obtained by severing all possible flow paths from the source to the sink in the
following systematic manner. Commencing from face AB, as shown in Figure
7.9(a), cut-set lines are drawn to each other face in the network e.g. AD, DG, GH,
HI, and IJ so that the source and sink are no longer connected. These cuts are
drawn around the only centre node E such that cut-sets 1 to 5 pass above the
point and cut-sets 6 to 10 pass below the point. The same format is repeated for
the other three faces resulting in the cut-sets in Figures 7.9(b), 7.9(c), and 7.9(d). It
must be remembered that a cut-set is legal only if it cuts the network into two
connected graphs, one of which contains the source and the other the sink node.
The results of the forty cut-sets are shown in Table 7.6 and the minimum cut-set is
number 3 in set (b) which has a value of 5100 vehicles/hour.

Each of the cuts may be interpreted in a slightly different sense that leads to a
solution technique more easily implemented in a computer program. Cut 1 in set
(a) isolates node A — the source. Cut 2 in set (a) isolates nodes A and D. Cut 3 in
set (a)isolates nodes A, D, and G. Examination reveals that each cutisolates node
A along with some combination of the nodes B to I (i.e. excluding the sink J). Now
the cuts resulting from the isolation of any node are given by the element in the
corresponding row of the incidence matrix A.

For example, inspection of the first row of the node incidence matrix reveals
that isolation of node A alone corresponds to the cut set (AD, AB). By adding the
rows corresponding to nodes A and B in Table 7.4 the cut set is found to be

(AD, AB, —AB, BD, BE, BF, BC)
or
(AD, BD, BE, BF, BC).

This may be confirmed by examining cut 1 of set (b).

The following algorithm may therefore be developed to obtain the cut-sets for
all possible combinations of nodes B-I being isolated along with the source A.
The minimum value may be obtained by scanning during the enumeration.

Cut-set algorithm
1. Set up the node incidence matrix A, where
A= A(,j) i=1,N N =no. of nodes
j=1,L L = no. of links.
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(d)

(a) Cut-sets through link AB — group (a). (b) Cut-sets through link BC — group (b)
(c) Cut-sets through link CF — group (c). (d) Cut-sets through link FJ,— group (d)

(b)

Figure 7.9

263
Table 7.6 Road network cut-set results
Cut-sets through AB — group (a)

Street Capacity 1 2 3 4 5 6 7 8 9 10
AB 3500 + + + + S eE + + + +
AD 3000 + +
BC 800
BD 1300 - -~ - - - - — — -
BE 1400 - - - — -
BF 200
CF 1000
DE 600 + + + + -

DG 1400 + +
DH 800 + + + +
DI 600 + + + + + +
EF 1600 + + + + =t
EI 1000 - + + + +
FJ 3500
GH 700 + +
HI 2000 + +
I 3000 + +
Cut-set
capacity 6500 6900 6200 6700 7100 9100 8900 8200 8700 8100

Cut-sets through BC — group (b)

Street Capacity 1 2 3 4 5 6 7 8 9 10
AB 3500
AD 3000 + +
BC 800 + + + e 1 + S5 + + +
BD 1300 - +
BE 1400 + + e <+ +
BF 200 + + + + e <+ + + + e
CF 1000
DE 600 + + + + =
DG 1400 + +
DH 800 + + + +
DI 600 + G ol <k I =k
EF 1600 + <+ =t + =
EI 1000 + + + +
FJ 3500
GH 700 + +
HI 2000 + +
) 3000 + +
Cut-set

capacity

5400 5800 5100 5600 6000 7900 6400 5700 6200 5600
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Table 7.6 Road network cut-set results (continued)

Cut-sets through CF — group (c)

Street Capacity 1 2 3 4 5 6 7 8 9 10
AB 3500

AD 3000 + +

BC 800

BD 1300 + +

BE 1400 + + + + +

BF 200 + + + + + + + 7= + -+
CF 1000 o5 e + ke ot iy + + + I=
DE 600 + + + + =

DG 1400 + +

DH 800 +¢ + + +

DI 600 + + = + =+ ek

EF 1600 + + + + +
EI 1000 — + + + +

FJ 3500

GH 700 + +

HI 2000 + +

1J 3000 + +
Cut-set

capacity 6900 6000 5300 5800 6200 8100 6600 5900 6400 5800

Cut-sets through FJ — group (d)

Street Capacity 1 2 3 4 5 6 7 8 9 10
AB 3500

AD 3000 + +

BC 800

BD 1300 + +

BE 1400 + + + + +

BF 200

CF 1000

DE 600 + + + + =

DG 1400 + +

DH 800 + + + +

DI 600 + =+ + + = =+

EF 1600 — — — - -

EI 1000 = = + + a3

FJ 3500 + + o A += e I s + +
GH 700 + +

HI 2000 + +

I 3000 + +
Cut-set

capacity 9200 8300 7600 8100 8500 8800 7300 6600 7100 6500
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2. Set up the vector of maximum flow rates C = C(j), j = 1, L.
3. Obtain the source node cut-set @

Q=2 Al )C() j=1L
2 s = source node.

4. Set Qmin = Qs-
5. Find any combination k,, k,, k, . . . of the set of (N — 2) nodes between the

source and sink.
6. Obtain the cut-set for this combination of intermediate nodes together with
the source node as

7. If Q) < Quin- Set Omin = Q.

8. Repeat steps 5 to 7 for all possible combinations of the (N — 2) intermediate
nodes.

9. Quin is the minimum cut.

The automatic identification of combinations is not a trivial task and a
subroutine COMBIN is included in Appendix A for use in this and other
combinatorial search procedures. For this example N = 10 and thus (N — 2) = 8.
The number of possible combinations (including all or none) of the 8 intermediate
nodes is given by
8!
1+Zm_—m)! m=1,2,...,7

which is found to be 255 —considerably more than the 40 obtained by inspection.
Typical of the cut-sets which were ignored would be the combined isolation of
nodes A and C giving the cut-set (AD, AB, —BC, CF) = 7500.

Clearly, although such a procedure may be automated it is likely to be
computationally expensive for large networks. On the other hand, manual
identification of realistic cut-sets is both tedious and subject to error. Alternative
strategies are developed in the following sections.

7.5.2 Labelling technique

A method of calculating the maximum flow in a directed network has been
developed on the relation between maximum flow and minimum cut. The
procedure involves a systematic investigation of the capacities of each link in the
network and terminates when the existing flow reaches a maximum.

The nodes within the network are successively numbered by two numbers (h, k)
where h is the number of the node preceding the present node and k denotes the
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smallest positive capacity of all links preceding the present node. Starting with
the source node A, in Figure 7.10(a), the labelling is (—, oo) which indicates that
no node precedes node A and that the flow entering A has no precisely defined
capacity. The succeeding nodes B and D are then labelled in ascending order of
node numbers until both have been completed. The procedure continues within
the network until the sink node has been labelled. In general, before considering a
new node all preceding nodes should be examined to ensure that all lower-
numbered nodes have been labelled. If this is not the case then each backward
node connected by links to the node under consideration should be labelled.

Once the procedure has been completed and the sink has been labelled the
existing flow can be increased by the amount of chain flow obtained in the
operation. A chain flow in a network is a path with constant flow and zero flow
elsewhere. The magnitude of this chain flow is given by the number k in the label
(h, k) for the sink and the path is traced back to the source via the number h which
indicates the preceding nodes. The labelling process is repeated for the network,
with reduced capacities because of the deducted chain flows, until the sink node J
cannot be labelled. This has the same effect of imposing chain flows in the
network until the flows in all possible paths from the source to the sink have been
eliminated. Therefore, if the sink is not labelled the minimum cut has been
reached and the maximum flow is equal to the sum of all chain flows determined
by the labelling technique.

The next node to be labelled in Figure 7.10(a) is B which is designated (A, 3500),
where A refers to the preceding node and 3500 represents the smallest flow
capacity of all the branches preceding node B. Node C is next labelled as (B, 800),
and in the process of labelling node D a check is made that all preceding nodes (i.e.
A and B) have been labelled, as indeed they have. The procedure continues with
node E being labelled (B, 1400) as B is the lowest indexed node preceding E and
1400 is the minimum branch capacity of all branches leading to node E via node
B. Finally, the sink node J is labelled as (F, 200), because F is the lowest-indexed
node preceding J and 200 is the minimum capacity of all the links leading into J
via nodes F, B, and A.

As the sink node J is labelled in Figure 7.10(a) the existing flow is not a
maximum and the magnitude of this flow is determined from the k number of the
sink node, i.e. ¢; = 200. The chain flow is then traced back to the source node by
means of the number h and a chain flow g, = 200is deducted from the capacity of
each branch in the path, i.e. AB, BF, and FJ. The net result is indicated in F igure
7.10(b) and since link BF has no further capacity (in fact it has a net negative
excess capacity but this is not relevant to this problem and need be considered
only if circular chain flows exist in the network), then no further flow can take
place. In this case the node F is labelled (C, 800) as no further flow can occur from
B, which has zero capacity. The chain flow resulting from this operation is
g, = 800. The labelling process is now repeated in its entirety after the first chain
flow has been subtracted.

Following in this manner the chain flows g,, ¢,, 43> 94> 45> 46> 4, and g are
calculated to give the maximum flow Q* as
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0* =g, +4q,+q5 +4q, +ds + q¢ + 47 + g5 = 5100 vph.

This value corresponds to cut-set number 3 in set (b) and on inspection of Figure
7.10(h) the cut-set can actually be deduced from the figure. Some interesting
observations are possible from Figure 7.10(h). The link BD is effectively
redundant and unless node B was created as a possible source there would be no
point in having such a link. The links AB, DG, HI, EI, FJ, CF, and 1J all have
excess capacities with the worst offenders in this case being AB and FJ. Therefore,
if the objective was to optimize this road network the local authority concerned
would have been better rewarded by increasing the capacities of links BF, DI, etc.
by a commensurate amount and not improving the capacities of AB and FJ quite
so much.

It is possible to execute the analysis in a tabulated form as shown in Table 7.7.
The procedure is similar to that resulting in the series of networks shown in
Figure 7.10 and also indicates the relationships between each succeeding and
preceding node in the network. A dash indicates that there is no connection
between the two nodes and a zero implies a connection but no capacity in that
direction. The procedure commences by entering the first row A (i.e. i = A) which

Table 7.7 Solution of example by labelling technique

(@) g, =200

~) A B ¢c D E F G H 1 I h k

1
A — (3500 —. BOOG. — == == == = e = o
B 0 — 800 1300 1400 = = e s A 3800
C -0 - - — 10 — — — — B 800
D 0 0 — — 600 — 1400 800 600 — A 3000
E e = 0 — 1600 e 000 — B 1400
Fo - 2= 9 0. — 0 = =—  — .— [3500] B 200
G — e = 0] == e o Qe N, DS R1R00
H - - - 0 — — 0 — 200 — D 800
I — 0 0 — — 0 — 3000 D 600
J a5 S . 2 e e 200

(b) g, = 800

; J A B ¢ D E F G H I T ok k
- — gD — e — T — wm P g
B 0 — [800] 13001400 © — — — -2 & 3300
C — 0= = e o= (B 800
D 0 0 — — 600 — 1400 800 600 — A 3000
E — 0 0 — 1600 — — 1000 — B 1400
F — 0 -0 — — — — [3300] C 800
G e | I — 700 = — D 1400
H - cumnefeiul o — 00—y D 800
I b @ o e =t (== 800010 600
J — = = - i R R TS 800
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has links incident with nodes B and D and noting that h = (—) and k = oo. The
next rows entered are B and D which are those indicated in row A. In row B
(i = B), h = A, which is the precedence of node A, and k = 3500, which is the
smaller of the coefficients in columns B and k of row A. Similarly, in row D
(i = D), h = A, which is the precedence of node D, and k = 3000, which is the
smaller of the coefficients in columns D and k. From an inspection of row B, the
nodes incident with links from B are A, C, D, E, and F respectively, and since A
and D are already labelled the analysis proceeds to nodes C, E, and F. Therefore
rows C, E, and F are entered and inspected for corresponding nodes on incident
links. Finally, the values of & and k in all rows, and k = 200 in the last row (i = J),
indicates that the chain flow is 200. The path of the chain flow can be traced for
h = F in the last row (i = J) to h = B in row F (i = F) and finally to node A (i.e.
h = A inrow i = B). The capacity of each link within the path of the chain flow is
marked by a square, thus enabling easy identification.

The chain flow, g, = 200, is then subtracted from the positive capacity of each
branch in the path and added to the negative capacity (if pertinent) of that link.
The result is shown in Table 7.7(b), e.g. capacity AB is now 3500 — 200 = 3300.
The same labelling technique is then applied to the modified table until a chain
flow of ¢, = 800 is obtained in the last row. The process may be repeated until the
sink node cannot be labelled and as in the previous analysis the chain flows are
summed to give the maximum possible flow within the network.

7.5.3 Primal-dual graphs

In Section 7.5.1 the maximum flow was based on a comparison of cut-sets each of
which bisect the original network such that source and sink are separated. The
cut-sets are seen to be bunched together at the intersection of a link and then to
diverge within the loop of which the link is a part. This suggests that alternative
cuts may be viewed as alternative routes connecting the centroids of each basic
loop. In order to formalize this treatment it is useful to introduce a return link
connecting sink and source as illustrated in Figure 7.3(b). A new set of vertices is
then constructed, one within each basic loop of the original network. These new
vertices form the basis of a dual-graph which is essentially orthogonal to the
original primal graph of Figure 7.9. The links of the dual graph each intersect a
single link of the primal graph. The result is indicated in Figure 7.11. Each link in
the dual graph is given a flow variable value equal to that of the upper flow limit in
the corresponding link of the primal graph. Direction is defined by using a
consistent transformation — e.g. positive directions in the dual are 90° out-of-
phase (clockwise) from the direction in the primal.

The relationship between the primal and dual graphs is not simply geometric
but has its roots in the primal-dual theory of linear algebra (see Section 3.11).
Thus, whereas the primal involves maximization of flow variables subject to
maximum capacity constraints, the dual involves minimization of potential
differences or costs which are numerically equivalent to the capacity constraints.

In terms of network topology it is interesting to note that the loop matrix of the
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Figure 7.11 Primal and dual graphs of a network
Table 7.8 Loop incidence matrix
Link AD AB BD BE DE DG DH DI GH HI EI EF 1 BF BC CF FJ JA Dual
node
Loop
ADGHU -1 0 0 0 0 -1 0 0 -1 -1 0 0 -1 0 0 0 0 1 1
DGH 0. @ 0 -0 10 L sl 0 leR 0 00 0 002300 00 (01 00,52
ABD 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
BDE 0o 0 1t -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4
DEI 06 0o 0 0 -1 0 0O 1 0 O0-1 0 0 0 0 0 0 0 5
DHI 060 0o 0 0 0 1 -1 0 1 0 0 0 0 0 0O 0 0 6
BEF 0o 0 0o 1 0 0 0 0 0 0 0 I 0 -1 0 0 0 0 7
EFJI 60 0 0 0 0 0 0 0 0 1 -1 1 0 0 0 -1 0 8
BCF 6 0 0o 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 9
0o 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 —110

primal becomes the node incidence matrix of the dual. Table 7.8 is a modified
version of the loop matrix of Table 7.5, whereby the order of the rows has been
modified so that the loops correspond to the vertices as numbered in Figure 7.11.
The eight loops of the original primal have been augmented by adding a ninth
loop due to the introduction of the recirculating link (JA). Finally, a tenth row is
added such that the elements of each column sum to zero. This tenth row
corresponds to the node incidence equation of a tenth node which is outside the
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dual graph and which is connected to the dual ‘source’ at node 1 by a dummy link
(10, 1).

The problem now reduces to finding the shortest path from source 1 to sink 10
in the directed network of the dual. For this example the solution may be found
by inspection or by enumeration. The routine TREE described in Section 7.4.2
may be applied to this problem with only one minor complication. The tree-
building algorithm assumes that only one link exists between a directed pair of
nodes. The dual graph of Figure 7.11, however, contains alternative routes
between the nodal pairs (1, 2) and (9, 10). To reduce the dual graph to a form
compatible with subroutine TREE it is necessary merely to delete the less
attractive alternative in each case. Thus ¢(1, 2) = 700 and ¢(9, 10) = 800.

7.6 MODIFICATION OF THE DIRECTIONAL
SENSE OF THE NETWORK

If the planners involved with the optimization of traffic movement in the
particular network in question have the choice of allowing two-way flow in some
branches then the network becomes undirected and a series of networks showing
the various combinations have to be solved, e.g. if two-way flow was allowed in
segment EF of the primal network then two solutions would be required, one
with directed flow from E to F and the other with flow from F to E.

The dual graph is ideal for this purpose and is extremely useful in the analysis of
networks where the direction cannot be assigned a priori for the flow in some of
the branches. If the branch DE is to be a one-way street but the optimum
direction is not known, then the influence of this on the final result can be
analysed as follows. In the dual graph the chain 4-5 would have an arrow
indicating traffic flow from node 4 to node 5 and this would result in the
maximum capacity of the network being increased by 600 and hence the logical
direction for traffic to flow in branch DE is as it stands.

7.7 EXERCISES

7.7.1 A conduit has to be constructed to convey a given quantity of water from
source A to demand area B. Whereas the starting point of the conduit can
be located usually with a high degree of accuracy, the location of the other
extremity of the conduit may often present a number of alternative
choices. In addition to this, the terrain between source A and demand area
B (its topography, geology, land use, etc.) may present a variety of
alternative routes, each involving different levels of expenditure. This is
shown graphically in Figure 7.12. In this figure, the water conduit
(open channel or pipeline) must link A with either of the three terminal
points B;, B,, or B;. The possible points through which the conduit may
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Figure 7.12 A conduit routing problem

pass are numbered from (1) to (11), and the digit appearing on each link
joining these various points represents the expenditure connected with the
construction of this link (in monetary units). Find the path linking A with
B, (i = 1, 2, 3) requiring the minimum expenditure.

7.7.2 (a) Discuss and contrast the various techniques available for determining
the maximum flow in a directed network.
(b) A street network is depicted in the directed network of Figure 7.13
where S is the source node, n is the sink node, and the numbers along
the arcs denote the capacities of the traffic flow.

source sink

Figure 7.13 A directed street network

Illustrate the following notions with an example from the network
shown:

(i) A path connecting the source and the sink.
(ii) A cut separating the source and the sink.
(iii) The capacity of a cut.

Find the maximum flow from the source to the sink using the
labelling method. Find the maximum cut, and verify the maximum
flow—minimum cut theorem.
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7.7.3 Determine the maximum flow in the network with the branch capacities as
shown in Figure 7.14, by using the labelling technique.®

Figure 7.14 A capacitated network

7.74 Solve the network shown in Figure 7.14 by
(a) the minimum cut-maximum flow method and
(b) the primal-dual graph method.®

6 8
9 10
)

Figure 7.15 Capacitated network of Example 7.7.5

7.7.5 Determine the maximum flow in the network of Figure 7.15 with branch
capacities shown in the figures for each problem by constructing flow
chains from the source to the sink.
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Chapter 8
Critical Path Analysis

8.1 INTRODUCTION

In the previous chapter it was mentioned that problems of planning and
scheduling engineering projects can be represented by networks which indicate
the various activities in the proper order of their execution. An effective method of
planning must provide a clear picture of the relationship between the activities
and show how delays at any particular stage will affect the remainder of the
project.

More traditional forms of planning such as the ‘bar chart’ or ‘Gantt chart’ are
good methods for illustrating progress, but they provide no direct indication of
the relationship between the various operations, nor do they show the extent to
which delays will affect the remainder of the project.

The critical path method (CPM) utilizes the techniques of network analysis to
represent a project plan by a schematic diagram which represents the sequence
and inter-relationship of the activities or operations within the project. Delays in
the completion of an activity can be analysed to determine the effect on the
overall completion time of the whole project. With this information it is possible
to re-allocate the resources available (e.g. money, equipment, or manpower) and
compensate at least in part for the unforeseen delay.

8.2 CONSTRUCTION OF THE NETWORK

The initial synthesis of the network requires the division of the project into clearly
defined activities or tasks. For example, in conducting a traffic survey for the
planning of an urban mass transit system, the entire project might be envisaged as
consisting of the following major activities:

Define the scope of the survey.
Establish the procedure of the survey.
Design questionnaires for the survey.
. Hire and organize staff.
Train the staff to be familiar with the questionnaires.
Select sampling stations along the proposed routes.

mTmoQw»
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G. Assign the staff to sampling stations.
H. Conduct the field survey.

The project is then illustrated graphically as a network of arrows, with each arrow
representing an activity. These activities, if following each other during the
execution of the project, are drawn as arrows in sequence with the direction of the
arrow indicating the natural progression of the project. If activities are allowed to
occur concurrently then they are drawn as arrows in parallel. A complex project
will be made up of many such sequences and the inter-relationship of these
sequences is illustrated by the direction of the arrows that connect the sequences.
Once the network has been completed, it is then possible to assign details of
duration, cost, and resources to each activity. Also, as described later, it will be
possible to examine, schedule, and control rate of progress, costs, and the
allocation of resources.

8.2.1 Activities and events

As already mentioned, a project must be broken down into well defined units
before a plan or schedule can be prepared. These units are referred to as activities.
The nodes that mark the completion and start of each activity are called events.

An activity represents a job or task that has to be carried out and forms an
integral part of the complete project. During the construction of a house one such
activity might be to ‘pour the foundations’, and later during the advertising
campaign for selling the houses an important activity would be ‘preparation of
press release and photographs’. An activity may also represent the passing of time
with no actual work being carried out, e.g. ‘await delivery of materials’ or ‘setting
and hardening of concrete’.

In general, the division of activities for a network depends also to some extent
on the level of management which makes use of it. For top management, a simple
network representing major activities of the project may be sufficient, but a
project engineer who is directly responsible for its performance must know to a
greater depth the details of the activities. However, it is wise to start the analysis
with a relatively simple network and if this proves insufficient in the proper
scheduling of events then recourse can be made to a more detailed network. If the
work is all of one category and is to be planned and supervised by one person,
then obviously that person, with no additional assistance, should collect the
information and prepare the network. Where the project consists of a multiplicity
of categories of work with separate groups responsible for sections of the project,
it may be necessary for each group to be represented when the network is
prepared. The need for proper liaison between the representatives of each group
cannot be overstressed.

Generally, there will be many amendments made to the network between the
preliminary planning stage and the preparation of the final plan. Even then the
network is not necessarily complete as alterations may be required or desirable as
the project gets under way.
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Figure 8.1 Activity- and event-oriented networks: (a) activity-on-branch; (b) event-on-
node; (c) activity-on-node

The terminology used in CPM networks may best be described with reference
to Figure 8.1. In Figure 8.1(a) the activities A to H are placed on the branches
connecting the nodes and the network is therefore referred to as being activity-
oriented. In Figure 8.1(b), the activities are again ‘on-branch’ but in this case the
identifiers are event-oriented. In Figure 8.1(c) the activities are placed on the nodes
with the branches simply denoting the precedence relationships of the activities.
The event referred to in the previous sentence is an occurrence at a point in time
which marks the start or completion of one or more activities. Examples of such
events are ‘start digging for foundations’, ‘start roof tiling’, ‘complete concreting
slab’, and ‘completion of project’. In the remainder of this chapter the activity-
oriented or activity-on-branch method will be used.

Once a project has been suitably broken down into activities, it may be
illustrated graphically by means of a network of arrows representing the
activities. The events are symbolized by circles drawn at the tail and arrowhead
respectively representing the commencement and completion of the activity. In
the case of an activity immediately following another the arrows are drawn
sequentially as in Figure 8.2(a). This indicates that the foundation concrete
cannot be poured until the foundations have been dug. The events have been
described in this instance but, as is often the case, single events frequently mark
the start or completion of several activities and are therefore usually unnamed in
order to avoid confusion. For instance, in Figure 8.2(b) the network indicates that
neither the unloading of passengers or luggage can begin until the car has come to
a halt.

To design a network that will satisfy all the constraints requires a great deal of
skill. In some cases, managerial decisions are extremely difficult to formulate in a
diagram and errors may consequently occur. However, it is reasonably simple to
test a given network and so it is easier to commence the analysis with a relatively
coarse network and refine it later. These concepts may best be presented through

e,

209
o End digging| Start pouring -
Start digging foundations | concrete Enctl::r:rt:\g
foundations i 4 S p A
& ig foundations ’C} our , O
(a)
Unload passengers O
Stop car
(b)

Unload baggage C

Figure 8.2 Relationship between events and activities

the description of a typical problem which has the following preliminary list of
activities:

Site clearing.

Dig foundations.

Place formwork.

Pour concrete.

Obtain steel reinforcement.

Cut and bend steel reinforcement.
Lay out foundations.

Obtain concrete.

Place steel reinforcement..

e b el @ 1o

These activities are listed in the order in which they spring to mind and are
obviously not in the proper sequence necessary for a detailed network analysis.
An examination of the list shows that an accurate grouping is obvious and, if
considering physical cofistraints only, the precedence relationships of activities
are obtained as shown in Table 8.1.

Table 8.1 Activities for reinforced concrete foundation

Activity Description Prerequisite Duration

Site clearing

Lay out foundations
Obtain steel reinforcement
Obtain concrete

Dig foundations

Cut and bend steel

Place formwork

Place steel reinforcement
Place concrete

—~ T QMmO w >
mOw> >3 |
NMNAWLWNAARNCO A

om
G




280

On inspecting the project from different viewpoints, it may be seen that
individual chains of activities emerge, e.g. it is obvious that the formwork, steel,
and concrete be placed in this order respectively. However, all the chains of
activities must merge before pouring of the concrete, and this concept may be seen
quite clearly in Figure 8.3.

6 6 Obtain concrete 2
Figure 8.3 Networks for reinforced concrete foundation

The predecessor—successor relationships of various activities on branches can
be given by the matrix in Table 8.2 which is sometimes referred to as the implicit
precedence matrix. Note that the activities on the branches (i, j) are arranged in
ascending order of i first. The predecessors of an activity in a column heading are

Table 8.2 Implicit precedence matrix

Successor
A B C D E F G H I

Predecessor o1 12 (1,3 @€,6) 2,49 3,5 &5 6.6 (6,7

A0, 1) X x x

B(1,2) x

C(1,3) x

D(1, 6) x
EQ2,4) x

F(@3,5) x

G(4, 5) x

H(5, 6) x
1(6, 7)

located by the rows in which the x’s are marked in that column. Conversely, the
successors of an activity in a row heading are given by the columns in which the
x’s are found in that row. Thus, all the predecessors and successors of any activity
(i,j) can be obtained by following through immediate predecessors and
successors step by step.

8.2.2 Dummy activities

In certain circumstances it is necessary to show that one event cannot take place
until a previous event has occurred although there may be no physical interaction
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between the two. Therefore, in order to demonstrate the sequential ordering of
the two events a dummy arrow is drawn between them. This dummy activity
requires neither time nor resources although it is dealt with in the same way as a
standard activity.

Figure 8.4 shows a section of a network giving an example of the use of dummy
arrows. This diagram suggests that the installation of the window frames has to

C Build walls ; Construct roof >O

O Construct windol’\j Install window C
frames frames

Figure 8.4 Example of a dummy arrow (activity)

await the building of the walls of the house and the fabrication of the frames for
the windows. However, the construction of the roof need not necessarily await the
completion of the fabrication or installation of the window frames but can
proceed as soon as the walls have been completed.

If the dummy arrow is omitted then one could surmise, wrongly in this case,
that the window frames could be installed before the walls are built, which is
obviously incorrect. ,

Dummy arrows are also used to prevent ambiguity, so that two activities
sharing the same start and end events can be identified separately. The need for
this becomes evident when events are numbered for scheduling and analysis. An
example to demonstrate this principle is given in Figure 8.5.

Figure 8.5 Example of a bottleneck

Figure 8.5 indicates that neither activity E or F can commence until both
activities C and D have been completed. This may be an unreasonable restriction
of the network and it might be more desirable if F could start as soon as D alone is
completed and need not necessarily await the completion of C. However, E may
still not commence until both C and D are completed as previously described in
Figure 8.5. Therefore, the network now requires modification and this may be
done by the suitable insertion of a dummy variable as shown in Figure 8.6. The
unique designations of activities E and F are now seen to be preserved.

Figure 8.6 Modified ‘bottleneck’
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8.3 FORMULATING THE SCHEDULING PROBLEM

The scheduling problem for a given network plan is to determine an optimal
schedule which is consistent with the given logical sequences and durations of
various activities within the network, and one which requires a minimum time for
the completion of the project. Even if the planner goes no further than the
preceding steps, he or she will, by the very act of breaking down the project and
preparing the network, have a clear understanding of the work involved and the
problems that are likely to arise. Nevertheless, the greatest value of the CPM
comes from the application of simple calculations which introduce the all-
important element of time, and provide information valuable during both the
planning and implementation stages of the project.

The introduction of the time element enables the planner to determine the
overall time of the project, the sequence of activities that control the length of the
project, and the timing of intermediate deadlines and objectives.

Consider a network with n + 1 nodes, the initial event being 0 and the last
event being n. The event times at these nodes are x, X, X5, . - ., X, respectively,
which increase in magnitude as they are units of time. These event times are
constrained by the duration of the activities between the events.

The duration of any activity (i, j) between events i and j is denoted by D;; (= 0).
If the events in the directed network are arranged such that the event x; at the tail
end is always smaller than the event x; at the arrowhead of every activity (i, j), we
have i < j. Then the difference between event times x; and x; must be greater than
or equal to D,;. Hence we can now formulate the scheduling problem in order to
minimize the completion time z as follows:

Minimize z = x, — X, (8.1)

subject to
x;—x,—D; =0 for all (i, j) (8.2)
X; > X forallj>i, i,j=0,1,2,...,n (8.3)

The events are unrestricted in sign as the reference point of the time scale has not
yet been chosen. Usually, the initial event x,, starts at time zero and therefore all
other values of x must be positive. If we now introduce a slack variable x;; for each
activity (i,j) then the inequality constraints may be replaced by equality
constraints. Therefore, the problem may now be re-stated as

Minimize z = X, (8.4)

subject to
x;—x;,—D;—x;=0 forall (i}) (8.5)
x;; =0 for all (i, ) (8.6)

ij
x;>x,20 ,j=0,1,2,3,...,n
Having finished the construction of the network, the planner should now

estimate as closely as possible the most likely duration of each activity within the
project. There should be at least a fifty-fifty chance of the activity being completed
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within the duration or expected time. In general, any over- or under-estimations
should even themselves out over the duration of the project as a whole. At this
stage, the desirable completion time for the project need not be taken into
account. In fact, the presence of ‘deadlines’ should not influence the estimates of
durations of various activities, ending in unrealistic quotations being made with
everyone being unhappy!

8.3.1 Earliest event times

Once the activities have been assigned realistic time durations D, it is possible to
calculate the earliest event times. As the name implies, this is thejear]iest time by
which that event can take place, and is based on the length of time required to
execute the chain of activities that culminate in that event.

In Figure 8.7, the earliest time that event 2 can take place is day 3, and the
earliest that event 3 can take place is day 4 (i.e. 3 + 1).

Excavate the Place steeland
1 () ( )
O foundations kzj pour concrete 3
3 days 1 day
Figure 8.7 Event times for two activities

Where two or more chains of activities lead up to an event, the earliest time at
which that event can take place is the time of the chain taking the longest time to
complete.

In Figure 8.8, the earliest time at which event 2 can take place is after 1 day has
elapsed; event 4 after 1 + 3 = 4 days have elapsed; and event 3 after 6 days.

A
1 day )@7 3 days ’@7 6 days

L 6 days ’@B 5 days

Figure 8.8 Event times in a two-chain network

However, what happens to event 57 This has two chains of eventsleading up to
it, chain A via events 1-2—4-5, and chain B via events 1-3-5. The first chain, i.e. A,
is completed after 1 4+ 3 + 6 = 10 days, but event 5 cannot take place until chain
B, which is of duration 6 + 5 = 11 days, is also complete. Hence, the earliest time
that event 5 can take place is after 11 days and this termed as being the earliest
event time (EET) for event 5. These times are then entered on the network framed
by a square as shown in Figure 8.9.

Ifit is now stipulated that event 4 is unable to commence until event 3 has been
completed then a dummy activity must be introduced into the network. This is



284
]

1 day >@ 3 days >@ 6

(o]
1 6 days @, (3} 5 days

Figure 8.9 DO = Earliest even time: the earliest time at which the event can take place

1 day >@

6 days

1 6 days '\:_3/7 5 days

Figure 8.10 Insertion of a dummy activity

indicated in Figure 8.10. The dummy activity 3—4 takes zero time but its presence
will influence the earliest event times of the network as follows. Event 2 is not
influenced by the presence of the dummy activity and hence its earliest event time
remains unaltered. However, event 4 can now be attained via two chains of

activities:
1-2-4, which takes 1 + 3 = 4 days
1-3-4, which takes 6 + 0 = 6 days.

Therefore, the earliest time at which event 4 can now take place has been changed
from 4 to 6 days. Activity 4-5 commences at this time and will not be completed

until after 6 + 6 = 12 days.
The chain of events 1-3—5 remains unaltered at 6 + 5 = 11 days, and therefore
the EET for event 5isnow 12 days as shown in Figure 8.11. This is also the earliest

(e]

1 day 2 2 $4> 6 days

= g

&
>
§°
1 6 days SN 5 days

Figure 8.11 Effect of dummy activity on earliest event times

time by which the project as a whole can be completed. It is obvious that it is
unnecessary to trace the chains of activities from the start of the project each time
an earliest event time is to be determined. This may be done by adding the
durations D;; of the activities to the previously determined EET at the start of the
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activity, e.g. the EET for event 5 may be found by adding to the earliest event
times of events 4 and 3 the durations of activities 4-5 and 3-5 respectively:
6+ 6 =12 and 6 4+ 5 = 11, the longer time, 12 days, being the EET of event 5.

8.3.2 Latest event times

Once the earliest event times have been found the next logical step is to calculate
the latest event time (LET) for each event. This is defined as being the latest time at
which an event can take place if the earliest time for project completion as a whole
is not to be exceeded. In this case the calculations commence with the project end
event and a backward pass is made through the network, deducting the duration
D,; of each activity from the latest event time of its end event.

Referring to Figure 8.11, it is seen that if the earliest project time of 12 days is
not to be exceeded, then the LET for event number 5 must also be the twelfth day.
The LET is then placed within a triangle immediately to the right of the square
representing the earliest event time (Figure 8.12).

(A path A [BA
OH— (o)

3 days

Path E{{a
3
G4 Y EPY
6 days il = 5 days

Figure 8.12 Network showing EET and LET values

Following the events in descending order back through the network we next
arrive at event number 4. The LET for event 4 is obtained by deducting from the
LET of event 5 the duration of activity 4-5, i.e. 6 days. This results in a LET of
12 — 6 = 6th day for event 4.

Now, event number 3 has two chains of events leading back to it. Therefore, if
the project time is not to be exceeded, event 3 must take place in sufficient time to
allow the longest sequence of activities to take place, in this case sequence 3—4-5
which takes 0 + 6 = 6 days as against sequence 3-5 which takes only 5 days.
Hence, event 3 must take place 6 days before the twelfth day, i.e. 12 — 6 = 6th
day.

As mentioned previously, for the calculation of the earliest event times it is
unnecessary to work through the whole network each time the LET needs to be
found. It is sufficient to consider only the activities leading from the event and the
latest even times of the events at the end of the activities. Hence, the LET for
event 2 is (Latest event time 4) — (Duration of activity 2-4) = 6 — 3 = 3 days.

Finally, event 1 has two activities emanating from it. The activity in the longest
chain determines the latest time by which the event can take place if the project
completion time is not to be delayed. The two choices are as follows:
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(Latest event time of event 2) — (Duration of activity 1-2) = 2 days
or
(Latest event time of event 3) — (Duration of activity 1-3) = 0.

The longest time path is therefore via activity 1-3 and the latest time by which
event 1 can take place is day zero.

The LET for the start event must always be zero if this method is followed. The
end result of adding up the durations of the activities in the longest chain to
obtain the earliest event time of the last event, and then taking away the durations
of the same activities to arrive at the LET of the start event, will always be zero.

Alternatively, if the project time of 12 days is not to be exceeded and the longest
chain of activities is of 12 days’ duration, then the latest time the project can start
is day zero.

This provides a check on the calculations made for determining the latest event
times. If the latest event time for the start event is greater than zero then an error
has been made in the calculations. The final result for this particular problem is
given in Figure 8.12. Once this stage has been reached it is then feasible to
determine the critical path and carry out a complete time analysis of the
programme of events.

84 THE CRITICAL PATH

After the earliest event times (EET) and the latest event times (LET) for each event
have been determined it is possible to calculate the critical path or paths for the
network. An event lies in the critical path if its EET (x}) and its LET (x]) are
identical, as any delay in satisfying this event will automatically violate its latest
event time (which was based on the EET for project completion), and the project
is delayed.

8.4.1 Total float

If the EET for any event is less than its LET, a certain delay in completing that
event is allowable which will not delay the completion of the overall project. For
example, referring to Figure 8.12, activities 1-2 and 2—4 have two spare days.
Either of them could take two days longer to complete without the path
becoming critical. This extra time could be divided between them, e.g. one day to
activity 1-2 and one day to activity 2—4, or any other combination provided that
the total spare time does not exceed two days. On the other hand, event 4 is a
critical event lying on the critical path, because x), and x|, are equal, and no
tolerance is permissible in satisfying this event if the project completion time of 12
daysis to be satisfied. An analysis of Figure 8.12 indicates that events 1, 3,4, and 5
are critical and lie on the critical path. Event 2 is a non-critical event and therefore
does not lie on the critical path. It is a central event in the activities 1-2 and 2—4
which are known to have a certain flexibility in their start and finish times. This
spare time is known as the total float of the two activities and can be used in either
one or both of the activities but must not exceed a total time of two days.
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Therefore, the total float is the amount of spare time attributed to an activity
and if absorbed within the activity, resulting in a lengthening of the duration D, i
then the floats in both previous and succeeding activities may be reduced. If the
duration of activity 1-2 is increased by one day from 1 to 2 days, i.e. one day of the
float is used, then the total timefor path A becomes 11 days. The spare time has
been reduced to one day and activities 1-2 and 2—4 now have total floats of only
one day. However, a further increase of one day in the duration o activity 1-2
would make all paths in the network critical, as the EET and LET of event 2
would now be equal.

It is unnecessary to calculate the total duration of each path to determine the
total float of any particular activity on the path concerned. The total float may be
found very easily by means of the leeway between the start and finish events of the
activity. Consider activity 2—4 as shown in Figure 8.13.

MA (6] &
g 3 days o

7/

/

Figure 8.13 Determination of total float

The information already calculated and entered on the diagram is as follows:

Duration D, = 3 days
Earliest event time, event 2 = day 1
Latest event time, event 2 =day 3
Earliest event time, event 4 = day 6
Latest event time, event 4 = day 6.

This information shows that activity 2—4 may start on day 1 (earliest event time
for event 4), but does not have to be finished until day 6 (latest event time for event
4). Therefore, there are five days in which to carry out this activity, but as it
requires only three days there is a total float of two days. The total float may
therefore be calculated directly from the information shown on the diagram by
deducting the EET of the start event and the duration from the LET of the end
event.

8.4.2 Other types of float

In addition to total float, other types of float can also be defined. The practical
value of these often does not warrant the additional calculation, but there may be
instances where this information would be of value. The definitions of the other
types of float are as follows.

Let t;; be defined as the start of an activity (i, j), and T;; the finish time of the
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same activity. The earliest time that an activity (i, j) may start without interfering
with completion time of its predecessors is given by ;; and the latest time that this
activity (i,j) can start without interfering with the completion time of its
successors is denoted by ¢7;. Similarly, the earliest finish time T;; and the latest
finish time T} are also defined. These activity start and finish times can be related

J
to the earliest event times x; or x, and to the latest event times, x; or x;.’ as follows:

), = x,, (8.72)
T)=x+ D, (8.7b)
» TF =l (8.7c)
tf,=x; — D, (8.7d)

Therefore, the total float in an activity (i, j) is defined by

o "o 1o __ gl 4l
=Ty —Ty=t;—t

(8.8)
and for a critical activity
x;; = 0.

Unless reasons are given specifically to the contrary, it is always advisable to
follow a schedule of the earliest event times, i.e. to start and finish all activities as
early as possible. Such a schedule is called the early time schedule. However, once
afloat in an activity is used it may interfere with the floats of its predecessors. The
duration of an activity with free float can be increased by the amount of float
without affecting the progress of succeeding activities. This will, however, reduce
the amount of total float available for preceding activities. A free float occurs
only in the last of a series of activities leading to a critical path and may be
calculated by deducting the EET of the start event and the duration from the EET
of the end activity, i.e.

xf; = x;— x; — D;. (8.9)
Therefore, for activity 2—4 in Figure 8.13,
Free float (2,4) =6 — 1 — 3 = 2 days.

If a portion of the total float in the activity (i,j) is entirely independent of
successors or predecessors, that portion is called the independent float and may
be defined as follows:

= — 3 D, =0, (8.10)

In other words, the independent float is calculated by deducting the latest event
time of the start event and the duration of the activity from the earliest event time
of the end event, e.g. activity 3-5 in Figure 8.14.

289

/
‘H%& 5 days

INDEPENDENT FLOAT= [i2] - 6\ -5 = 1day

Figure 8.14 Determination of independent float

85 ACTIVITY TIMES

Also of importance to the user of the CPM are the times which activities, as

opposed to events, can take place. In fact, this information is often of greater use

than the event times, since it is more usual to designate the start and finish dates of

activities than the occurrence of events when scheduling work operations.
The activity times may be calculated as follows:

(a) Earliest start time (t;;)

The earliest time at which an activity can start is immediately the start event has
occurred. The earliest start time is the earliest event time of the start event; thus,
the earliest start time for activity 2-4 = day 1.

(b) Earliest finish time (T))

To enable an activity to finish as early as possible then it must start at the earliest
start time. In other words, the earliest finish time is equal to the earliest start time
plus the duration of the activity; thus, the earliest finish time for 2—4is = 1 + 3 =
day 4.

(c) Latest start time (t;})

This is the latest time at which the activity can start without delaying the finish of
the project, i.e. the latest start time is the latest event time for the end event minus
the duration; thus, the latest start time for 2-4 = 6 — 3 = day 3.

(d) Latest finish time (7};.’)

The latest time at which an activity can finish is immediately before the latest time
the end event takes place, i.e. the latest finish time is equal to the latest event time
of the end event and the latest event time for 2-4 = day 6.

As stated in the previous section the differences between the two start times and
between the two finish times are the same and equal to the total float of the
activity, e.g. for 24, (3 — 1) = (6 — 4) = (2 days of total float). When this
difference is zero, there is zero total float and the activity is therefore on the
critical path. For the purpose of scheduling and control these details regarding
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Table 8.3 Summary of event times for network of Figure 8.12
Start Finish
Total Critical
Activity Duration Earliest Latest Earliest Latest float activities (*)
1-2 1 0 2 1 3 2
1-3 6 0 0 6 6 0 *
24 3 1 3 4 6 2
34 0 6 6 6 6 0 *
3-S5 5 6 7 11 12 1
4-5 6 6 6 12 12 0 *

activity times may be entered into a table to provide an invaluable aid for
planning operations. Table 8.3 shows such a table for the network of Figure 8.12.

8.6 THE CRITICAL TIME PATH

The minimum time required for the completion of all activities in a project is
governed by the longest time path linking the initial event and the terminal event
of the project. Hence, the solution of the critical scheduling problem is equivalent
to the determination of the longest time path in a network having a unit time flow
from the source to the sink. If a branch (i, j) is an integral part of a path
constituting the longest time path between the source and sink, it must satisfy the
condition x;; = 0. In other words, it must be completed on time if a minimum
duration is given to complete the project. Therefore,

x;—x; =D,
If we now start to construct a path from node 0 (the initial event) to every other
node (in increasing order of node), then the value of x; corresponding to the
longest of all possible paths from node 0 to node i is denoted by x;. Starting from
node i, the time path to each of the nodes j on the other ends of all bursting
branches (i.e. all branches emanating from i) incident to node i is given by

— !
X; = X; + Dij.

This value of x; for any other branch (i, j) incident to i, along with those for other
branches incident to j, will be investigated later in order to determine the
maximum value of x; (i.e. x}) for node j. The procedure can now be repeated for all
nodes within the system until the resulting x, = maximum Xx,,.

As the procedure moves in an ascending manner from node to node it is
referred to as a forward pass. The set of x; thus obtained is denoted by x;
(i=0,1,...,n)and each x; represents the earliest time that event i may take place
and is the earliest event time for event i.

If the same procedure is used starting with node n and then moving in a
backward direction to every other node i, then the value of x, for node n is taken
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to be x; = maximum x,. At any node x; where one or more bursting branches
meet, the value of x; corresponding to the longest of all possible time paths
leading back from the sink n to nodej (i.e. the minimum value of x;) is denoted by
% Therefore, moving backward through the network from node j, the time path
toeach nodeion the other ends of all merging branches incident to node j is given
by

el
X; = X Dij.

This value of x, for any branch (i, j) incident on j will be examined later along with
those for other branches incident to i in determining minimum x; = x/ for node i.
In a similar manner to the forward pass, the procedure can be repeated in
descending order of node magnitude until i = 0, with x, = 0. The procedure is
referred to as a backward pass, and the set of x; obtained is denoted by x;
(i=0,1,2,...,n),commencing with x;, = maximum x,. In this case, the values of
x; represent the latest time that event i may take place, i.e. the latest event time for
event .

Once the backward and forward passes have been calculated it is possible to
determine whether a branch (i, j) lies within the longest time path maximum x, on
validating the following conditions:

X;p=X; =X (8.11a)
X; = X; = x] (8.11b)

and
x;—x;=xj —x{ = Dy;. (8.11c)

The computation involved in this procedure is explained in detail in the following
example.

8.7 A SWIMMING POOL PROJECT

A residential owner has decided to have a swimming pool constructed in his rear
garden in order that his family may enjoy more fully the dubious pleasures of
bathing during the British summer. What was first thought to be a relatively
straightforward project turns out, on closer analysis, to be a rather complicated
procedure. This is due mainly to the relative inaccessibility of the garden from the
main road and the lack of space for storing the raw materials on site, e.g. it is
impossible to machine-dig the excavation and so two labourers are required.
Similarly, the soil cannot be conveniently removed and so this will have to be
distributed around the site and in adjacent gardens (assuming good relationships
between the owner and his neighbours).

Each labourer works a maximum 35 hours per week (or 7 hours per day for 5
days) and the dimensions of the swimming pool are given in Figure 8.15. The
construction of the retaining wall is illustrated in Figure 8.16 with a reinforced
concrete ring beam around the top perimeter of the pool to prevent damage by
freezing. Solar panels are used to heat the pool water.
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Figure 8.15 Plan and sectional view of a swimming pool

It is now possible to break down the schedule of events in a logical manner and
hence determine the minimum time necessary to complete the pool. This is
achieved by assigning realistic times to the different tasks and constructing a
network of all the activities.

A description of the activities involved is given in Table 8.4, and as may be seen
these are not in the correct sequence of events. The network shown in Figure 8.17
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Figure 8.16 Detail of retaining wall

Table 8.4 Activities in the swimming pool project
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Activity Duration
(i,)) Description (days)
1,2 General site clearance and levelling of swimming pool area 15
2,4 Setting out the dimensions of the pool for excavating 15
4,6 Removal of soil and levelling around garden 7
6, 8 Excavation of deep end 2
8,9 Construction of footings for retaining walls 2
7,10  Placement of pipes for drainage and re-circulating system - 15
1,8 Construction of pump house 3
1,3 Placement of solar panels for heating water 1
21 Connecting pipework for solar panels 15
9,11  Construction of retaining wall 4

11, 14  Plastering of retaining wall 1
14,16  Laying and floating of pool floor 0
16,19  Fitting of pool liner 1
10, 12 Fitting of underwater light and electrical connections 15
18,19  Laying of coping and paving stones around pool edge 3
12, 18  Testing of electrical system 1
6, 13 Constructing of retaining wall for increased garden level 1
55 Placement of pipes and connecting heat pump 2
7,8 Connecting pipe network for filtering and re-circulating 2
13,15 Backfilling of gravel infill 15
15,17  Construction of reinforced concrete ring beam 1
17,19  Returfing of garden area 1
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is one form of solution but is by no means unique. In the network the durations of
the activities are marked on the branches and knowing these it is now possible to
proceed with a forward pass through the system. In the forward pass, x| = 0 for

Figure 8.17 Setting up the network

node 1. For the other nodes the following results are obtained:
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backward pass, the procedure commences by designating x|, =

= 214. The values at the remaining nodes are obtained as follows:
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In order to determine the critical activities, the relat10nsh1p defined in (8.11) is
used. Thus, each branch (i, j) is checked in which x; = x} and x; = xj. For this
particular problem the solid lines in Figure 8.18 show all the branches the earliest
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Figure 8.18 Completed network for the swimming pool project

and latest event times of which satisfy equations (8.11a) and (8.11b). Equation
(8.11¢c)is now used to determine whether path 13 to 6, or path 13-11-9-8-6lies on
the critical path.

For path 13-6

/)

x}-—xi:x;.'—x;'zDij

x}—x2=18—10=8

xi—x{=18-10=38
D; =1

Hence branch 6-13 does not lie on the critical path. Inspection of the network
shown in Figure 8.18 indicates that path 13-11-9—-8-6 does satisfy all of equation
(8.11) and therefore does lie on the critical path.

88 COMPUTER SOLUTION

From the previous example it is clear that for projects of any significant size the
repetitious nature of the work is tedious and presents great scope for human
error. The method is ideally suited to computer solution and many sophisticated
and efficient programs have been written for the application of Critical Path
analysis. Appendix A contains a subroutine CPM which illustrates how the logic
described in the previous sections can be encoded in a computer program. The
routine is intended for educational value and is therefore not necessarily suited
for practical application. This section shows how the routine may be used to solve
the swimming pool project described in Section 8.7.

Reference should be made to the listing of routine CPM in Appendix A for a
description of the parameters employed. The input data comprise the description
of the activities in terms of origin and destination nodes (events) and the definition
of activity durations. In addition, to allow the arrays to be dimensioned
dynamically, the number of nodes and activities (including dummy activities)
must be specified.

It is clear therefore that the user must go through the process of setting up the
network as described in the early sections of this chapter. This process cannot be
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automated, although it may be assisted by computer use. The data may be
assigned to the appropriate arrays either by reading from a file, by assignment
statements, or DATA statements. For generality, a data file will be used here, as
illustrated in Table 8.5.

Table 8.5 Data file for the network of Figure
8.17 (the swimming pool project)

19 Nodes
23 Activities
1 2 1.5
2 4 1.5
4 6 7.0
6 8 2.0
8 9 2.0
7 10 1.5
1 8 3.0
1 3 1.0
3 5 1.5
9 11 4.0
11 14 1.0
14 16 0.5
16 19 1.0
10 12 1:5
18 19 3.0
12 18 1.0
6 13 1.0
5 7 2.0
7 8 2.0
13 15 1.5
15 17 1.0
17 19 1.0
11 13 0.0

A simple driving program to read the data and call routine CPM is shown in
Figure 8.19. It is assumed that the data file is assigned to unit 1 and automatic
output of a table of results is obtained by setting NW = 6. The arrays of the
calling program are dimensioned for arbitrary values of NACT (100) and
NNODE (80) to allow a range of problems to be solved. Figure 8.19 also shows
the results obtained and it will be left to the reader to confirm agreement with the
results of Section 8.7.

8.9 RESOURCE ALLOCATION

Resource allocation is carried out to ensure that the most economic use is made of
the resources available. These may be of a very diverse nature with widely
differing characteristics.
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DIMENSION NUS(100),NDS(100),DUR(100),STMIN(100),STMAX(100)

DIMENSION FTMIN(100),FTMAX(100)

DIMENSION EVTMIN(80),EVTMAX(80),FF(80),TF(80)

C REWIND DATA FILE ON UNIT 1.
REWIND 1
C READ SIZE OF NETWORK
READ (1,10) NACT
READ (1,10) NNODE
10 FORMAT(I5)
C READ ACTIVITIES
DO 20 IACT = 1,NACT
READ (1,30)NUS(IACT),NDS(IACT),DUR(IACT)
30 FORMAT (2I5,F10.3)
20 CONTINUE
C OUTPUT RESULTS TO UNIT 6

NW=6
Cc
CALL CPM(NUS,NDS,DUR,NACT, NNODE , STMIN, STMAX,
+ FTMIN,FTMAX,EVIMIN,EVIMAX, FF, TF, NW)
STOP
END

NUS NDS  DURATN

w
2
=
=
"
2
=
=

1 1 2 1.5 0.0 1.5 0.0
2 2 4 1.5 1.5 3.0 1.5
3 4 6 7.0 3.0 10.0 3.0
4 6 8 2.0 10.0 12.0 10.0
5 8 9 2.0 12.0 4.0 12.0
6 7 10 1.5 4.5 6.0 14.5
7 1 8 3.0 0.0 3.0 9.0
8 1 3 1.0 0.0 1.0 5.5
9 3 5 1.5 1.0 2.5 6.5
10 9 N 4.0 14.0 18.0 14.0
1 1 1o 1.0 18.0 19.0 19.0
12 16 0.5 19.0 19.5 20.0
13 16 19 1.0 19.5 20.5 20.5
%4 10 12 15 6.0 7.5 16.0
15 18 19 3.0 8.5 11.5 18.5
16 12 18 1.0 T<5 8.5 17.5
17 6 13 1.0 10.0 11.0 175
18 5 7 2.0 2.5 4.5 8.0
19 7 8 2.0 4.5 6.5 10.0
20 13 15 1.5 18.0 19.5 18.0
21 15 =T 1.0 19.5 20.5 19.5
22 1719 1.0 20.5 21.5 20.5
23 1N 13 0.0 18.0 18.0 18.0

Figure 8.19 Main program and results for the swimming pool project

The main steps in resource allocation are:

(i) Estimating and scheduling of resources required.
(i) Determination of available resources.

(iii) Allocation of resources.

(iv) Re-planning.
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Before proceeding with a resource allocation analysis, it is essential that the main
categories of resources and their different characteristics are recognized. These
may take the form of capital which could take the form of a lump sum at the
commencement of the project or at required intervals during the project.
Manpower, unlike capital, cannot be carried forward from one day to the next. If
an error of judgement is made in hiring more men than is necessary on a
particular day, then that loss is irredeemable. However, manpower does have the
flexibility of being movable from one location to another provided the work is in
the same category. Other forms of resource are plant and equipment which may
either be hired or owned by the firm carrying out the project. As with manpower
unused plant and equipment represents a direct loss either in terms of hire charges,
depreciation, or loss of earning power.

Materials are a form of resource which, if purchased too early during the life of
the project, result in a loss in terms of interest on the capital expended, but, unlike
plant and equipment, can be carried forward from one period to another. Finally,
space is an important resource, the correct allocation of which is often neglected.
This may take the form of accommodation for manpower or equipment, storage
space for materials, or working space which may not be required once the project
has been completed.

Therefore, irrespective of which resource is being allocated, the ‘problem is
basically that of scheduling the various activities of the project such that the
requirements of key resources are levelled to relatively constant rates. If there are
no restrictions on resources then the process of levelling involves only the
adjustment of the schedule of the non-critical activities within the project
completion time as determined by the critical path method. Alternatively, if, as is
more likely, the availability of a resource is limited then the levelling process may
require the adjustment of activity durations and/or project completion.

Each of the previously mentioned resources must be analysed sequentially in
their order of importance. There is no established procedure for finding an
optimal solution for the problem, but once a trial solution has been obtained then
its relative merit can be assessed. The resource required per day is denoted by g;;
for the particular activity (i, j) and xi.‘j is the occurrence of that activity (i, j) on the
kth day of the project such that

X

% {1, if (i, j) occurs on the kth day ®.12)

770, if it does not.

Let Q, be the total requirement of the Ttesource on the kth day for all the activities
in the project, and n the number of time units necessary to complete the project.
Hence,

Q=2qx, k=1ton (8.13)
ij

ijo
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Thus, the average daily requirement of the resource is

1 A
0. = - k; Qk. (8.14)

An indication of the uniformity of Q, over the duration of the project is given by
summing the squares of the differences (Q,,. — 0,). Hence, a solution to the
problem would be to determine the least squares form of the sum S, i.e.

n

Minimize S = )" (Que — Q)% (8.15)

k=1

Therefore, when min S = 0, the daily requirement is a constant. From equation
(8.14), in which Q,,. is a constant, we have

Minimize S = ) Q2. — 20ue Zn: 0, + Z": 0z
k k=1 k=1

=il

= Vleve — 2Qave(nQave) + Zn: Ql%
k=1

n
2. 02 — nQ.
k=1
As nQ?2. is a constant, the minimization procedure requires only
n
Minimize §' = ) Q2. (8.16)
k=1

Therefore, once a number of trial solutions have been obtained, their relative
merit may be judged by means of (8.16).

One technique of obtaining trial solutions of resource levelling problems is to
list the project activities along with their daily resource requirements. Then, a
comparison should be made of all possible S” values by scheduling non-critical
activities for various times as allowed by the floats. The earliest time schedule is
often used as the starting point for such analyses as it immediately removes any
concern regarding the completion time of the activities involved in the project. It
should be borne in mind that although the total floats do not influence their
predecessors or successors, the dependent floats may do and can only be used if
this is ensured not to be the case.

SA

1 7 >0

] A [6]//A [3] A ) PN AN
6 2 T>@ 3’@ 4 J 5

Figure 820 Network for resource allocation
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An example problem* is given to demonstrate the applicability of the
technique. A network as shown in Figure 8.20 has been obtained for a project.
The resources estimated for each activity are as follows:

Activity Manpower Man/days Comments
1-2 8 48 Critical activity
2-3 4 16 Critical activity
2-5 2 2 Non-critical
3-4 6 18 Critical
4-7 4 16 Critical
5-6 3 9 Non-critical
67 4 12 Non-critical
7-8 4 20 Critical

Using the earliest starting time schedule, it may be seen that activity (6-7) will
terminate at day 13 of the project leaving a float of 4 days available. Figure 8.21
shows a bar chart of the labour force required for cach day of the project.

10 o
pol Non-critical -
S —@ 7777 7 Activity 6-7
74 X @ @ /I}/dgllavylezlj 3 days
% 6 ®-@ |
z @] ®-® |
8_5—1 |
€ . © 1
=24 0O-0@ a
@_
& @-0 ®-0 | ©-®
el
Project time
0 T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22

Days

Figure 8.21 Resource allocation diagram

The level of resource required varies from 4 men for days 18-22 up to a
maximum of 10 men for the period day 11 to day 13. The labour force required for
the critical activitiecs may not be tampered with unless the project time is to be
increased. Therefore, the value of S’ for this first trial is

82+ 82482 +82+82+8+6>+7*+7*+ 7"+ 10* + 10°
+102+42+424+42 4424+ 42+ 42 + 42+ 42+ 42
2

S’ =1011.

However, the labour force employed for activity 6-7 could be moved from days
11-13 to days 14-16, as shown by the dotted lines in Figure 8.21. This would

* Based on a problem in ‘Critical Path Method” A. T. Armstrong-Wright-Longman.
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result in the following value for S”:
82 + 82+ 82 +8 +8 +8 +6>+ 7+ 7+ 7>+ 6% + 6> + 62

+ 8 +8+ 8+ 4+ A2+ 4+ 44+ 4
ie
S = 963.

As this is a relatively simple problem the optimum solution has been obtained in
two trial solutions. In fact the simplicity of the problem is constricting in the sense
that very little room for manoeuvre is allowed. With a more realistic problem the
permutations increase tremendously and much thought would have to be
exercised in the analysis.

8.9.1 Time—cost trade-offs

In the preceding sections the normal durations of activities in a project have been
assumed in the application of the critical path method. It is often possible to
reduce the durations of many, if not all, of the activities in the network by
incurring the penalty of increased cost. If an activity is reduced to its lowest
possible time scale, then it is known as a crash duration, and when all activities
within the network are thus reduced it is referred to as an all-out crash
programme. This will obviously result in a decrease in completion time of the
whole project, but at a commensurate increase in project cost.

The purpose of the least-cost method is to determine the optimum project time
for the lowest total project cost. This may be achieved by comparing the direct
cost and indirect cost over a range of possible project times. The comparison is
made on the assumption that direct costs increase and indirect costs decrease as
the project time is reduced. Direct costs include such items as labour, material,
plant, and equipment. The indirect costs can include such things as
administrative costs, overheads, etc. It is possible to minimize the sum of the
direct and indirect costs at a certain project time. The least-cost method can
therefore be visualized as being the converse of the all-out crash programme, in
which the minimization of the project time is the objective.

In general, the relation between the duration and cost of an activity follows the
general shape of the curve shown in Figure 8.22. There is usually a practical limit
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Figure 8.22 Typical duration—cost function
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t,, below which the activity cannot be completed regardless of the cost, and,
similarly, there is a practical duration t,, above which the cost curve may start to
increase.

In the significant range of the time—cost trade-off curve, the shape is usually
convex and may be approximated by piecewise continuous linear segments as
shown in the diagram. If one of these segments is examined in detail, as shown in
Figure 8.23, then it is possible to arrive at a mathematical relationship between
the costs and durations for various project completion times.

Ac

Costs (c)

I
I
|
Xij X Xjj time (b

Figure 8.23 Segment of a duration—cost curve

Let X;;and x;; be the normal and crash durations respectively for activity (i, j),
and let C;; and c;; be the associated costs. If the rate of change of cost with respect

ij
to time, i.. the slope of the linear segment, is denoted by M, ., then

ij>
Ac
Ax

ij

’
ij>

c;;=Cy + M(X;; — xi).

ij

Therefore, for any duration x;,, the linear time—cost relationship is given by

In a time—cost trade-off problem, an attempt is made to vary the activity
durations so that the project completion time and its associated cost can be
determined. In this way numerous combinations can be examined and eventually
the minimum-cost solution for the specified time can be determined.

8.9.2 Example of time—cost trade-off

A contractor has given estimates for erecting a temporary hut, as listed in Table
8.6. The activities can run concurrently except that activity A must precede all
others and activity E must follow all others. It is required to construct a graph
showing the relationship between the completion of the project and its total cost.
The precedence-successor relationships for this problem are given in Figure 8.24.

The critical path for the problem is given by 1-2-5-6 and is of 14 hours
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Table 8.6 Duration—cost data for temporary hut erection

Normal Crash
duration Cost duration Cost
Activity Description (hr) £) (hr) (£) AC/AT
A (1, 2) Materials to site 5 30 4 40 10
B (2, 5) Erect hut 6 12 2 20 2
C (2, 3) Install electricity 4 10 3 18 8
D (2, 4) Install plumbing 5 12 3 20 4
E (5, 6) Connect services 3 16 — — —

AR

Figure 8.24 Critical path network for data of Table 8.6

duration. There is a total float of 2 hours along path 2-3-5. and a total float of 1
hour along path 2—4-5.

The total cost for this particular problem, in which all durations are normal, is
£80. If we now decide to decrease the duration of the project then it is necessary to
select the activity which has the lowest cost rate, i.e. activity B (2, 5). This should
give us the minimum-cost solution for the particular project completion time. We
now have to decrease the duration of activity B either by its full range (i.e. normal
duration — crash duration), or the lowest float value along a sub-critical path —
whichever is the smaller. In this case the maximum range is four hours in activity
B, i.e. the erection of the hut could be reduced from six to two hours. However, if
this activity is crashed to its minimum duration, then the lowest value of float
along a sub-critical path will have been exceeded and the critical path network
needs to be completely re-analysed. Therefore, we choose to reduce the duration
of activity B by one hour only, i.e. a duration corresponding to the lowest value of
float along a sub-critical path.

The new cost for the project will now be equal to

£80 + (1 hour x £2/hour) = £82.

This reduction in the duration of activity B now renders path 2—4-5 critical, as the
LET for nodes 3, 4, and 5 is now 10 hours.

The remaining float of 1 hour in activity C must now be brought into the
reckoning if the project duration is to be minimized further. At the moment, the
possibility of crashing activity A is still uneconomical at the rate of £10/hour.
Again, the float value of 1 hour is less than the maximum range of 3 hours in

|
1
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activity B and so the project duration is decreased by 1 hour.

Thus, we can reduce the LET of node 3 by a further hour, which makes path
2-3-5 critical. In fact, all the activities are now critical. However, it is also
necessary to reduce the durations of activities D and B by one hour if the overall
project completion time is to be reduced from 13 to 12 hours.

The total cost for the project is now:

£82 + (1 x £(4 + 2)) = £88.

All three branches, i.e. activities B, C,and D, must now be reduced simultaneously
if any further reduction in project time is required. This would be achieved at a
total cost of £14/hour. However, crashing activity A is less expensive at £10 per
hour, and so the total project cost commensurate with 11-hour completion
time is

£88 + (1-x £10) = £98.

Finally, the project time may be reduced by one further hour if activities, B, C, and
D are reduced by one hour. Thus, the total cost for a 10-hour completion time is

£98 + (1 x £2 + 8 + 4)) = £112.

The network for the rapid durations is now given in Figure 8.25.

The project completion cost curve for various completion times may now be
drawn and is shown in Figure 8.26. This solution considers only direct costs
which must increase the total cost of the project. See Exercise 8.10.4 for
consideration of indirect costs.

Figure 8.25 Revised network
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8.10 EXERCISES 8.10.3 In the excavation of a building foundation, the total volume is subdivided
. . ' into eight smaller zones as shown in the figure. Two excavators are used,
8.10.1 (a) Coqstruct a network for a pFO_]GCt (‘sqc.h as an annual maintenance) with the first one assigned to zones 1, 2, 7, and 8 consecutively, and the
which consists of the following activities: second one assigned to zones 3, 4, 5, and 6 consecutively. The excavation
Activity of each zone is considered as a separate activity. Hence, the sequence of
Activity time Resources events is governed by two factors: (1) the locations of the zones, and (2) the
Initial node Terminal node (days) (no. of men) order of excavation specified for the excavators.
| Given that the excavations for zones 1,2,...,8 are designated as
(1) é ; i activities 1, 2, . .., 8 respectively, and that the durations and precedence
1 4 3 1 relationships of these activities are shown in the table below, determine
2 3 4 1 the minimum completion time for the project.©
3 4 16 2
3 5 14 1
3 6 14 2
4 7 12 2
4 8 14 3
4 9 10 1
5 10 0 0
6 10 0 0
7 10 5 1
8 10 4 2
9 10 6 1
10 11 3 2
(b) Calculate the critical path(s) and the total duration of the {
project.
(c) How many paths (of all kinds) are there?
(d) How many men are actually required on each day of the project, given
that there are 6 available?
(e) Isthecritical path altered if there are only 5 men available? If so, what
are the new critical events, what is the new project duration, and what
are the new floats? Description Duration
Activity (Excavate zone) Predecessors (hr)
8.10.2 Construct an activity-on-branch network from the precedence :
relationships of activities in the following table, and define the critical path 1 ! ry 23
and its length: % § i ?g
Activity Predecessors Duration ‘51 As‘ 1’3 g g(s)
6 6 2509 75
A " : 7 7 32 34
C - 4 8 7 4,7 102
D A 7
E A 12
F B 6 8.10.4 The example shown in Figure 8.2.4 only considered direct costs. If indirect
G C.D 3 costs are significant it is possible that savings due to a reduction in overall
}II E IE G 3 project time will more than offset the increased direct costs. Show that if
J E: F: G 1 indirect costs are £7 per hour then the optimum completion time of the
K ] 8 project is 12 hours.
L None 11
M JLK,L 6 J
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8.10.5 Given the following network data, develop a schedule for minimum
equipment requirements:®)

Activity Equipment

1 J Duration Mode Manpower A B (&
1 2 8 Continuous 4 1 1 0
1 3 7 Continuous 10 0 0 1
1 5 12 Intermittent 5) 0 1 0
2 3 4 Continuous 6 0 0 0
2 4 10 Intermittent 7 1 0 0
3 4 3 Continuous 5 0 1 0
3 5 b Intermittent 8 0 0 0
3 6 10 Intermittent 7 0 1 0
4 6 7 Continuous 11 0 1 1
) 6 4 Continuous 3 1 0 0

8.10.6 From the following network data, determine the critical path, starting and
finishing times, total and free floats:®

Activity Description Duration
1-2 Excavate stage 1 4
1-8 Order and deliver steelwork 17
2-3 Formwork stage 1 4
2-4 Excavate stage 2 5
34 Dummy 0
3-5 Concrete stage 1 8
4-6 Formwork stage 2 2
5-6 Dummy 0
5-9 Backfill stage 1 3
67 Concrete stage 2 8
7-8 Dummy 0
7-9 Dummy 0
8-10 Erect steel work 10
9-10 Backfill stage 2 5
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Chapter 9
Economic Aspects of
Systems Engineering

9.1 TIME AND MONEY
9.1.1 Cash flow

Cash flow is the summation over a period of time of the income and expenditures
gssociated with a project. Both income and expenditure are commonly expressed
in monetary terms (e.g. £ or §) and represent the value of the physical
consequences of some course of action. Although the assignment of a monetary
value to physical consequences is not always straightforward it will be assumed
for the moment that this is so. A common way of illustrating cash flow processes
graphically is by means of the cash flow diagram. Figure 9.1 shows a typical
example in which time is plotted along the horizontal axis. The usual convention
is to plot income as an upward pointing arrow above the axis and expenditure as
a downward pointing arrow below the axis. Each arrow represents the income or
expenditure during the year (or other period of time) immediately prior. Figure

$

Benefits /income

(a) it > !
‘ MJ LY
Costs/
expenditure
$
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(b) JJLllllIlli/l -

cou \/\/

Figure 9.1 {a) A typical cash flow diagram. (b) The corresponding cash position diagram
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9.1(a) illustrates a typical commercial venture in which capital expenditure is
phased over two stages. The income shows a short growth period immediately
after completion of the main investment and then a period of steady income until
stage two is complete.

An alternative view of the same information is shown in the cash position
diagram of Figure 9.1(b). As the name implies, this shows the financial situation at
any point in time and is simply the time integral of the cash flow diagram. The
structural engineer will recognize the analogy with load and shear force diagrams
on a horizontal beam.

The information contained in these diagrams could be conveyed in words or in
a table of figures but the graphic nature of the diagrams is sometimes useful for
visualization of the economic consequences of a course of action. Another
convention in the use of cash flow diagrams is the use of arrows pointing towards
the time axis. These are taken to mean either income or expenditure and are
useful in describing general relations over time. This device will be used in the
sections which follow to illustrate the notion of interest.

9.1.2 Interest and equivalence of time

Interest, in the monetary sense, is the reward for making capital available over a
period of time. The rate of interest is commonly expressed as a percentage of the
capital sum per time period, e.g. 8%, per year, 13% per month. Notice that 127, per
year computed annually does differ from 19, per month computed monthly.
Interest rates are affected by many factors but in general reflect inversely the
willingness of the owner of the capital to make it available on loan. Three typical
influences are (other things being equal):

(i) The state of the economy. In an expanding economy there is a good market
for lenders of money since there is a high demand for capital and thus a high
interest rate.

(i) Therisk involved. Loans which are less certain to be paid back carry a higher
interest rate to reflect the increased risk taken by the lender. For example
loans to government institutions are generally at lower rates than loans to
provide industry which might go bankrupt: loans for a second mortgage are
more expensive than first mortgages because of the higher priority accorded
to the latter by law.

(iii) Inflation. During a period of inflation the lender will usually increase the
interest rate in order to compensate for anticipated loss of purchasing power.

Accepting the fact that money may earn interest, it follows that the
attractiveness of a sum of money at the present time is not the same as the
attractiveness of an identical sum of money at some time in the future. The certain
knowledge that a young man will inherit $1000 at age 21 is unlikely to persuade a
banker to lend the same young man the same sum of $1000 to purchase a second-
hand motorbike at the age of 20. The negotiation might take place in one of two
ways.
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(a) Thebanker agrees to lend $1000 now but requires a lump sum of $1100 repaid
in a year’s time.

(b) The banker agrees to accept the $1000 when it becomes available in one year’s
time but is prepared to lend only $909 for the present.

Under option (a) the notion of 10%; interest per annum is clearly seen to apply.
Wwith option (b) the same interest rate results in the present value of the
inheritance being only $909. The practice of discounting future amounts in order
to transform them into equivalent present-day values is fundamental to economic
analysis. To make realistic investment decisions, it is vital that each monetary
value be identified or described by both amount and time. Amounts at different
times cannot be directly combined or compared, since they are not in common
units.

In addition to lump sums committed or recovered at different points in time,
most projects involve to a greater or lesser degree the recurring income or
expenditure of annual amounts. These may be constant over a period of many
years or may vary with time in a regular or complex fashion and might represent
such things as operation and maintenance costs, income from sales or services,
repayment of portions of a loan, or accumulative savings for an anticipated future
expenditure. In the discussions which follow the calculations will frequently
involve some or all of the following terms:

P = A capital sum at the ‘present’ time.

F = A capital sum at some ‘future’ time.

A = An annual sum assumed constant over a period of time unless otherwise
specified.

The terms ‘present’ and ‘future’ are merely relative and need not apply to the real
time of the economic analysis.

In addition to the quantities P, F, and A the calculations will generally involve
the following two factors.

i = The interest rate per time period (years unless otherwise specified) expressed
as a decimal quantity (e.g. 0.08 and not 8%).
N = The number of time periods (years unless specified).

Thus the calculation of equivalent economic values will usually involve any four
of the five quantities P, F, 4, i, and N. In the following sections the particular
functional forms of these relations are developed.

9.2 COMPOUND INTEREST FACTORS

In this section six different functional relationships are developed involving the
variables P, F, A, i,and N. Wherever annual amounts are involved it is assumed .
that these are constant over the N time-periods. In all of the functions the
dependent variable is either P, F, or A; a convenient notation is therefore to
express the factors as a ratio of any two of the amounts P, F, or A with the
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numerator as the dependent variable and with i and N as parameters, e.g.
F

represents the factor used to define a future sum F in terms of a present sum P and
the parameters i and N. For convenience the time intervals are assumed to be
years, but any value may be used. Compound interest is assumed in all cases, i.e.
interest earned in any year is added and used to compute interest
in the following year.

9.2.1 Compound interest F/P (i, N)

This factor is used to compute a future sum F which will result from the
investment of a present sum P at interest rate i for a period of N years.

After 1 year, F, =P+ iP=(1+i)P
After 2 years, F, =P +iP +i(P + Pi)= (1 + i)*P

After N years, Fy = (1+)"P
or _
F/P (i, N) = (1 + i)™, ©.1)
For example F/P (8%, 20) = 4.6610 so that a sum of $100 invested at 8%, for 20
years will be worth $100 x 4.661 = $466.10. The function is sometimes referred
to as the Single-Payment Compound Interest Factor. Figure 9.2 illustrates the
relationship between F and P on a cash flow diagram.

$
/

Growth curve

t years
1 [ >

N years

Figure 9.2 Single-payment amounts

9.2.2 Present value P/F (i, N)

This factor is used to calculate the equivalent value at some earlier time of a
specified future sum, assuming a constant interest rate. The factor is obviously the
reciprocal of the single-payment compound interest factor and is usually
described as the Discount Factor. By the same reasoning as before
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P . N—N
FlN) =01+ ©.2)

Using the same example as previously a sum of $466.10 to be paid in 20 years has
a present value of $100 using a constant discount rate of 8%.

9.2.3 Uniform series compound interest F/A (i, N)

This factor is used to calculate the terminal value F of a series of uniform
payments A over a period of N years. Using the compound interest factor the
future value of each annual payment may be calculated as follows:

1st year’s payment  A(1 + )N !
2nd year’s payment  A(1 + i)V 2

Last yeai"s payment A
F=A+A01+i)+...+ AQ+ D)V 2+ A1+ )N L 9.3)
Multiplying (9.3) by (1 + i)
Fl+i)=A01+)+ A0+ i) +...+ AQ+ D"+ AL+ ). (94
Subtracting the two series yields

Fi=—A+ A1+ i)V
therefore

F=A[1 +i)"—1]/i
or

ppe— :
G &N = [+ 9" - 11k (9.5)
As an example consider a fund into which $1000 is contributed each year for 15
years. With an interest rate of 6%, the terminal value will amount to
$1000 x (1.06'° — 1)/0.06 = $1000 x 23.2760
= §23 276.

9.24 Sinking fund 4/F (i, N)

This is the inverse calculation to the uniform series compound interest factor and
involves the determination of the annual payment which will be necessary in
order to accumulate a terminal (i.e. future) sum of a specified amount. The sinking
fund factor is thus given by

g(i, N) = i/[(1 + )Y — 11. (9.6)

Consider, for example, a fund set up to replace a piece of equipment which is
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expected to wear out in 15 years’ time and cost $20 000 at that time. With an
interest rate of 6% the annual payment required is given by

A = $20 000 x %(6%, 15)

= $20 000 x 0.04296
= §$859.26.

Figure 9.3 illustrates in cash flow form the relationship involved in uniform series
calculations involving a future sum.

A

Uniform series

A per year
_\ i

L N =6 years _i
i il

Figure 9.3 Uniform series — future-sum cash flow

t years

9.2.5 Uniform series present value P/A (i, N)

Uniform series calculations may have to be carried out in relation to a capital
sum valued at the commencement of the time period. This could be done by
means of the functions developed earlier, but it is convenient to define and
evaluate specific functions for this task. With reference to the cash flow diagram of
Figure 9.4 the uniform series of payments of value A may be seen to accumulate to

A$

S T—// | Uniform series A
~ J/ L —F
N

A
N =5 years
K

Figure 9.4 Uniform series — present-value cash flow

P
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a2 terminal sum F in N years. The present value of F is, however, represented by P
where

F 1+ —1
Z(i’N):[( +13 1

and
P
= e = - _N.
=6 N) = (1 +1)
Thus the Uniform Series Present Value factor is given by
P P F .
Z(l’ N) - F(l’ N) X Z(I>N)
- [ N —1]
i(lp)
It is worth noting that as N tends to infinity the factor P/A4 (i, N) tends to 1/i.
For example, calculate the present value of capital investment which a

prospective housebuyer can afford if he or she intends to commit $10000 per year
for the next 20 years at an interest rate of 10%.

©.7)

p !
1 (10%, 20) = 8.514

P = §85140.

9.2.6 Capital recovery factor A/P (i, N)

If, as is more common, a prospective purchaser wishes to calculate the effect of his
indebtedness on the annual income for the next N years, the calculation is simply
the inverse of the preceding factor. Thus

i1+ )Y
[@+ayv-17

Once again it should be noted that as N — oo

-

p N = (9.8)
A

This factor is of chief importance in paying back loans for capital investment. A

new sewage works costing $4.3 million is to be paid off at 4%, over 30 years. The

annual payment is given by

A =43 x 10° x %(40/0, 30)

=4.3 x 10° x 0.05783
= $248 669.
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9.3 NON-UNIFORM SERIES CASH FLOWS

The compound interest factors developed in the previous section assume that the
series of annual payments — where one exists —is uniform. In some cases similar
types of cash flow calculation must be carried out for series which are not
uniform. Typically the series of annual amounts may vary with a constant
gradient or may follow a monotonically but not uniformly increasing time stream
of costs or benefits. The series may vary geometrically or be accelerated or
decelerated to promote or defer growth during the investment period.
Appropriate formulae for several cases have been developed. An excellent review
of these factors together with tables of values is given by James and Lee.")

9.3.1 Gradient series

The seriesillustrated in Figure 9.5 may result from a uniformly increasing series of
payments from which the base 4, has been removed — A4, being the amount paid
in year 1.

As

K=

4G

t years
G "’ -

Figure 9.5 A uniform-gradient series

For the series shown with N = 5,
F =G(1+i)?+2G(1 +i)* +3G(1 + i) + 4G
F(1 +i) =G +i* + 2G(1 +i)* + 3G(1 + i)*> + 4G(1 + ).
Subtracting gives

Fi=G[l+id*+(1+i+Q+i+1+i)+1]-5G
or
Fi+5G=G[A+)*+ 1 +iP+0+i0)+1]

Multiplying by (1 + i) yields
Fi+56)(1+)=G[A+i)°+1+)*+A+i)°+1+i+1+i)]
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and again subtracting results in

(Fi+ 5G)i = G[(1 +i)°> — 1]
or

a5
Fi=G(iL—5G.
i
Thus
F oLl df= 1
G- 3| . w3 .
In general
2. Ifa+)" -1
E(I:N)‘*?[l%—l\’]. 9.9

Such a series may be converted into a uniform series by the following
manipulation. Consider a uniform series of annual payments 4 over a period of N
years such that the future equivalent sum F is the same as given by the uniform
gradient series, as shown in Figure 9.6.

$ G p.a
(N-1).G
TA t years
e : >
L N years |

| I

Figure 9.6 Equivalent uniform series

Now
F a+ihN -1
FEN) ="
so that
E . F N
ceN=326N) -7
or
A F 1 NA .
f(l’N)é(l’N)_Y_TFU’N)
or
1 NA
E(I’N)_T_TF(’N)
However
A i
FON =g v
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or

] 1

Ql

Example 9.1

For a series of annual payments of $1000 increasing by $50 over 20 years find the
equivalent annual uniform series and present value. Discount at 8%;.

- 20
Acq = 008 ~ (108 —

=50 x 7.037 = 351.85
- therefore
A =1000 + 351.85 = 1351.85

therefore
_ o _ (1.08)%° — 1
P=A i (8%, 20) = 1351.85 x ———60.08(1.08)2

= $13 272.64. - N

9.3.2 Geometric series and inflation

A common example of a non-uniform series arises when annual payments
(usually costs) are subject to an inflationary increase represented by a constant
percentage increase with each time period. Figure 9.7 shows the cash flow

| N = byears |

Figure 9.7 Geometric series of annual payments

diagram for a series of payments over a five-year period, subject to a rate of
inflation of r%,. That is,

A, =A1+7)
Ay = A,(1 4+ 1) = A(1 + 1)
Ag=A,(1+ "

The future value F may then be obtained in the same manner as in Section 9.2.3.
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F=As+ Al +i)+ A1 +i)* + A,(1 +0)* + 4,1 +i)*
=AA+*+A+)A+r+ A +)?A +7r)?
+A+DA+r)+A+0)1

1+ 1+i)2 1+i)\3 1+i\*
=A.(1 i et Rl .
il +r)|: +<1+r>+<1+r>+<l+r> +<1+r>:|

Multiplying by (1 + i)/(1 + r) and subtracting yields
1+ 141
F A1 - -1
[(5)-]-ma e () -1
Now the present value P is related to the future value F by the relation

P=FQ1+1i~>

p [
i 1
e |5 -

A, -
1 (l _ r)<1 + l)
147
Thus in general the present value of a geometric series with initial payment A4,
with inflation rate r and discounting rate i is given by

[<1+i>N :l
1+r s
°G,r,N)= ——— - =
1 (i—r)<1+l>
1+r

Annual payments of $100 per year are assumed to be subject to a rate of inflation
of 9% per annum. Determine the present value of payments over a 20-year period
using a discounting rate of 13%.

P [[113)®° ~ 1.13)2
Z(13/0,9/0,20)—[<m) —1]/[(013 009)(109)]

= 12.8409
P = §1284.09.

9.11)

Ik’"ti

Example 9.2
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Note that the effective discounting rate is given by

; _i—r 019 -0.09
T 1+r " 1.09

=0.0367 or 3.67%.

However, if this rate is used in computing a present value in the previous example
the result is

g (3.67%, 20) = 13.9966.

The corresponding figure of $1399.66 represents the inflated value at the end of
the first year, i.e. $1284.09 x 1.09 = $1399.66.

9.4 DEPRECIATION AND SALVAGE VALUE

Frequently capital expenditures result in the creation of some asset which has a
finite economic life. At the end of that economic life, the asset may possess some
finite residual value which may be re-converted into a benefit at some future time.
If for some reason the asset is disposed of prior to the end of its economic life the
benefit which results will have some intermediate value between the initial ‘new’
value and the final salvage value. The calculation of this value depends on the
method employed for calculating the depreciation. Two basic methods are
considered here.

9.4.1 Straight-line depreciation

The method is very simple and virtually self explanatory. Figure 9.8(a) shows the
situation of an asset purchased for capital sum P and which has an expected life N
at the end of which the salvage value is defined as S = xP (0 < x < 1.0). After a
period M < N the depreciated value is given by

F=ISES(R=IS) (=) NA 9.12)

9.4.2 Declining-balance depreciation

An alternative method of calculating the depreciation of an asset is to compute
annual depreciation as a constant fraction or percentage of the depreciated book-
value at the end of the preceding year. Thus with reference to Figure 9.8(b) the
value in successive years will be given by

P
P(l — d)

P(1 — d)?
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Figure 9.8 (a) Straight-line depreciation. (b) Declining-balance depreciation

so that after N years the salvage value is given by
S=P1—d)N (9.13)

where d is the depreciation rate. The rate may be defined explicitly or
alternatively may be defined implicitly by specifying a finite salvage value S after
N years, i.e.

d=1— (S/P)'N. (9.14)

Example 9.3

A piece of machinery is replaced for a cost of $10 000 which has an expected life of
12 years. The economic life of the project, however, will terminate in 8 years.
Calculate the depreciated value at the end of project life if the salvage value of the
machinery is $1000.

Using straight line depreciation the value will be

F = 1000 + (10 000 — 1000)(12 — 8)/12
= $4000.

Using constant rate of book-value the depreciation rate is defined implicitly by
the relation '

1000 = 10 000(1 — d)*? ‘
d=0.1746 or 17.46%.
Thus after 8 years the depreciated value is given as

F =10000(1 — 0.1746)® = $2154.43.
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9.5 PROJECT APPRAISAL TECHNIQUES

As applied to engineering, economic analysis is concerned with the estimation of
the real cost of using resources — natural, technological, and financial —in order
to establish priorities between alternative or competing proposals. It isimportant
to distinguish between alternative proposals by which a desired goal might be
achieved by more than one means and competing proposals in which two or more
distinct but equally desirable goals require in total more resources than are
available. Alternative proposals are almost by definition mutually exclusive and
discounting or interest rates are dependent on external influences; competing
proposals may however result in the interest rate being determined by the
opportunity afforded by the ‘best’ project to make a financial profit.

In making a choice between possible alternatives the engineer must be able to
use an appraisal technique which will lead to an evaluation of their real costs. As
discussed earlier in this chapter, the timing of expenditure and income is a vital
factor in such comparisons. This section described various methods in common
use.

9.5.1 Present-value analysis

As the name suggests this technique involves the discounting of all income and
expenditure at any time in the future to an equivalent value at a single point in
time. It is usually convenient to use the present time or the time of commencement
of the project which is under review. The choice of project is based on the largest
present value of the discounted algebraic sum of benefits less costs over the
economic life of the project. The following guidelines apply to present-value
calculations:

(a) All present values should be discounted to the same time base even if
alternatives are to be initiated at different times.

(b) The same discount rate should be used throughout even if different sources of
funds are to be used.

(c) Calculations should be based on a common period of analysis, even if projects
may have a different economic life. This may involve calculating the cost of
extending a short-lived project or the residual (salvage?) value of a project
prior to the end of its maximum life.

(d) Projects with a negative present value should be rejected. This is an indication
that either the project is economically unsound or that some intangible
benefit has been omitted from the calculation.

Example 9.4

Two projects are to be compared over an economic life of 25 years using a
discounting rate of 15%,. The expenditures and incomes are:
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Project Capital cost Annual income
A 90 000 15 000
B 70 000 13 000

The income may be represented as a present-value capital sum using the factor

P/A (15%,25) = (1.15%° — 1)/(0.15 x 1.15%5) = 6.4642.
Thus . e
PV, = —90 000 + (6.4642 x/15 000) = + 6963

PV = —70 000 + (6.4642 x 13 000) = + 14 034,

Clearly project B is preferable, other things being equal.
If the discount rate is only 8Y% find the effect on the analysis. Now

P/A (8%,25) = 10.6748
and
PV, = —90000 + (10.6748 x 15 000) = +70 122

PVy = —70000 + (10.6748 x 13 000) = + 68 772.

The lower discounting rate greatly increases the present value of future income
and project A is now marginally better.

Example 9.5

Mechanical plant in a production unit may be of two types. Type A costing
$10 000 has an expected life of 10 years; type B costs $14 000 but has a life of 15
years. Net income from the process is $2000 p.a. If the interest rate is 109 find the
best choice of plant. :

A period of 30 years is chosen for the analysis since this conveniently covers

multiples of both plant life values. The cash flow diagram for the two alternatives
is shown in Figure 9.9.

The income is the same for both proposals and is calculated as
5 .
PV, = §2000 x Z(IO%’ 30) = 2000 x 9.4269 = $18 853.
The cost of type A plant is computed as follows:
P P
10 000 + 10 000 x 7 (109, 10) + 10 000 x f(lo%, 20)

= 10 000(1.0 + 0.385543 + 0.148644)
=15 342.
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Figure 9.9 Cash flows for Example 9.5

Similarly, the cost of type B plant is given by

p
14 000 + 14 000 x F (10%, 15) = 14 000(1.0 + 0.239392)

=:17:351.
Therefore
PV, =18 853 — 15342 = 3512. « Adopt
PV =18853 — 17 351 = 1503.
Example 9.6

Storage tanks and pumps are to be provided for a growing demand. Two
alternative protposals are to be considered.

A. Construct Tank 1 with Pumpin Year 1 at capital cost of $400 000 and annual
operating charges of $30 000. Then in Year 12 construct Tank 2 with Pump at
additional capital cost of $500000 and operating costs increased from
$30 000 to $55 000 p.a.

B. Construct Tank 3 with Pump in Year 1 at capital cost of $650 000 and
running charges of $30 000 p.a. Then in Year 12 add extra pump capacity at
cost of $50 000 and increased running costs of $55 000 p.a.

Use a discount rate of 8%, p.a.

The cash flow diagrams for the two proposals are shown in Figure 9.10.

Conversion of the capital sums to a present value at year 1 is done in a similar
manner as before. Likewise the conversion of the operating annual cost series
from year 1 to year 12 to a present value at year 1 is quite straightforward.
Running costs after year 12 are treated as follows.

Assume that the life of the system is unlimited and convert the annual series
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Figure 9.10 Cash flows for Example 9.6

from year 12 to year oo to a capital sum at year 12. Then convert this capital sum
to a present value at year 1.
Therefore the present value of running cost from year 12 to year oo is

P
PV = $55 000 x 2(8%, o0) X 2(8%, 12).
Recall that P/A (i, o) = 1/i. Thus

P P
~PV, =400 000 + 30 000 x — (8%, 12) + 500 000 x £ (8%, 12)

P P
+ 55000 x ~ 8%, ®) x (8%, 12)

= 400 000 + (30 000 x 7.5361) + (500 000 x 0.397114)
+ (55000 x 12.5 x 0.397114)
= 400 000 + 226 083 + 198 557 4+ 273 016

=1097 656
Similarly
—PVp = 650000 + 226 083 + (50 000 x 0.397 114) 4 273 016

= 1168 955.

Note that both schemes have a negative present value since no income or benefits
have been included in the analysis. Assuming that the benefits have an equivalent
value greater than the cost of either scheme, Proposal A is the preferred one.

9.5.2 Annual-cost comparison

In the present-value method of economic analysis the various incomes and
expenditures occurring at different times in the life of a project were converted to
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equivalent present values for realistic comparison. An alternative method of
comparison is to convert all costs and benefits into constant annual equivalents.
This is simply the inverse procedure to present-value calculations and results in
each item, whether it be a capital sum or a series of annual payments, being spread
as a uniform series over the whole life of the project. The two methods are
mathematically equivalent and should lead to the same result in any given
situation.

Example 9.7

Three alternative schemes are being considered for the provision of machinery for
a pumping station. For each scheme the capital cost, annual running cost, and
salvage value are as indicated in the table. Most important, the expected life of
each scheme is different. Determine the most economical proposal, assuming a
constant interest rate of 8%, to provide a pumping facility for an indefinite
number of years.

Scheme A B C
Capital cost $25 000 $50 000 $35 000
Annual cost $ 3000 $ 2000 § 2500
Salvage value $§ 5000 $§ 7000 § 6000
Life (years) 10 29 16

In contrast with Example 9.5 the use of present-value comparison is impractical
since the lowest common multiple of the three life-times is 2320. Using annual-
cost comparison the two capital sums are reduced to equivalent annual costs, e.g.
for scheme A the annual cost is given by

A
AC, = —25000 x P (8%, 10) (capital)
— 3000 (annual)
A
+ 5000 x F(S%, 10). (salvage)

Now

o, 1 0.08(108)1°
(8% 10) = ryggyo—y = 01490

ol

AC, = —3725.74 — 3000.00 + 345.15
—6380.59.

In a similar fashion
ACy = —4480.93 — 2000.00 + 67.33

—6413.60
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ACc = —3954.19 — 2500.00 + 197.86
= —6256.33.

Thus scheme C is preferable.

Example 9.8

Three alternative designs for a new bridge have costs as shown and also an
estimated probability of failure based on the return period of the flood for which
they have been designed.

Scheme
A B (&
Height above normal water level 5 g 12’
Return period (yr) for flood of that height 10 40 160
Capital cost 320 000 400 000 490 000
Annual cost 9500 11 700 13 600
Rebuilding cost 285 000 320 000 400 000

Life = 40 years Interest 49, Zero salvage

The equivalent annual cost of each design is made up of three components:

(a) The capital cost expressed as an equivalent annual cost over the anticipated
life of 40 years.

(b) The annual maintenance cost.

(c) The expected annual damage cost, evaluated from the cost of reconstruction
divided by the average number of years between recurrences of the design
flood.

Thus for scheme A

0.04(1.04)*°
= 0 e i AR

Annual cost = 320 000 1047 — 1

+ 9500

+ £5(285 000)

= 16168 + 9500 + 28 500 = 54 200.
Similarly for scheme B

Annual cost = 20209 + 11200 + 8000 = 39 909
and for scheme C
Annual cost = 24 757 + 13 600 + 2500 = 40 857

On the basis of these figures, scheme B is best, although only marginally
preferable to scheme C.
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9.6 OTHER METHODS

Several other techniques of project appraisal are in general use but it is beyond
the scope of this chapter to deal with these because of certain subtleties of
interpretation which require fairly detailed consideration. The benefit—cost ratio
method for instance employs the ratio of all benefits to all costs, both quantities
being calculated either as present values or as annual equivalents. Some doubt
may arise as to whether certain items should be considered as benefits or as
negative costs (or vice versa) and this decision may significantly alter the result.
Moreover, the method fails as a means of appraisal when benefits cannot be
evaluated with certainty.

The rate-of-return method is a technique in which the discounting rate is
evaluated which will result in zero present value. The method is computationally
more complex and is open to misinterpretation especially when net benefits
change sign in successive years. The method has advantages in allowing easy
comparison with other investment opportunities and is of particular use in
ranking projects which compete for a limited amount of capital. A full treatment
of these and other methods can be found in the texts by James and Lee") and by
Woods.®

9.7 EXERCISES

9.7.1 A contractor requires an additional 1000 sq. m of warechouse space. A
reinforced concrete building will cost $220 000 whereas the same space
can be constructed with a galvanized building for $150 000. The life of the
concrete building is estimated at 50 years with annual maintenance of
$1200; the life of the metal building is 30 years and annual maintenance is
$1800. Average annual property taxes are currently 1.29 of the new value
for the concrete building and 0.5%; of the new value for the metal building.
Assume that the metal building has a salvage value based on a
depreciation rate of 79, per year.

Another building with approximately the same space is located 2 km
from the central site and can be leased for $10 000 per year, the lease being
re-negotiated after each five-year period. In addition, the management
estimates that the extra cost in material handling will amount to $480 per
month.

Recommend the best course of action. Assume an interest rate of 14%,
per annum. Assume also that all continuing costs, such as maintenance,
lease renewal, taxes, and material handling costs, are subject to an
inflationary increase of 109 per annum.

9.7.2 Anirrigation project is being planned which requires a capital investment
of $100 000 in year 1 followed by annual operating and maintenance costs
which commence in year 2 at $5000 per year and increase uniformly
thereafter at a rate of $500 per year. The yield from the project is not
expected to commence until year 4 when an income of $15000 is

329

anticipated. Due to inflation this profit is expected to increase by 99 per
year. If the project life is 20 years from initial investment and the
discounting (interest) rate is 12.5% determine if the scheme is financially
justifiable. What should the profit in year 4 be if the scheme is to break
even over the 20-year period?

9.7.3 Treatment plantisto be provided for a period of 25 years, and the merits of
staging the construction are to be examined. In addition, the operating
and maintenance costs may be carried directly by the authority or sub-
contracted.

If plant for 100% capacity is provided, the present capital cost is
$250 000. Plant for 509 capacity would cost $150 000 but installation of
the second stage in year 10 would be subject to an inflation rate of 3%, per
year.

The plant has an expected life of 25 years and the salvage value of the
second stage may be estimated on the basis of linear depreciation.

Operation and maintenance if done ‘in-house’ will cost $8000 in year 1
and increase at a uniform rate of $1200 per year. On the other hand, if sub-
contracted, the cost for the first 10 years would be $16 000 per year and for
the last 15 years the cost would be $32 000 per year. Operating costs are
independent of whether or not the construction is done in stages.

If the interest rate for the 25-year period is estimated to be 8% per
annum, make recommendations to the authority on the most economical
course of action.
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Chapter 10
Modelling and Simulation

10.1 INTRODUCTION

Models are imitations of reality and may be employed to represent a real-life
situation in such a way as to allow study of some particular aspect or the
emphasis of some special characteristic under conditions of control which are not
possible in real life. Usually models are simpler than the situations they represent.
Models may be classified as iconic, analogue, or symbolic.

Iconic models are scaled-down versions of the prototype. Typical examples are
photo-elastic models for the study of stress distribution, spline models for the
structural behaviour of plane frames, small-scale hydraulic models, and aero-
dynamic models to study the interaction of wind and tall structures in the
atmospheric boundary layer.

Analogue models use one set of properties to represent another set which obeys
the same natural laws. For example, electric current and potential difference may
be used to represent ideal fluid flow, ground-water movement, heat conduction,
or torsion, all of which may be represented by Poisson’s equation.

Symbolic models employ an abstract representation of variables and their
relationships or interaction. Although frequently of relatively simple form, the
implementation of such models may involve many repetitive calculations and use
is generally made of digital computer facilities.

This chapter is concerned with symbolic modelling and will consider two
groups:

(i) Deterministic models in which relatively complex systems are modelled by
computational means to facilitate experimental (ie. trial and error)
optimization.

(ii) Probabilistic models in which certain components of a system are subject to
some degree of uncertainty which makes analytical study difficult or
impossible.

10.2 DETERMINISTIC MODELS

Models of this type are frequently representational —i.e. the engineer attempts to
analyse and describe the outcome of a certain set of circumstances by using state-
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of-the-art relationships. The model may comprise simply an automated sequence
of analytical steps to predict the value of one or more dependent parameters as a
function of a set of specified input or independent parameters.

For instance, a computer program may allow the user to specify the properties
of a plane frame and obtain member forces as a function of external loads. On a
much simpler level, the resistance moment RM of a singly reinforced rectangular
concrete section may be calculated as a function of the dimensions b and d, the
steel area Ay, and the allowable stresses f. and f;, which are respectively the
ultimate compressive stress in the concrete and the yield stress of the steel.
That is,

RM = ¢(b, d, Aq, f., 1y). (10.1)

Although this is a simple everyday design calculation, it will take on some of
the qualities of a ‘model’ if implemented in an elementary computer program and
executed in a time-sharing environment which allows the user to manipulate the
values of one or more input parameters and observe the sensitivity of the result
(RM) to these changes.

10.2.1 Example 10.1: Simulating the carrying capacity of a beam

A rectangular singly reinforced concrete beam has the dimensions and allowable
stresses shown in Figure 10.1. Determine to what extent the allowable uniformly
distributed live load (UDLL) is sensitive to the beam width.

1
il "n ‘
d=21" 15 -0 span
== . fe =4000 Ib/in®
o 2 "
Ag =3.0n 3 fy =50000 Ib/in?

Figure 10.1 Simply-supported singly reinforced concrete beam

Algorithm

. Specify d, Ay, f., f,.

Set trial value for b.

. Calculate resistance moment-(RM).

. Calculate dead load of section (DL).

Get allowable live load BM using appropriate load factors.
. Calculate and display allowable live load (LL).

LA W

The calculation of resistance moment in step (3) may be achieved by a standard
routine SRMULT (Singly Reinforced Moment by ULTimate load theory) listed
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c PROGRAM TO FIND ALLOWABLE LIVE

C LOAD

10
20

30

ON S.R. RECT. BEAM (EX 10.1)
REAL LLBM

SPAN=15.0

D=21.0

B=12.0

AST=3.0

FC=4000.0

FY=50000.0

CONTINUE

WRITE(6,20)

FORMAT("™ SUPPLY B...F10.1 ™)
READ(5,30)B

FORMAT(F10.1)

IF(B.LT.0.0) STOP

CALL SRMULT(B,D,AST,FC,FY,RM)
RM=RM/12.0
UDDL=150.0%24,0%B/144.0
DLBM=UDDL*SPAN*SPAN/8.0
ADLBM=1.4*DLBM
ALLBM=0.9*RM-ADLBM
LLBM=ALLEBM/1.7
UDLL=8.0*LLBM/ (SPAN*SPAN)

WRITE(6,40)UDLL
40 FORMAT(" UDLL = ",F16.0)
GOTO 10
END
SUPPLY B...F10.1 12.0
UDLL = 4262.
SUPPLY B...F10.1 14.0
UDLL = 4282
SUPPLY B...F10.1 16.0
UDLL = u287.
SUPPLY B...F10.1 18.0
UDLL = 4282
SUPPLY B...10.1 20.0
UDLL = 4270.
SUPPLY B...F10.1 17.0
UDLL = 4286.
SUPPLY B...F10.1 -1.0

END OF PROGRAM

Figure 10.2

Program solution for Example 10.1
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10.2.2 Example 10.2: Minimum-cost design of a reinforced concrete slab

Minimum-cost design of a singly reinforced concrete slab may be based on the use
of the function SRMULT described in the previous example. For specified forces,
however, the resistance moment must be calculated for trial values of effective
depth and steel area until the resistance moment, RM, exceeds or equals the
applied bending moment, BM. Additional constraints may be introduced with

regard to

(i) minimum slab thickness,
(i1) minimum steel ratio,
(iii) maximum deflection,
(iv) maximum steel ratio.

The following internal memorandum from the costing department of Messrs
Crummley Concrete Products illustrates such a problem.

CRUMMLEY CONCRETE PRODUCTS
Memorandum:
To: Ben Tover, Drawing Office
From:Les X. Pensive, Costing Dept.
Re: New material Costs in Highrise Floors.

I have received information that costs of premixed structural concrete
will experience a significant upward revision later this year following
anticipated relaxation of the Anti-Inflation Board guidelines. Projected
prices delivered on site are noted below, to which a further $45.00 per
cu. yd must be added to cover plant and labour for placing.

Strength f/ 3000 psi $28.75/cu. yd
4000 psi  $31.35/cu. yd
5000 psi  $34.75/cu. yd.

Steel prices will also affect the cost of reinforcing (fixed) although the
cost spread is smaller; e.g.

Yield strength f, 40000 psi  $0.30/lb
50 000 psi  $0.32/lb
60 000 psi  $0.34/1b.

In view of these increases if is essential that the design of the one-way

in Appendix A. Figure 10.2 shows a FORTRAN program to solve this problem
and a set of typical results.

More complex deterministic models may be encountered when economic
considerations enter into the decision-making process. Instead of proportioning
a section to make maximum use of the allowable stresses, the problem assumes
the form of a mathematical model in which the objective function is expressed in
monetary terms and the technological requirements take the form of constraints.
When the number of significant design variables is small (i.e. < 3), the solution
may be obtained by experimental optimization.

spanning slab units for the Cloud Nine building be reviewed. For your
information, the details of the design specification are attached. It is
some time since this design was prepared and you should check that all
details of the specification and design are in compliance with the
Building Code.

Please let me have your report by the end of the month, together with a
technical appendix in case the client requests this.

Les X. Pensive.
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CRUMMLEY CONCRETE PRODUCTS
Memorandum: :
To: Les X. Pensive, Costing Dept.
From: Ben Tover, Drawing Office
Re: Technical specification: Cloud Nine Building.

Simply supported slabs for floors:
Simply supported span (one-way) 18 ft

Sustained load for partitions 15 1b/sq. ft equivalent
Live load 100 Ib/sq. ft
Load factors dead load 1.4
live load 1.7
Steel ratio minimum 200/,
maximum 0.75 of balanced design ratio
Deflection span/360 for live and

sustained loads only

Although a fully automatic design procedure might be developed, a relatively
simple trial and error procedure is used which allows the slab thickness and steel
area to be optimized for any selected allowable stresses and costs for steel and
concrete. The algorithm might take the form shown in Figure 10.3.

1. Select material stresses; note costs.

2. Select trial slab thickness d,,

3. Check d,>minimum slab thickness. If not go to 2.

4. Calculate Dead Load (DL).

5. Calculate BM using appropriate load factors.

6. Select trial steel area Ag.

7. Check Ay /bd >minimum steel ratio. If not, go to 6.

8. Calculate balanced design steel ratio py,.

9. Check Ay /bd<0.75py. If not, go to 2.
10. Calculate resistance moment RM.
11. Check RM =BM/¢ where ¢ = 0.9 Capacity Reduction Factor. If not, go to 6.
12. Find neutral axis depth and Moment of Inertia of section.
13. Calculate deflection .
14. Check 6 <Span/360. If not go to 6.
15. Calculate cost of slab/ft?.

Figure 10.3  Algorithm for minimum cost slab

10.2.3 Development of a subroutine library

In reviewing the various steps in the algorithm of Figure 10.3, it is possible to
identify a number of basic computational tasks which may form the basis for a
group of related subroutines, e.g.

Step 8  Calculate balanced steel ratio.
Step 10 Calculate ultimate load RM.

- 835

x| a =B1x E___C _ e
NA
d Lever =
(d-a/2)
T
R . > - Yy

Figure 104 Assumed stress distribution at Ultimate Load

Step 12 Calculate neutral axis depth of singly reinforced section.
Step 12 Calculate Moment of Inertia of transformed section.

Each of these basic operations has been implemented in a simple subroutine, as
outlined in the following sub-sections.

(1) Balanced steel ratio (see Figure 10.4 for notation)

= — % at bal
I g at balance (10.2)
1ie.
X _ & 0.003 Jo8
d” e t+e 0003 +f/E, @03)
Also C = T, therefore
0‘85fc’ﬁ1x = A.f,
and substituting for x
Asl Ec f:/
=-—=0.85, ——— .
o =pa s o F (10.4)
Also
B = ().

Thus relevant parameters are
po = ¢(f, f,) assuming E, = 29 x 10° psi.

The parameters selected include the proportion f, since this is frequently
required in addition to p,. Thus the routine specification is

SUBROUTINE ASTBAL (FC, FY, BETA1, RHOB)

Input——T L—— Output
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(2) Ultimate load resistance moment
In a similar way we identify the relevant variables as:

Breadth b
Effective depth d
Steel area A,

section properties

Concrete stress f

material properties.
Steel stress f, } i prop
The routine specification is

SUBROUTINE SRMULT (B, D, AST, FC, FY, RM)
=t
Input————] Output

Note: Although this could be written as a FUNCTION subroutine there is some
advantage in using subroutines as standard — e.g. standard calling statement,
type independent of name, etc.

(3) Neutral axis depth
The routine specification is

SUBROUTINE NADPTH (B, D, AST, FC, FY, X)
N —— e’
Input4I l—— Output

As before the input data comprises section and material properties.

(4) Moment of inertia

Several methods may be used to compute deflections. The method selected here
employs the inertia of the transformed cracked section —i.e. ignoring concrete in
the tension zone and transforming steel to an equivalent area of concrete by use of
the ratio of the elastic moduli E/E,.

Again, the required data comprises section and material properties

SUBROUTINE MOFICR (B, D, AST, FC, FY, XMOFI)
N—— e’

Input———] l*Output

Relocatable libraries

When a number of subroutines have been developed which are likely to be of
recurring use to one or more users in a group, it is advantageous to assemble these
in a library of semi-compiled sub-programs.
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10.24 Example 10.3: Minimum cost design of a floor

The following memorandum outlines a slightly more elaborate floor design
which is amenable to computer simulation:

PERPLEX BUILDING SYSTEMS
Memorandum:
To: Slye Droole, Design Section.
From: Mark E. Ting, Buying Dept.
Re: Modular Floor Systems.

We are planning to market a simple but versatile floor system
comprising precast concrete slab units simply supported on steel
beams. In order to develop some typical costs, I require an automated
design procedure which will assist in the selection of optimum values for
the spacing of the steel beams, and the width, thickness, and
reinforcement of the slab units. The floor areas to be processed are
rectangular, a typical example being 150 ft long by 35 ft wide.
The following costs may be assumed:

(1) Concrete in slab units $2.50/cu. ft
(2) Formwork on underside and long

edges of precast slabs $1.25/sq. ft
(3) Reinforcement $0.35/1b

(4) Erection of slab units where one
unit has a weight of W b $(W/300)'-> per unit
(5) Steel beams (erected) $0.25/1b.

Live loads on the floors are typically in the range of 80-150 Ib/sq. ft.
Assume material stresses of 4000 psi in concrete and 50 000 psi in steel.

Due to recent publicity of the failure of grossly overloaded floors, I
intend to stress in our advertising the high ductility of our floors, and
the value of early distress signs. For that reason I suggest that you
design the slab units with a low steel ratio — say 30%, of the balanced
design steel ratio.

The problem posed by this assignment may be tackled in the following manner.

Specify material properties and costs.

Specify overall floor dimensions, length, and span.
Select a trial value N for the number of panels.
Select a trial value for the slab unit breadth B.
Design slab unit.

Calculate reactions on external (end) beams.
Design end beams.

Calculate reactions on internal beams.

Design internal beams.

oo Sl S QN AV N D=
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10. Determine costs for concrete, reinforcement, formwork.
11. Obtain weight of slab unit and calculate erection costs.
12. Obtain weight of steel and calculate cost of beams.

13. Output total floor cost as function of N and B.

Additional routines may be identified for use in this study, e.g.

(subroutine SRSECT)
(subroutine SLAB1W)

(1) Design a singly reinforced section.

(2) Design a one-way spanning slab.

(3) Calculate maximum BM in a continuous slab
(although not used in this example).

(4) Select a steel beam section.

(subroutine SLABBM)
(subroutine IBEAM)

These routines have been included in Appendix A.

10.3 PROBABILISTIC MODELS

Symbolic models involving one or more variables subject to uncertainty or which
incorporate relationships comprising random functions are termed probabilistic
models. The fundamental distinction is that the outcome of an analysis for a given
set of input variables is not uniquely determined —i.e. experimental results are, in
general, not repeatable.

Computed results must be described in statistical terms —usually the expected
value and some measure of variability (e.g. variance). Two types of probabilistic
model may be identified.

(1) Static models

This type of model concerns an analysis, some of the inputs for which are subject
to uncertainty. The outcome of the analysis is thus also uncertain.

(2) Dynamic models

With this type of model, the engineer attempts to duplicate the dynamic
behaviour of certain characteristics of a system, process, or operation over a
period of time.

When the processes to be analysed are complex, it is usually not possible to
obtain the probability or other statistical measure of an event by analytical means
and the use of numerical experiments becomes necessary. The method described
in the following section is usually called a Monte Carlo procedure. This technique
involves generating a series of numbers which serve as observations of one or
more random variables. These random quantities provide the data for calculating
a particular result or outcome. If a sufficiently large number of these numerical
experiments are carried out, estimates can be made of averages, probabilities, or
frequency distributions.
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Figure 10.5 Singly reinforced section subject to some uncertainty

10.3.1 Static models

This type of model is now described with reference to the example illustrated in
Figure 10.5.

Example 10.4: Probability of failure of a reinforced concrete beam

A singly reinforced concrete beam has a design cross-section as indicated in
Figure 10.5. The effective depth is subject to some uncertainty and may be defined
as being normally distributed about a mean of 21 in with a standard deviation of
1in. Similarly, the concrete strength f; has an expected value of 4000 Ib/in? and a
standard deviation of 500 1b/in®. Estimate the probability that the resistance
moment is less than 959 of the design capacity.

The probability density of the effective depth d may be illustrated graphically
as shown in Figure 10.6.

Note: The notation f(x) means “. .. the probability that the variable d has a
value of x...".

a

04}
O3F
0.2}
0.1}

X

=

18 19 20 2’1 2‘2 2I3 214
Figure 10.6 Probability density of effective depth d

The mathematical definition of the normal probability density is given by:

1
Lloy= o /2n P [—i(x — m,/c,)*] (10.5)
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where

o, is the standard deviation of d.
m, is the mean or expected value of d.
x is any value on the abscissa of the probability density function (PDF).

It should be noted that the area under the PDF curve is 1.0.
The distribution of concrete strength may be described in a similar way (Figure
10.7) but it will be noted that the values of the PDF f;(x) are several orders of

ffc(X)

00008

L

00004

1 Il L L 1
1000 2000 3000 4000 5000
Figure 10.7 PDF of concrete strength

magnitude smaller on account of the relatively large values of x which must be
used. The area under the curve is still 1.0, however.

x i)
3000 0.000 108
3500 0.000 484
4000 0.000 798
4500 0.000 484
5000 0.000 108

The cumulative distribution function (CDF)is an alternative way of describing
the uncertainty associated with an event. It is defined as “. . . the probability of the
event that the random variable X takes a value equal to or less than argument
Xieteesty 1LE:

Fy(x) = probability (X < x). (10.6)

For the PDF shown in Figure 10.8, the probability of (X < x,) is given by the
shaded area, which is the sum of all the probabilities that X = any value less than
or equal to x;.

Then

X

Fy(x,) = fx(x) dx. (10.7)
For example the cumulative distribution function for the effective depth d will be
as shown in Figure 10.9.
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Figure 10.8 Cumulative distribution function (CDF)
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Figure 10.9 Cumulative distribution for effective depth d

Note that

(1) the probability (d < 18) is negligible,
(2) the probability (d < 21) is 0.5 (50% chance),
(3) the probability (d < 24) is almost 1.0 (virtually a certainty).

To model this situation a simple computer program is constructed which will
generate pseudorandom numbers which correspond to the required distribution
(‘pseudorandom’ because the series of random numbers produced artificially will
be unique only for a finite length of series — after that the sequence may be
repeated):

SUBROUTINE GAUSS (ISEED, STDEV, AVE, VAL)
N = e 4

Input Output

The seed value (ISEED) is automatically replaced during execution of the
routine. If subroutine GAUSS is used inside a loop, the value of ISEED should be
initialized once only, outside the loop.

It should also be noted that random number generators are usually sensitive to
the seed value used, and may generate a biased sequence.
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For example, the following FORTRAN code will generate a series of 20 values
of D with mean of 21in and standard deviation of 1in:

ISEED = 2345

Do 10 I = 1, 20
CALL GAUSS (ISEED, 1.0, 21.0, D)
WRITE (6, 20) D

20 FORMAT (F12.3)
10  CONTINUE

STOP

END

The distribution could be tested by generating a much larger nl.;mber of va.lues
and counting the number of times the value falls within prescribed ranges:

DIMENSION COUNT (30)
ISEED = 2345
DO 10 I = 1, 30
COUNT (I) = 0.0
10  CONTINUE
DO 20 I = 1, 100
CALL GAUSS (ISEED, 1.0, 21.0, D)
INT = IFIX (D + 0.5)
COUNT (INT) = COUNT (INT) + 1.0
20 CONTINUE
DO 30 I = 1, 30
COUNT (I) = COUNT (I)/100.0
WRITE (6.40) I, COUNT (I)

40 FORMAT (15, F10.4)
30 CONTINUE

STOP

END.

Such a program should give values close to the ideal normal dls_tr'lb_utlon and
might be run several times with different seed values to test sensitivity. ;

The reinforced concrete beam of Example 10.4 may be modelled in the
following way:

(1) Calculate the design resistance moment (RMDES) for the design values of D
and FC (using subroutine SRMULT).

(2) Store the test value (RMTST) = 0.95* RMDES.

(3) Generate random values for D and FC using subroutine GAUSS.

(4) Calculate a random resistance moment RM. )

(5) Compare with RMTST — if RM < RMTST, count one fallure..

(6) Repeat steps (3)-5) (say) 100 times and count the number of failures.

Then

Number of failures

probability (RM < 0.95 RMDES) ~ 100

Typical code to do this is:
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B = 10.0

AST = 2.0

FY = 50000.0

D = 21.0

FC = 4000.0

CALL SRMULT (B, D, AST, FC, FY, RMDES)

RMTST = 0.95*RMDES

ISEED 2345

COUNT = 0.0

DO 10 I = 1, 100
CALL GAUSS (ISEED, 1.0, 21.0, D)
CALL GAUSS (ISEED, 500.0, 4000.0, FC)
CALL SRMULT (B, D. AST, FC, FY, RM)
IF (RM.LT.RMTST) COUNT = COUNT + 1.0
WRITE (6, 20) I, RM, COUNT/FLOAT (I)

mwann

20 FORMAT (I5, F15.1, F10.4)
10  CONTINUE

STOP

END

It should be remembered, of course, that the abdve program must be run along
with a library of routines (or equivalent) to satisfy the external requirements for
routines SRMULT and GAUSS.

10.3.2 Modelling of arbitrary distributions

In the previous example it was assumed that both random variables could be
modelled by a normal distribution. While this might be reasonable for the
effective depth, the distribution of concrete strength is likely to be significantly
different.

In many cases, the distribution of a random variable must be modelled to
conform with experimental observations. Tests on 10 concrete specimens (cubes
or cylinders) give the following results:

Je =2500-3000 psi 1 specimen
3000-3500 psi 3 specimens
35004000 psi 4 specimens
40004500 psi 2 specimens

Total no. of tests 10 specimens.

The probability density function of this experiment might be illustrated as
shown in Figure 10.10. It should be noted that the ordinate is not strictly a
probability, since the area under the curve is not unity. This can be corrected
easily by dividing ordinate values by the area 4 where:

A = 500(0.1 + 0.3 + 0.4 + 0.2) = 500. (10.8)

With reference to Figure 10.11 it is clear that 4 is equivalent to the stress interval
used to categorize the test results, i.e.

‘proportion of tests’
500 '

filx) =
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Figure 10.10 Histogram of experimental results
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Figure 10.11 Probability density function (PDF) of concrete strength
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The corresponding cumulative distribution function (CDF) is easily obtained as
the integral of f;(x).

It will be seen that to obtain F(x) it is necessary to multiply again by the stress
interval 500. Thus the CDF could be obtained simply by accumulating the
proportions or by accumulating the number of tests and dividing by the total

number of tests (10).

10.3.3 Generation of random variates

Having obtained the CDF we can use this to generate random values of concrete
strength f. which are consistent with the distribution.

‘E F}c(x)
1.0
O<P<1.0
B U S R
i
05
| Random f¢
|
|
|
I
| X
1 L L 1 A .
2000 3000 4000 5000

Figure 10.12 Cumulative distribution function for f,
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The procedure is to assign to Fy(x) a random number P which is uniformly
distributed in theinterval 0.0 < P < 1.0, and then find the corresponding value of
x by interpolation. In Figure 10.12, for example, P = 0.7 yields x = 3870. A
vyariety of techniques could be devised to carry out this inverse function
evaluation. One approach is illustrated by the following code:

ISEED = 12
CALL URAND (ISEED, P)
FC = 2750
IF (P.LT.0.1) GOTO 90
FC = 3250
IF (P.LT.0.4) GOTO 90
FC = 3750
IF (P.LT.0.8) GOTO 90
FC = 4250
90  CONTINUE

This method is rather crude and does not allow for values other than the averages
of the stress intervals. Also, for many intervals the coding becomes unwieldy.
An improvement is illustrated in the following FORTRAN code:

DIMENSION FCR(5), CDF(5)
DATA FCR/2500., 3000., 3500., 4000., 4500./
DATA CDF/0.0, 0.1, 0.4, 0.8, 1.0/
ISEED = 12
CALL URAND (ISEED, P)
DO 10 I =1, 4
J =1
IF (P.LT.CDF(I+1)) GOTO 20
10 CONTINUE

20 CONTINUE
FC = FCR(J) + (FCR(J+1) - FCR(J))*(P-CDF(J))/(CDF(J+1) - CDF(J))

This strategy employs the full range of values of FC and compresses the search
coding into a single DO-loop. )

An alternative procedure is to construct an auxiliary array of values of FC with
(say) 10 + 1 or 11 elements in it, each one corresponding to a cumulative
probability value of 0.0, 0.1, 0.2,...,0.9, 1.0.

The process may be visualized graphically, as illustrated in Figure 10.13, by
subdividing the cumulative distribution function (CDF) uniformly.

Thus, for the data given earlier, '

F(x) % Fi(x) %

0.0 2500

0.1 3000 0.6 3750
0.2 3167 0.7 3875
0.3 3333 0.8 4000
0.4 3500 0.9 4250
0.5 3625 1.0 4500
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Figure 10.13  Uniform interpolation of CDF

The following coding can then be used:

DIMENSION FCR (11)

DATA FCR/2500., 3000., 3167., 3333., 3500., 3625.,
* 3750., 3875., 4000., 4250., U4500./

ISEED = 12

CALL URAND (ISEED, P)

P = 10.0%P

IP = IFIX(P) + 1
FRAC = P+1.0 - FLOAT(IP)
FC = FCR(IP) + FRAC®*(FCR(IP+1) - FCR(IP))

Obviously, the CDF need not always be sub-divided into 10 increments.

10.3.4 Generalized procedures

The method outlined above can be generalized so that the number of points
describing the cumulative distribution function may be chosen arbitrarily. Two
subroutines DISTN1 and DISTN2 which perform this function are included in
the library of Appendix A. In addition, a routine for linear interpolation of a
unimodal function (INTER1) is included since this is used by DISTNI.

If the earlier problem of Section 10.3.1 (i.e. probability that RM < 0.95RM )
is modified so that the concrete strength is described by the 10 specimen tests
(instead of being assumed to be normally distributed) the program would take the
following form:

DIMENSION FCR(5), CYL(5), WK(5), CDF(21)
DATA FCR/2500., 3000., 3500., 4000., 4500./
DATA CYL/1.0, 3.0, 4.0, 2.0, 0.0/

B = 10.0

D = 21.0

AST = 2.0

FC = 14000.0
FY = 50000.0

CALL SRMULT (B, D, AST, FC, FY, RM)
RMTST = 0.95%RM
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ISEED = 12345
CALL DISTN1 (FRCR, CYL, 5, WK, CDF, 21)
COUNT = 0.0
DO 10 I = 1,100
CALL GAUSS (P, 1.0, 21.0, D)
CALL URAND (ISEED), P)
CALL DISTN2 (CDF, 21, P, FC)
CALL SRMULT (B, D, AST, FC, FY, RM)
IF (RM. LT. RMTST) COUNT = COUNT + 1.0
WRITE (6,20) I, RM, D, FC, COUNT/FLOAT (I)

20 FORMAT (15, F15.1, 2F10.3, F10.4)
10  CONTINUE

STOP

END

Note that the sequence of pseudorandom numbers may possess certain
statistical properties which are sensitive to the initial seed value used. Any
simulation model should be tested for such sensitivity. Another example of
probabilistic modelling is given in Chapter 12.

104 DYNAMIC MODELS

Numerical representation of random variables may be easily extended from static
situations as described above to dynamic situations in which certain properties of
the system vary with time. The process involves the use of artificial statistical
experiments to estimate unknown or dynamically varying quantities.

As was seen with the earlier static models, the results or outcomes approach the
theoretical expected value as the number of experiments is increased. Thus
simulation can be computationally expensive.

Since dynamic systems are by definition dependent on the time history of
inputs or events, the frequency of occurrence of events (or the time between
successive events) may be an important statistical property. We now consider a
specific example in which this is the case.

10.4.1 Continuous variables

Ships arriving at an unloading dock have an average rate of arrival, but in reality
the interval between arrivals may fluctuate about the mean. In many cases, these
inter-arrival times can be represented by a negative exponential curve. Thus, if
Jr(x) is the probability that the inter-arrival time T is equal to x, then

fr(x)=Ae * (10.9)

where the parameter A is the average arrival frequency or 1/4 is the long-term
inter-arrival time.
_ The cumulative distribution function Fr(x) is obtained by integrating (10.9) to
give
Fr(x)=1—¢e™** (10.10)

where the constant of integration is obtained from the condition that
Fr(x = w0) = 1.0.



348

Generation of inter-arrival times can be done by the method described in
Section 10.3.3 but, because of the simple form of (10.10), a direct solution is
possible by inverting the function. Thus, if Fr(x) = p where p is uniformly
distributed in the interval 0 < p < 1, then

1
T = —zln 1 -p). (10.11)

Equations (10.9) and (10.11) are illustrated graphically in Figure 10.14.

oy amAX
f_r(x) = Xe

Area = 1.0

Figure 10.14 Distribution of inter-arrival times

10.4.2 Discrete (integer) variables

The number of ships arriving in a given time period (say per day or per week)
should theoretically be a constant, but fluctuates in real life. The outcome must be
an integer quantity. Such a situation may often be represented as a Poisson
process.

The probability must be described in a discrete form as shown in (10.12) and
Figure 10.15, in which the variable n must take integer values:

n —-a

fuln) = O% n=L 12 8 (10.12)

The cumulative distribution function is also discontinuous and the integration

4\ fN(n)

[e0)
2 f(n) =1.0
n=0

Figure 10.15 Probability distribution of the number of arrivals in a given time interval

349

process reduces to a summation. Thus

Fy(n) = % fvn) n=0,1,2,3,.... (10.13)

For o = 0.2 the discrete probabilities are tabulated as shown:

n= 0 1 2 3
Ju(n) = 0.8187  0.1637 0.0164 0.0011
Fy(n) =0.8187  0.9825 0.9989 0.9999

The discontinuous CDF may be approximated by a continuous curve as
indicated in Figure 10.16, as long as the real number obtained by interpolation on
the curveis truncated to the nearest integer. In this way the routines DISTN1 and
DISTN2 may be used for discrete distributions as well as continuous ones.

‘l FN(n)
10} .
P —
—_— 2
7
7
2
/
/ t 0
I L 1 | 1 =
0] 1 2 3 4 S

Figure 10.16 Approximation of a discrete (integer) CDF

10.4.3 Example 10.5: A maintenance problem

A production plant contains a large number of units which operate in parallel.
The units break down at certain intervals and an analysis of past records shows
that the number of units which break down on any one day can be represented by
a Poisson process. Thus:

n —a

a €

Probability (n units break down) = (10.14)
where the parameter a = 0.2.

Repair times appear to be normally distributed with an average of 5 days and a
standard deviation of 1 day.

A single maintenance engineer is currently employed full-time and
obviously can work on only one unit at any time. The daily salary for the engineer
is $120 (irrespective of whether he is working or not). Cost of non-production of
one unit is $500 per day.

The problem is to determine whether or not an additional maintenance
engineer (or more) should be hired.

The problem can be tackled by developing a Monte Carlo simulation
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procedure to estimate the long-term average daily cost for different numbers of
maintenance engineers. The algorithm may be summarized briefly as follows:

. Define costs, parameters, and number of engineers, M.

. Set up a loop to simulate n days of operation (say n = 100).

. For each day, generate a number of breakdowns.

. For each breakdown, generate an estimate of the required repair times.

. Assign available man-days of maintenance to reduce the outstanding repair
time.

. Keep track of the total ‘down-time’ T and thus a running total of cost.

. After n days of simulation, estimate the average daily cost as

C =120M + 5007 /n.

DN A WN =

~N N

(10.15)

No information is given as to the time within any particular day that the
simulated breakdown occurs. A reasonable assumption is that these are
uniformly distributed throughout the working day.

Clearly the value of n must be sufficiently large for reasonable estimates to be
obtained. Also, for values of M > 1, the book-keeping is somewhat complicated.
A digital computer solution is therefore desirable to allow sensitivity analysis to
be carried out.

A possible solution is indicated in the FORTRAN coding of Figure 10.17. In
this algorithm, the cumulative distribution function is set up by means of
subroutine DISTN1, as in Section 10.3.3, using the probability density defined by
(10.14). The value returned by DISTN2 within the main loop is truncated to an
integer value, as illustrated in Figure 10.16. A running log of the breakdowns is
maintained in the arrays TD(-) and REP(-) which hold respectively the time the
unit went down and the anticipated repair time, both quantities measured in
days.

The most complex part of the algorithm is the determination of the time the
unit comes back ‘up’ on-line TU(-). When the number of maintenance engineers
is 1, this is easily obtained as

TU, = TD, + REP,
(10.16)
TU, = max {(TD, + REP,, TU,_, + REP))} j=2,3,...,n.

When more than one engineer is employed, the quantity TU j—11n(10.16) must be
replaced by the Mth largest value in the first (j— 1) elements of TU(-). A simple
subroutine MTHVAL provides this value.

Once the array TU(+) has been computed, it is a simple matter to calculate the
total down-time and hence the average daily cost by (10.15).

For the rates and parameters suggested in this example, the results obtained
are summarized in Tables 10.1 and 10.2. Table 10.1 shows the details of the down-
time, repair time, and up-time for each breakdown in a simulated sequence of 100
days. The initial seed is the same for each simulation involving a different number
of maintenance engineers so only the TU( ) array changes.

Table 10.2 shows the summary results of the total production time lost and the

C

C GENERATE BREAKDOWN TIME AND ESTIMATE OF REPAIR TIME

5
6

DIMENSION PROB(10),UNIT(10),WK(10),CDF(21)
DIMENSION TUC(100),REP(100),TD(100)

LOGICAL PRINT

PRINT=.FALSE.

WRITE(6,5)

FORMAT(* DO YOU WANT DETAILED LISTING?...Y/N
READ(5,6)ANS

FORMAT (A1)

IF(ANS.EQ. THY) PRINT=.TRUE.

DEFINE NO, OF MAINTENANCE ENGINEERS

1
10

20

WRITE(6,10)

FORMAT(33H SPECIFY NO. OF MTCE. ENGRS...I5)
READ(5,20)M

FORMAT (I5)

IF(M.LT.1) STOP

ZERO TIME ARRAY

30

DO 30 IT=1,100
TU(IT)=0.0
TD(IT)=0.0
REP(IT)=0.0

CONTINUE

SET PARAMETERS AND DAILY RATES

AVE=5.0
STDEV=1.0
ALPHA=0.2
SALARY=120.0
PROD=500.0

SET UP ARRAYS FOR ROUTINE DISTN1

40

EXPALF=EXP (-ALPHA)
DO 40 K=1,10
UNIT(K)=FLOAT(K-1)
PROB(K)=ALPHA*#*(K-1)*EXPALF/FACTRL(K-1)
CONTINUE

SET UP CUMULATIVE DISTRIBUTION FUNCTION

CALL DISTN1(UNIT,PROB,10,WK,CDF,21)

SET UP LOOP FOR NO. OF DAYS

50

WRITE(6,50)

FORMAT(26H SPECIFY NO. OF DAYS...I5)
READ(5,20)NDAYS

ISEED=12345

J1=0

J2=0

DO 100 IDAY=1,NDAYS

GENERATE NO. OF BREAKDOWNS

203

CALL URAND(ISEED,P)
CALL DISTN2(CDF,21,P,BRK)
IBRK=IFIX(BRK)

IF(PRINT.AND.IBRK.GT.0) WRITE(6,203)IDAY,P,IBRK

FORMAT(* DAY* TI4,® (P=*,6F7.4,%) .,.IBRK=%,I3)
J1=J2+1
J2=J1+IBRK-1

IF(IBRK.LE.O) GOTO 100
DO 60 J=J1,dJ2
CALL URAND(ISEED,P)
TD(J)=FLOAT(IDAY-1) + P
CALL GAUSS(ISEED,STDEV,AVE,REP(J))
IF(PRINT) WRITE(6,204)J,TD(J),REP(J)
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*)

Figure 10.17 FORTRAN program for simulation of the maintenance problem
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204 FORMAT (32X,13,2F7.3) Table 10.1  Detailed results of the simulation of the maintenance problem
60 CONTINUE
100 CONTINUE

Time Repair  Time up (days) for M =

c CAngLﬂg }‘l_lg )151 TIME WHEN UNIT RESUMES PRODUCTION S Number of fowr, e

TU(J)=TD(J) + REP(J) Day  number breakdowns (days)  (days) 1 2 4

110 CONTINUE

MP1=M+1 9 8818 1 1 869 621 1490 1490  14.90
DO 130 J=MP1,J2 11 .8208 1 2 10.02 6.04 2094 1605  16.05
TU(J)=TD(J) + REP(J) 20 .8200 1 3 19.68 493 25.87 24.61 24.61
IF(M.EQ.1) TUJMM1=TU(J-1) ) 9749 5 4 21.08 4.69 30.55 2577 25.77
IF(M.GT.1) CALL MTHVAL(TU,J-1,M,TUJM1) 5 21.95 4.80 35.35 29.41 26.75
TUJ=TUJM1 + REP(J) 6 21.66 4.67 40.02 30.44 26.33
c138AngmgU§omL S 8 2153 3.8 4701 3362 2895
g g g 8751 1 9 2232 408 5109 3730 3041
DO 150 J=1,J2 ) 9080 1 10 3166 351 5460 3713 3517
IF(PRINT) WRITE(6,201)J,TD(J),REP(J),TU(J) 35 .8472 1 11 34.39 491 59.52 4204 3930
201 FORMAT(I5,3F10.3) 36 .8763 1 12 35.63 3.70 63.21 41.00 39.32
DTIM=DTIM + TU(J) - TD(J) 39 .8557 1 13 38.41 5.40 68.61 46.40 43.80
150 CONTINUE 42 9112 1 14 41.22 423 72.84 46.27 4545
C CALCULATE TOTAL COST AND AVERAGE DAILY COST 44 8320 1 15 43.69 5.32 78.15 51.58 49.01
{%ggﬁgggg;g‘igﬁE;’;ﬂggs) + DIIMAPROD 53 8463 1 16 5254 665 8481  59.19  59.19
WRITECS 2000 H, 92, DT, TorcsT, AVEGST S 3 11 s 40 sl S 573

200 FORMAT(/,*  FOR*,I4,* MAINTENANCE ENGINEERS*,/, - : : . :
. % WD, OF PAILURES = *,I0.7, 19 5347 360 9804 6279  57.07
+ #  TOTAL DOWN TIME = *,F8.3,/ 56 9617 3 20 55.78 527 103.31 68.06 62.34
. *  TOTAL COST - $%.F10.2,/ 21 5548 683 11014 6996  64.33
+ *# AVE. DAILY COST = $¥%,F10.2) 22 55.96 4.34 114.48 72.41 63.31
GOTO 1 62 9852 6 23 61.68 8475 118.23 73.70 65.42
END 24 61.32 4.63 122.86 77.03 66.97
C 25 61.27 4.83 127.68 78.53 68.14
§;’§ggg§ggEv:gf(*gy)-<"AL-""'M'“LM) 26 6135 476 13244 8179  69.09
DO 10 T=1.M 27 61.36 3.90 136.34 82.43 69.33
BIG:0.0' 28 61.63 S27 141.61 87.06 72.24
DO 20 J=1,NV , 68 9379 1 29 6730 422 14583 8665 7236
IF(VAL(J).LT.BIG) GOTO 20 82 9814 6 30 81.86 501 15085 9167  86.87
BIG=VAL(J) 31 81.16 3.86 154.70 90.92 85.02
IBIG=J 32 81.60 6.51 161.21 97.42 88.11
20 CONTINUE 33 81.73 5.74 166.95 97.40 87.47
- COX%%&?IG):—VAL(IBIG) 34 81.83 4.38 171.33  101.78 89.40
35 81.51 5.66 176.99 103.08 92.53
e el 85 9474 I 36 8455 432 18131 10610 9179
H 89 9436 1 37 88.46 4.31 185.62 107.39 92.77

VAL(J)=ABS(VAL(J))
30 CONTINUE
RETURN
END

FUNCTION FACTRL(N) average total daily cost including both loss of production and salaries. The cost is

gg?gmé: 6? — a minimum with 4 maintenance men but this result may be sensitive to the initial
DO 10 J=1,N seed value and the number of days simulated. On the more practical side,

management would likely err on the side of too few men to reduce problems of
boredom and embarrassment of lay-offs should the simulation turn out to be
pessimistic.

FACTRL=FACTRL¥FLOAT(J)
10 CONTINUE
RETURN

END )
Figure 10.17 — continued
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Table 10.2 Summary of results for the maintenance problem
No. of days simulated = 100
Total no. of breakdowns= 37
Number of Average loss Average
maintenance Total time of production total cost
engineers lost (days) ($/day) ($/day)
1 1802.05 9010 9130
2 453.32 2267 2507
3 277.48 1387 1747
4 222.06 1110 1590
5 198.42 992 1592
6 181.53 908 1628
7 176.92 885 1725
8 176.92 885 1845
9 176.92 885 1965

The sensitivity of these results to the number of days (n) and the initial seed
value for the random number generator is left as an exercise for the interested
reader. In this connection, a useful discussion is given by Au, Shane, and Hoel
(Chapter 10, Simulation).!) Also, it should be noted that the algorithm uses
several assumptions which may not always be realistic. For example, it is
assumed that an engineer continues to work on a breakdown until repair is
completed, irrespective of any other minor breakdowns which might occur. Also,
it is assumed that only one man can work on a repair job at any time. The
inclusion of subtleties such as these in the simulation model presents a
stimulating challenge to the systems analyst.

10.5 EXERCISES

10.5.1 A construction project involves five operations which are related by the
prerequisites listed in the following table. The duration of each activity is
assumed to be normally distributed with mean values and standard
deviation as given. Determine the probability of the project completion
time exceeding 20 months.

Expected Standard
Activity Prerequisites duration (months) deviation (months)
1 — 11 3
2 — 6 1
3 2 4 1
4 1553 9 2
5 2 10 2
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10.5.2 Flows into a reservoir during equal time intervals are to be generated by
the following equation:
Vier =V+ HY, — V)+ AV(1 — r?)1/?

i
where

Vier = volume of inflow in period j + 1

v, = volume of inflow in period j

7 = average volume of inflow (30 x 10°® m3)

r = correlation coefficient (0.4)

AV = anormally distributed random component with a mean of zero

and a standard deviation of 10 x 10° m3.

If the withdrawal for each time period is 20 x 10® m3, determine the
reservoir storage required for a synthetic series of 50 time periods.
Construct a curve relating the required storage volume to the withdrawal
amount.

10.5.3 Ships carrying 10000 tons of raw material supply a stockpile for a
manufacturing process. Demand from the stockpile is initially 250 000
tons per year and is expected to increase uniformly to 8 times that figure
over a 20-year period. The time taken by the ships from the source to the
stockpile is observed to be variable with sample times for 20 trips as
tabulated below. The shipping season is limited to 300 days per year.

Observed trip times (days)

12.0 9.5 10.0 '15.0 1145 13.5 15:5
12.5 12.0 10.5 9.0 16.0 14.0 13.5
11.0 13.5 14.0 12.0 13.0 14.0

Unloading is done by means of a single conveyor belt and unloading
time is estimated to be normally distributed with a mean of 3 days and a
standard deviation of 0.6 days. ‘

Ships forced to wait while another ship is unloading incur a cost of
$2000/day. The cost of a second conveyor belt is $750 000. Ignoring
inflation determine at what time in the 20-year life of the plant it is worth
installing a second conveyor belt. Assume a discounting rate of 13%;.

What would be the effect of inflation at 10% per annum on this
decision?
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Chapter 11
Decision Analysis

11.1 INTRODUCTION

This chapter is concerned with methods of dealing with problems which have a
degree of uncertainty, and ultimately selecting attractive courses of action. The
uncertainty in the problem can be reflected in the choice which a decision maker
faces and the outcome that will probably result from making such a choice. If there
is no choice available then by definition there is no decision to make.

In some cases, where given a choice the outcome is known with certainty, the
type of decision problem posed is referred to as a deterministic problem. In other
words, the outcome is completely fixed or determined once the choice has been
made. If, however, the outcome from a given choice could still be influenced by
chance or random events then this is referred to as a stochastic decision problem.

We can now identify the third component of a decision problem, i.e. the
criterion. A course of action cannot be chosen until the decision maker has some
form of rational criteria on which to base that choice. Some of these criteria are
more conservative than others and the decision maker should apply the criterion
that most closely suits the needs of his or her company. In this chapter several
criteria will be examined, some in more detail than others.

11.2 THE MAXIMIN CRITERION

If a company is in poor financial shape and cannot afford to take extreme risks,
then they might well wish to avoid the worst possible outcomes of various
actions. This argument is best presented by an example.

The Red Dragon Construction Company have the choice of purchasing three
different types of earth-moving equipment. If they buy type A vehicle then the
worst that can happen is that maintenance could be high, whereas it is known
from discussions with other companies that type B vehicles are prone to clutch
trouble. The third vehicle, type C, is relatively trouble free for the first few years
but replacement parts are expensive compared with the two others. The situation
may be summarized by use of the pay-off table (Table 11.1).

The figures in the table are the net incomes (in $1000) from each type of vehicle
if the maintenance turns out to be low (I), average (II), or high (III). These
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Table 11.1 Red Dragon Construction Company net income (pay-off)

Outcome
(Net profit from use of vehicles)

I II 11
Action Low maintenance Average maintenance High maintenance
(Vehicle bought) cost cost cost
A 45 25 15
B 75 65 —15
C 95 30 -20

numbers are referred to as conditional outcomes, and thus the net profit of using
machine type A, if the maintenance is average, will be 25 ($25 000).

The maximin rule requires that the company will ‘choose the action which
maximizes the minimum pay-off which can be achieved’. Hence, the company’s
choice will be type A — providing that maintenance costs will be low or average
__despite the more attractive returns that the purchase of vehicles B and C will
bring. The maximin rule will therefore result in Table 11.2.

Table 11.2 Optimal action for maximin rule

Outcome
Minimum Optimal
Action 1 11 111 value action
A 45 25 15 15 *
B 75 65 —15 —15
C 95 30 —-20 —20

The maximin criterion is extremely conservative and can only be justified
under very exceptional circumstances. Therefore, it would appear that a more
positive approach to the solution is required.

If, in the previous problem, it had been decided to buy vehicle A and outcome II
had resulted, the company could have had a pay-off of $65 000 if vehicle B had
been used. This implies that a loss of revenue of $40 000 would result and a good
opportunity would be lost. Hence, if the company were more inclined to take risks
and wished to minimize these lost opportunities then a new criterion would be
appropriate.

A conditional opportunity loss (COL) table may now be determined from the
pay-off table. This is found as follows. In column I, the maximum pay-off would
be achieved by choosing vehicle type C, and hence actions B and A would have
resulted in missing opportunities of (95 — 75), and (95 — 45) respectively. The
complete table for all possible outcomes would be as shown in Table 11.3.
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Table 11.3 Conditional opportunity loss (COL) table for Red Dragon Construction
Company
Action I I 111
A (95 — 45) (65 — 25) (15 =15
50 40 0
B 95 —=175) (65 — 65) (15— (—15))
20 0 30
C 95 —95) (65 — 30) (15 — (—20)
0 35 35

The zeros in the table imply that if the outcome had been known, then an
optimal choice could have been made, i.e. no opportunities would have been lost.
In this particular case all rows have zeros in them and a different action would be
required for the three outcomes.

The new criterion would now be to minimize the maximum opportunity loss.

11.3 THE MINIMAX CRITERION

This rule requires that a maximum value be selected for each row in the COL
table. The optimal action is that which has the smallest of these maximum values,
and if applied to the COL table for the Red Dragon Construction Company, the
results shown in Table 11.4 are obtained.

Table 11.4 Optimal action for minimax

Outcome Maximum
value in Optimal
Action 1 11 111 row action
A 50 40 0 50
B 20 0 30 30 *
C 0 35 35 35

In this case the minimax criterion leads us to choose action B, which is different
from the choice made by using the maximin criterion. This is hardly surprising as
the two criteria are fundamentally different. The maximin rule implies that a ‘play
safe attitude at all costs’ be adhered to, whereas the minimax rule contrives to
avoid lost opportunities.

In some instances it is quite possible that the two criteria would lead to the
same optimal choice. If in the pay-off table, outcome III would have resulted in a
net profit of 20 for vehicle B, then the action of choosing vehicle B would have
been optimum for either criterion. This is no contradiction to the previous
statements made about the minimax and maximin criteria, but only serves to
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show that the answers obtained depend entirely on the numbers in the problem. It
is this fact which amplifies the basic weakness in both criteria, i.e. no account is
taken of the probabilities of the different outcomes taking place. This is a great
disadvantage in the majority of cases as the decision maker would require some
kind of estimate, however crude, of what is likely to happen. Therefore, the
estimate of an outcome occurring must somehow be brought into the analysis to
extend the decision theory discussed so far. This could then be incorporated into
the pay-off table to enable the decision maker to arrive at a more rational choice.

11.4 BASIC CONCEPTS OF PROBABILITY THEORY

As stated previously, it is now necessary to incorporate scientific prediction
techniques via probability theory to enable the decision maker to determine an
optimal choice. The application of probability theory, which was conceived by
mathematicians and based on assumptions that might not be appropriate in
certain situations, must, however, be applied carefully. It is not implied that
probability theory should not be used, but merely that care should be taken to
understand the assumptions underlying the chosen actions and check that they
are applicable in any particular case.

In probability theory an event is the term used for something which may or may
not happen. A decision analysis problem could well comprise many occurrences
or events and the difficulty lies in determining the probability factor for each

event.

11.4.1 Unconditional probability

A probability statement, e.g. ‘the probability that it will freeze is 0.60°, may be
written as

P(A) = 0.60.

The symbol A4 represents the event ‘it freezes’, and the operator P stands for ‘the
probability of’. This, the simplest form of probability, is termed unconditional
probability and is often referred to as a simple probability. It pays no regard for
other events, e.g. if there are two events, A4, ‘it will freeze today’, and B, ‘it will snow
today’, and the occurrence of B is quite independent of 4 and vice versa, in the
sense that freezing does not cause snowing and it can snow without it necessarily
freezing, then the two events have unconditional probabilities of P(4) and P(B)
respectively. ’

The essence of probability theory lies in the concept of complementary events,
i.e.if one event does not occur then the alternative event must take place. In a very
simplified manner the two events could be ‘the sun shines’ and, secondly, ‘the sun
does not shine’. It is obvious that if one occurs the other cannot and vice versa.
Whichever event does occur, the sum of the probabilities of both events occurring
must always be 1.00. Therefore, we can introduce a third event to incorporate the
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possible variations in the complementary events, i.e. ‘the sun shines or the sun
does not shine’.

If the probability of the sun shining is given by P(A), of the sun not shining by
P(B), and the event ‘the sun shines or the sun does not shine’ by P(C), then we can
write that P(C) = 1.90. Also, the event Cis really the net result of A or B and thisis
denoted by writing:

C=A4AUB

where the symbol U is short-hand for or.
Now we have

P(C)=P(4A U B)=1.00 (11.1)
and as event A or B must occur then
P(A U B) = P(A) + P(B) = 1.00. (11.2)

The concept of complementarity can be extended to more than two events
providing they are collectively exhaustive and mutually exclusive. This implies that
the events must cover all possibilities and that the occurrence of one of them
excludes the occurrence of the other. A collection of probabilities relating to a
collectively exhaustive and mutually exclusive set of events is called a probability
distribution. The sum of the individual probabilities must be 1.00. Therefore, if
there were four collectively exhaustive and mutually exclusive events 4, B, C, and
D we would have

P(4) + P(B) + P(C) + P(D) = 1.00. (11.3)

11.4.2 Conditional probability

In real-life situations, events do not usually occur in isclation but are strongly or
weakly linked to other events. Therefore, if event A was ‘the production of a poor
batch of concrete’ and event B was ‘the delivery of several batches of inferior
quality cement’, then A4 might very weli depend on B and so we would say that 4
was conditional upon B. This is an example of probability being dependent on
having certain information, or on something else having happened before. This
type of probability is often written as

P(A|B)

which means ‘the probability of 4 given that (the vertical line) B has happened’.

For instance, suppose it was found that, in the quality control of concrete test
specimens, of those which failed to reach a certain strength after seven days 707,
had surface defects. Then, if 4 denotes the event ‘failed to pass the seven-day
strength test’ and B is ‘bad surface defects’, P(B|A) = 0.7.

If, in the previous example, it was known that 209, of the concrete specimens
would fail the strength test, then what is the probability that a test specimen will
fail the test and have the surface defects? This is known as a joint event, i.e. ‘event A
happens and B happens’, and is denoted by the following symbolic notation:
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P(A N B) (11.4)

where N means ‘and’.

It is known that P(B| 4) = 0.7 and P(4) = 0.2, in other words, there is a 20%,
chance that A will take place and, after it has, there is a 709 chance that it will be
followed by B. Thus, 70%; of 209, go through 4 and B so that

P(AN B)=0.7 x 0.2 =0.14.

Expressed symbolically in its most general form for any events 4 and B we can
write:
P(A N B) = P(A) x P(B|A). (11.5)

The standard rules of algebraic manipulation may be applied to this expression,
which makes it extremely useful in calculating probabilities which are unknown.

11.5 BAYES’ STRATEGIES

It was stated at the beginning of this chapter that the objective of any decision
analysis problem was to select the most favourable or optimal action taking into
account the different possible outcomes. If probability theory is used in helping to
make this choice then the most favourable strategy is known as Bayes’ strategy.
This makes use of the concept of expected pay-off, which is determined from a
knowledge of the probabilities of certain events occurring. The idea is best
demonstrated by the following example.

If the introduction of an action X has two possible outcomes 1 and 2, of which
the pay-offs are respectively V, and V,, then it is possible to estimate the expected
pay-off if the probabilities of outcomes 1 and 2 occurring are known. If P(1) and
P(2) are the respective probabilities of outcomes 1 and 2, then the expected pay-
off of action X is

Expected pay-off (X) = P(1) x V; + P(2) x V,. (11.6)

The expected pay-off is often referred to as expected value, and for the action X
this may be written as EV(X).
If V, =80, ¥, = 10, P(1) = 0.70, and P(2) = 0.3, then

EV(X)=0.70 x 80 + 0.3 x 10 = 59.

This should not be interpreted as the real pay-off of action X as obviously we
would either receive 80 or 10 depending on which outcome resulted. It is clearly
impossible to obtain a pay-off of 59 on any one single action of choosing X, but if
we did this consistently over a long series of choices then the mean value would
be 59.

It is obvious that action X cannot be treated as one in a series of identical
actions as real-life problems do not conform quite so obligingly to mathematical
theories. However, if we are to apply the theory of probability to real-life
problems then this assumption must be assumed to be valid. If it is obviously not
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valid then the theory will not be applicable and it would be unwise to draw too
many conclusions from the answers obtained. The choice of whether or not to use
a particular theory in real-world problems is as much a decision problem as any
_other.

Once the expected value of an action is calculated irrespective of the number of
possible outcomes that might arise from it, we are in a position to make certain
deductions (i.e. decisions). It must be borne in mind, however, that the sum of the
probabilities must always equal 1.00, or in other words they must be collectively
exhaustive and mutually exclusive. Also, the probability of an outcome occurring
can never be less than zero.

If we now assign probabilities to the possible outcomes that the Red Dragon
Construction Company expect from the purchase of the vehicles, then the pay-off
table is as shown in Table 11.5. The highest EV is for action C and that is the
optimal act or Bayes’ strategy. Recall that by using maximin it was action A and
the minimax criterion gave action B.

Table 11.5 Pay-off table based on Bayes’ strategy

Outcome
I I III
Probability 0.55 0:25 0.20 EV of action
A 45 25 15 34.00
Action B 75 65 —15 54.50
C 95 30 —-20 55.75*

The same values of probabilities are applied to the opportunity loss table and
used to calculate the expected opportunity losses (EOL). The optimal act,
according to Bayes’ strategy, will be the one with the minimum EOL The result is
given in Table 11.6.

The minimum EOL is now for action C and that is the Bayes’ strategy for this
criterion.

The prospective decision maker would by now be thoroughly confused and

Table 11.6 Expected opportunity loss based on Bayes’ strategy

Outcome
I I 111
Probability 0.55 025 0.20 EOL
A 50 40 0 37.50
Action B 20 0 30 17.00
C 0 35 35 115.75%
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uite rightly so. It would seem that his major decision would first be to choose the
optimal method for determining his optimal action.
Four different criteria have chosen three different optimal actions, which may
pe summarized as:

Criterion Indicated action
Maximin pay-off A

Minimax opportunity loss B

Maximum EV C Bayes’ strategy
Minimum EOL C Bayes’ strategy

The final two answers are the only ones that incorporate any form of probability.
As already stated, it was no surprise that the first two criteria gave different
answers as they were founded on completely different approaches. However, the
Jast two criteria give the same result and this may or may not be coincidence. In
fact, it can be proved mathematically that Bayes’ strategies are always the same
for maximum expected value and minimum expected opportunity loss. This only
applies to Bayes’ strategies in which probabilities are involved in the calculation.
In reality, this implies that pay-off or opportunity loss could be used
interchangeably provided that the probabilities are included in the relevant
calculation. As the numbers in the COL table are always zero or positive it is
usually preferable to use this method. It should be borne in mind that the
recommended actions would result in nothing but losses and hence the problem
has to be carefully and properly defined.

11.6 DECISION TREES

In any engineering project of appreciable magnitude the number of decisions to
be made are numerous. The whole procedure is further complicated by the fact
that the decisions are not isolated but are linked to one anothér, however
tenuously. In many cases these decisions are sequential in nature and each step
forward relies to a large extent on the decision made previously. For example, if a
construction company is bidding for a contract to build a new bridge, their first
action must be to assess the cost of the contract as accurately as possible. They
should bear in mind that their competitors will be doing exactly the same thing,
and all will have the intention of submitting the lowest tender. Hence, a choice has
to be made initially on the time and money to be spent on the preparation of the
tender. They could gamble and carry out a very superficial assessment, or else
they could devote considerable effort to the tender. Having taken this decision
there will be an outcome — their tender might be rejected completely, they could
be asked to re-submit with further details, or else they could secure the contract.
Each of these outcomes can be thought of as being poor, fair, or good, and given
that they have a fair outcome, i.e. the authority in charge of the contract is
requesting a more detailed cost analysis, then they must decide between re-
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analysing the cost and time estimates, or withdrawing altogether. This decision
will obviously rely on the feedback obtained from the awarding authority and
their likelihood of securing the contract. Given that decision, there will be an
outcome which will lead to another decision, and so on.

There are two important facets to this type of decision problem — time and
uncertainty. In real life both the actions and outcomes of any problem require a
certain time period to develop. This brings into play the added complexity of the
time-value of money, but this can usually be accounted for by discounting.
However, the probabilities involved in the decision making series could well be
influenced by time and also by added information being received. In a later
section such influence of further information on the probabilities will be
examined in more detail.

Already it is possible to observe that the degree of uncertainty inherent in such
problems is further aggravated by being compounded into a chain of events. It is
difficult enough to decide on the correct probability of a single action but much
more so if the actions are linked in a chain in which each action could result in
several outcomes. However, such probabilities are often assessed by book-
makers in quoting odds on sporting encounters and usually, much to the
disgruntlement of the gambler, they turn out favourably. However, despite the
difficulties involved, the decision maker has to solve such problems in any case. If
he is consistently incorrect in his predictions of the outcomes then he will soon
find himself in the ranks of the unemployed.

Now, the many interwoven and complex decisions that must be made in
any sequential structure lend themselves favourably towards representation by
means of diagrams. Such diagrams are called decision trees and we will now
consider the methods by which they can be best utilized. An example will be used
to demonstrate the salient features of the technique.

The Red Dragon Construction Company have developed a new rapid-
hardening cement which shows exceptional promise. Initially, they have the
alternatives of either test marketing it or abandoning it. If the result of the test
market is negative the company may decide to abandon the product. In this case
all they could hope to recoup would be $20 000 gained from the sale of their
supplies for construction purposes where low grade concrete is required.
However, if they decide to test market the cement, it will cost $150 000 and the
response of the civil engineering industry could be either positive or negative with
probabilities of 0.7 or 0.3. If it is positive they could either abandon the product or
market it full scale. The result of such an all-out sales campaign could be a low,
medium, or high demand with corresponding net pay-offs of —400, 400, or 2000
in units of $1000 (i.e. the outcome could range from a loss of $400 000 to a gain of
$2 000 000, all financial values being discounted to present-day values).

As in many problems involving systems analysis, the description is already
lengthy and the reader could easily be confused as to what steps the Red Dragon
Construction Company should follow. Even so, the description is by no means
complete and represents a drastically simplified version of the true situation. For
example, it is hardly likely that the company would accept a net loss of $130 000 if
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Figure 11.1 Decision tree for the Red Dragon cement marketing problem

the results of the test marketing were negative. It would be more likely that a
further amount of research money would be ploughed into the development of
the product in the expectation of improving the probabilities of success. Figure
11.1 depicts the tree network for the problem. The square nodal points represent
points at which decisions have to be made, the white circles are the outcome
results from the decisions, and the black circles are termination points. The
branches between the nodes are either decisions or outcomes and each is labelled
with an identification, a probability, or a net value where relevant. The numbers
printed above the node points are expected values (EV) and the optimal paths are
clearly marked (with a double bar). The analysis commences at the top right-hand
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side of the network and gradually works back to the start node A. Therefore,
nodes N, O, and P having pay-off values of 2000, 400, and —400 respectively are
reached from G via a probabilistic outcome, i.e. having reached node G the
outcome is now out of the control of the decision maker. The EV for G is therefore
calculated as shown previously, i.e.

EV(G) = 0.3 x 2000 + 0.4 x 400 + 0.3 x (—400) = 640

and this value is inserted above node G.

Nodes H and G are reached from D, which is a decision point. If it is decided to
move to H there will be a predetermined benefit of $20 000 (or + 20), but if it is
decided to move to G, there will be an expected value of 640. As the criterion
being used is to maximize the expected value the decision should be to market the
product, which is branch DG. This is marked the optimal act, and of course is
conditional upon being at D. The value of D is therefore 640, i.e. the larger of 640
and 20. Before we can proceed further back to B along this path the EV of node E
must be determined. This is achieved by a similar process to the one which has
already been described. Thus EV(L) is +640 and hence EV(I) is given by

EV(I) = 0.7 x 640 + 0.3 x 20 = 454.

Since the cost of further research (link EI) is 100, EV(E) is the greater of
(454 — 100) and 20, i.e. EV(E) = + 354. The value of B is now found by taking the
EV of the two outcomes ‘yes’ and ‘no’ which have led to the two separate sub-
trees.

The EV of B is

EV(B) = 0.60 x 640 + 0.40 x 354 = 525.

The value of the branch ABis 525 — 150 = 375 ana the value of AC is 20. The
- optimal initial act therefore is to ‘test market’.

11.7 LIMITATIONS OF THE EXPECTED-VALUE TECHNIQUE

So far throughout this chapter, the discussion has been concerned with the
concept of expected value (EV), or, if given its full title, expected monetary value
(EMYV). There are certain situations in which the use of EMV may lead to dire
consequences for the potential decision maker. This is because there is no account
taken of the risk potential involved in the project. In the previous example the
Red Dragon Construction Company stand to make a profit of $375 000 from the
use of maximum EMYV, and on this basis they would proceed with the project.
However, if in reality things did not work out too well, and a low outcome was the
eventual result, then they would incur a loss of over $500 000 (e.g. route
ABEILQT implies a loss of —150 — 100 — 400 = —650). If the company is a
relatively small business and such a loss would mean disaster, then it is obviously
preferable that it should not embark on the project. The measure of EMV
indicates that the company should go ahead with the project but the
circumstances may be such that this could be the wrong decision.
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Suppose that the company concerned had the opportunity of embarking on a
similar project but where the pay-off and losses were only a fifth of the previous
project. In this instance a loss of this magnitude would not have the same ‘life or
death’ significance that the previous project held and the company would be able
to absorb such a deficit with no major difficulty. As the EMV would still be
positive, then in this case the company should proceed with the project.

We now have the paradox of the EMV criterion sometimes giving us the
correct answer and sometimes not. This obviously has to be resolved and the key
to the answer lies in the magnitude of the losses involved. A company could be
able to recover from small losses but not from a catastrophic loss. It is possible to
avoid the whole situation by returning to the measurement of minimax loss which
was discussed in Section 11.3. However, this criterion takes no account of
probability so the situation would not be improved. The answer to the problem is
to adapt the criterion of EMV so that it will reflect in the analysis the risk that a
company can accept. This may be done by introducing the concept of utility.

11.8 CONCEPT OF UTILITY

The main ideas involved in utility are relatively simple. In the decision tree
problem, an abbreviation of money was used in the sense that one unit
represented $1000. This was done mainly to avoid the tediousness of having to
write all the zeros involved with such large sums of money. In this case we could
have defined one monetary unit, or one m.u., as being equal to $1000. It was
implied in the context used that the conversion factor from monetary units to
dollars was a constant. This is not necessarily always the case and it is quite
possible that the conversion factor could vary in a non-linear manner. However,
it isimperative that the variation of the conversion factor is always known so as to
avoid any ambiguity.

Therefore, it is convenient to construct a chart which enables amounts to be
converted from money to m.u. or back again, for any particular problem. For
instance, if the project under consideration involved sums of money ranging
between + $200 000 to —$200 000, we might wish to choose a convenient
conversion factor of $2000 = 1 m.u., and so the amounts would be between
100 m.u. and —100 m.u. This linear relationship is shown in Figure 11.2.

If the negative part of the curve in Figure 11.2 is bent downwards more steeply
as the losses increase there is no longer a linear variation between money and m.u.
The graph shows a real money loss of — $200 000 to be equivalent to — 500 m.u.,
and this reflects the Red Dragon Construction Company’s true thoughts about
going out of business. This is the essence of the concept of utility.

There is a danger of bending the curve too quickly and over-exaggerating the
risk involved in the project. This could well lead to the situation where the
company would never be prepared to take risks and therefore never stand to
make any gains.

The utility curve need not be linear in its middle range and may take any form
which reflects the views of the decision makers. The linear curve shown in Figure
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Figure 11.2 Non-linear exaggeration of losses

11.3 indicates an attitude of carefully playing the odds and is often termed as risk
neutral. The convex curve (bending upwards) in Figure 11.3 is indicative of a
decision maker who wishes to have one big pay-off rather than play carefully and
obtain a number of much smaller pay-offs. The curve is referred to as being risk
prone and would be unlikely to be accepted by most modern corporations. The
concave curve of Figure 11.3 illustrates a typical risk averse utility curve. It must
be stressed that the most suitable utility curve for a particular company could
comprise a mixture of shapes of the three types shown in the diagram, and need
not take the form of one particular type.

11.9 PRIOR AND POSTERIOR PROBABILITIES

The situation often arises that a forecast of probabilities made well in advance of
an occurrence, such as the tendering process for a contract, requires re-
assessment as later events shed further light on the matter. There is a prime
example of this in weather forecasting which requires continuous updating as

|
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Figure 11.3 Risk-prone and risk-averse utility curves

weather stations, aircraft, and satellites keep transmitting the most recent
reports. A weather report made early in the day could have changed drastically by
evening. This is a result of the probabilities being revised from their initial values
as other, but still indefinite, information becomes available.

An initial probability statement is known as a prior probability distribution
and a posterior probability distribution is one which has been modified as a result
of more recent information. In this instance the term distribution is used to
indicate that the total probability of 1.00 is spread over a number of collectively
exhaustive and mutually exclusive events. It is self-evident that what is posterior
to one sequence of events becomes the prior event to future occurrences. The
calculation of the inter-relationships between prior and posterior probabilities
will be made in this section via the use of Bayes’ theorem.

The theorem is a means of deriving probabilities and linking effects with their
possible causes. To demonstrate the use of the theorem it is assumed that two
causes, C; and C,, have two possible effects E, and E,. For example, the two
causes C; and C, could be the delivery of a batch of concrete made by companies
A and B respectively. The resulting effects might be that E, is a poor-quality
concrete batch but E, is quite satisfactory. Also required are the prior
probabilities P(C,) and P(C,) that a sample chosen at random came from A and B
respectively. The two conditional probabilities that a certain cause would result
in a given effect are also required. The conditional probability that a batch is
faulty given that it comes from company A is written as P(E,|C)). Similarly,
P(E, | C,) is the probability that a batch is faulty given that it comes from
company B. v

Therefore, it is now possible to calculate the probability that a batch comes
from A, given that it was faulty, as

P(E,|C,)P(C)) .
P(E, |C)P(C,) + P(E, | C,)P(C,)

P(C,|E)) = (11.7)
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This expression is known as Bayes’ formula and a similar expression can be
calculated for P(C, | E)):

P(E, | C,)P(C,)
P(E,|C))P(C,) + P(E; | C)P(C,)

P(C2|E1): (11.8)
The application of these formulae may now be demonstrated by the following
example.

The Red Dragon Construction Company is unable to produce sufficient ready
mixed concrete and has decided, as a short-term ‘stop gap’, that it will purchase
the quantity it needs from two rival companies A and B. It expects A to produce
30%; and B 70%; of this quantity. The reason for the difference in quantity is largely
due to the fact that company A is much smaller than B and has insufficient
capacity to fully meet the demands of Red Dragon Construction Company. This
isregrettable since it is known from past experience that only approximately 15%
of the concrete that A supplies is faulty, whereas 25% of company B’s concrete is
known to be sub-standard.

A new batch of inferior concrete has recently been supplied which,
unfortunately, cannot be traced to its source. The manager of the Red Dragon
Construction Company is getting very disillusioned with the situation and
decides to estimate the probability that this concrete came from the rogue
company B.

The vital statistics are therefore

P(C,) = 0.30, P(C,) = 0.70,
P(E,|C,) =015, P(E,|C,)=025.

If we now substitute these values into Bayes’ formula we get

0.15 x 0.30
PCIE) = 5% 030 + 025 x 0770 = 0205
5 0.25 x 0.70
25 x 0.
P(C,|E,) = >< = 0.795.

0.25 x 0.70 + 0.15 x 0.30

These two values now become the posterior probabilities of the distribution of C, -
and C,.

To further demonstrate the application of Bayes’ theorem let us assume that
the untraceable batch of concrete was quite satisfactory. This now alters the
problem quite dramatically as although we have the formula for calculating
P(C, |E,) and P(C, | E,), all the probabilities are not known. However, use may
be made of the fact that the sets of values of C and E must each form a collectively
exhaustive and mutually exclusive group, i.e.

P(E,|C,) + P(E,|C,) = 1.00.
Therefore, as
P(E;|C,)=0.15, then P(E,|C,)=0..85
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and as
P(E, | C,) =025, then P(E,|C,) = 0.75.
Hence
P(E,|C))P(C,))
P(C,|E,) = S ! :
152 = B, [C)P(C,) + P(E, | C,)P(C,) (11.9)
0.85 x 0.30
= 085 x 030 +0.75 x 0.70 — 327
Similarly,

P(C, | E,) = 0.673.

In this case the values of the posterior and prior probabilities are much closer
than previously. This is due to the fact that defective batches are much scarcer
than satisfactory ones and so information that a batch is defective is much less
common and therefore becomes more significant.

Until now we have dealt exclusively with problems involving two causes and
two effects but Bayes’ formula can be extended quite easily to situations involving
numerous causes and effects. If, for example, there are two effects and three causes
and E, has been observed, the posterior probability for the first cause would be

P(E,|C)P(C))
P(E, | C,)P(Cy) + P(E, | C,)P(C,) + P(E, | C5)P(C,)

The numerator in this expression is identical to the previous formula and the only
addition to the denominator is the inclusion of the conditional probability for the
first effect and the third cause, multiplied by the prior probability for the third
cause. For additional causes the denominator is further extended by adding on
the appropriate terms.

The problem used to demonstrate the previous calculations was simple and
bears little relationship to real life. Hence, a much more complicated problem will
now be examined which shows clearly how Bayes’ theorem enables the decision
maker to incorporate information into an analysis and how widely divergent
initial options come closer together in the light of factual information.

P(C, |E)) =

(11.10)

11.10 PILE SELECTION EXAMPLET

A site engineer is confronted with the dilemma of selecting the appropriate pile
length in a situation where depth to bedrock is uncertain. However, it has been
determined that the depth to bedrock is not less than 10 metres and not greater
than 15 metres. The piles in question come in two standard lengths of 10 metres
and 15 metres respectively. If the engineer makes an incorrect choice then costs
will be incurred by having to cut the 15 metre piles if bedrock depth is 10 metres,
and by having to splice sections onto the 10 metre piles if bedrock depth is
15 metres. The situation can be summed up quite simply by use of the decision

- Adapted from Benjamin and Cornell, p. 573.)
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Figure 11.4 Simple decision tree for pile selection problem
Table 11.7
Action
State of nature Drive 10 m pile Drive 15 m pile
Depth to bedrock No loss 5 m of pile cut-off
10 m (200 unit loss)
Depth to bedrock Splicing of No loss

15m pile required
(800 unit loss)

tree shown in Figure 11.4. The ‘losses’ concerned have been entered as negative
values and represent the ‘opportunity loss’ associated with not choosing the
optimal action. The problem may also be summarized by means of a pay-off table
(Table 11.7).

The prior probabilities of state have been calculated by the engineer to be as
follows:

P'(10) = 0.65
P/(15) = 0.35

where the single prime indicates ‘prior’.

These values have been estimated from knowledge obtained from large-scale
geological maps, and depths of piles which have been driven in the vicinity of the
site. However, the engineer is of the opinion that further site investigation, in the
form of sonic tests, is required to determine more reliable probability values for
the depths to bedrock. Because of soil irregularities and measuring errors, the
depths indicated by the sonic tests are not wholly reliable. The equipment
available is capable of measuring to the nearest 2.5 m, and the outcome of the site
investigation is given in Table 11.8.
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Table 11.8 Sample probabilities

True state
Sample outcome 10 m depth 15 m depth
10 m indication 0.65 0.10
15 m indication 0.10 0.75
12.5 m indication 0.25 0.15

This table implies that, if the true depth is 15 m, the equipment is 75%, reliable
but has a 107 chance of being completely incorrect. Also, there is a 15% chance
that it will register an ambiguous reading of 12.5m. The total of all the
probabilities must equal unity. It may be seen by comparing the two columns that
the instrument is more likely to register a reading which is too deep rather than
one which is too shallow. These sample likelihoods may be in part subjective as
they could well depend on many factors, e.g. the design tolerances of the
equipment and the judgement of the engineer.

Assume that the sonic tests are carried out and that the depth indicated by the
instrument is 12.5 m. The posterior probabilities of state, given the observation of
12.5 m, are given by equations (11.7) and (11.8). Thus,

0.25 x 0.65
P"(10]12.5) = ¥
(101125 = 575 065 £05 <035 %120 (11.11)
’ 0.15 x 0.35
P/(15]12.5) = u = 0244 (11.12)

0.25 x 0.65 4+ 0.15 x 0.35

assuming that the state must be either 10 m or 15 m and that the posterior
probabilities must therefore sum to unity.

It should be noticed that the ambiguity of the result has in fact altered the
probabilities of state, caused by the difference in the error probabilities 0.25 and
0.15.

The expected utilities may now be determined by multiplication of the
posterior probabilities by the corresponding utilities and summing the products,
e.g. if a 10 m pile is driven, then

EV(10 m pile) = —30 x 0.756 + —830 x 0.244 = —225.2

Similarly, the posterior expectation for a 15 m length pile given the sonic test
results in an outcome which is the ambiguous result of 12.5 m is

EV(15 m pile) = —230 x 0.756 + —30 x 0.244 = —181.2.

Hence, the maximum value of these two, i.e. —181.2, is chosen as being the
expected utility.
The same procedure is now repeated for the sonic test given outcomes of 10 m



374
o O

om
ped0X =765
Q

] 0.
O $& Bedrock 15m = 0 -800
(Splicemeeded )
O

ok 10 _0-200
15m Pile Bedr® 062 (Section cut)

0.
Bedrock 15m 35 o 0

&
£
S
S
S
S

Sonic test

(-30) Aindicated
{’6 0.32
fo
%
3.
2
©
¢ B
% edl'Ock 15’77
-’

Bedrock 19T —0-60

[£60] 10 Ple .
Sy 75 Bedrock 15m O - 860
o ot 3 7 i, om
e < gedrock T 0 - 260
Q O !
7
% é‘o)o Bedrock B 0, D
TN,
NG gedrock 10™ 50-60

\omple_—o

1.0
BedroCk 15m o - 860

ck 10M - 260
Bed\'o O

15,
m Pirg

Beqp, 1
0 0
k 15m~~0 -60

Figure 11.5 Expanded decision tree for the Pile Selection Problem

and 15 m depths respectively. These expected utilities will not be calculated in
detail and the results are given at the appropriate nodes in Figure 11.5.

Now the expected value commensurate with relying on the sonic tests may be
found by weighting the optimal utilities found previously by the probabilities that

jats
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the appropriate depth will be the outcome and summing. The probabilities are
determined as follows:

P[10 msonic test] = P[10 m|sonic result of 10 m]P'[10 m]
+ P[10 m|sonic result of 15 m]P[15 m]

=0.65 x 0.65 + 0.1 x 0.35
= 0.4575.

Similarly,
P[15 m|sonic test] = P[15 m|sonic result of 15 m]P'[10 m]
+ P[15 m|sonic result of 10 m]P'[15 m]
= (0.75 x 0.35 + 0.1 x 0.65)
= 0.3275.
Therefore,
P[12.5 m|sonic test] = 1 — 0.4575 — 0.3275 = 0.215.

The optimal action is then to choose the longer pile. Even though the engineer
believes that the true state is more likely to be 10 m (i.e. P'(10) = 0.65), the extra
cost of splicing compared with cutting (800 against 200) outweighs the relative
confidence that the true state is 10 m (0.756 to 0.244).

If the sonic test indicated depths of 10 m or 15 m, the posterior probabilities
would of course be different. Repeating the calculation asin (11.11)and (11.12) the
possible result may be summarized as follows:

P"(10]10) = 0.923;  P"(15|10) = 0.077
P’(10]12.5) = 0.756; P"(15|12.5) = 0.244
P’(10[15) = 0.198;  P"(15|15) = 0.802.

The final decision analysis may now utilize these posterior probabilities to
construct a decision tree as described in Section 11.6 and using Bayes’ strategy of
equation (11.6).

If we now consider that the engineer is placed in a more realistic setting by
being allowed to drill an exploratory hole to determine the true depth accurately,
the decision tree is as given in Figure 11.5. Comparing the expected value of the
three experiments, i.e. —130, —105, and — 60, it is obvious that the site engineer
should not make a decision before obtaining more information from one of the
available experiments. Of the two experiments, the reliable but more expensive
test drilling is preferable (in this case) to the cheaper but less reliable sonic
experiments. The engineer should absorb the initial cost of the drilling and then
order accordingly, rather than run the risk of making a wrong decision. This risk
results from his present uncertainty, which is reduced but not eliminated by the
less expensive sonic experiments.
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11.11.1

/7/\ \
11.11.2 |

11.11 EXERCISES

The quality of a concrete mix delivered to a site is variable. In order to
decide upon a course of action with respect to acceptance of the
delivered concrete it is classified, after compression testing, as either
2000, 3000, or 4000 psi grade. The classification is based on the closest
measured strength. The differences in the strengths occur because of
bad, adequate, or good operating conditions at the mixing plant, and
are linked to these conditions by the following probabilities:

Concrete strength

Operating conditions 2000 3000 4000
Bad 0.7 0.3 0
Adequate 0.2 0.5 0.3
Good 0.1 0.6 0.3

The probabilities that the operating conditions are bad, adequate, or
good are 0.6, 0.2, and 0.2, respectively. A delivered batch of concrete is
now observed to be poor (2000 psi). What are the revised probabilities
for the operating conditions?

A large engineering company manufactures fork lift trucks in one of

’ their divisions. There are many minor competitors but only one major

rival who has recently introduced a new type of truck which is
apparently selling well. The first company has to decide whether to
introduce a competing truck but are concerned over the likely reaction
of the rival company. The rival company could expand production of
the new truck, keep it at the same level, or cut it back. From past
experience the chances of the three actions are respectively 50%, 30%,
and 20%. The only information that the first company can obtain is
from a study of the rival’s advertisement in the technical press and they
have assigned probabilities to the rival reducing, maintaining, and
increasing their advertising. The probabilities are expressed as
follows:®

Effects
Advertising will be

I 1I II1
Cause Reduced Maintained  Increased

Rival is A Cut back 0.60 0.30 0.10

going to
B Keep at the 0.40 10.40 0.20
same level
C Expand 0.20 0.30 0.50

11113
¥4
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It is observed that, during the following month, ad vertising is increased.
What would then be the revised probabilities for the rival’s course of
action?

The Caredig River Authority is planning to build a dam costing £1.2
million. Based on historical records, it is estimated that there is a 0.25
probability that one or more serious floods would occur during the life
of the dam and a 0.10 probability that one or more major floods would
occur. The probabilities that the two possible spillway types will fail
during these two levels of flooding are estimated as follows:®

Serious flood Major flood
Fail Safe Fail Safe
Large spillway 0.05 0.95 0.1 0.9
Small spillway 0.10 0.90 0.15 0.85

If a spillway fails to function properly during a major flood the dam will
be destroyed. The replacement cost of the dam will be the same as the
original cost. In addition to a total loss of the dam and its spillway,
other property damages will be incurred. It is estimated that in case of
failure during a scrious flood, there is a 70 percent and 30 percent
chance of other property losses amounting to £0.6 million and £1.8
million, respectively.

(a) Model this decision problem with a decision tree.

(b) What is the optimum decision based on the EMV criterion?

(c) How would you caution the Authority about basing its decision on
the EMV criterion?

At a construction site, 15 760 cubic metres of soil are to be excavated
using a single excavator with a capacity of 2.5 cubic metres per load and
capable of 20 loads per hour. A maximum of four small bulldozers, each
of capacity 15 cubic metres per hour, are to be used to push soil towards
the excavator. The nature of the site is such that two bulldozers can be
accommodated without loss of efficiency, but if three or more are used,
the productivity is reduced by 20% due to interference. Given the
following assumed data, draw a utility data curve for the excavation
activity.®

Working time for a shift — 8 hours
Excavator: ownership cost — $10 per hour
Bulldozers: ownership cost — $5 per hour
Operating cost — $15 per hour (for either machine)
Second shift, $20 per hour
Third shift, $27.50 per hour.
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11.11.5 A civil engineering contracting firm is considering submitting a bid

. . : tput), barrel da
proposal for the supply and installation of the machinery system for the Ploutput), barrels per day

swing span of a bridge. The chief engineer of the company has estimated Site 0 20 000 100 000 1 000 000
that a bid proposal can be prepared at a cost of $3000, but that such a

bid will only have a 20%, chance of being accepted. As an alternative, the 1 0 0.1 0.8 0.1
company can invest $12 000 on an extensive research study of the 5 g 5 88 s g(l)g 825

project before preparing the bid proposal. Such a proposal will have a
30% chance of being accepted.®

If the company does get the job, it can either expand its personnel and
staff or sub-contract work to other companies. If a major portion of the
work is to be performed by sub-contractors, it is estimated that there is
a probability of 70%, 20%, and 10%; for making a profit of $500 000,
$750 000, and $1 000 000 respectively. If the work is to be accomplished
mostly by expanding staff, there is a probability of 60%, 35%, and 5%, for

(c) If the company’s geologist now estimates that the drilling costs for
each site have the probabilities shown in the following table, where
should the company drill?

P(drilling cost), millions of dollars

profits of $250 000, $1 000 000, and $1 500 000 respectively. Site 0.2 1 2 4
(a) Suppose that you were the company chairman and that your 1 0.1 0.8 0.1 8
company has total assets of $5 000 000. Prepare a utility curve to % . 8-8 : gg 8 3 02

reflect your risk characteristics.
(b) Based on the above utility curve, what is your optimum policy?
(c) What is the maximum monetary investment that you would be
willing to provide for the preliminary proposed study?
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11.11.6  An oil company has the option of exploring for oil at only one of three

“\ /sites in the North Sea. The expected drilling costs for each site are

" $1000 000, $200 000, and $2 000 000 respectively, and their probable
well outputs are given in the following table:

P(output), barrels per day

Site 0 20 000 100 000 1 000 000
1 0.05 0.4 0.5 0.05
2 0.1 0:75 0.1 0.05
3 0.7 0.05 0.05 0.2

From past experience, it is known that a well in this area will net the
company $25 for each barrel a day of production.

(a) At which site should the company drill?

(b) Suppose the company commissioned detailed seismic tests for
$500 000 and now has a revised estimate of the outputs at each site
(see following table). In retrospect, was it worthwhile to have the
tests done? How have the possible decisions been altered?




Chapter 12
Additional Worked Examples

121 INTRODUCTION

The preceding chapters have each specialized in one method of optimization and
each method has been illustrated with reference to examples. Unfortunately, the
more difficult part of systems optimization is in the translation of a vaguely
specified or poorly perceived problem into the form of a mathematical model.
The task is then to identify the most suitable optimization methods for the more
formally defined mathematical programming problems. Such skills can be hinted
at in general terms but there is really no substitute for experience. The present
chapter contains a number of hypothetical examples which will serve to illustrate
a variety of approaches. In general, the problems are imprecisely defined and the
explanation takes the reader through a typical sequence of steps leading to formal
problem description and solution. Fully detailed solutions are not presented for
reasons of space, but the algorithms are described in sufficient detail to allow a
reader with sufficient experience in coding to prepare a computer program for the
solution of the problems. In certain cases, typical results are given but the reader
may find it instructive to vary certain system parameters to observe the sensitivity
of the solution to these quantities. In the preparation of these programs, frequent
reference may be made to subroutines listed in Appendix A.

Frequently, the choice of optimization algorithm may be obvious but in cases
where there is either a choice or some uncertainty about the best method, the
chart shown in Figure 12.1 may provide some guidance. This diagram is based on
a suggestion by J. Windsor of the University of Durban.

122 THE FASSBUCK TRADING CO.

The memorandum describes a design situation which is reminiscent of the
Thirstville project described in Section 1.4 with the difference that the discharge is
continuous and no balancing reservoir is required. The economics of the project
are significantly more complicated, principally due to the relatively short life of
pump sets compared with the economic project life.
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FASSBUCK TRADING CO.

Memorandum

To: Al Gorithm, Engineering Services.
From: S. T. Mayter, Costing.

Re:  Sizing of Water Distribution Mains.

The distribution system for process water in the new plant at Newton
contains a number of links which will require booster pumps. I should
be grateful for your assistance in determining the optimum sizes of
pump and pipe diameters for these mains. Specifically, I require an early
decision on a line to deliver 0.567 m3/s over a distance of 1830 m with a

net head lift of 7.6 m.

I attach some information which is based on experience with similar
installations. Perhaps you could look into this and let me have your
suggestions within 10 days if possible.

A number of similar problems will be arising in the near future and
any efforts to automate this design procedure would be very beneficial
in the long run.

Enclosure:

Cost Data for Water Distribution Mains
1. Pipe cost (supply and install)

Cost($) = DL(400 — 12,/D)

where
D = pipe diameter (m)

L= pipe length (m).

2. Pump cost (pump set and building)

Cost($) = PWRI-PWRcost
where
PWRI = installed pump power (kW)

and
log, (PWRcost) = 4.387 — 0.574 log, , (PWRI).

Note: The pump set has an estimated life of 12 years and represents
309 of the total cost defined above.
3. Installed pump capacity (PWRI)

PWRI = PWR(1.3 + 0.7 e PWR/I30)

where
PWR = design pump power (kW).
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4. Design pump horse-power (PWR)

PWR = 9.810H/0.7 (kW)
where
0 = discharge (m?3/s)

H = total pump lift, including friction (m).

Note: The pump set efficiency of 70%; includes both electrical and
mechanical losses.

5. Annual costs

$100 per kW per year
1% of capital cost for pipeline and pump set
(assumed constant).

(a) Pump power
(b) Maintenance

6. Hydraulic performance
The friction loss may be based on the following formulae:
FLY?

' 29D

717 = 2log,, (3.7D/k)

where
hy = head loss (m)
V= mean velocity (m/s)
L = pipe length (ft)
g = 9.81 m/s?
D = pipe diameter (m)
k = roughness height of 0.5 mm.

7. Financing
Assume an economic life of 30 years for the system with a constant
discount rate of 9%,. Salvage value of the pump sets should be taken
as 10%.

The physical arrangement of the system is shown in Figure 12.2 in which the
relevant design variables are shown. System cost is dependent on the physical
system parameters of pipe length L, diameter D, and installed pump-power
PWRI. In addition, there is significant dependence on the pump life (PLIFE), the
discounting rate, the method of determining salvage value, and possibly also
inflation. The mathematical problem may be stated, in terms of physical
arameters only, as follows:

Minimize Z = §(L, Hin, Q, k, hr, PWRI, D) (12.1)

i, PWRI¥, D*
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Figure 12.2 General arrangement of pump—pipeline system
subject to

gl(La hfa Q’ D’ k) =0
g,(PWRL, hg, Hyr, Q) = 0.

Note that, of the seven design variables, the first four are taken to be system
constants, so that only i, PWRI, and D are variable. Furthermore, since there are
two equality constraints, it is possible that by appropriate substitution the
problem may be reduced to an unconstrained problem in a single variable. It
seems reasonable that either diameter D or pump power PWRI should be
selected as the design variable since these are likely to be discrete quantities. Since
the pipeline is a larger capital cost than the pump, the diameter D is chosen as the
design quantity.
The physical design procedure then takes the following form:

(i) Define system values for L, Hy, Q, and k, and a set of diameters D,
G=1,2,::.)

(ii) Select jth element of array of pipe diameters D;.

(iii) Calculate friction coefficient as a function of the relative roughness D /k.

(iv) Calculate headloss h; from Darcy—Weisbach equation.

(v) Obtain total pump-lift = Hyg + hy.

(vi) Calculate design pump power PWR.

(vii) Calculate installed pump power PWRI.

The calculation of the costs involves a number of variables, only some of which
are defined in the initial problem statement. No allowance is made for inflation
and it would be prudent to make some provision for this in order to observe the
sensitivity of the optimal policy to uncertainty in the inflation rate. Further
uncertainty is introduced with respect to the salvage value since the method to be
used is not specified (see Section 9.4). The declining-balance method will be
adopted here.

The overall cash-flow is illustrated in Figure 12.3, in which:

P, = capital cost of pipeline, pump house, and first pump set
P, = capital cost (inflated) of second pump set

P, = capital cost (inflated) of third pump set

S, = salvage value of first pump set

385

Benefits

:'Z:ZLLi

—— |

A %

Costs

Figure 12.3 Cash flow for the Fassbuck Project

S, = salvage value of second pump set

S, = salvage value of third pump set

A, = annual maintenance of pipeline (constant)

A, = initial annual operating cost of pumps (inflating).

1t should be noted that if the expected pump set life and the economic life of the
project are subject to variation (for sensitivity analysis, say), it is possible that
fewer or more than three pump sets may be required. This flexibility should be
built-in to the program.

If the economic life of the project is NL i.e. 30 years and the pump set life is NP
je. 12 years, then the number of pump sets required is given by

NS = INT(NL/NP) + 1 (12.2)
The age of the last pump set at the end of the project is
NX = NL — NP.INT(NL/NP). (12.3)

If the salvage value S is given as some fraction « of the initial cost of the pump set
P (say o = 0.1) then the depreciation rate d is implicitly defined by the relation

S =P(1 — dp"

1/NP
d=1- <%> : (12.4)

Thus, using the values of the example,

0.1P\1/12
d=1- (T) =0.1746 or 17.46%.
Che salvage value of the last pump set is then defined by
S; = Py(1 — ay™*
= P,(1 — 0.1766)°
=0.316P,.

Will be found that after discounting to present value, the salvage value of the
Ump set is rather insignificant compared with the total cost, especially for the
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last pump set. It seems likely that the result would be insensitive to the choice of
depreciation method employed.

A typical algorithm which would form the basis of a computer program may
take the following form, expanded from the physical design procedure mentioned
earlier:

(1) Define system values for pipe length L, static lift Hyy,, discharge Q, and pipe
roughness k.

(2) Define array of commercially available diameters D; (j = 1,2,...).

(3) Define economic parameters: interest rate i; inflation rate r; economic life
NL; pump set life NP; salvage fraction o = S/P.

(4) Calculate number of pump sets required NS and age of last pump set NX,

(5) Calculate depreciation rate d, assuming declining balance method.

(6) Select jth diameter D; (j =1,2,...).

(7) Calculate relative roughness D;/k and hence obtain friction coefficient f.

(8) Find head loss from Darcy-Weisbach equation.

(9) Get total pump lift = Hy, + hy.

(10) Calculate design pump power PWR.

(11) Calculate installed pump power PWRI = PWRfact x PWR.

(12) Calculate capital cost of pipeline C,.

(13) Calculate pipeline maintenance C, = 0.01C,.

(14) Calculate cost of pumphouse and first pump set C,.

(15) Calculate value of first pump set C, = 0.3C;.

(16) Calculate fraction of pump set cost for design power C; = C,/PWRfact.

(17) Calculate salvage value S; = aC, and discount to present value Cq.

(18) Calculate equivalent present value C, of uniform series C,.

(19) Calculate equivalent present value Cg of geometric series for pump
operation (4, = $100 x PWR per year).

(20) Sum (—=C, — C; + C, — C, — Cy).

(21) Allow for second to penultimate pump sets.

(22) For k=2,3,..., (NS — 1), calculate inflated cost of kth pump set C,(k)
where Cy(k) = 0.3 x Cost of pumphouse for design power PWR inflated for
k x NP years and discounted to present value.

(23) Calculate salvage value C, (k) = aCy(k). ,

(24) Repeat steps (22) and (23) for k = 2,3, ..., (NS — 1) and accumulate costs
Cll

Cii=+).Cok) =Y Ciok), k=2,3,...,(NS—1)

(25) For last pump set, calculate inflated cost of NSth pumpset C, , asin step (22)
inflated for (NS — 1) x NP years and discounted to present value.

(26) Calculate salvage value C, ; of last pump set with age NX years and discount
to present value by NL years.

(27) Get total present value

(_C1 - Cs Ex C6 - C7 - Cs) - Cu - ClZ + C13-
(28) Print out diameter D;, PWRI, and total present value.
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29) If j < number of diameters, then increment j = j 4+ 1 and go to step (6).

(30) Stop-
TypiCal results obtained from a program based on the above algorithm are

" shown in Figure 12.4.

DIAMETER (M) POWER (KW) PRESENT VALUE

0.300 4696.64 -7474115.37
0.350 2132.18 -3860833.87
0.400 1099.07 -2356161.56
0.500 422 .45 -1311139.26
0.600 238.60 -1042950.95
0.700 168.89 -987780.08
0.750 150.77 =991953.61 >
0.850 130.08 -1029650.25
1.000 116.87 -1119865.99

Figure 12.4 Typical results for the Fassbuck Project

123 A PARKING-LOT PROBLEM
12.3.1 Background

The following hypothetical study is typical of many real-life instances involving
allocation of a scarce resource (in this case, parking space) to a population of
users with uncertain demand characteristics. The capacity for service is
deliberately over-estimated in order to minimize or eliminate waste of a
perishable resource. In this study, the numbers are reduced to facilitate
presentation.

The following correspondence sets the scene.

UNIVERSITY OF ASHBY-DE-LA-ZOUCH

To:  Rankine Justice, Parking
From: Dr N. A. Wiseman, Vice-President Academic.
Re:  Parking.

I have recently received representations from the local committee
of the Association of University Teachers concerning the fact that
twenty-five parking stickers have been allocated for Parking Lot ‘Q’,
where there are in fact spaces for only twenty cars. It is claimed that
this is an extortionist practice by the University Administration and is
resulting in considerable hardship and inconvenience to the faculty
members concerned.

Please advise me as to the extent of inconvenience which is likely to
result from this arrangement, giving a quantitative estimate of the
number of days when overflow is likely to result.

N. A. Wiseman,
Vice-President Academic.
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UNIVERSITY OF ASHBY-DE-LA-ZOUCH

To:  Dr Hyam Hardup, Chairman, Civil Engineering.
From: Rankine Justice, Parking Superintendent.
Re:  Parking Lot ‘Q".

I enclose a copy of Dr Wiseman’s memorandum on the question of
Parking Lot ‘Q’. It was good of you to agree to undertake this job and,
as discussed, I have made the necessary survey and attach the results
for use in your simulation study.

I understand that you intend to simulate the behaviour of the
twenty-five users for a period of, say, 100 days and from this obtain an
indication of the number of days on which the maximum number of

+ users at any time will exceed 20. It would be useful if your study could
also provide information on the effect of increasing the number of
spaces or decreasing the number of stickers issued.

R. Justice,
Parking Superintendent.

The survey referred to in the memo to Dr Hardupis described in Figure 12.5, in
which the arrival and departure times are noted for the 25 users over a period of 5
days. These times were obtained by giving each car owner a survey slip upon
arrival on which they were asked to note the arrival and departure times and then
return the slip to the parking lot attendant.

12.3.2 Analysis of data

The first point to notice is that of 5 x 25 = 125 possible users, there are only 115
responses. The missing 10, or 89;, may be due to (i) users not bringing a car to
work or (ii) users being unable to find space in Parking Lot ‘Q’.

The second point is that, although the arrival times are scattered, the duration
of parking is roughly inversely proportional to arrival time. This makes sense,
since persons arriving around noon presumably do not wish to be late twice in
one day and, consequently, leave around the normal time. Before embarking on a
more detailed analysis, a simple plot such as Figure 12.6 shows a promising linear
trend.

The following coding serves to analyse the data. The routine CURFIT
(Appendix A) is designed to read data from a designated file with a prescribed
format (2F10.3). Consequently, the raw data are processed by the program of
Figure 12.7(a) to perform the following tasks:

(i) remove the header and number of records,

(i) convert from sexagesimal to decimal format,

(ii1) construct a scratch (i.e. temporary) file with arrival time as the independent
variable (x) and parking duration as the dependent quantity (y),

MBN633
MJJ009
MKLO001
FUDB809
BDS345

. NXX275

MGD354
MJJ009
JIMO01
MGD354
STELCI
FUDS09
MYC033
NBC788
CRR866
NAS077
TOR544
MBN633
MGD354
MGD354
JIMO01
MGD354
MKLO11
MUDI122
FYU290
BDS345
HYU643
NBC788
MNN766
NZE090
DOF00!
NXX275
MGD354
NBC788
MUDI22
MJJ009
RUT622
STELCI
CRR866
MYC033
NBC788
NYRS500
RUT622
MYC033
TORS544
MYC033
TOMO02
STELCI
RUT622
MGD354
TORS44
MNN776
EDS001
TOR544
BDS345

Arrival and Departure Times (Hr/Min) — 25 Cars over 5 Days

O LW 00 \O 00 00 00

12

12
13
13
13
12
12

11

13

1 16 30 M1JJ009
2 15 50 TORS544
52 14 14 MKLO11
52 16 1 BDS345
32 13 31 EDS001
38 13 57 MUDI122
20 13 32 FYU209
3 16 0 STELC1
50 13 57 JIMO01
14 15 8 MBN633
38 13 34 FUD809
45 15 54 NBC788
55 14 18 NXX275
23 15 23 MCY033
26 14 34 MBN633
19 14 10 JIMO01
46 16 22 BDS345
55 15 57 MKLO11
55 13 49 HYUG643
53 16 49 NBN788
12 15 44 NASO077
2 14 41 NASO077
23 15 4 JIMOO1
37 13 57 EDSO001
51 14 38 EDS001
10 13 22 MDG354
51 15 5 MUDI122
6 15 37 STELCI
34 14 1 MYCO033
44 14 52 MKLO11
36 14 52 DPFO001
35 14 19 JIMO01
6 13 43 FUDB809
6 14 S MGD354
6 14 36 NYRS500
45 15 22 EDS001
35 14 20 RUT622
18 16 45 NBC788
26 14 1 MUDI122
47 16 31 STELCI
52 14 38 FYU209
4 17 41 MGD354
55 15 52 DOF001
16 16 51 FUD809
47 16 33 MKLO11
28 15 59 NZE090
50 16 0 MKLO11
47 16 12 FUDB809
42 14 13 HYU643
46 14 20 MJJ009
14 14 49 M1JJ009
0 13 17 TORS544
8 16 4 JIMOO1
33 13 31 NASO077
50 14 25 FUDB809
MJJ009
MKLO11

Figure 12.5 Survey data for Parking lot “Q”
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Figure 12.6 Departure time vs. Arrival time

(iv) read the arrival time and construct a histogram of arrival frequencies in half-
hour increments, :

(v) process the data on the scratch file by means of routine CURFIT to estimate
the linear correlation between parking duration and arrival time, and also to
obtain the standard error of estimate of the dependent variable.

Using the data of Figure 12.5, the results of this analysis are as follows. The
correlation between parking duration DUR and arrival time TA is given by

DUR = 10.178 — 0.553TA h. (12.5)
Obviously, this could be transferred into an equation for departure time TD, i.e.
TD = 10.178 + 0.447TA h. (12.6)

Equation (12.6) is shown relative to the raw data in Figure 12.6.

The standard error of estimate of DUR on TA is found to be 0.456 hour.
Finally, the distribution of arrival times is found to be as shown in the following
groupings:

Time Arrivals Time Arrivals Time Arrivals
7.5-8.0 11 10.5-11.0 2 13.5-16.0 11
8.0-8.5 10 11.0-11.5 4 16.0-16.5 3
8.5-9.0 17 11.5-12.0 2 16.5-15.0 0
9.0-9.5 12 12.0-12.5 1 15.0-15.5 1
9.5-10.0 10 12.5-13.0 10 15.5-16.0 2

10.0-10.5 6 13.0-13.5 13
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PROGRAM PRKANAL
C CREATE ARRAY TO STORE NO. OF ARRIVALS IN EACH
c HALF-HOUR INTERVAL.
DIMENSION FREQ(48)
NDAT=1
NSCR=2
REWIND NDAT
REWIND NSCR
C DEFINE NO OF DATA- RECORDS
N=12
C READ INPUT DATA AND TRANSFORM TO REQUIRED FORMAT ON
[od SCRATCH TAPE FOR USE BY ROUTINE CURFIT.
DO 50 J=1,N .
READ(NDAT,60)ITAHR, ITAMN, ITDHR, ITDMN
60  FORMAT(10X,16,I4,16,I4)
TA=FLOAT(ITAHR) + FLOAT(ITAMN)/60.0
TD=FLOAT(ITDHR) + FLOAT(ITDMN)/60.0
DUR=TD-TA
WRITE(NSCR,65)TA, DUR
65 FORMAT (2F10.3)
c COUNT NO OF ARRIVALS IN TIME INTERVAL
K=IFIX(2.0%TA) + 1
FREQ(K)=FREQ(K) + 1.0
50 CONTINUE
C REWIND SCRATCH FILE TO BE READ BY ROUTINE CURFIT

REWIND NSCR

TYPE=3HLIN

CALL CURFIT(NSCR,N,TYPE,A,B,R2,STERR)

WRITE(6,100)A

WRITE(6,101)B

WRITE(6,102)R2

WRITE (6, 103)STERR
100 FORMAT(//,20H Y-INTERCEPT = ,F10.3)
101 FORMAT(  20H GRADIENT Y/X = ,F10.3)
102 FORMAT( 20H CORLN. COEFFT. = ,F10.3)
103 FORMAT( 20H ST.ERR. OF EST. = ,F10.3)

C OUTPUT DISTRIBUTION OF ARRIVALS
DO 70 J=1,48
T1=0.5¥FLOAT (J-1)
T2=T1 + 0.5
WRITE(6,75)T1,T2,FREQ(J)

75 FORMAT(3F10.1)

70 CONTINUE
STOP
END

Figure 12.7 (a) FORTRAN code to analyse the raw data

12.3. Simulation

Whether or not a five-day survey is typical of the behaviour of the users over a
longer time period is open to question. However, within these limitations, the
results of the analysis provide a basis for generating synthetic data with the same

~ Statistical properties, thus allowing the time period of study to be extended

indefinitely.
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PROGRAM PRKSIM
THIS PROGRAM SIMULATES THE ARRIVAL AND DEPARTURE
OF PARKING LOT USERS OVER A PERIOD OF MANY DAYS.
THE AVAILABLE NO. OF SPACES IS 20 AND THE NO. OF
USERS MAY BE SPECIFIED BY THE USER (21 TO 25)
THE DISTRIBUTION OF ARRIVAL TIMES AND THE CORR-
ELATION OF DURATION AND ARRIVAL IS BUILT IN TO
THE PROGRAM.
USES ROUTINES GAUSS, DISTN1 AND DISTN2

DIMENSION TIME(18),ARRVLS(18),WK(18)
DIMENSION CDF(51),TA(25),TD(25),TAD(50)
DIMENSION ITAG(50),NCRS(300)

DEFINE ARRIVALS IN HALF-HOUR INTERVALS FROM T7.30
DATA ARRVLS/11.,10.,17.,12.,10., 6., 2., 4.,
+ 10.,13.,11., 3., 0., 1., 2., 0./

SPECIF Y CORRELATION COEFFICIENTS FOR PARKING
DURATION AS A FUNCTION OF ARRIVAL TIME
A=10.178
B=-0.553
STERR=0. 46
DISPLAY " SUPPLY NO. OF USERS"
ACCEPT NUSERS
DISPLAY " SUPPLY NO. OF DAYS FOR SIMULATION"
ACCEPT NDAYS
NCOMPS=0
MAXCOM=0
DEFINE TIME INTERVALS
DO 10 J=1,18
TIME(J)=7.0 + 0.5%FLOAT(J)
10 CONTINUE
INITIALIZE RANDOM VARIABLES

DISPLAY " SUPPLY SEED INTEGER FOR RANDOM NUMBER"

ACCEPT IY
SET UP CUMULATIVE DISTRIBUTION FUNCTION
CALL DISTN1(TIME,ARRVLS,18,WK,CDF,51)
START LOOP FOR NDAYS OF SIMULATION
DO 20 IDAY=1,NDAYS
START LOOP FOR NO. OF USERS
DO 30 IUSER=1,NUSERS

TEST IF USER IS A NON-STARTER (I.E. .LE.8 PERCENT)

CALL URAND(IY,P)
IF(P.GT.0.08) GOTO 40

ASSIGN ARBITRARY ARRIVAL AND DEPARTURE TIMES
TA(IUSER)=23.999
TD(IUSER)=24.0
GOTO 30

40 CONTINUE
GENERATE ARRIVAL TIMES FROM CDF.
CALL URAND(IY,P)
CALL DISTN2(CDF,51,P,TA(IUSER))

GET EXPECTED VALUE OF PARKING DURATION.
DUR=A + B*TA(IUSER)

ADD NORMALLY DITRIBUTED RANDOM COMPONENT
CALL GAUSS(IY,STERR,DUR,RANDUR)
TD(IUSER)=TA(IUSER) + RANDUR

30 CONTINUE
COMBINE ARRIVAL AND DEPARTURE TIMES IN ONE ARRAY

2.,

Figure 12.7

C FOR PROCESSING WITH ROUTINE TGSORT
DO 50 J=1,NUSERS
TAD(J)=TA(J)
TAD(J+NUSERS)=TD(J)
50 CONTINUE
NUSER2=2*NUSERS
CALL TGSORT (TAD, ITAG,NUSER2,-1)
NCARS=0
MAXCAR=0
C COUNT NO. OF CARS AND STORE MAXIMUM
DO 60 J=1,NUSER2
IF(ITAG(J).LE.NUSERS) NCARS=NCARS+1
IF(ITAG(J).GT.NUSERS) NCARS=NCARS-1
IF (NCARS. GT.MAXCAR) MAXCAR=NCARS
60 CONTINUE
NCRS (IDA Y)=MAXCAR
C GET NO. OF USERS TURNED AWAY AND NOTE MAXIMUM
ICOMPS=MAXCAR-20
IF (ICOMPS.LT.0) ICOMPS=0
NCOMPS=NCOMPS + ICOMPS
IF(MAXCOM.LT.ICOMPS) MAXCOM=ICOMPS
20 CONTINUE
C
C OUTPUT RESULTS
DISPLAY " SIMULATION FOR",NDAYS," DA YS"
DISPLAY " WITH ",NUSERS," PERMITS ISSUED"
DISPLAY " DAILY USERS"
WRITE(6,100) (NCRS(K),K=1,NDAYS)
100 FORMAT (4X, 1014)
DISPLAY " TOTAL NO. OF COMPLAINTS=",NCOMPS
DISPLAY " MAX. COMPLAINTS IN 1 DAY=" 6MAXCOM
STOP
END

(b) FORTRAN code to simulate use of Parking Lot ‘Q’

393

The aim of the simulation program will be to generate arrival and departure

times for a population of 25 potential users on each of, say, 100 days and from this
to estimate the number of days on which users are turned away. In addition, it will
be useful to define some measure of inconvenience to estimate the sensitivity of
this parameter to a reduction in the number of users allocated to that area.

The principal steps in the program are as follows:

(1)

Figure 12.7(b) shows typical FORTRAN coding to carry out this simulation.

Set up arrays to receive the generated arrival and departure times and also
auxiliary arrays to define the experimentally determined distributions of
arrival times for use in routine TGSORT.

(i) Define the histogram information by means of a data statement. Note that

routine DISTN1 requires array sizes one more than the number of intervals.
Since the time intervals are uniformly distributed, these values can be more
easily generated by a DO-loop.

(iii) Define the correlation parameters for ease of changing (in the event that

further data are obtained) and initialize the seed value for the random
number generator.
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(iv) Setup two loops, one to define a specified number of days for simulation and
an inner loop to define the number of users.

(v) The core of the simulation involves five steps:

(1) Generate arandom number P(0.0 < P < 1.0) to test if the user is a ‘non-
starter’, i.e. if P < 0.08, set arbitrary values for TA( ), TD( ) = 23.99 and
24.

(2) Generate a second random number P(0.0 < P < 1.0) for use in routine
DISTN2, which generates a synthetic arrival time consistent with the
observed distribution.

(3) Obtain the expected duration of parking as a deterministic function of
the arrival time.

(4) Generate a normally distributed duration of parking, using the expected
value and the standard deviation found from the sample.

(5) Obtain the departure time.

(vi) For each simulated day, the total number of users requiring a parking space
can be determined in various ways. The method employed here is to use
routine TGSORT to generate an integer array containing subscripts of the
arrival and departure times in ascending order. A simple scan of this integer
array allows the maximum number of potential users to be determined. A
more sensitive measure is the total ‘user-days’ of inconvenience which is
summed over the entire 100-day period of simulation.

12.3.4 Results

Figure 12.8 shows typical results from one simulation of 100 days. Thus, the
probability of not finding a space is given approximately by

P(no space) = 31/(0.92 x 2500) = 1.35%.
SUPPLY NO. OF USERS ? 25

SUPPLY NO. OF DAYS FOR SIMULATION ? 100
SUPPLY SEED FOR RANDOM NUMBER ? 987654321

SIMULATION FOR 100 DAYS

WITH 25 PERMITS ISSUED

DAILY USERS
19 21 20 21 17 22 19 17 16 19
18 19 20 19 16 15 17 20 21 19
16 19 18 17 18 18 18 18 15 19
20 22 18 19 22 20 21 19 17 18
19 21 20 20 19 21 18 16 19 19
19 17 20 18 20 18 18 21 18 20
19 17 22 19 16 20 21 20 21 23
22 20 16 21 22 20 20 17 20 20
20 18 18 21 19 22 18 20 20 18
22 21 19 17 16 19 18 19 16 16

TOTAL NO. OF COMPLAINTS= 31

MAX. COMPLAINTS IN 1 DAY= 3

Figure 12.8 Typical results of Parking Lot simulation
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This preliminary analysis may be extended to refine the model and to study the
sensitivity of the results to changes in certain system parameters.

Clearly, the study is only as reliable as the data on which it is based. However,
pefore any sensitivity analysis can be attempted with respect to the system

arameters (e.g. the correlation coefficients, standard error of estimate, and the
distribution), it is desirable to test the reliability of the results subject to changes
in the initial seed value and the length of simulation.

With some minor changes in the coding, it is possible to run the simulation for
a much longer period (say, 1000 days) and to print out at regular intervals
updated statistics concerning the probability of being turned away. By observing
the way in which these statistics stabilize around a long-term average, some feel
may be obtained for the appropriate length of simulation period.

Sensitivity to the initial seed value should reduce with increase in the
simulation period but much may depend on the random number generator and
the machine word size.

A further refinement might be introduced by varying dynamically the
percentage of ‘no-shows’. For example, the initial estimate of 8%, may include the
percentage of users turned away. Some care is required, however, since a finite
percentage of rejects will reduce the proportion of ‘no-shows’, which, in turn, will
tend to increase the number of rejects. Thus, for a system in which this percentage
is significant, the variation of the percentage could lead to a form of instability.

124 DESIGN OF AN INSULATED PRESSURE VESSEL
12.4.1 Preamble

The background to this problem is presented in the following two memoranda.

To:  Dr Knightly-Chivers.
From: I. C. Hands, Llaregyb Sub-Office.
Re:  New Pressure Vessel Design.

You will no doubt have heard of our innovative scheme to provide
heated comfort stations for our Arctic workers. I am concerned that
the preliminary estimate for the capital and operating cost of the hot
water pressure vessel is much higher than anticipated. The vessel must
be of cylindrical shape with hemispherical ends and is required to
hold 15 cubic metres at a working pressure of 1500 kPa.

We are proposing to provide outside thermal insulation to reduce
heat loss and thus operating cost. Could you arrange for one of your
design team to prepare a preliminary design for minimum cost. I
believe you have on file the necessary cost data, etc.
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To:  Newly Startit, Design Office.
From: Dr Knightly-Chivers.

Please find a copy of correspondence regarding the hot water
pressure vessel for the Baffin Island group. Also noted below are
relevant cost and design data. Please let me have a reply drafted for
my signature within two weeks. Failure to meet this deadline may
result in your having to complete the design in person at the
Pangirtung office.

Steel working stress 75 N/mm?
(use constant plate thickness based
on cylindrical hoop tension only)

Cost of steel plate (cylindrical) $0.03/cm?

Cost of steel plate (spherical) $0.06/cm?

Full penetration weld of hemispherical ~ $70.00/m

ends

Insulation $22.00/m?/cm thick

Losses (assumed to be inversely
proportional to thickness)

$28.00/m?/yr for
1cm of insulation

Discount operating cost at 8.5%, over
20 years.

12.4.2 The Mathematical model

The general arrangement of the pressure vessel, together with the relevant
variables, is shown in Figure 12.9. The system parameters for the problem are as
follows:

Figure 12.9 General arrangement of pressure vessel

Required volume V =15m?
Required pressure p = 1500 kPa
Working stress (hoop tension) f= 75 mPa.
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The design variables to be determined are as follows:

Diameter D (m)
Length L(m)
Steel thickness t (mm)

Insulation thickness T (mm).

The objective function is a combination of the capital cost for fabricating the
vessel and the operating cost arising from the heat loss. Thus:

Total cost z=C1 (cost of steel in cylinder)
+C2 (cost of steel in hemispheres)
+C3 (cost of welding)
+C4 (cost of insulation)
+C5 (present value of annual heat losses).

The surface area and contained volume of the cylindrical and hemispherical
parts of the vessel can be expressed as simple functions of the diameter D and
length L. Thus:

Area of cylinder =nDL

Area of sphere = nD?

Volume of cylinder = g DL

Volume of sphere = g D3,

The mathematical model may now be stated:

Minimize z = ¢(D, L, t, T) (12.7)

subject to
9,0, D, t) =f (12.8)
g,(D, L) =V. (12.9)

Equations (12.8) and (12.9) represent the working stress and required volume
constraints respectively.

Since the insulation thickness T'does not appear in the equality constraints,
and since the costs for insulation (C4) and discounted losses (C5) can be
expressed per unit surface area, the value of T may be obtained by sub-
optimization (i.e. without reference to the other variables D, L, and ¢t).

With reference to the cost figures in the memo,

C(T) = C4 + C5 =22.00T + @g(&s%, 20) (12.10)
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where

P 108520 — 1
7 (837 20) = 5585 % T.0857°

= 9.4633 (see Section 9.2.5)

264.97
. C(T)=22T+ T (12.11)

For C(T) = minimum set dC(T)/dT= 0, i.e.

264.97
2-"5=0 (12.12)
. T* =347 cm.

Assuming that insulation can be installed in multiples of 1cm, a simple
comparison between 3 cm and 4 cm by means of (12.11) yields

C(3 cm) = $154.32/m>
C(4 cm) = $154.24/m>.

A value of T= 4 cm will be used, not simply because of the saving of 8 cents, but
because future fuel costs (and, thus, costs due to heat loss) are likely to increase,
which will move the optimum value of T towards the larger value.

12.4.3 Treatment of constraints

With the sub-optimization of T, the problem reduces to one of minimization of a
function of three variables subject to two equality constraints. It would be
possible to use Lagrangian multipliers (Section 2.5) to solve this problem, but it is
always worth examining the constraints to see if they are of sufficiently simple
form to allow direct substitution for one of the design variables in the objective
function.

The stress constraint (12.8) may be written as

2ft = pD
or

6 t _ 3
2 x 75 x10 x-——1000_1500><10 x D
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Since L appears in only one term, it is relatively simple to substitute for L in
terms of the required volume Vand the single remaining variable D. Thus:

15— (n/6)D® 60 2
=W=W‘§D' (12.15)

12.44 The unconstrained model

Substituting (12.11) and (12.15) in the objective function and evaluating the
various terms C1 to C5 results in the following unconstrained model:

where

Minimize z = C1 + C2 + C3 + C4 + C5 (12.16)
D*

C1 = $0.03 x 10*® x nDLt

= 3001:1)2<7%f _ % D>
— 1800 — 2007D*

C2 = $0.06 x 10® x nD?*t
— 6007D*

C3 = $70.002xD + L)

60 2
= 70( 2nD _=
<7r +7ID7 3D>

140 4200
— D -

C4 + C5 = $154.24(nDL+ nD?)

60
= 154.247:D<7W — %D + D)
60 =
=154.24{ — + Z D2 .
15 24<D +3D>

It will be noted that one longitudinal weld and two circumferential welds are

where ¢t is in mm and D is in m. That is,
t (mm) = 10D (m).

Obviously, direct substitution is possible.

The volume constraint (12.9) may also be reduced. Thus:

T 2 Ty 3
4DL+6D—V—15m.

included in the calculation of C3. However, in the estimation of C4 and C5, the
area has been calculated in terms of the internal dimensions D and L, with no
allowance for the thicknesses t and T.

(12.13) The optimum value of D can now be obtained by setting dz/dD = 0, i..

dz 5 3 140 8400

= 6007D* + 1800nD* + 1407 — g (2.17)
(12.14) 60 2nD

— 15424 Dzt 154.24 =3
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By trial and error, the optimum diameter D* is found and the corresponding
values of ¥ and t* are obtained by substitution. Thus

D*= 1277Tm
[* =10.860 m
t* = 12.77 mm
T* = 40 mm.

The total cost for the optimal design is made up as follows:

Cost of steel (cylinder) $16 691.56
Cost of steel (hemisphere) $3925.31

Cost of welding $1321.88
Cost of insulation $4284.97
Discounted losses $3225.56
Total $29 449.28.

This design is not practically feasible, since steel plate is available only in
discrete thicknesses. If the value of plate thickness ¢ is rounded up to 13 mm, some
advantage may be taken of the increased hoop tension strength to increase the
diameter and thus reduce the surface area of the vessel.

From (12.13), if t = 13 mm, the maximum diameter is 1.3 m. Then by the
volume constraint of (12.15), the length L is 10.434 m. The modified design is then

D=13m

L =10.434m
t =13 mm
T= 40 mm

and the total cost is increased to $29 454.11. This last calculation suggests an
alternative approach to the problem. Since T is obtained by sub-optimization
and the two equality constraints are relatively simple, it would be possible to
develop an algorithm in which the plate thickness ¢ (mm) is the only independent
variable. From ¢, the value of D is found by (12.13) and, hence, L from (12.15). All
quantities and costs are then calculable.

125 A NEW WATER SUPPLY
12.5.1 Background

The problem described in this section is somewhat similar to the Thirstville ‘case-
study’ of Section 1.4. The supply is assumed to be by gravity main, but the
problem is complicated by the irregular demand pattern and a more detailed
design of the balancing tank. The scene is set by the following memorandum,
together with the typical cross-section of Figure 12.10.
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To:  Dr S. T. Mater, Civil Engineering New Works.
From: Ms Chris Talgazing, Planning Department.
Re: New Water Supply.

I have now received from the Process Planning Section an estimate of
the water supply which will be required by the new plant. The demand,
averaged over four-hour intervals, is given for a one-week cycle in the
attached table, from which you will note that considerable fluctuation
in demand is to be expected.

The local authority has assured me that the town supply main can
provide in excess of 0.1 m®/s and I understand that the main passes
within 3.2 kilometres of the demand point. The pressure elevation at the
take-off point on the town main should be about 30 m above ground
elevation at the plant.

I should like you to examine the costs of providing a water supply,
including, if necessary, a reinforced concrete balancing tank. A typical
cross-section of a similar reservoir is shown in the accompanying
sketch; the same criteria for earth cover, ground slope, freeboard, etc.,
should be used in your estimate. I should point out, however, that the
only ground available for such a tank is a long, level strip only

25 m wide.

I realize that there may be further information necessary before your
study can be completed, and that estimates of construction costs are
approximate. However, I hope your report will help to identify and
define the main factors to be considered and show whether or not a
balancing tank is justified.

Expected Water Demand
(flows in cubic metres per second, averaged over four-hour periods)

Time 12-4 4-8 8-12 12-4 4-8 8-12
a.m. a.m. noon p.m. pm.  midnight
Sun. 0.012 0.020 0.037 0.031 0.020 0.017
Mon. 0.012 0.034 0.083 0.068 0.057 0.034
Tues. 0.023 0.040 0.068 0.062 0.045 0.028
Wed. 0.021 0.045 0.051 0.034 0.034 0.016
Thurs. 0.023 0.014 0.034 0.048 0.054 0.040
Fri. 0.021 0.014 0.034 0.048 0.054 0.040
Sat. 0.018 0.026 0.040 0.060 0.045 0.026

12.5.2 Problem formulation

The first step is to prepare a sketch of the system showing the relevant
Components, system parameters, and design variables. Figure 12.11 shows such a

diagram, and the following system parameters and design variables are identified:
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0.6m earth cover
Slab thickness 0.3 m
0.3m freeboard

Original
= ground

Average base thickness 0.23m

Figure 12.10 Typical section of in-ground tank

i v Qout
e o )
| a8 fa

Figure 12.11 Diagrammatic sketch of the system (New Water Supply Problem —
Section 12.5)

System parameters:

Pipeline length L (m) 3200 m

Available pressure head hy¢ (m) 30 m

Available ground width W(m) 25 m

Outflow (demand) Qout (m3/s) (see table)

Embankment slope M 2:1

Reinforced concrete bending modulus g (N/mm)? 0.4 N/mm?
Design variables: bd

Inflow (supply) Qin (m?/s)

Pipe diameter D (m)

Inside tank breadth B (m)

Inside tank length XL (m)

Water depth H (m)

Depth in ground G (m)

Concrete wall thickness d (m)

Tank volume V(m?3)

The objective function which is to be minimized comprises only capital
expenditures. No continuing costs are included.

Objective function z= C1 (Excavation)

+C2 (Embankment)
+C3 (Import fill/export surplus)

(12.18)
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+C4 (Reinforced concrete)
+C5 (Formwork — outside, inside, and roof slab)
+C6 (Pipeline).

The following costs are assumed for the purpose of the analysis.

Excavation $5.00/m? (12.19)
Form embankment $2.00/m?
Import fill or dispose of surplus $2.50/m?
Outside formwork $12.00/m?
Inside vertical formwork $18.00/m?
Suspended slab formwork $25.00/m?
Reinforced concrete $100.00/m?
Pipeline C6 = LD(390 — 11.5./D).

12.5.3 Identifying constraints

The eight design variables defined in Section 12.5.2 are not independent and the
next step is to determine the interactions which exist between these variables and
to define the relevant constraints.

Pipeline capacity

The inflow Q;, and pipe diameter D must be related to the available piezometric
gradient, which in turn is defined by the pressure head h; and the length L. A
decision is needed as to the flow resistance law and the relevant friction loss
parameters. The Strickler equation will be used here with an equivalent
roughness height of k = 0.3 mm. (This is another system parameter, omitted from
the list of Section 12.5.2.) Thus,

8.41 D\ (h\1/2
Qin=—km—g§D2<Z> <f‘> . (12.20)

Balancing tank volume

Within certain limits, the required storage volume V will be dependent on the
value of the inflow Q;, and the specified demand pattern Q,, (Figure 12.12).

V(m?)

j Qin (r /s)

>

0.038 0.083

Figure 12.12 Storage volume as a function of inflow
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Inspection of the table of Q. values shows that if Q;, > 0.083 m?/s, there will be
no need for a balancing tank. This, however, might require a large and expensive
pipeline. At the other extreme, the value of Q,, must not be less than the average
demand. This is given by

1 42

Z (Qout)i == 0038 m3/S,

(Qout)ave = E =

When Q;, = 0.038 m?/s, the balancing storage required will be a maximum. For
intermediate values of Q;, (i.e. 0.038 < Q;, < 0.083), some form of ¢alculation or
interpolation will be required.

Tank dimensions

The design variables include all three internal dimensions for the storage tank, as
well as the required volume. Obviously, there is a simple relation between these
quantities, i.e.

Bx XLxH=YV (12.21)

Wall thickness

For this example, it will be assumed that the reinforced concrete wall of the tank
will experience the greatest bending moment when the tank is hydraulically
tested before backfilling on the outside and before completion of the roof slab.
Figure 12.13 shows this condition. The thickness of the wall will be based on the

Figure 12.13 Hydrostatic loading of an unpropped cantilever

value of the bending moment on a simple, unsupported cantilever subject to
hydrostatic loading. The analysis is more complex than this, but the assumption
is probably adequate for the purpose of proportioning the tank.

For a fluid specific weight of y = 9810 N/m? and depth H, the pressure at the
base is p = yH. The total force is given by

P = Hp/2 = yH?*)2 (12.22)
Thus,

BM = PH/3 = yH?/6. (12.23)

(
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The wall thickness can now be determined by the relation

BM = RM = Kbd? (12.24)

in which the flexural strength factor K is given a low valug of 0:4 N/mm? in o'rder
to reduce the risk of the concrete cracking on the wet, tension S}de. The'quaptlty b
in (12.24) represents the breadth of the reinforced concrete section, but in this case
the wall may be designed for a unit width of 1 m so that b = 1.

Width constraint

If a balancing tank is to be constructed, the total width between the' toes of the
embankment on each side must be less than 25 m. Clearly, this distance will
depend on the tank dimensions H and B, the wall thickness d, and the depth G to
which the tank is sunk in the ground. Figure 12.14 shows the geometry of the

cross-section.

g '}1_ 0.23m

Figure 12.14 Relation between total width W and other variables

The embankment height is given by
X=H+143-G (12.5)

in which the number 1.43 is the sum of the fixed qﬁantities shown in Figure 12.10.
The total width Wis then found as

W= B+ 2d + 2mX (12.26)
and the necessary constraint takes the form
w—25.0<0.0. (12.27)

12.5.4 Solving the mathematical model

From the preceding sections, the mathematical model may be set up.

(refer 12.18)

Minimize z =Cl1+C2+...+C6

Q*, D* B* XL* H* G*,d* V*
subject to

91(Qin, D) =0 (refer 12.20)
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gz(Qin, Qout, V) = 0

g5(B,XL,H,V)=0 (refer 12.21)
g,d, H =0 (refer 12.22-24)
(w—-25<0. (refer 12.25-27)

This is a non-linear problem involving eight design variables, four equality
constraints, and one inequality constraint. The problem can be greatly simplified
if a sub-set of the design variables is chosen so as to allow the equality constraints
to be substituted in the objective function, thus reducing the complexity of the
model.

If the selected independent design variables are diameter D, tank breadth B,
depth H, and in-ground depth G, the equality constraints can all be incorporated
into the objective function as follows:

1. Calculate Q;, = ¢(D) by (12.20).

2. Find required storage volume V= ¢(Q;,).

3. Obtain inside tank length XL = @(V, B, H) (12.21).
4. Calculate wall thickness d = ¢(H) (12.22-24).

The reduced model now takes the following form:

Minimize z = (C1 + C2 +... +C6) (12.28)
D* B*, H*,G*
subject to

W—-250<0.

This model can be further reduced to an unconstrained model by
incorporating a penalty term to ensure that the inequality constraint is satisfied,
ie.

Minimize z' = (C1 + C2 +...+ C6) + FAC(W — 25)6 (12.29)

where 6 =1if W—25>0and 6 =0if W—25<0.

The multiplier FACin (12.29) should be large enough to ensure that the penalty
term is significant in comparison with the real objective function z. Equation
(12.29) may now be optimized by a non-linear algorithm such as the Hooke and
Jeeves pattern search (i.e. subroutine HIMIN).

12.5.5 Calculating balancing storage

As discussed in Section 12.5.3, a method is required to compute the necessary
balancing storage as a function of the inflow Q,,. A suitable subroutine BALNCE
is illustrated in Figure 12.15 which should be self-explanatory.

It would be possible to include a call of this routine within the cost routine used
by HIMIN, but this would be rather inefficient. A better arrangement would be to
include in the driving program a series of calculations which would determine
corresponding values of inflow Q;, and storage volume ¥, which could then be

407

SUBROUTINE BALNCE (QOUT,NQOUT,QIN,VOLUME)
R REE R RN RN RN RN RN RN R RN RN RN RN RRRRNRR

C
¢ THE ROUTINE OPERATES ON AN ARRAY OF REQUIRED OUTFLOWS
¢ TO DETERMINE THE NECESSARY BALANCING STORAGE VOLUME WHICH
C IS REQUIRED IF THE SPECIFIED INFLOW VOLUME IS SUPPLIED.
¢ IF THE INFLOW IS LESS THAN THE AVERAGE DEMAND A VERY
¢ LARGE VOLUME (E.G. 10.0E20) IS RETURNED.
c QOUT = ARRAY OF SIZE (NQOUT) CONTAINING THE REQUIRED
c TIME SERIES OF OUTFLOWS.
C NQOUT = NO. OF OUTFLOWS.
C QIN = SPECIFIED AVAILABLE INFLOW.
C VOLUME = COMPUTED BALANCING STORAGE VOLUME REQUIRED.
C THE UNITS USED MUST BE CONSISTENT THROUGHOUT. THUS
C THE VOLUME IS DEFINED IN TERMS OF THE TIME INCREMENT
C USED TO DEFINE THE OUTFLOW TIME SERIES.
C O RRBRERERRERERFRRRRII RN RR RN RN RN RN RN RN R RN RRRNRRRRRRRY
DIMENSION QOUT (NQOUT)
SUMQ=0.0
VOL=0.0
VMIN=0.0

DO 10 I=1,NQOUT
DV=QIN-QOUT(I)
SUMQ=SUMQ + QOUT(I)

C TEST IF TANK IS FULL AND OUTFLOW .LE. INFLOW
IF(DV.GE.0.0.AND,VOL.GE.0.0) GOTO 10
VOL=VOL + DV
IF(VOL.GT.0.0) VOL=0.0
IF(VOL.LT.WIN) WMIN=VOL

10 CONTINUE
VOLUME=-VMIN
C CHECK THAT AVERAGE DEMAND IS AVAILABLE AT LEAST.
QAVE =SUMQ/FLOAT (NQOUT)
IF(QIN.LT.QAVE) VOLUME=10.0E20
RETURN
END

Figure 12.15 FORTRAN subroutine BALNCE

transferred to the cost routine for interpolation in much the same fashion as
illustrated in Figure 12.12. Two points are worth noting:

(1) If the inflow Qj, is less than the average demand, the routine BALNCE
automatically sets the required volume to an arbitrarily high value. This is
equivalent to adding a penalty term if the constraint Q;, > 0.038 is violated.

(2) In calculating the cost of the balancing tank, a check should be made that the
required volume is finite. If Q;, > 0.083 m*/s, then ¥=0.0 and all the
calculations associated with the tank can be skipped.

12.5.6 Typical solution

A typical solution using routine HIMIN is presented in this section. As described
in Section 5.7.1, the method requires a main driving program and an objective
function subroutine and must be executed in conjunction with the routine
HJIMIN as listed in Appendix A. The two subprograms will be discussed
separately.
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The dimension statements define the various arrays required. Two of these
hold the values of the design variables and the corresponding incremental values
to be used in the local search procedure of HIMIN. These appear in the calling
statement. The other arrays are needed to store the outflow time history and the
computed values of Q;, and V used to define the curve of Figure 12.12. Other
design variables, system parameters, design quantities, and rates are transferred
between the main program and the cost subroutine by means of labelled
COMMON blocks. Those variables which constitute input to the routine COST
are initialized either by a DATA statement, by simple assignments, by input from
the keyboard, or by calculation. The inflow—storage function is defined by a set of
11 coordinate pairs which are evaluated in a DO-loop. Note that the minimum
inflow is set slightly below the average demand to ensure that an arbitrarily high
storage quantity is assigned, thus serving as a penalty term.

After the call of HIMIN, the optimal values of the design variables, together
with other relevant information, are output. Some of the output is conditional on
the balancing tank being of finite size. It is convenient to introduce a loop in the
main program to allow alternative starting values to be defined. This helps to
confirm the existence of a global minimum.

The objective function subroutine COST contains identical COMMON
blocks and relevant dimension statements, as in the main program. It is
convenient (and marginally more efficient), to re-assign the design variables as
simple variables, rather than elements of an array. The first step is to calculate the
pipeline cost and calculate by interpolation the storage volume required for the
pipeline capacity. If no storage is required, the objective function calculation ends
here. However, for finite storage volumes, the design of the tank makes up the
bulk of the coding. The details of the design and the calculation of quantities
should be fairly obvious from the coding and comment statements.

When the total real cost is calculated, penalty terms are added which
correspond to the remaining constraints on the solution. The principal one is the
available width of ground, but other (perhaps superfluous) non-riegativity
constraints have been added to keep the tank dimensions positive. It is easy to
overlook the fact that the extrapolation step of the algorithm might produce a
negative value of a variable which in turn generates a ‘negative cost’.

The solution given by the program of Figure 12.16 is summarized in the output
shown in Figure 12.17.

12.5.7 Allowance for discrete variables

The solution developed in the previous section may be impractical since the pipe
diameter is assumed to be a continuous variable. A more realistic solution would
be to remove the diameter from the array of design variables and introduce a loop
in the main program to allow a series of discrete, commercially available pipe
sizes to be defined. For this diameter, the inflow capacity and thus the storage
volume would be fixed and transferred through COMMON block to the
subroutine. The program of Figure 12.16 could be forced to operate in this way by
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PROGRAM TANKEX
DIMENSION VAR (4),DVAR(4)
C SEE ROUTINE COST FOR DEFINITION OF DESIGN VARIABLES
DIMENSION QOUT (42),QAR(11),VOLAR(11)
C THESE ARRAYS USED TO DEFINE DEMAND AND INFLOW/STORAGE
C RELATIONSHIP
COMMON /DESIGN/QAR,VOLAR,L,HF,K,M,XL,VOL,W,D, EMBHT,
+ QIN
COMMON /RATES/CEXC,CEMB,CDIF,CCONC,CFORMO,CFORMI, CFORMS
REAL K,L,M
EXTERNAL COST
C DEFINE DEMAND TIME HISTORY
DATA QUT/0.012,0.020,0.037,0.031,0.020,0.017,
.012,0,034,0.083,0.068,0.057,0.034,
.023,0,040,0.068,0.062,0,045,0.028,
.021,0,045,0,051,0.034,0,031,0.,016,
.023,0,040,0.062,0.071,0.051,0.034,
.021,0.014,0,034,0.048,0.054,0,040,
+ .018,0.026,0.040,0.060,0.045,0.026/
C RESTART WITH NEW INITIAL VALUES
1 CONTINUE
C DEFINE INITIAL VALUES FOR DESIGN VARIABLES AND INCREMENTS
DISPLAY "SUPPLY INITIAL VALUES FOR B, H, G, DIA"
ACCEPT VAR(1),VAR(2),VAR(3),VAR(Y4)
IF(VAR(1).LE.0.0) STOP
DO 5 J=1,4
5 DVAR(J)=VAR(J)/25.0
C DEFINE SYSTEM PARAMETERS
L=3200.0
HF=30.0
K=0,0003
M=2.0
C DEFINE COST RATES
CEXC=5.00
CEMB=2.00
CDIF=2.50
CCONC=100.0
CFORMO=12.00
CFORMI=18.00
CFORMS=25.00
C GET AVERAGE AND MAXIMUM DEMAND FLOWS.
QAVE=0.0
QMAX=0.0
DO 10 J=1,42 .
QAVE=QAVE + QOUT(J)
IF (QOUT (J).GT.QMAX) QMAX=QOUT(J)
10 CONTINUE
QAVE=QAVE/42.0
COMPUTE POINTS ON INFLOW/STORAGE CURVE
SET MIN. FLOW JUST BELOW QAVE TO ENSURE PENALTY
QMIN=QAVE-0. 001
DO 20 J=1,11
QIN=QMIN + (QMAX-QMIN)#*FLOAT(J-1)/10.0
CALL BALNCE (QOUT, 42,QIN,VOL)
QAR(J)=QIN
VOLAR (J )=VOL*4,0%3600,0
20 CONTINUE

Figure 12.16 (a) Main FORTRAN program for problem of New Water Supply
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000000

a o
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C DEFINE PARAMETERS FOR ROUTINE HJMIN
DATA RHO,EPS,NW/0.5,0.01,0/

NMAX=1000
C

CALL HJMIN(VAR,DVAR,4,ANS,RHO,EPS,COST,NW,NMAX)
C
C NOW OUTPUT RESULTS

WRITE (6, 100 )NMAX

WRITE (6, 101)ANS

WRITE (6, 102)VAR (4)

WRITE (6, 110)QIN
100 FORMAT(18H SOLUTION FOUND IN,I5,11H ITERATIONS)
101 FORMAT (15H MINIMUM COST=$,10X,F10.2)
102 FORMAT (18H PIPE DIAMETER(M)=,7X,F10.3)
110 FORMAT (16H AVERAGE INFLOW=,9X,F10.3)
C SKIP REMAINING OUTPUT IF NO TANK REQUIRED.
IF(VOL.GT.0.0) GOTO 30
WRITE(6, 103)
103 FORMAT (25H NO STORAGE TANK REQUIRED)
GOTO 1
30 CONTINUE
WRITE (6, 104)VAR(1),XL,VAR(2)
WRITE (6,105 )VOL
WRITE (6, 106)VAR(3)
WRITE(6,107)D
WRITE (6, 108)W
WRITE (6,109 )EMBHT
104 FORMAT(19H TANK DIMENSIONS(M),6X,3F10.3)
105 FORMAT(19H TANK VOLUME(CUB.M),6X,F10.3)
106 FORMAT(21H TANK DEPTH IN GROUND,4X,F10.3)
107 FORMAT (19H TANK WALL THKSS(M),6X,F10.3)
108 FORMAT (15H WIDTH USED (M), 10X,F10.3)
109 FORMAT (18H EMBANKMENT HT.(M),7X,F10.3)
GOTO 1
END

Figure 12.16 (a) — continued

SUBROUTINE COST(X,CST)
CHERBERERERERER RN RN RR RN RN RRRRRRRRRRRRERRRARRR
C THIS ROUTINE DETERMINES AN ARTIFICIAL OBJ. FUN.
C FOR THE TANK + PIPELINE WITH A PENALTY TERM FOR
C THE AVAILABLE WIDTH CONSTRAINT.

C X(1) = INSIDE TANK BREADTH (B)

c X(2) = INSIDE DEPTH OF WATER (H)

C X(3) = DEPTH OF TANK IN GROUND (G)

C X(U) = PIPE DIAMETER. (DIA)

C USES COMMON BLOCKS /DESIGN/ AND /RATES/
CHREFERIRRRRR RN RN RR RN AR RRRRRRARRRRRRRRRRRRRRRRER

DIMENSION X(4)

DIMENSION QAR(11),VOLAR(11)

COMMON /DESIGN/QAR,VOLAR,L,HF,K,M,XL,VOL,W,D, EMBHT,
+ QIN

COMMON /RATES/CEXC,CEMB,CDIF,CCONC,CFORMO,CFORMI, CFORMS
REAL K,L,M
C REDEFINE DESIGN VARIABLES FOR CONVENIENCE

B=X(1)

H=X(2)

G=X(3)

DIA=X(4)

Figure 12.16 (b) Objective function subroutine
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CHECK D>0 AND GET PIPE COST
IF(DIA.LT.0.0) DIA=0.0
CPIPE=L*DIA%*(390.0 - 11.5%SQRT(DIA))
CST=CPIPE
CALC QIN BY STRICKLER EQN.
CONST=8.41*SQRT(9.81) /(K*¥¥#0,1667)
QIN=CONST¥0,785*DIA*DIA* (DIA/Y4.0)¥*0,667*SQRT (HF/L)
FIND HOW MUCH BALANCING STORAGE NEEDED WITH THIS FLOW.
CALL INTER1(VOLAR,QAR,11,QIN,VOL)
IF ZERO VOLUME IGNORE TANK CALCS
IF(VOL.LE.0.0) RETURN
GET TANK LENGTH AND DESIGN WALL THICKNESS
XL=VOL/(B¥H)
BM=9810.0*H*H*H/6.0
D=SQRT (BM/400000.0)
GET OVERALL TANK DIMENSIONS
HOA=H + 0.83
BOA=B + 2.0%D
XLOA=XL + 2.0%D
GET QUANTITIES OF EXCAVATION AND EMBANKMENT
VOLEXC =BOA*XLOA*G
EMBHT =HOA+0, 6-G
IF(EMBHT.LT.0.0) EMBHT=0.0
A1=BOA¥*XLOA
A2=(BOA+M¥EMBHT ) ¥ (XLOA+M*EMBHT )
A3=(BOA+2. 0¥M*EMBHT ) ¥ (XLOA+2. O¥M¥*EMBHT )
VOLEMB= (EMBHT/6.0) #(A1 + 4.0¥A2 + A3)
HAG=HOA - G
IF(HAG.LT.0.0) HAG=0.0
VOLEMB=VOLEMB - HAG¥*BOA*XLOA
FIND DIFFERENCE BETWEEN EXC AND EMB VOLUME.
IGNORE BULKING
VOLDIF =ABS (VOLE XC~VOLEMB)
GET CONCRETE VOLUME
CONC=2,0%(BOA+XL)*HOA*D + 0.53*BOA*XLOA
NOW GET OUTSIDE, INSIDE AND SLAB FORMWORK
FORMO=2, 0% (BOA+XLOA ) ¥*HOA
FORMI=2,0%(B + XL)*(H + 0.3)
FORMS=B#*XL
NOW CALCULATE COSTS FOR TANK CONSTRUCTION
C1=VOLEXC*CEXC
C2=VOLEMB*CEMB
C3=CONC¥CCONC
CL=FORMO*CFORMO + FORMI*CFORMI + FORMS*CFORMS
C5=VOLDIF*CDIF
CST=CPIPE+C 1+C2+C3+C4+C5
CHECK WIDTH OF GROUND USED AND ADD PENALTY TERM
W=BOA + 2.0¥*M*EMBHT
‘PENW=1. 0EOT ¥(W-25.0)
IF(PENW.LT.0.0) PENW=0.0
ADD PENALTY TERMS FOR NON-NEGATIVE VARIABLES
PENG=1.0E6%(-G)
PENH=1.0E6%(-H)
PENB=1.0E6%(-B)
IF(PENG.LT.0.0) PENG=0.0
IF(PENH.LT.0.0) PENH=0.0
IF (PENB.LT.0.0) PENB=0.0
CST=CST + PENW + PENG + PENH + PENB
RETURN
END
Figure 12.16 (b) — continued
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SUPPLY INITIAL VALUES FOR B, H, G, DIA ? 15.0, 2.5, 2.5, 0.2
SOLUTION FOUND IN 381 ITERATIONS

MINIMUM COST=$% 305617.00
PIPE DIAMETER(M)= .207
AVERAGE INFLOW= .046
TANK DIMENSION(M) 15.010 23.278 2.860
TANK VOLUME(CUB.M) 999.126
TANK DEPTH IN GROUND 1.947
TANK WALL THKSS(M) .309
WIDTH USED (M) 24,999
EMBANKMENT HT.(M) 2,343

Figure 12.17 Results from program of Figure 12.16

setting DVAR(4) = 0.0 after the four quantities are initialized. Although
computationally inefficient, this small change would cause the diameter to
remain constant at the value input by the user. Typical results are shown in
Figure 12.18.

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.2
SOLUTION FOUND IN 251 ITERATIONS

MINIMUM COST=$ 315963.19
PIPE DIAMETER(M)= .200
AVERAGE INFLOW= .042
TANK DIMENSIONS (M) 13.650 3.784 3.406
TANK VOLUME(CUB.M) 1477.795
TANK DEPTH IN GROUND 2.200
TANK WALL THKSS(M) .402
WIDTH USED (M) 24.999
EMBANKMENT HT.(M) 2.636

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.21
SOLUTION FOUND IN 207 ITERATIONS

MINIMUM COST=$ 305653.56
PIPE DIAMETER(M)= .210
AVERAGE INFLOW= .048
TANK DIMENSIONS(M) 14,555 20.091 3.179
TANK VOLUME(CUB.M) 929.732
TANK DEPTH IN GROUND 2.180
TANK WALL THKSS(M) .362
WIDTH USED (M) 24,997
EMBANKMENT HT. (M) 2.429

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.22
SOLUTION FOUND IN 203 ITERATIONS

MINIMUM COST=$ 306607.25
PIPE DIAMETER(M)= .220
AVERAGE INFLOW= .054
TANK DIMENSIONS (M) 14,775 14,774 3.009
TANK VOLUME(CUB.M) 656.897
TANK DEPTH IN GROUND 2.180
TANK WALL THKSS(M) .334
WIDTH USED (M) 24,1480
EMBANKMENT HT. (M) 2:259

Figure 12.18 Results from program of Figure 12.16 modified for constant diameter
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12.6 MINIMUM WEIGHT OF A PORTAL FRAME
12.6.1 Introduction

In Chapter 3 the minimum weight design of a rectangular por:al frame was
considered. In this section the problem is re-examined in a more general way with
particular attention given to the following aspects of the problem:

(i) Thedimensions of the frame should be variable and the type and intensity of
the loading should be generalized.

(i) The significance of the assumed linear relationship between the weight per
unit length and fully developed plastic moment should be examined.

(iii) The effect on the optimal design of only discrete members being available
should be studied.

The following memorandum provides background to the project:

Memorandum

To:  Ben Tover, Drawing Office.
From: Willi Bendit, Fabricating Shop.
Re:  Minimum Weight Frames.

We are anticipating enquiries regarding the supply of a number of
rectangular portal frames. At the moment it is not clear what the
dimensions will be, nor do we know the exact nature and intensity of the
loading to-be carried.

We have in stock a good selection of beam and column sectionstand
I should like to be in a position to respond quickly to any requests
received.

Irecall that on a previous occasion you developed a minimum weight
design for a specific job subject only to concentrated loads, although I
seem to remember that it was based on an assumption of linear
relationship between section weight and plastic moment about which I
had some doubts. Would you look into the possibility of preparing a
computer program which would enable us to develop similar minimum
weight designs for a variety of conditions?

12.6.2 Re-statement of the problem

For convenience the problem is re-stated as developed previously in Section 3.14.
With reference to the frame of Figure 12.20(c) the printed problem may be written
as follows for columns and beams of weight per unit length W, and W,
respectively.

Minimize z = 2L.W, + LW, (12.30)

+ Figure 12.19 shows the properties (mass per metre and plastic modulus) for the beam and column
sections in stock.
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Plastic Plastic Plastic
Mass modulus Mass modulus Mass modulug
Serial per  axis Serial per  axis Serial per  axis
size metre  x—Xx size metre  x—x size metre  x—x
mm kg cm? mm kg com? mm kg cmd
356 x 406 634 14247 014 x 419 380 17628 ||457 x 152 82 1797
551 12078 343 15445 74 1620
46T LB 914 x 305 289 12566 67 1439
393 8229 % o 60 1284
340 6994 52 1094
el i 24 9505
201 8345 ||406x 178 74 1502
235 4689 G
Column 838 x 292 fgg %‘3“5‘ 60 1195
core 477 9700 176 6795 54 1046
356 x 368 202 3976 s e (Gr . wise | |M06% 1 W 1A%
177 3457 < 67 1323
153 2964 60 1158
125 2452 il 406 x 140 46 886.3
X 5
305 x 305 283 5101 686 x 254 170 5616 39 7187
N 152 4989
140 4552 |[381x152 67 1254
198 3436
et 125 3987 60 1106
137 2298 610 x 305 238 7447 52 9590
118 1953 179 5512 |[356x 171 67 1210
97 1589 149 4562 57 1007
254 x 254 167 2417 610 x 229 140 4141 51 8929
132 1861 125 3672 4 717
107 1485 113 3283 |[356x 127 39 6518
89 1228 | 101 2877 33 5379
e | Casd 610 x 178 91 2484 ||305 x 185 54 8434
203 x 203 86 97838 ; 82 2194 46 713
0.4
gé 2(5)20 533 x 330 212 5849 40 6231
. o1 189 5212 |[305x 127 48 7049
el 167 4560 2 6092
s e g 533 x 210 122 3198 37 5393
o0 i 109 2820 |[305x102 33 4796
=il 101 2616 28 4069
: 92 2362 25 3375
82 2051 11254 %146 43 5674
533x165 73 1776 37 4845
66 1562 31 3948
457 x 191 98 2229 ||254 x 102 28 3531
89 2012 25 3053
82 1830 2 2615
2‘7‘ }22‘9‘ 203 x 133 30 3126
25 2591

Figure 12.19 Mass per metre and plastic modulus for standard column and beam
sections
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Figure 12.20 Rectangular portal frame subject to (a) concentratqd loads; (b) distributed
loads; (c) one of six possible collapse mechanisms

subject to 3 g B
0 47[1\]‘;:}; VLy/2
2. 2 VL2
2 2 HL,
4 0 HL,
2 4 HL, + VLy/2
4 2] |HL. + VL2 |

The six constraints correspond to the six collapse mechanisms shown in Figure
B2, . |

Perhaps the first step towards generalization of the problem is to con31der. the
effect of distributed loads as shown in Figure 12.20(b). The collapse meghamsms
for both systems of loading will be the same; thus the energy absorbed will be the
same function of the fully plastic moments M, and M.. The work done by the

active loads may be expressed as:

WD (concentrated load) = 0V Ly/2 (12.31)

Ly/2

WD (distributed load) = 2 J V.dx x 0

0

= OV, 1, /4. (12.32)

Comparison of (12.31) and (12.32) confirms the intuitive suspicion that
V.L, = V/2. Similarly, a distributed horizontal load H, may be represented by an
equivalent concentrated load H = H L,/2. This provides a simple way to handle
distributed loads or to combine a distributed load (e.g. self-weight of the beam)
with a concentrated applied load. Extension of this approach to cover
unsymmetrically disposed concentrated loads or partially distributed loads
appears to be possible but is not examined further here.
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12.6.3 The weight function

In order to solve the model of (12.30) it is necessary to assume a relationship
between the weight (or mass) per unit length (w,, wy) and fully plastic moment
(M., My) of a section. The following two possibilities are considered:

Linear: w=aM +b (12.33)
Exponential: w = aM®. (12.34)

The fully plastic moment M can in turn be expressed in terms of the plastic
modulus of the section Z, and the yield stress of the material o,. Thus:

M =M, = Z,q,. (12.35)

In Chapter 3 a linear relationship was assumed and in most related work on
minimum weight design it is stated that the index of (12.34) has little effect on the
minimum weight. Various approximations of the form (12.34) have been
suggested in the literature.") For example, Heyman®® has suggested an equation
of the form

w (Ib/ft) = 3.4Z, — in3)%, (12.36)
This translates into
w (kg/m) = 0.947(Z, — cm3)°-®, (12.37)

For this example weight functions will be determined which approximate the
tables of section properties accompanying Mr Bendit’s memorandum. (These are
taken from reference (3) for a grade 43 steel which has a yield stress of
245 N/mm?.) It will be assumed that data files have been prepared in a format
which can be accessed directly by routine CURFIT in order to determine the
values of coefficients a, b in (12.33) or (12.34). For column sections the data could
be arranged as follows:

14247.0 634.0 356406
12078.0 551.0 356406
10009.0 467.0 356406

3101 370 152152
2471 300 152152
1843 230 152152

where columns (1-10), (11-20), and (21-30) of the data file contain respectively the
plastic modulus about the X-X axis (cm?), the mass per unit length (kg/m), and
the section serial number which is a concatenation of the section breadth and
depth in mm. Later it will be found convenient if the order of the sections is varied
from that shown in the original table so that the mass/metre ratio increases
monotonically.

A typical calling program is shown in Figure 12.21. Two points are significant.
Firstly, it should be noted that the input file is not rewound by the routine
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NREAD=1
C DATAFILE ATTACHED AS LOGICAL UNIT 1.

REWIND NREAD
PRINT (6,*)"ENTER FIRST AND LAST RECORDS TO BE READ...2I5"

READ (5,*)N1,N2
IF(N1.LE.1) GOTO 40
N1M1=N1-1
DO 25 JSKIP=1,N1M1
READ (NREAD, * )DUMMY
25 CONTINUE
40 CONTINUE
C SET NO. RECORDS TO BE READ
NREC= (N2-N1+1)
PRINT (6,%) "SPECIFY TYPE;'LIN','EXP','LOG'OR'PWR'"
READ(6,60)TYPE
60 FORMAT(A3)
CALL CURFIT(NREAD,NREC,TYPE,A,B,R2,STERR)
WRITE(6,70)A,B,R2
70 FORMAT(8H A,B,R2=, 3F12.4)
END

Figure 12.21 FORTRAN program for curve fitting of weight function

CUREFIT prior to processing. This allows the user the ﬂexibility to specify a sub-
set of the data file by skipping any number of recor@s and 'settmg .the n}lmber of
data pairs to be read. This may be useful in attemptlng.to fit a straight line to the
smaller sections where the relationship is more non-l.mear. .
Typical results for the section properties tabulated in the memo are shown in

Figure 12.22(a) and (b).

12.6.4 A linear continuous solution

As a first step a solution is attempted using thc? l.inear gpproximgtion 'for the
weight function (12.33) and assuming that an infinite Varlety of section sizes are
available — i.e. that section properties are continuous variables.

The problem may be expressed in terms of the plastic modulus for beams and

columns (Z, and Z. respectively) by substituting (12.33) and (12.35) in (12.30).
Thus:

Minimize z = (2L.ac/oy)Zc + 2Lchbe + (Lvav/0y)Zy + Lobs (12.38)

HLC/O'y + VLb/20'y
| HL /oy + V Ly/20y |

subject to =
[0 4] [Z] 5> [ VL2,
2 2| L% VL2,
5 2 HL/s,
4 0 HL o,
2 4
4 2]
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15000
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(b)
Figure 12.22 (a) Typical weight functions for columns. (b) Typical weight functions for
beams
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In Section 3.14 a simple version of the problem was solved numerically
and also by graphical means since there are only two variables in the primal
problem. The graphical method is attractive, especially if it can be generalized to
some extent. The model of (12.38) can be written in non-dimensional form as

follows:

Minimize z = Lyay[SZ. + Zo] (12.39)
subject to
0 4—[Z° ]2 C ] ()
2 2| LB/C 1 (b)
2 2 R (c)
4 0 R d
2 4 1+R (e)
|4 2] |1+ R ()
where
S = 2L.a.
Lyay
C = VLy)20,
R= 25;: -

In the objective function of (12.39) the constant terms in the weight function
have been dropped. This will not affect the optimal policy but must be corrected
to obtain the correct minimum weight. Also it is seen that the coefficient S
represents the negative slope of the iso-cost lines dZ./d Z,,. The six constraints are
non-dimensional in terms of the ratio R and a normalizing plastic moment C.

Figure 12.23 shows a family of feasible space boundaries for different values of
the ratio R. In every case it will be noted that only three possible vertices have to
be considered and the optimum vertex will be decided by the four conditions:

§$<05
05<85<10
1.0<85<20
20<S.

Consideration of the equations defining the locus of each vertex leads to a simple
method of defining the active constraints for any case and thus the optimum
solution. The solution can be summarized in the diagram of Figure 12.24 in which
for any values of R and S the optimal values of Z./C and Z,/C are defined. There
are seven zones in the diagram representing the different types of optimal vertex
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Figure 12.24 Failure mechanisms for minimum weight design
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which may occur. In Figure 12.24 the vertex (or failure) types are distinguished by
the Roman numerals I, II, . . . , VII and the corresponding vertices in Figure 12.23
are similarly labelled. Also in each of the zones of Figure 12.24 the active
constraints of (12.39) (ie. (a),(b),...,(f)) are shown, together with the
corresponding optimal values for the dimensionless plastic moduli Z./C and
Zy/C for the column and beam respectively.

12.6.5 A non-linear continuous model

The graphical analysis of the previous section provides a convenient method of
solving the problem without computer analysis provided that the linear weight
function reasonably approximates the data. This may not be true, especially for
small sections. Two approaches are possible to improve the reliability of the
solution. If the approximate size of the column and beam sections is known from
a preliminary analysis, the straight line of (12.33) may be adjusted to fit the data in
the neighbourhood of the expected solution. This might be done by eye, by re-
analysing the data for a limited set of sections, or by differentiating (12.34). Thus
for beam sections (Figure 12.22(b))

Wy = 06Zb 0.653-

At Zb = 750 Cm3

dws _ -0.347
d_Zb =0.6 x 0.653 x Zb

= 0.0394

(compare with wy, = 0.0215Z, + 35.74).

Thus one way of taking account of the non-linear weight function is to use an
iterative linear solution until the values of a. and ay, as defined by dw./dZ. and
dw,/dZ, are consistent with the computed plastic moduli Z. and Z,. Clearly in
some of the zones of Figure 12.24 the value of S may not be critical in determining
the appropriate formulae for Z. and Z,.

A different approach to the problem may be developed by examining the
constraints of the model (12.38). From (12.39(d)) it is clear that

Z.> HL.
4o

or
HL.

M. >

c

If this value of M. is substituted into the other five constraints, the value of My is
defined as:
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VLy/8 (a)
VL,j4 — M. (b)
My, = max{ HL;/2 — M, ()
HL./4 + VLy/8 — M/2 d)
HL2 + VLy/4 — 2M. (e)

and thus Z, = M,/a,.
Using the non-linear weight functions (12.34) the total weight of the frame is
given as

z = 2Lch + LbWb
= ZLCGCch + Lbangb'

Thus the total weight is a function of a single variable Z_, which can be minimized
by trial or by a routine such as GOLDEN (Section 5.4.3). Figure 12.25 shows a
typical FORTRAN program and subroutine for use by GOLDEN, together with
typical results.

12.6.6 A non-linear discrete model

Having developed the non-linear model of the previous section it is a relatively
obvious step to by-pass the curve-fitting process completely and instead select
sections from the data files. The search of the data files can be done efficiently if
the data are sorted such that section weight increases monotonically from the
start of the file. The sorting could be done by machine but it is probably easier to
do the job manually prior to constructing the data files.

A typical algorithm to obtain a discrete, non-linear solution might take the
following form. Details of the coding are left as an exercise for the interested
reader.

1. Read frame data, H, V, L, L, oy. Rewind column and beam data files.
2. Calculate (Z,)nin = HL/4.
3. Read column section — get Z., w,, number (if EOF stop).
4. If Zc < (Zc)min g0 to Step 3.
5. Calculate M = Zg,.
VLy,/8
VL,/4 — M.

6. Calculate My, = max { HL.,/2 — M,
HL /4 + VLy/8 — M2
HL2 + VLy/4 — 2M.

7. Get (Zyp)min = My/ay; if (Zp)min < 0 stop.
8. Rewind beam file.

423

9. Read a beam section; get Z,, wy,, number (if EOF stop).
10. If Z, < (Zp)min O to step 9.
11. Calculate total weight from wy, and we.
12. Output results.
13. Go to step 3.

PROGRAM TST (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
REAL LC,LB,M,MC,MB
C DEFINE LABELLED COMMON TO TRANSFER PARAMETERS AND RESULTS
COMMON /PLASTC/MC,MB,ZB,FY,H,V,LC,LB,AC,BC,AB,BB
EXTERNAL WEIGHT
C SPECIFY FRAME PARAMETERS
C FRAME DIMENSIONS IN M.
DATA V,H,LC,LB,FY/150000.0,100000.0, 7.5, 6.25, 245.0/
DATA AC,BC,AB,BB/0.46,0.745,0.6,0.653/
ZCMIN=H*LC/(4,0%FY)
DZC=ZCMIN/100.0
EPS=DZC/10.0
NW =6
CALL GOLDEN (WEIGHT,ZCMIN,DZC,EPS,NW,ZC,WTMIN)
WRITE (6,10)WTMIN,ZB,ZC
10 FORMAT(* MINIMUM WEIGHT OF FRAME =*,F12,3,* OBTAINED WITH¥,/,
+ # BEAM MODULUS OF¥,F10.2,% CM"3%,/,
+ # COLUMN MODULUS OF* F10.2,% CM"3%¥)
END
SUBROUTINE WEIGHT (ZC,WT)
REAL LC,LB,M,MC,MB
COMMON /PLASTC/MC,MB,ZB,FY,H,V,LC,LB,AC,BC,AB,BB
C GET PLASTIC MOMENT IN COLUMN FOR TRIAL ZC
MC=ZC¥*FY
C COMPUTE MOMENT IN BEAM AS MAXIMUM OF FIVE VALUES
MB=V#*LB/8.0
M=2, 0¥MB-MC
IF(M.GT.MB) MB=M
M=H¥.C/2.0 - MC
IF(M.GT.MB) MB=M
M=M/2.0 + V¥LB/8.0
IF(M.GT.MB) MB=M
M=2,0%M - MC
IF(M.GT.MB) MB=M
ZB=MB/FY
C COMPUTE TOTAL WEIGHT FROM NONLINEAR WEIGHT FUNCTIONS
WT=2,0*LC*¥AC*ZC¥*BC + LB¥AB*ZB¥**BB

RETURN

END
IN GOLDEN 765.3061 1302, 6751
IN GOLDEN 772.9592 1306.4283
IN GOLDEN 785. 3421 1312. 4209
IN GOLDEN 777.6890 1308.7290
IN GOLDEN 770.0360 1304.9992
IN GOLDEN 768.2293 1304,1132
IN GOLDEN 767.1128 1303.5645
IN GOLDEN 766.4227 1303.2251

MINIMUM WEIGHT OF FRAME = 1303.225 OBTAINED WITH
BEAM MODULUS OF 954,40 CM"™3
COLUMN MODULUS OF 766,42 CM"3

Figure 1225 FORTRAN program to solve the non-linear continuous frame problem



424

A program based on the above algorithm will select and display a set of feasible
solutions in which the column section increases from the minimum feasible value
and the corresponding beam section reduces. The minimum weight design may
then be obtained; alternatively, a design may be selected which is not optimal but
which employs currently available sections.

127 REFERENCES

1. Moy, S. J. (1981). Plastic Methods for Steel and Concrete Structures, Macmillan,
London.

2. Heyman, J. (1952). ‘Plastic analysis and design of steel-framed structures’, Preliminary
publication 4th Congress, 1.A.B.S.E., Cambridge. p. 95.

3. Constrado (1972). Steel Designer’s Manual, C.L.S., London.

Appendix A
FORTRAN Subroutines

The subroutines described in the following pages are intended primarily for teaching
purposes and as an aid in solving meaningful examples in optimization and simulation.
As such, the authors have taken care to ensure the correctness of the code, but cannot be
held responsible for any errors in the subroutines or for errors arising from their
application.

Several of the programs may prove to be of use in the solution of practical problems or
optimization. It should be recognized, however, that more efficient algorithms may be
found in the literature. In particular the reader is referred to the texts by Siddall and
Forsythe, Malcolm, and Moler.¥

INDEX OF SUBROUTINES

ASTBAL Finds the steel ratio for balanced design in a rectangular, singly reinforced
concrete section.

BISECT  Finds a root of a specified function of a single variable by interval halving.

COMBIN Generates in successive calls all possible combinations of a set of N integers.

CPM Solves critical path network.

CURFIT Least squares curve fitting of four functions.

DISTN1  Generates a vector of variable values having a uniformly distributed
probability.

DISTN2  Operates on the vector generated by DISTNI to produce random variates for
an arbitrary distribution.

DYNAM Generates tables of optimal values corresponding to the stages of a dynamic
programming problem.

DYNSOL Uses the tables generated by DYNAM to obtain the optimal solution and
policy of a problem in dynamic programming.

FACTRL Computes the factorial of a positive integer.

GAUSS Generates random variates for a normal distribution.

GOLDEN Finds the minimum of a function of a single variable by Fibonacci search.

HIMIN Finds the minimum of an unconstrained function of several variables by the
pattern search method of Hooke and Jeeves.

IBEAM Selects a steel beam section (from a somewhat limited table) for a specified
imposed bending moment.

INTER! Finds by linear interpolation the value of a unimodal function for a specified
argument.

t Siddall, J. (1972). Analytical Decision-Making in Engineering Design, Prentice-Hall, Englewood
Cliffs, New Jersey.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1977). Computer Methods for Mathematical
Computation, Prentice-Hall, Englewood Cliffs, New Jersey.
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JSTATE

LPDATA
MOFICR
NADPTH
SIMPLEX
SLABBM

SLAB1W
SRMULT

SRSECT
TABI1
TAB2
TAB3
TGSORT
TREE

URAND

Finds the element of an array containing a specified value. (Used by DYNAM
and DYNSOL)

Facilitates input of data defining a linear programming problem. May be
used prior to SIMPLEX.

Finds the moment of inertia of a cracked, transformed, singly reinforced,
rectangular concrete section.

Finds the neutral axis depth of a rectangular, singly reinforced concrete
section. :

Solves (i.e. mirimizes) a linear programming problem by the standard
simplex method, generating the tableaux if desired.

Calculates the maximum bending moment in one or more equal continuous
spans.

Designs a one-way spanning slab for flexural strength only.

Calculates the resistance moment of a rectangular, singly reinforced concrete
section by ultimate load theory.

Proportions a singly reinforced, rectangular concrete section for a specified
bending moment.

Routines to generate the simplex tableaux. (Used by SIMPLEX.)

Generates an integer array defining the ascending or descending order of the
elements of a specified real array.

Finds the minimum cost spanning tree for any origin of a complete planar
network.

Generates a uniformly distributed random number in the interval 0.0 to 1.0.
(After Forsythe, Malcolm, and Moler.)

SUBROUTINE ASTBAL(FC,FY,BETA1,RHOB)

C ****************l*************l********l*****************I*l

C
C
C
C
c
C
C
C
c
Cc *

10

THE ROUTINE FINDS THE STEEL RATIO FOR BALANCED
DESIGN IN A SINGLY REINFORCED RECTANGULAR CONCRETE
BEAM USING ULTIMATE LOAD THEORY.

FC = CONCRETE COMPRESSIVE STRENGTH PSI

FY = YIELD STRENGTH OF STEEL PSI

BETA1 = RATIO OF STRESS BLOCK TO NEUTRAL AXIS
DEPTH (COMPUTED)

RHOB = COMPUTED VALUE OF STEEL RATIO FOR

BALANCED DESIGN
R P e T T
BETA1=0.85
IF(FC.LE.4000.0) GOTO 10
BETA1=0.85 - 0.05%(FC/1000.0 - 4.0)
CONTINUE
C1=0.85*BETA1¥FC/FY
RHOB=C1¥87000.0/(87000.0+FY)
RETURN
END

427
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SUBROUTINE BISECT(FUN,XSTART,DX,EPS,NW,XROOT)

396936 36 36 3696 3 6 36 36 36 36 36 96 36 36 36 26 36 96 36 36 36 36 36 36 96 36 36 36 36 36 36 96 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6 30 06 30 2 NN

THE ROUTINE DETERMINES BY THE METHOD OF INTERVAL
HALVING THE ROOT OF AN EQUATION OF A SINGLE VARIABLE.

FUN

XSTART
DX
EPS

NW

XROOT
A COARSE
INTERVAL
10000*DX

= NAME OF SUBROUTINE SUPPLIED BY THE USER
TO DEFINE THE EQUATION.

FOR EXAMPLE:

SUBROUTINE EQUN(X,F)

F=X*¥{-6.0%X+4.0

RETURN

END

START OF COARSE SEARCH RANGE

INITIAL INCREMENT FOR COARSE SEARCH
MINIMUM ACCEPTABLE INTERVAL OF UNCERTAINTY
FOR CONVERGENCE

OUTPUT CHANNEL FOR INTERMEDIATE PRINTOUT.
SET NW=0 TO SUPPRESS ALL PRINTOUT.

= COMPUTED VALUE OF ROOT

SEARCH IS CARRIED OUT TO FIND THE INITIAL
OF UNCERTAINTY, TIF NO ROOT IS FOUND WITHIN
SEARCH IS ABANDONED.

NOTE THAT TWO ROOTS CLOSE TOGETHER MAY BE MISSED

BY THE COARSE SEARCH.
A DISTINCTION IS MADE BETWEEN ROOTS AND POSSIBLE

DISCONTINUITIES AND A WARNING PRINTED.

THE NAME OF THE ACTUAL SUBROUTINE CORRESPONDING TO FUN

MUST APPEAR IN AN EXTERNAL STATEMENT IN THE DRIVING

PROGRAM.

369 936 36 96 3696 3 36 36 36 96 96 36 36 36 36 36 96 36 36 96 36 36 96 36 36 36 36 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 06 36 36 3

X1=XSTART
XROOT=XSTART

DX1=DX

START COARSE SEARCH
CALL FUN(X1,F1)

IF(NW,
FAC=1.

GT.0) WRITE(NW,50)X1,F1
0

CONTINUE
X2=X1+DX1
CALL FUN(X2,F2)

IF(NW.

GT.0) WRITE(NW,50)X2,F2

C TEST FOR CHANGE OF SIGN INFUNCTION
IF(F1*¥F2.LT.0.0) GOTO 20
C NO CHANGE OF SIGN

FAC=2,

0*FAC

DX1=FAC*DX

F1=F2
X1=X2

STOP
20 CONTINUE

’ C INTERVAL OF UNCERTAINTY DEFINED BY X1,X2
! C NOW FIND SLOPE OF FUNCTION IN THIS INTERVAL

I . SIGN=1.0
IF(F2.LT.0.0) SIGN=-1,0

C SET VARIABLE TO TEST FOR DISCONTINUITY

FM1=F1
FM=F1

C MAIN ITERATION LOOP STARTS HERE

\ 30  CONTINUE
: NDISC=0
i XM=0.5% (X 1+X2)

] IF(SIGN*FM,LT.SIGN*¥FM1) NDISC=1

CALL FUN(XM,FM)

C OUTPUT TTERATION VALUES IF REQUIRED
IF(NW.GT.0) WRITE(NW,50)XM,FM

50  FORMAT(10H IN BISECT,2F16.4)
IF(SIGN¥FM.LT.0.0) GOTO 60

GOTO 70
60 CONTINUE
X1=XM
GOTO 80
70 CONTINUE
X2=XM
80 CONTINUE
C TEST FOR CONVERGENCE

XROOT=XM
IF(NDISC.EQ.0) RETURN
IF(NW.GT.0) WRITE(NW,90)

RETURN
END

C SET LIMIT ON EXTENT OF SEARCH
IF(FAC.LT.10000.0) GOTO 5
IF(NW.GT.0)WRITE (NW,10)XSTART,X2

10 FORMAT(24H IN BISECT NO ROOT FOUND,
+ 8H BETWEEN,F12.3,4H AND,F12.3)

IF(ABS(X2-X1) .GT.EPS) GOTO 30

90 FORMAT(39H IN BISECT POSSIBLE DISCONTINUITY FOUND)
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10
C

C

100

c

200

SUBROUTINE COMBIN(LIST,N,M,KOUNT,FINISH)
BRI N RN NN N RN NN NNNR
THE ROUTINE IS INTENDED TO BE USED INSIDE A LOOP IN WHICH
IT IS REQUIRED TO GENERATE ALL THE POSSIBLE COMBINATIONS
OF A SET OF N INTEGERS. AT EACH RETURN THE ROUTINE
PROVIDES A VECTOR OF INTEGERS AND A LOGICAL VARIABLE TO
INDICATE WHETHER OR NOT THE COMBINATIONS HAVE BEEN EXHAUSTED.
WITHIN THE LOOP, THE VECTOR MAY BE USED TO CALCULATE SOME
OBJECTIVE FUNCTION BASED ON THE PERMUTATED INTEGERS.

LIST = INTEGER ARRAY (N) CONTAINING ON OUTPUT THE
COMPUTED VECTOR OF PERMUTATED INTEGERS.

N = SIZE OF SET FOR WHICH ALL POSSIBLE COMBINATIONS
ARE REQUIRED.

M = WORK STORE INTEGER CONTAINING THE CURRENT NUMBER

OF DIGITS IN THE COMBINATION. M INCREASES FROM
1 TO N WITH SUCCESSIVE CALLS OF THE ROUTINE.
KOUNT = COUNTER OF CURRENT NUMBER OF COMBINATIONS WHICH
HAVE BEEN RETURNED.
FINISH = LOGICAL VARIABLE SET TRUE ON EXIT IF ALL POSSIBLE
COMBINATIONS HAVE BEEN RETURNED,
IF A LOOP CONTAINING A SEQUENCE OF CALLS TO COMBIN IS TO BE
EXECUTED MORE THAN ONCE IN A PROGRAM THE PARAMETER M SHOULD
BE SET TO ZERO. THIS IS BECAUSE M IS SET WITHIN THE ROUTINE
BY A DATA STATEMENT WHICH WILL ASSIGNED ONLY AT COMPILATION
zigg;******************************************************
LOGICAL FINISH
DIMENSION LIST(N)
IF(M.GT.0) GOTO 100
INITIALIZE INTEGER ARRAY TO ZERO ON FIRST CALL
DO 10 J=1,N
LIST(J)=0
CONTINUE
INITIALIZE PARAMETERS ON FIRST CALL.
FINISH=,.FALSE.
K=0
KOUNT=0
M=1
M IS NUMBER OF DIGITS CURRENTLY IN COMBINATION.
CONTINUE
KOUNT=KOUNT+1
IF(LIST(M).EQ.N) GOTO 200
INCREMENT RIGHT HAND DIGIT.
LIST(M)=LIST(M) + 1
RETURN
CONTINUE
K=K+1
MK =M-K

C CHECK IF M HAS TO BE INCREASED.
IF(MK.EQ.0) GOTO 300
IF(LIST(MK).EQ.(N-K)) GOTO 200
LISTMK=LIST(MK)

K1=K+1
DO 210 J=1,K1
LIST(MK+J=1)=LISTMK+J

210 CONTINUE
K=0
RETURN

300 CONTINUE
M=M+1
K=0

C START NEW STRING OF M DIGITS.
DO 310 J=1,M
LIST(J)=J

310 CONTINUE

C CHECK IF COMBINATION CONTAINS ALL N DIGITS.
IF(M.EQ.N) FINISH=.TRUE.
RETURN
END
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C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
c
C
c

10

20

C
30

SUBROUTINE CPM(NUS,NDS,DUR,NACT,NNODE,STMIN,STMAX,

FTMIN,FTMAX,EVTMIN,EVTMAX,FF,TF,NW)

RN IR N RN RN NN RN NN RN RN RN ERRRRRRRRRERRR RN RNy

THE ROUTINE OPERATES ON AN ACTIVITY NETWORK TO DETERMINE
THE FREE FLOAT AND TOTAL FLOAT FOR EACH ACTIVITY THUS
ALLOWING IDENTIFICATION OF THE CRITICAL PATH.
NUS = INTEGER ARRAY OF SIZE (NACT) CONTAINING THE NODE

NUMBERS AT THE START OF EACH ACTIVITY.

NDS = INTEGER ARRAY OF SIZE (NACT) CONTAINING THE NODE

NUMBERS AT THE END OF EACH ACTIVITY.

DUR = ARRAY OF SIZE (NACT) CONTAINING THE DURATION OF

EACH ACTIVITY. NOTE THAT DUMMY LINKS MUST BE
INCLUDED AND GIVEN ZERO DURATION.

NACT = NUMBER OF ACTIVITIES (INCLUDING DUMMY ACTIVITIES)

NNODE = NUMBER OF NODES.

STMIN = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF EARLIEST
START TIME FOR EACH ACTIVITY.

STMAX = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF LATEST
START TIME FOR EACH ACTIVITY.

FTMIN = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF EARLIEST
FINISH TIME FOR EACH ACTIVITY.

FTMAX = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF LATEST
FINISH TIME FOR EACH ACTTIVITY.

EVTMIN = ARRAY OF SIZE (NNODE) FOR COMPUTED VALUES OF
EARLIEST POSSIBLE EVENT TIME FOR EACH NODE.

EVTMAX = ARRAY NOF SIZE (NNODE) FOR COMPUTED VALUES OF LATEST
POSSIBLE EVENT TIMES FOR EACH NODE.

FF = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF FREE FLOAT
FOR EACH ACTIVITY.

TF = ARRAY OF SIZE (NACT) FOR COMPUTED VALUES OF TOTAL
FLOAT FOR EACH ACTIVITY.

NW = OUTPUT CHANNEL FOR PRINTOUT OF TABLE

(SET ZERO TO SUPPRESS PRINTOUT)

RN RRENERERERENEN RN RN R RERRRRRERRRRRRERRRRRERRRRRNRRRRENERRER

DIMENSION NUS(NACT),NDS(NACT),DUR(NACT)

DIMENSION STMIN(NACT),STMAX(NACT),FTMIN(NACT),FTMAX(NACT)
DIMENSION EVTMIN (NNODE),EVIMAX (NNODE),FF(NACT),TF(NACT)
REAL LPOMIN

SET FTMIN(), STMAX(), EVTMIN() AND EVTMAX() TO 1.0

DO 10 IACT=1,NACT
FTMIN(TACT)=-1.0
STMAX (TACT)=-1.0
CONTINUE

DO 20 INODE=1,NNODE
EVTMIN (INODE)=-1.0
EVTMAX(TNODE)=-1.0
CONTINUE
EVTMIN(1)=0.0

START OF ITERATION LOOP.

CONTINUE

DO 40 TACT=1,NACT

I=NUS(IACT)

IF(EVTMIN(TI).LT.0.0) GOTO 40
FTMIN (TACT)=EVTMIN(I) + DUR(TACT)

40

60

50

140

160

150

170

100

200
180

CONTINUE
DO 50 INODE=2, NNODE
EPOMAX=0.0
DO 60 TACT=1,NACT
IF(NDS(IACT).NE.INODE) GOTO 60
IF(FTMIN(TACT) .GT.EPOMAX) EPOMAX=FTMIN(TIACT)
CONTINUE
EVTMIN(TNODE)=EPOMAX
CONTINUE
IF(EVTMIN(NNODE) .LT.0.0) GOTO 30
DO 70 TACT=1,NACT
FF(TACT)-EVTMIN(NDS(TACT)) - FTMIN(IACT)
CONTINUE
NOW CALCULATE EARLTEST START TIMES STMIN().
DO 80 IACT=1,NACT
STMIN(IACT)=EVTMIN(NUS(TACT))
CONTINUE
NOW WORK BACKWARDS FROM LAST NODE TO GET LATEST POSSIBLE
EVENT TIMES EVIMAX() AT EACH NODE.
EVTMAX (NNODE ) =EVTMIN (NNODE)
START OF ITERATION LOOP.
CONTINUE
DO 140 IACT=1,NACT
J=NDS(IACT)
IF(EVTMAX(J) .LT.0.0) GOTO 140
STMAX (TACT) =EVTMAX (J) - DUR(TACT)
CONTINUE
DO 150 K=2,NNODE
INODE=K -1
LPOMTN=1.0E06
DO 160 IACT=1,NACT
IF (NUS(IACT) .NE.INODE) GOTO 160
IF(STMAX (IACT).LT.0.0) GOTO 150
IF(STMAX(TIACT).LT.LOPMIN) LPOMIN=STMAX(TACT)
CONTINUE
EVTMAX (TNODE ) =L POMIN
CONTINUE
IF(EVTMAX(1) .LT.0.0) GOTO 130
DO 170 TACT=1,NACT
J=NDS(IACT)
TF(TACT)=FF(IACT) + EVTMAX(J) - EVIMIN(J)
FTMAX (TACT) =EVTMAX (J)

CONTINUE

IF(NW.EQ.0) RETURN

WRITE(NW,100)

FORMAT (7X,35H NUS NDS DURATN STMIN FTMIN ,
1 35H  STMAX FTMAX FF(Q) TFO) ,/)

DO 188 I=1,NACT
WRITE(NW,200)T,NUS(I),NDS(T),DUR(I),STMIN(I),FTMIN(I),
1 STMAX(I),FTMAX(I),FF(I),TF(I)

FORMAT(2X,3I4,7F9.1)

CONTINUE

END
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SUBROUTINE CURFIT(NREAD,NO,TYPE,A,B,R2,STERR)
S a2 It aesedss

THE ROUTINE READS DATA FROM A FILE AND ATTEMPTS TO FIT A
BEST LINE OR CURVE THROUGH THE DATA TO MINIMIZE THE ERROR

OF Y ON X. (I.E. LEAST SQUARES ANALYSIS)

THE EQUATION MAY BE OF THE FOLLOWING FORMS:

LINEAR Y = A + B¥X

EXPONENTIAL Y = A*EXP(B¥X) A.GT.0.0 AND ALL X .GT.0
LOGARITHMIC Y = A + B¥LN(X) ALL Y .GT.0
POWER Y = A¥X¥¥B A.GT.0.0 AND ALL X, Y .GT.O

NREAD = NO. OF INPUT DATA FILE CONTAINING RECORDS OF
X AND Y IN FORMAT (2F10.3).
NREAD=5 USUALLY IMPLIES KEYBOARD INPUT OF DATA.

NO = NUMBER OF DATA PAIRS TO BE READ.

TYPE = HOLLERITH OR STRING CONSTANT DEFINING THE TYPE
OF EQUATION TO WHICH THE DATA IS TO BE FITTED.
E.G. 3HLIN, 3HEXP, 3HLOG OR 3HPWR

NO = NUMBER OF DATA PAIRS TO BE READ.

A = COMPUTED IY-INTERCEPT.

B = COMPUTED SLOPE OF Y ON X.

R2 = COMPUTED SQUARE OF COEFFICIENT OF CORRELATION.

STERR = COMPUTED VALUE OF THE STANDARD ERROR OF ESTIMATE

OF ORDINATE Y.
NOTE THAT THE ROUTINE ALSO PROVIDES THE SUMS OF VARIABLES,
(OR THE NATURAL LOG TRANSFORMS WHERE APPROPRIATE),
SQUARES, AND CROSS-PRODUCTS IN LABELLED COMMON BLOCK:-
COMMON /SUMS/SX,SY,SXX,SYY,SXY

#%% N ,B, *¥% THE INPUT DATA FILE "NREAD" IS NOT REWOUND BY
THE ROUTINE CURFIT BEFORE PROCESSING. THIS IS TO ALLOW THE
USER TO SKIP RECORDS IN THE CALLING PROGRAM THUS RESTRICTING

THE INPUT DATA TO A SUBSET OF THE FILE.

REEEEEERRRERNNNN NN RN RN RN RN RN NN R RN NN RN R RN RN NN R RN NNINNRRNRNRR
COMMON /SUMS/SX,SY,SXX,SYY,SXY
ITYPE=0
IF(TYPE.EQ.3HLIN) ITYPE=1
IF(TYPE.EQ.3HEXP) ITYPE=2
IF(TYPE.EQ.3HLOG) ITYPE=3
IF(TYPE.EQ.3HPWR) ITYPE=4
IF(ITYPE.GT.0) GOTO 5
WRITE(6,6)TYPE
FORMAT(12H 1IN CURFIT ,A3,15H NOT RECOGNIZED)
STOP
CONTINUE

ZERO SUMMATION VARIABLES.
SX=0.0
SY=0.0
SXX=0.0
SYY=0.0
SXY=0.0

C READ AND PROCESS DATA

20

32

36
35

33

37

10
C

C

DO 10 J=1,NO
READ (NREAD,20)X,Y
FORMAT(2F 10.3)
GOTO (34,32,33,32) ITYPE
CONTINUE
IF(Y.GT.0.0) GOTO 35
WRITE(6,36)TYPE,Y
FORMAT(22H 1IN CURFIT WITH TYPE=,A3,E12.4,12H NOT ALLOWED)
STOP
CONTINUE
Y=ALOG(Y)
IF(ITYPE.EQ.2) GOTO 34
CONTINUE
IF(X.GT.0.0) GOTO 37
WRITE(6,36)TYPE,X
STOP
CONTINUE
X=ALOG(X)
CONTINUE

NOW ACCUMULATE SUMS
SX=SX + X
SY=SY + Y
SXX=SXX + X¥X
SYY=SYY + Y¥*Y
SXY=SXY + X*¥*Y
CONTINUE

NOW COMPUTE EQUATION OF LINE
AN=FLOAT (NO)
C1=AN¥*SXY - SX¥*SY
B=C1/(AN*SXX - SX*SX)
A=(SY - B*SX)/AN

GET R-SQUARED.
R2=B*C1/(AN*SYY - SY*SY)
SDYONX=SQRT((SYY — SY*SY/AN)/(AN-1.0))
STERR=SDYONX*SQRT(1.0-R2)
IF(ITYPE.EQ.1.0R.ITYPE.EQ.3) RETURN
A=EXP(A)
RETURN
END
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20
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SUBROUTINE DISTN1(VAL,FREQ,NVAL,WK,VAR,NVAR)
HERERRR RN RRR R RN RN R AR RN RN RRRRRRRINNN NN NN R RN RN
THE ROUTINE OPERATES ON STATISTICAL DATA DEFINING
THE FREQUENCY OF EVENTS WITHIN EACH OF A SERIES OF
BANDWIDTHS, TO PRODUCE AN ARRAY OF CUMMULATIVE
DISTRIBUTION VALUES OF THE VARIABLE. THIS MAY
THEN BE USED BY ROUTINE DISTN2 TO GENERATE
RANDOM VARIATES OF THE BISTRIBUTION.
VAL = ARRAY OF SIZE (NVAL) CONTAINING THE
VALUES OF THE VARIABLE DEFINING THE
(NVAL-1) BANDWIDTHS.
FREQ = ARRAY OF SIZE (NVAL) CONTAINING THE
FREQUENCY OF EVENTS IN EACH BANDWIDTH
E.G. FREQ(I) IS THE FREQUENCY OF EVENTS IN THE
BAND VAL(I) TO VAL(I+1). THE LAST ELEMENT
FREQ(NVAL) IS NOT USED.

NVAL = INTEGER NO. OF ELEMENTS IN VAL() & NO().

WK = WORK ARRAY OF SIZE (NVAL)

VAR = ARRAY OF SIZE (NVAR) CONTAINING ON EXIT
THE COMPUTED VALUES OF THE VARIABLE
CORRESPONDING TO A UNIFORMLY DISTRIBUTED
CUMMULATIVE PROBABILITY FUNCTION.

(J/NVAR) ....J=1,2....NVAR
NVAR = NO. OF POINTS REQUIRED IN THE COMPUTED

CUMMULATIVE PROB. DISTRIBUTION FUNCTION.
MUST BE SPECIFIED AT ENTRY)
E.G. FOR NVAL=5
IF VAL(5) = 2500 3000 3750 L4000 4500
AND FREQ(5)= 1.0 4.0 6.0 2.0 0.0
THEN WK(X) = 0.0 0.08 0.58 0.83 1.0
AND THE COMPUTED VALUES OF VAR(11) WOULD BE
VAR(11) = 2500 3025 3175 3325 3475
3625 3767 3867 3967 4200
4500
USES ROUTINE INTER1.
RRENRNRRRERRRERERRERERER NN ERRERRRRRRREERERRERNERRNNENRRENR
DIMENSION VAL (NVAL) ,FREQ(NVAL),WK(NVAL)
DIMENSION VAR(NVAR)
WK(1)=0.0
DO 10 IVAL=2,NVAL
WK(IVAL)=WK(TVAL-1)+FREQ(TVAL-1)#*(VAL(TVAL)=VAL(IVAL-1))
CONTINUE
DO 20 IVAL=1,NVAL
WK (IVAL) =WK (IVAL) /WK (NVAL)
CONTINUE
DO 30 IVAR=1,NVAR
P=FLOAT (IVAR-1)/FLOAT(NVAR-1)
CALL INTER1(VAL,WK,NVAL,P,VAR(IVAR))
CONTINUE
RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE DISTN2(VAR,NVAR,P,ANS)

BN NN NN RN R RN RN NR RN
THE ROUTINE OPERATES ON A CUMMULATIVE PROBABILITY
DISTRIBUTION FUNCTION DEFINED BY A SERIES OF
POINTS AND GENERATES A RANDOM VARIATE OF THE
DISTRIBUTION FOR A SPECIFIED RANDOM NUMBER
UNIFORMLY DISTRIBUTED IN THE INTERVAL 0.0 TO 1.0

VAR = ARRAY OF SIZE (NVAR) CONTAINING
VALUES OF THE VARIABLE CORRESPONDING
TO CUMMULATIVE PROBABILITIES UNIFORMLY
SPACED IN THE INTERVAL 0.0 TO 1.0.
E.G. PROB(VARIABLE.LE.VAR(J))
= (J-1)/(NVAR-1)

NVAR = NO. OF POINTS USED TO DESCRIBE THE
CUMMULATIVE PROBABILITY DISTRIBUTION
FUNCTION.

P = SPECIFIED RANDOM NUMBER IN THE
INTERVAL O0.0.LE.P.LE.1.0

ANS = COMPUTED VALUE OF VARIATE CORRES-

: PONDING TO P.
THE ARRAY VAR(NVAR) MAY BE GENERATED BY MEANS
OF ROUTINE DISTN1.
e e e T 1)
DIMENSION VAR(NVAR)
PARG=P*FLOAT(NVAR-1)
IP=IFIX (PARG)+1
FRAC=PARG+1.0-FLOAT(IP)
ANS=VAR(IP)+(VAR(IP+1)-VAR(IP))*FRAC
RETURN
END
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SUBROUTINE DYNAM(STATE,D,NSTAGE,NSTATE,ND,SIGN,DOPT,FOPT,
1 FEASBL, TRANSF , RETFUN)
FHRRHBIIERFNIN NI NI RN I INR RN NR RN
THE ROUTINE IS INTENDED FOR THE PARTIAL SOLUTION OF DYNAMIC
PROGRAMMING PROBLEMS INVOLVING THE ALLOCATION OF A LIMITED
RESOURCE AMONG A NUMBER OF COMPETING ACTIVITIES.
S/R DYNAM GENERATES TABLES CONTAINING THE OPTIMUM
ALLOCATION AND SUB-OPTIMIZED RETURN FOR A NUMBER OF DISCRETE
LEVELS OF RESOURCE AT EACH STAGE OF THE SERIAL DECISION
MAKING PROCESS. THE STAGES ARE CONSIDERED IN REVERSE ORDER.
STATE = ARRAY (NSTATE) CONTAINING THE POSSIBLE VALUES OF
DECISION VARIABLES FOR WHICH THE OPTIMUM TABLES
ARE TO BE GENERATED.
D = ARRAY (ND) CONTAINING THE DISCRETE DECISION
VARIABLES TO BE USED.

NSTAGE = NO. OF STAGES OR ACTIVITIES.

NSTATE = NO. OF LEVELS FOR WHICH THE STATE VARIABLE
IS DEFINED.

ND = NO. OF DECISION VARIABLES TO BE USED.

SIGN = SET +1.0 FOR MAXIMIZATION

-1.0 FOR MINIMIZATION.

DOPT = ARRAY (NSTAGE,NSTATE) CONTAINING ON EXIT COMPUTED
VALUES OF THE OPTIMUM DECISION VARIABLES FOR
FOR EACH STAGE AS A FUNCTION OF THE INPUT STATE
VARIABLE STATE(J)..... (1.LE.J.LE.NSTATE)

FOPT = ARRAY (NSTAGE,NSTATE) CONTAINING ON EXIT COMPUTED
VALUES OF THE OPTIMUM RETURN FROM ALL STAGES
DOWNSTREAM OF STAGE (I) (NSTAGE.GE.I.GE.0) AS
A FUNCTION OF THE INPUT STATE VARIABLE STATE(J)

FEASBL = USER DEFINED ROUTINE TO CHECK FEASIBILITY.

E.G.

S/R FEASBL(STATE,D,NSTAGE ,NSTATE,ND,I,J,K,PEN)

...IF STAGE(I), STATE(J) AND DECISION D(K) ARE

FEASTBLE SET PEN=0.0, OTHERWISE LEAVE PEN
UNCHANGED.

TRANSF = USER DEFINED ROUTINE TO DESCRIBE THE STATE
TRANSFORMATION FUNCTION.

E.G.

S/R TRANSF(STATE,D,NSTAGE,NSTATE,ND,I,J,K,JDS)
...COMPUTES THE OUTPUT STATE LEVEL JDS FOR THE CURRENTLY
DEFINED STAGE(I), INPUT STATE(J) AND DECISION D(K).

RETFUN = USER DEFINED ROUTINE TO COMPUTE RETURN

E.G.

S/R RETFUN(STATE,D,NSTAGE,NSTATE,ND,I,J,K,RTN)

...COMPUTES RETURN FROM STAGE(I) UNDER INPUT STATE (J)

AND DECISION D(K).

N.B. ROUTINES FEASBL, TRANSF AND RETFUN MUST APPEAR IN

AN EXTERNAL STATEMENT IN THE MAIN PROGRAM.

THE COMPUTED TABLES MAY BE PROCESSED BY ROUTINE DYNSOL

TO IDENTIFY THE OPTIMUM POLICY AND RETURN.
FRNNNNNANNNNNN NN NN RN NI NN RN RN

40

30

20
10

IF

DIMENSION DOPT(NSTAGE,NSTATE),FOPT(NSTAGE,NSTATE)
DIMENSION STATE(NSTATE),D(ND)

COMMON /ACC/EPS
EPS=0.001*ABS(STATE(NSTATE)-STATE(1))

DO 10 N=1,NSTAGE

DO 20 J=1,NSTATE

FMAX=-SIGN*1.0E10

DOPT(N,J)=0.0

FOPT(N,J)=0.0

DO 30 K=1,ND

STATE AND DECISION FEASIBLE SET PENALTY = 0.0
PEN=-SIGN*1,.0E10

CALL FEASBL(STATE,D,NSTAGE,NSTATE,ND,N,J,K, PEN)

GET RETURN FUNCTION

IE

IF CURRENT DECISION INFEASIBLE IGNORE DOWNSTREAM EFFECTS

CALL RETFUN(STATE,D,NSTAGE,NSTATE,ND,N,J,K,RTN)
FD=RTN + PEN

N=1 IGNORE DOWNSTREAM EFFECTS.

IF(N.EQ.1) GOTO 40

IF(ABS(PEN).GT.EPS) GOTO 40

GET DOWNSTREAM STATE

CALL TRANSF(STATE,D,NSTAGE,NSTATE,ND,N,J,K, JDS)
FD = FD + FOPT(N-1,JDS)

CONTINUE

IF(SIGN*FD.LE.SIGN*FMAX) GOTO 30

UPDATE BEST SOLUTION

FMAX=FD
DOPT(N,J)
CONTINUE
FOPT(N,J) = FMAX
CONTINUE
CONTINUE

RETURN

END

D(K)
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SUBROUTINE DYNSOL (STATE,D,NSTAGE,NSTATE,ND,SIGN,DOPT,FOPT,

TRANSF ,NPRINT,DSOL, ANS)

1
C MR RRIRNNI NI RN RN RN RIRNRNRNRRNNNRNRENNNNR

OPERATES ON THE TABLES DOPT, FOPT GENERATED BY ROUTINE
DYNAM TO OBTAIN THE OPTIMUM POLICY AND MAX. OR MIN. RETURN.

STATE =

D

NSTAGE
NSTATE

ND
SIGN

DOPT

NPRINT =

DSOL =

ANS =

ARRAY (NSTATE) CONTAINING THE POSSIBLE VALUES
OF THE VARIABLES.

= ARRAY (ND) CONTAINING THE DISCRETE DECISION

VARIABLES TO BE USED.
NO. OF STAGES OR ACTIVITIES.
NO, OF LEVELS FOR WHICH THE STATE VARIABLE
IS DEFINED.
NO. OF DECISION VARIABLES TO BE USED.
SET +1.0 FOR MAXIMIZATION
-1.0 FOR MINIMIZATION.

= ARRAY (NSTAGE,NSTATE) CONTAINING THE OPTIMUM

DECISION VARIABLE FOR EACH STAGE AS A FUNCTION
OF THE INPUT STATE VARIABLE.

ARRAY (NSTAGE,NSTATE) CONTAINING THE OPTIMUM
RETURN FROM ALL STAGES DOWNSTREAM OF THE

STAGE (I) (NSTAGE.GE.I.GE.1) AS A FUNCTION

OF THE INPUT STATE VARIABLE.

INTEGER SET ZERO TO SUPPRESS PRINTOUT OF TABLES
AND RESULT.

ARRAY (NSTAGE) CONTAINING ON EXIT THE COMPUTED
VALUES OF THE OPTIMUM POLICY.

COMPUTED MAXIMUM OR MINIMUM COST OR RETURN.

SEE COMMENT IN ROUTINE DYNAM FOR DESCRIPTION OF THE
NECESSARY USER DEFINED ROUTINES FEASBL, TRANSF AND

RETFUN.

THE CALL OF THIS ROUTINE MUST BE PRECEDED BY A CALL OF
ROUTINE DYNAM.
USES ROUTINES JSTATE, TRANSF.
ERERERNERERERERERERRNRRERRNRRRRRRRRRRRNRRRRERRRERRNENNENRNER
DIMENSION DOPT(NSTAGE,NSTATE),FOPT(NSTAGE,NSTATE)
DIMENSION STATE(NSTATE),D(ND),DSOL(NSTAGE)
COMMON /ACC/EPS

C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C FOPT =
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

aa

FMAX =

FIND MAX. OR MIN. RETURN AND CORRESPONDING DECISON AND
INITIAL STATE FOR FURTHEST UPSTREAM STAGE.
-SIGN*1,0E10

DO 10 J=

1,NSTATE

IF(SIGN*FOPT(NSTAGE,J) .LT.SIGN*FMAX) GOTO 10
FMAX =FOPT (NSTAGE, J)
DSOL(NSTAGE) = DOPT(NSTAGE,J)

STUS =

STATE(J)
JOPT = J

10 CONTINUE
ANS = FMAX
DEC=DSOL (NSTAGE)

C FIND DOWNSTREAM STATE VARIABLE.
CALL JSTATE(D,ND,DEC,K)

CALL TRANSF(STATE,D,NSTAGE,NSTATE,ND,NSTAGE , JOPT ,K,JDS)

DO 20 I1=2,NSTAGE
I=NSTAGE + 1 - I1
C LOOK UP OPTIMUM TABLE FOR ITH. STAGE.
DSOL(I) = DOPT(I,JDS)
DEC=DSOL (I)
CALL JSTATE(D,ND,DEC,K)
JUS=JDS
C GET DOWNSTREAM STATE VARIABLE SUBSCRIPT JDS

CALL TRANSF(STATE,D,NSTAGE,NSTATE,ND,I,JUS,K,JDS)

20 CONTINUE
IF(NPRINT.EQ.0) RETURN
C PRINT OUT SOLUTION AND TABLES.
NW=6
WRITE(NW,35)ANS
35 FORMAT (26H OPTIMUM COST OR RETURN=,E14.5)
DO 36 I=1,NSTAGE
WRITE(NW,37)I,DSOL(I)
3T FORMAT (9H XOoPT(,I2,3H) =,E14.5)
36 CONTINUE
DO 100 I=1,NSTAGE
WRITE(NW,101)I
101 FORMAT(//,12H AT STAGE,Tu4,/,
1 10X,5HSTATE, 10X, 4HDOPT, 10X, U4HFOPT)
DO 110 J=1,NSTATE
WRITE(NW,111)STATE(J),DOPT(I,J),FOPT(I,J)
111 FORMAT (3X,3E14.5)
110 CONTINUE
100 CONTINUE
RETURN
END
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SUBROUTINE FACTRL(I,FCTL)

HIIIH KNI KNI TN NI NN N R
THE ROUTINE CALCULATES THE FACTORIAL OF THE
INTEGER T.

I SPECIFIED INTEGER
FCTL = COMPUTED FACTORIAL OF I
NOTE: FCTL IS A REAL NUMBER
I SHOULD BE POSITIVE.
B30I 0000030000000 00 0036 30300000 00 36 3600 000000 00 0 36 3006 36 96 90 90 6 30 30 36 90 96 30 3
FCTL=1.0
CHECK FOR I=0
IF(I.EQ.0) RETURN
DO 10 J=1,I
FCTL=FCTL*FLOAT(J)
10  CONTINUE
RETURN
END

aanoaaaqQnn

Q

SUBROUTINE GAUSS(ISEED,STDEV,AVE,VAL)
B e T T
THE ROUTINE COMPUTES A NORMALLY DISTRIBUTED
RANDOM NUMBER WITH A SPECIFIED MEAN AND STANDARD
DEVIATION.
ISEED = MUST CONTAIN ON ENTRY INTEGER SEED
WHICH IS REPLACED ON EXIT BY A NEW
RANDOM SEED VALUE FOR USE IN SUB-
SEQUENT CALLS.
STDEV = STANDARD DEVIATION OF THE REQUIRED
DISTRIBUTION.
AVE = AVERAGE VALUE OF THE REQUIRED DIS-
TRIBUTION.

VAL = COMPUTED VALUE OF THE RANDOM VARIABLE
USES THE SYSTEM ROUTINES RAND1 AND RAND TO
GENERATE UNIFORMLY DISTRIBUTED RANDOM NUMBERS
IN THE INTERVAL 0.0 TO 1.0 AND PROCESS THEM
USING THE CENTRAL LIMIT THEOREM.

e T e

A=0.0

DO 10 I=1,12

CALL URAND(ISEED,P)
A=A+P
10 CONTINUE

VAL=(A-6.0)*STDEV+AVE

RETURN

END

aanoaonNnaOaaaaaaaaaanaa

SUBROUTINE GOLDEN(FUN,XMIN,DX,EPS,NW,XOPT,FMIN)

C MMHMNMMNINIINININNIININNIN NN R NN RNN NN RN NN NN RN RNNNN

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C SET AND TEST POINTS 1 AND 2

10

THE SUBROUTINE OBTAINS THE MINIMUM OF A SPECIFIED FUNCTION
OF A SINGLE VARIABLE AND THE CORRESPONDING ARGUMENT, BY
THE METHOD OF GOLDEN SECTION OR FIBONACCI SEARCH.

FUN = NAME OF SUBROUTINE SUPPLIED BY THE USER
TO DEFINE THE FUNCTION TO BE MINIMIZED
FOR EXAMPLE:
SUBROUTINE COST(X,F)
F=X*X-6.0%X+8.0

RETURN
END

XMIN = = SPECIFIED LOWER LIMIT OF SEARCH

DX = SPECIFIED INITIAL INCREMENT OF COARSE SEARCH

EPS = MINIMUM ACCEPTABLE INTERVAL OF UNCERTAINTY
FOR CONVERGENCE

NW = OUTPUT CHANNEL FOR INTERMEDIATE PRINTOUT.
SET NW=0 TO SUPPRESS ALL PRINTOUT.

XOPT = COMPUTED VALUE OF OPTIMUM ARGUMENT

FMIN = COMPUTED VALUE OF FUNCTION MINIMUM

THE ROUTINE WILL FIND ONLY THE FIRST (LOWEST) OF MORE

THAN ONE STATIONARY POINTS. MAY BE USED FOR MAXIMIZING

BY SETTING OBJECTIVE FUNCTION ZERO.

THE NAME OF THE ACTUAL SUBROUTINE CORRESPONDING TO FUN

MUST APPEAR IN AN EXTERNAL STATEMENT IN THE CALLING
PROGRAM,
R T T Y

SET GOLDEN SECTION FACTORS

FAC1=1.618033989
FAC2=FAC1-1.0

DX1=DX

DX2=FAC1*DX1

X1=XMIN

X2=X1+DX1

CALL FUN(X1,F1)

CALL FUN(X2,F2)
IF(NW.GT.0)WRITE(NW,100)X1,F1
IF(NW.GT.0)WRITE(NW,100)X2,F2
CONTINUE

C INITIAL COARSE SEARCH STARTS HERE

c IF

X4=X2+DX2

CALL FUN(X4,Fu)

IF(NW.GT.0)WRITE (NW,100)X4,F4

FUNCTION TNCREASING TERMINATE COARSE SEARCH
IF(F2.LT.F4) GOTO 20

X1=X2

X2=X4

F1=F2

F2=F4
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DX1=DX2
DX2=DX2*FAC1
GOTO 10
20 CONTINUE
START OF ITERATIONS TO REDUCE INTERVAL OF UNCERTAINTY
C FROM X1 TO X4
DX2=DX1
DX1=DX2¥FAC2
X3=X4-DX2
CALL FUN(X3,F3)
IF(NW.GT.0) WRITE(NW,100)X3,F3
40 CONTINUE
C TEST FOR CONVERGENCE
IF(DX1.LT.EPS) GOTO 90
C COMPARE TWO INSIDE POINTS X2 AND X3 TO DECIDE
C WHICH OUTSIDE SEGMENT TO DISCARD
IF(F3.GT.F2) GOTO 30
C DISCARD SEGMENT X1 TO X2
X1=X2
X2=X3
F1=F2
F2=F3
GOTO 20
30 CONTINUE
C DISCARD SEGMENT X3 TO X4
X4=X3
X3=X2
FU4=F3
F3=F2
DX2=DX1
X2=X1+DX1
DX1=FAC2*DX1
CALL FUN(X2,F2)
IF(NW.GT.0) WRITE(NW,100)X2,F2

Q

SUBROUTINE HJMIN(VAR,DVAR,NVAR,FMIN,RHO,EPS,FUN,NW,NMAX)

90

GOTO 40
CONTINUE

C SEARCH CONVERGED, SELECT BETTER OF POINTS X2 AND X3

FMIN=F2

XOPT=X2
IF(F2.LT.F3) RETURN
FMIN=F3

XOPT=X3

RETURN

100 FORMAT(10H IN GOLDEN,2F16.4)

END

DIMENSION VAR(NVAR),DVAR(NVAR)
DIMENSION X(10),DX(10),XCRIT(10)
EXTERNAL FUN

¢ SET UP CONVERGENCE CRITERIA XCRIT()
DO 10 IVAR=1,NVAR

XCRIT(IVAR)=EPS*DVAR(IVAR)
10 CONTINUE

CALL FUN(VAR,FMIN)
N=1
IF(NW.GT.0)WRITE(NW,900)FMIN,VAR

900 FORMAT(12H IN HJMIN F=,F16.4,/,(1X,5F10.3))

C FHHH NI IR NI NN R NN
¢ FINDS THE MINIMUM OF A FUNCTION OF SEVERAL VARIABLES BY
C THE HOOKE AND JEEVES PATTERN SEARCH METHOD. EMPLOYS A
C USER CREATED OBJECTIVE FUNCTION.

C VAR = ARRAY OF SIZE (NVAR) CONTAINING ON ENTRY

C THE INTITIAL APPROXIMATIONS FOR THE VARIABLES
C AND ON EXIT THE OPTIMAL SET.

C DVAR = ARRAY OF SIZE (NVAR) CONTAINING INITIAL

C VALUES OF THE VARIABLE INCREMENTS.

C NVAR = NO. OF VARIABLES (NVAR,LE.20)

C FMIN = COMPUTED VALUE OF FUNCTION MINIMUM.

c RHO = FACTOR BY WHICH VARIABLE INCREMENTS ARE

c MULTIPLIED TO REFINE SEARCH. (0.0.LT.RHO,LT.1.0)
C EPS = FRACTIONAL PART OF DVAR(N) USED AS CRITERION
C FOR CONVERGENCE.

C FUN = NAME OF USER CREATED SUBROUTINE TO COMPUTE

C THE OBJECTIVE FUNCTION, E.G.

C SUBROUTINE FUN(X,F)

C DIMENSION X(3)

C Fziieeono

C RETURN

C END

C NW OUTPUT CHANNEL FOR PRINTOUT OF

C INTERMEDIATE RESULTS, I.E. OBJECTIVE

C FUNCTION AND VARIABLES AT EACH

C BASEPOINT. SET NW=0 TO SUPPRESS

C ALL PRINTOUT

C NMAX = ON ENTRY, THE MAX. NO. OF OBJECTIVE FUNCTION
C EVALUATIONS ALLCWED, AND ON EXIT THE ACTUAL

C NUMBER USED. A DIAGNOSTIC IS PRINTED IF

C THE ALLOWABLE NUMBER IS EXCEEDED.

C THE ACTUAL PARAMETER CORRESPONDING TO FUN IN THE CALLING
C STATEMENT MUST APPEAR IN AN EXTERNAL STATEMENT IN THE

C CALLING PROGRAM.

c g T TTTT T T ET T I T TR R A S A AL A AL LA AL R
C SET UP STORAGE AND WORKING ARRAYS. THESE MUST BE

C RE-DIMENSIONED IF MORE THAN 20 VARIABLES USED.
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C START EXPLORATION WITH NO PATTERN C NO CHANGE IN POSITION VECTOR. CHECK FOR CONVERGENCE
20  CONTINUE 70  CONTINUE
TRA;g;EngURRENT VAR() TO WORKING ARRAY BO_1E0 TVAR=d., NVAR
e IF (DVAR
DO 30 IVAR=1,NVAR T . (IVAR) .GT.XCRIT(IVAR)) GOTO 130
X(IVAR)=VAR(IVAR) C ALL VARIABLES SATISFY CONVERGENCE CRI
DX (IVAR) =DVAR (IVAR) C RESET NMAX PRIOR TO EXIT CRITERTA
30 CONTINUE NMAX =N
C CARRY OUT LOCAL EXPLORATION FOR NEW BASEPOINT RETURN
NENTRY=1 130 CONTINUE
GOTO 140 C REDUCE INCREMENT SIZE
150 CONTINUE DO 80 IVAR=1,NVAR
IF(NW.GT.0)WRITE (NW,900)FN,(X(J),J=1,NVAR) DVAR(IVAR)=RHO*DVAR (IVAR)
C TEST FOR NUMBER OF FUNCTION EVALUATIONS DX(IVAR)=RHO*DX(IVAR)
IF(N.GT .NMAX) GOTO 90 80  CONTINUE
C CHECK IF NO IMPROVEMENT IN OBJECTIVE FUNCTION C RESTART SEARCH WITHOUT PATTERN
IF(FN.GE.FMIN)GOTO 70 GOTO 20
40  CONTINUE 90  CONTINUE
C CARRY OUT PATTERN MOVE IF(NW.GT.0)WRITE(NW,901)N, NMAX
DO 50 IVAR=1,NVAR 901 FORMAT(37H IN HJMIN NO. OF FUNCTION EVALUATIONS,/,
C FIRST, CORRECT SIGN OF DX() ELEMENTS TO + T4,13H GREATER THAN,TY4,8H ALLOWED)
C SPEED EXPLORATION RETURN
IF((X(TVAR) .GT.VAR(TVAR) .AND,DX(IVAR).LT.0.0).OR. c
+ (X(IVAR).LE.VAR(IVAR).AND.DX(IVAR).GE.0.0)) C PROCEDURE FOR LOCAL EXPLORATION
+ DX(IVAR)= -DX(IVAR) o
X1=VAR(IVAR) 140 CONTINUE
VAR(IVAR)=X(IVAR) DO 220 IVAR=1,NVAR
X(IVAR)=2.0*X(IVAR)-X1 X(IVAR)=X(IVAR)+DX(IVAR)
50 CONTINUE CALL FUN(X,FX)
FMIN=FN N=N+1
CALL FUN(X,FX) C TEST IF +VE MOVE SUCCESSFUL
N=N+1 IF(FX.LT.FN) GOTO 210
IF(N.GT.NMAX) GOTO 90 DX(IVAR)=-DX(TIVAR)
FN=FX X(IVAR)=X(IVAR)+2,0¥*DX(IVAR)
C CARRY OUT LOCAL EXPLORATION FOLLOWING PATTERN MOVE CALL FUN(X,FX)
NENTRY=2 N=N+1
GOTO 140 C TEST IF -VE MOVE SUCCESSFUL
160 CONTINUE IF(FX.LT.FN) GOTO 210
C OUTPUT NEW BASEPOINT IF REQUIRED X(IVAR)=X(IVAR)-DX(IVAR)
IF(NW.GT.0) WRITE(NW,900)FN,(X(J),J=1,NVAR) GOTO 220
C TEST NUMBER OF FUNCTION EVALUATIONS C IF SUCCESSFUL, UPDATE FN
IF(N.GT.NMAX) GOTO 90 210 CONTINUE
C CHECK IF NEW BASEPOINT NO IMPROVEMENT FN=FX
C TIF SO, ABANDON PATTERN 220 CONTINUE
IF (FN.GT.FMIN) GOTO 20 C RETURN TO MAIN BODY OF ROUTINE
C TEST IF POSITION VECTOR HAS CHANGED GOT0(150,160) NENTRY
DO 60 IVAR=1,NVAR END
IF(ABS(X(IVAR)-VAR(IVAR)) .GT.DVAR(IVAR)/2.0) GOTO 40
60  CONTINUE
|
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SUBROUTINE IBEAM(BM,SPAN,FY,B,D,WT,XXI)

X-X AXIS OF SELECTED SECTION
IF LARGEST SECTION NOT STRONG ENOUGH ZERO VALUES
ARE RETURNED FOR B, D, WT AND XXI.
BEEHNNNN NN NN NN NN NN NN NN
DIMENSION SECDAT(4,31)
DATA ((SECDAT(I,J),I=1,4),J=1,14)/

C OREERRERRERHINHRII IR RN
C SELECTS A STEEL BEAM SECTION FROM THE FOLLOWING

C TABLE, TO CARRY A SPECIFIED BENDING MOMENT

C RESULTING FROM A SUPERIMPOSED LOAD. THE DEAD LOAD
C B.M. IS AUTOMATICALLY INCLUDED BY THE ROUTINE.

C

C DESIGN USES A STRESS FACTOR OF 0.66.

C BM = IMPOSED BENDING MOMENT (FT.LB.)

c SPAN = SIMPLY SUPPORTED SPAN (FT.)

C FY = STEEL YIELD STRESS (P.S.I.)

C B = BREADTH (IN.) OF SELECTED SECTION

C D = DEPTH (IN.) OF SELECTED SECTION

C WT = WEIGHT PER FT (LB/FT) OF SECTION

C XXI = MOMENT OF INERTIA (IN*¥4) ABOUT

C

C

C

C

11.91, 3.97, 14.0, 88.0,
12.00, 4,00, 16.5, 105.0,
12.16, A4.01, 19.0, 130.0,
13.72, 5.00, 22.0, 197.0,
15.65, 5.50, 26.0, 298.0,
15.84, 5.53, 31.0, 372.0,
15.85, 6.99, 36.0, 446.0,
16.00, 7.00, 40.0, 516.0,

17.86, T.48, 45.0, TO4.0,
18.00, T7.50, 50.0, 801.0,
18.12, 7.53, 55.0, 890.0,
20.20, 8.24, 62.0, 1327.0,
23.71, 8.96, 68.0, 1814.0,
23.91, 8.99, 76.0, 2096.0/
DATA ((SECDAT(I,J),I=1,4),J=15,30)/
24,09, 9.02, 84,0, 2364.0,
26.69, 9.96, 84,1, 2825.0,
26.91, 9.99, 94.0, 3267.0,
29,64, 10.46, 99.0, 3989.0,
29.82, 10.48, 108.0, 4461.0,
30,00, 10.50, 116.0, 4919.0,
32.86, 11.48, 118.0, 5886.0,
33.10, 11.51, 130.0, 6699.0,
35.55, 11.95, 135.0, 7796.0,
36.00, 12.00, 160.0, 9739.0,
36.32, 12.07, 182.0,11282.0,
36.48, 12.12, 194.0,12103.0,
35.88, 16.48, 230.0,14988.0,
36.24, 16.56, 260.0,17234.0,
36.50, 16.60, 280.0,18819.0,
36.72, 16.66, 300.0,20290.0/
NO=30
X1=SPAN*SPAN/8.0
DLBM=SECDAT (3, NO) *¥X1

R I e

S R R

e A e -

10

20

30
40

Z=(BM+DLBM) /(0.66*FY)
7=72%12.0
ZMAX=SECDAT(4,NO)*2,0/SECDAT(1,NO)
IF(Z.LE.ZMAX) GOTO 10
B=0.0

D=0.0

WT=0.0

XXI=0.0

RETURN

MIN=1

MAX=NO

NEXT=(MIN+MAX)/2
DLBM=SECDAT (3, NEXT)¥X 1
Z=(BM+DLBM)/ (0.66%*FY)
7=7%12.0

ZNEXT=SECDAT (4,NEXT)*2,0/SECDAT(1,NEXT)
IF(Z.LE.ZNEXT)GOTO 30
MIN=NEXT

GOTO 40

MAX=NEXT

IF( (MAX-MIN) .GT.1) GOTO 20
B=SECDAT (2,MAX)
D=SECDAT(1,MAX)

WT=SECDAT (3,MAX)
XXI=SECDAT (4 ,MAX)

RETURN

END
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SUBROUTINE INTER1(F,X,NPTS,XSPEC,FXSPEC)

IF XSPEC NOT IN RANGE FUNCTION IS ASSUMED EXTENDED
INDEFINITELY WITH CONSTANT VALUES F(1) OR F(NPTS).
FUNCTION MUST BE UNIMODAL IN X.
RRRRRERRREERRRRNRNRRRRRRRNRNRRRERRRRRRRERRRERRRRREEER
DIMENSION F(NPTS) ,X(NPTS)
I=0
IF(XSPEC.LE.X(1)) I=1
IF (XSPEC.GE.X(NPTS)) I=NPTS
IF(I.EQ.0)GO TO 10
FXSPEC=F(I)
RETURN
10 MIN=1
MAX=NPTS
40 NEXT=(MIN+MAX)/2
IF(XSPEC.GE.X(NEXT))MIN=NEXT
IF(XSPEC.LT.X(NEXT))MAX =NEXT
IF((MAX-MIN).GT.1)GO TO 40
XFAC= (XSPEC-X(MIN))/ (X(MIN+1)-X(MIN))
FXSPEC=F (MIN)+XFAC* (F(MIN+1)-F(MIN))
RETURN
END

C HRBRBRIRNRRNAR RN AR R RN RN RN RN RRRRR RN RN NN RN R R NN NNR

C  FINDS BY LINEAR INTERPOLATION THE VALUE OF A FUNCTION
C  CORRESPONDING TO A SPECIFIED ARGUMENT. FUNCTION IS
C DEFINED BY A SET OF PAIRS OF VALUES.

c F = ARRAY OF SIZE NPTS HOLDING VALUES OF

c FUNCTION

C X = ARRAY OF SIZE NPTS HOLDING CORRESPONDING
C ARGUMENTS

C NPTS = NO. OF POINTS DESCRIBING FUNCTION

c XSPEC = SPECIFIED ARGUMENT

C FXSPEC = COMPUTED VALUE OF FUNCTION AT XSPEC

C

C

C

C

SUBROUTINE JSTATE(STATE,NST,ST,JST)

REERRHERNE NN NN R RN RN RN RN R RN NNE R NN RNRNNNRRRNN R RNNN

C
C THE ROUTINE DETERMINES WHICH ELEMENT OF AN ARRAY IS
C REPRESENTED BY A PSECIFIC VALUE. THE TOLERANCE IS
C PASSED THROUGH A LABELLED COMMON BLOCK
C COMMON /ACC/EPS
C
C STATE = ARRAY (NST) CONTAINING THE ARRAY TO BE TESTED.
C NST = NO. OF ELEMENTS IN STATE()
C ST = SPECIFIED VALUE TO BE MATCHED.
c JST = COMPUTED INTEGER VALUE OF LOWEST ELEMENT OF
C STATE() = ST +/- EPS.
C O REEERERBIRINENININ IR RN IR IR R
DIMENSION STATE(NST)
COMMON /ACC/EPS
JST=0
DO 10 J=1,NST
DIFF=ABS(STATE(J)-ST)
IF(DIFF.GT.EPS) GOTO 10
JST=J
10 CONTINUE
RETURN
END
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C
C
C
C
C
C
C
c
C
C
C

101

502

602
503

603

604

SUBROUTINE LPDATA(N,M,A,B,C,ITAB,NTAPE)

Y E T T e
ROUTINE TO INPUT DATA FOR USE IN ROUTINE SIMPLEX

N = NO. OF VARIABLES (REAL, SLACK,AND ARTIFICIAL)
M = NO. OF EQUALITY CONSTRAINTS

A = ARRAY (M,N) OF STRUCTURAL COEFFS.

B = ARRAY (M) OF STIPULATIONS

C = ARRAY (N) OF COST COEFFS.

ITAB = LOGICAL VARIABLE SET .TRUE. TO PRINT TABLES
NTAPE = NO. OF INPUT PERIPHERAL CHANNEL

ONLY N,M,AND NTAPE MUST BE DEFINED PRIOR TO CALL OF .LPDATA.
RN NN NN NN 06060036 063636 36 3636 6 36 3636 36 3

DIMENSION A(M,N),B(M),C(N)
LOGICAL ITAB
WRITE(6,101)
FORMAT(32H ARE TABLES REQUIRED?...YES/NO)
READ (NTAPE,502) ANS
FORMAT (A1)
ITAB=.FALSE.
IF (ANS.EQ. 1HY) ITAB=.TRUE.
WRITE(6,602)N
FORMAT(17H SUPPLY C(1),I =1,I2,9H...7F10.5,/)
READ (NTAPE,503) (C(I),I=1,N)
FORMAT (7F10.5)
WRITE(6,603)N
FORMAT(19H SUPPLY A(I,J),J= 1,12,184 AND B(J)...TF10.5)
DO 2 I=1,M
WRITE(6,604)T
FORMAT (10H FOR EQN.(,I2,1H),/)
READ(NTAPE,503) (A(T,J),J=1,N),B(I)
CONTINUE
RETURN
END

Gaaoaaaaaanaaq

[sNeoNeoNeoNeNoNeNeoNe Nel

SUBROUTINE MOFICR(B,D,AST,FC,FY,XMOFI)

T e R e R 22 2 L it
THE SUBROUTINE FINDS THE MOMENT OF INERTIA ABOUT THE

NEUTRAL AXIS OF A CRACKED TRANSFORMED SECTION OF
‘A SINGLY REINFORCED RECTANGULAR BEAM.

B = SECTION BREADTH (IN)

D = EFFECTIVE DEPTH (IN)

AST = AREA OF TENSILE STEEL (SQ.IN)

FC = CONCRETE COMPRESSIVE STRENGTH (PSI)
FY = YIELD STRENGTH OF STEEL (PSI)

XMOFI = COMPUTED VALUE OF MOMENT OF

FRERRRNNERNEINN NN NRNNENNNNNNE RN NNNNNNNR

INERTIA (IN¥*%*4)

REAL N

CALL NADPTH(B,D,AST,FC,FY,X)
N=29000000.0/(57000.0*SQRT(FC))
XMOF I=B*X*X/3.0 + N*AST*(D-X)*¥2,0
RETURN

END

#% %%

THE
REC

SUBROUTINE NADPTH(B,D,AST,FC,FY,X)

BRI RN RN
ROUTINE FINDS THE NEUTRAL AXIS DEPTH IN A

TANGULAR SINGLY REINFORCED CONCRETE SECTION,

B = SECTION BREADTH (IN)

D = EFFECTIVE DEPTH (IN)

AST = AREA OF TENSILE STEEL (SQ.IN)

FC = CONCRETE COMPRESSIVE STRENGTH (PSI)

FY = YIELD STRENGTH OF STEEL (PSI)

X = COMPUTED NEUTRAL AXIS DEPTH (IN)
RRBRURRENNRNRNERRNRNRNERRRERRNRRRNRRRNENNRNNNNNNX%

REAL N
EC=57000.0%3SQRT(FC)

ES=29000000.0

N=ES/EC

A1=B/2.0

B1=N#*AST

C1=-N*AST*D

X=(-B1+SQRT(B1*B1-U4 ,0*A1%C1))/(2.0%A1)
RETURN

END
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C FRRHRENNNNIEIINNNNIINNNIRII IR N IR NNNNNNNR

C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

1

2

6

6
6

6

SUBROUTINE SIMPLEX(N,M,A,B,C,XOPT,ZMIN,ITAB,NBASIC,SIMCO)

SOLVES (MINIMIZES) A LINEAR PROGRAMMING PROBLEM BY THE

STANDARD SIMPLEX METHOD. DATA MUST BE PRESENTED IN THE

FORM OF EQUALITY CONSTRAINTS COMPLETE WITH ANY SLACK, SURPLUS,

OR ARTIFICIAL VARIABLES. THE STIPULATIONS SHOULD BE POSITIVE,

DOES NOT CHECK FOR INFEASIBLE OR DEGENERATE CASES.

INFEASIBLE CASES ARE INDICATED BY NON-ZERO VALUES FOR

ONE OR MORE ARTIFICIAL VARIABLES IN THE OPTIMAL SOLUTION.

NO. OF VARIABLES (REAL,SLACK AND ARTIFICIAL)

NO. OF EQUALITY CONSTRAINTS

ARRAY (M,N) OF STRUCTURAL COEFFS.

ARRAY (M) OF STIPULATIONS (POSITIVE)

ARRAY (N) OF COST COEFFS. MUST INCLUDE

ZEROS FOR SLACK VARIABLES AND LARGE VALUES FOR

ARTIFICIAL VARIABLES

ARRAY (N) OF COMPUTED OPTIMAL VALUES

COMPUTED MINIMUM OBJECTIVE FUNCTION

LOGICAL VARIABLE SET .TRUE. IF TABLES TO BE

PRINTED

NBASIC = WORK STORE ARRAY (M). CONTAINS THE INTEGERS
DEFINING THE CURRENT BASIC SOLUTION

SIMCO = WORK STORE ARRAY (N). CONTAINS THE SIMPLEX
COEFFS,

QwWe =
nwaunn

XOPT
ZMIN
ITAB

EXAMPLE:
DIMENSION A(225),B(15),C(15),X(15),NBASIC(15),SIMCO(15)
NTAPE=5
REWIND NTAPE
WRITE(6,10)

0 FORMAT(* SUPPLY N,M...2I5%)

READ (NTAPE,20)N,M

0 FORMAT(215)

CALL LPDATA(N,M,A,B,C,ITAB,NTAPE)
CALL SIMPLEX(N,M,A,B,C,X,ANS,ITAB,NBASIC,SIMCO)
WRITE(6,607)

07 FORMAT(1X,8HVARIABLE,4X,5HVALUE)

DO 6 I=1,N
WRITE(6,608)I,X(T)

08  FORMAT(1X,2HX(,I3,4H) = ,F12.3)
CONTINUE
WRITE(6,610)ANS

10 FORMAT(1X, 10X, 30HOBJECTIVE FUNCTION VALUE IS ,F15.5)
END

RRRNNENIENNRNNNIENRNNINN NN NIRRT 0363630902090 26 3696 90 36 36 30 36 36 90 26 36 ¢

(@]

PN

Qo
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DIMENSION A(M,N),B(M),C(N),NBASIC(M),SIMCO(N)
DIMENSION XOPT(N)
INTEGER PIVROW,PIVCOL
LOGICAL ITAB
IF(ITAB) CALL TAB1(N,M,A,B,C)
SET NBASIC TO ZERO
DO 1 J=1,M
NBASIC(J)=0
CONTINUE
CHECK EACH COLUMN OF THE A( ) MATRIX AND LOOK FOR
SINGLE ELEMENTS WITH VALUES OF +1.0
DO 6 ICOL=1,N
SET COUNTER FOR NUMBER OF POSSIBLE UNIT ELEMENTS.
NUNIT=0
DO 2 JROW=1,M
IF (A(JROW,ICOL) .EQ.0.0) GO TO 2
IF ELEMENT NON ZERO BUT NOT +1.0 REJECT THIS COLUMN.
IF (A(JROW,ICOL) .NE.1.0) GO TO 6
POSSIBLE UNIT ELEMENT FOUND.
NUNIT=NUNIT+1
JUNIT=JROW
CONTINUE
TEST IF ONLY ONE POSSIBLE UNIT ELEMENT FOUND.
IF(NUNIT.EQ.1) NBASIC(JUNIT)=ICOL
CONTINUE
TEST IF BASIC FEASIBLE SOLUTION FOUND.
DO 7 I=1,M
IF (NBASIC(I).GT.0) GO TO 7
WRITE(6,102)

102 FORMAT (3X,*INITIAL BASIC FEASIBLE SOLN. NOT FOUND¥)

7
C

8
10

C
C

12

14

C

RETURN
CONTINUE
GET .Z. FOR INITIAL B.F.S.
7=0.0
DO 8 1I=1,M
NVAR=NBASIC(I)
Z2=Z+B(TI)*C(NVAR)
CONTINUE
NTABLE=1
CONTINUE
SCMIN=0.0
FIND .ZK. FOR NON-BASIC VARIABLES
AND CALCULATE SIMPLEX COEFFS. (CK-ZK)
DO 16 K=1,N
DO 12 I=1,M
IF(K.EQ.NBASIC(I)) GOTO 16
CONTINUE
SUM=0.0
DO 14 I=1,M
J=NBASIC(I)
SUM=SUM + C(J)*A(I,K)
CONTINUE
SIMCO(K)=C(K)-SUM
FIND LOWEST SIMPLEX COEFF. FOR MINIMIZATION
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C  AND NOTE PIVOT COLUMN
IF(SIMCO(K) .GE.SCMIN) GOTO 16
SCMIN=SIMCO(K)
PIVCOL=K
16 CONTINUE
SET SIMPLEX COEFFS. = 0.0 FOR BASIC VARIABLES
DO 18 I=1,M
NVAR=NBASIC(TI)
SIMCO(NVAR)=0.0
18 CONTINUE
C CHECK FOR CONVERGENCE ... NO NEGATIVE SIMPLEX COEFFS.
IF(SCMIN.GE.0.0) GOTO 38
NTABLE=NTABLE+1
20 CONTINUE
C LOOK FOR MINIMUM THETA = B(I)/A(I,K)
THETMN=1.0E+10
DO 26 I=1,M
IF(A(T,PIVCOL) .LE.0.0) GOTO 26
22 CONTINUE
THETA=B(I)/A(T,PIVCOL)
IF(THETA.GT.THETMN) GOTO 26
24 CONTINUE
C NOTE PIVOT ROW ... I TH VARIABLE LEAVES BASIS
PIVROW=I
THETMN=THETA
26 CONTINUE
C  CHECK FOR UNBOUNDED SOLUTION
IF(THETMN.LT.1.0E+10) GOTO 27
WRITE(6,100)
100  FORMAT(* UNBOUNDED SOLUTION*)
RETURN
2T CONTINUE
C  UPDATE BASIC FEASIBLE SOLUTION
NBASIC(PIVROW)=PIVCOL
C  REDUCE PIVOT ELEMENT A(PIVROW,PIVCOL) TO 1.0
C  AND ELIMINATE ALL OTHER ELEMENTS IN PIVOT COLUMN
C  BY ROW OPERATIONS
DIV=A(PIVROW,PIVCOL)
DO 28 I=1,N
A(PIVROW,I)=A(PIVROW,I)/DIV
28 CONTINUE
B(PIVROW)=B(PIVROW) /DIV
IF(ITAB) CALL TAB2(SIMCO,SCMIN,NTABLE,N,Z)
DO 36 I=1,M
C OMIT PIVOT ROW
IF(I.EQ.PIVROW) GOTO 34
AIK=A(I,PIVCOL)
DO 32 J=1,N
A(T,J)=A(I,J) - A(PIVROW,J)¥*AIK
32 CONTINUE
B(I)=B(I) - B(PIVROW)*AIK
34 CONTINUE
IF(ITAB) CALL TAB3(N,M,NBASIC,A,B,I)

40

y2

CONTINUE
UPDATE OBJECTIVE FUNCTION

Z=Z+THETMN*SCMIN

GOTO 10

CONTINUE

IF(ITAB) CALL TAB2(SIMCO,SCMIN,NTABLE,N,Z)
ASSIGN OPTIMAL POLICY TO XOPT()

DO 40 I=1,N

XOPT(I)=0.0

CONTINUE

DO 42 J=1,M

I=NBASIC(J)

XOPT(I)=B(J)

CONTINUE

IMIN=Z

RETURN

END
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SUBROUTINE SLABBM(SPAN,NO,WDL,WLL ,BMMAX)

HRRRRNN NI RN R NI NNNRRNRNR RN NN RNNRRRRRRRNRNRRNRENRR

THE ROUTINE DETERMINES THE MAXIMUM +VE OR -VE BENDING
BENDING MOMENT IN A ONE-WAY SPANNING SLAB FOR A SERIES

(ONE OR MORE) OF EQUAL CONTINUOUS SPANS.

SPAN = SPECIFIED SPAN

NO = NO. OF EQUAL SPANS

WDL = SPEC. UNIFORMLY DISTRIBUTED DEAD LOAD
WLL = SPEC. UNIFORMLY DISTRIBUTED LIVE LOAD

BMMAX = COMPUTED MAXIMUM BENDING MOMENT

UNITS MUST BE CONSISTENT THROUGHOUT, E.G. IF SPAN IS
IN FEET AND WDL, WLL ARE IN LB/FT THEN BMMAX IS IN

FT-LB.

USER SHOULD PROVIDE APPROPRIATE LOAD FACTORS IN THE

CALLING STATEMENT IF REQUIRED.

NN NN NN RN NN RN RN RN RRR RN RRRRRRRRRNER

DIMENSION BMCDL(5),BMCLL(5)
DATA BMCDL/0.125,0.125,0,100,0.107,0.105/
DATA BMCLL/0.125,0.125,0.117,0.116,0.116/
N=NO
COEFFS. FOR MORE THAN 5 SPANS ARE SAME AS FOR NO=5
IF(N.GT.5) N=5
BMMAX=SPAN*SPAN* (BMCDL (N ) *WDL + BMCLL(N)*WLL)
RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

uous.
AND LIVE

WLL

SUBROUTINE SLAB1W(SPAN,NO,WLL,FC,FY,RHO,DO,AST)

HRNNNNNE NN NN N RN NN RN RN R RN NN RN RN NN NN RN RN Ry
THE ROUTINE DESIGNS BY ULTIMATE LOAD THEORY A ONE-WAY
SPANNING SINGLY REINFORCED CONCRETE SLAB FOR A SERIES
(ONE OR MORE) OF EQUAL SPANS. END SUPPORTS ARE
SIMPLY SUPPORTED; INTERNAL SUPPORTS ARE FULLY CONTIN-

SPAN
NO

FC
EY
RHO

DO
AST

SLAB DEPTH
1 INCH COVER.

USES ROUTINES SLABBM, SRSECT AND ASTBAL.
D S T T LTI T T T T R R R AR R R T 2 a2 L
ESTIMATE DEAD LOAD
WDL=0.5*SPAN*SQRT(WLL)
10 CONTINUE

CALL SLABBM(SPAN,NO,1.H*WDL,1.7*WLL,BMMAX)
ALLOW FOR CAPACITY REDUCTION FACTOR

RM=BMMAX/0.9
CALL SRSECT(RM*12.0,FC,FY,RHO,12.0,D,AST)
ESTIMATE BAR DIAMETER ASSUMING SPACING = D AND ROUNDING
UP TO NEAREST 1/8 INCH
DIA=SQRT(AST*D*4,0/(12.0%3,14))
DIA=FLOAT(IFIX(DIA*8.0)+1)/8.0
ASSUME 1 INCH COVER
DO=D + 0.5%DIA + 1.0

ROUND UP TO NEAREST 1/4 INCH
DO=FLOAT(IFIX(DO*4,0)+1)/4.0
CHECK MINIMUM SLAB THICKNESS

IF(DO.LT.3.5) D0=3.5
WDL2=D0*12.5

IF(ABS(WDL2-WDL)/WDL.LT.0.001) GOTO 20

WDL=WDL2

20

GOTO 10

LOAD FACTORS OF 1.4 AND 1.7 ARE USED FOR DEAD
LOAD RESPECTIVELY.

SPECIFIED SPAN (FEET)

NUMBER OF EQUAL CONTINUOUS SPANS

SPEC. UNIFORMLY DISTRIBUTED LIVE LOAD
(LB/SQ.FT)

CONCRETE COMPRESSIVE STRENGTH (PSI)
YIELD STRENGTH INSTEEL (PSI)

SPECIFIED STEEL RATIO AST/(B*D)

NOT GREATER THAN 0.75%RHOB

COMPUTED OVERALL SLAB THICKNESS (INCHES)
COMPUTED STEEL AREA (SQ.IN.) PER FOOT.
IS ROUNDED UP TO NEAREST 0.25 INCH WITH

CONTINUE

RETURN
END
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SUBROUTINE SRMULT(B,D,AST,FC,FY,RM)

C FREENNNBRMREENNNNNRNIENI NN N NN NN RNNNNR

C
C

Qaaaggaaga

THE ROUTINE DETERMINES THE RESISTANCE MOMENT OF A
SINGLY REINFORCED RECTANGULAR CONCRETE SECTION BY
ULTIMATE LOAD THEORY.

B = SECTION BREADTH (IN)

D = EFFECTIVE DEPTH (IN)

AST = AREA OF TENSILE STEEL (SQ.IN)

FC = CONCRETE COMPRESSIVE STRENGTH (PSI)
FY = YIELD STRENGTH OF STEEL (PSI)

RM = COMPUTED VALUE OF RESISTANCE MOMENT

IN INCH-LB.

C USES ROUTINE ASTBAL.

C BEERRWENERRRERNERRENNNENNNRERN RN RN NER RN NN NN

10

CALL ASTBAL(FC,FY,BETA1,RHOB)
RHO=AST/ (B*D)

IF(RHO.GT.RHOB) GOTO 10
A=AST*FY/(0,.85%B*FC)
RM=AST*FY*(D-A/2.0)

RETURN

CONTINUE
X=AST*87000.0/(0.85*BETA1#B*FC)
C=-X/2.0 + SQRT(0.25%X¥X + X*D)
RM=0.85*FC*B¥BETA1#C* (D-0.5*BETA1*C)
RETURN

END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C

SUBROUTINE SRSECT(BM,FC,FY,RHO,B,D,AST)
L E T E T T
THE ROUTINE DETERMINES THE PROPORTIONS OF A RECTANGULAR,
SINGLY REINFORCED CONCRETE SECTION FOR A SPECIFIED
BENDING MOMENT. THE SPECIFIED STEEL RATIO RHO MAY

NOT EXCEED
BM
FC
FY
RHO

B =

D =
AST =

0.75*RHOB.

SPECIFIED BENDING MOMENT (INCH-LB)
CONCRETE COMPRESSIVE STRENGTH (PSI)
YIELD STRENGTH IN STEEL (PSI)

SPEC. STEEL RATIO (MAY BE OVERWRITTEN
BY THE ROUTINE)

SPECIFIED SECTION BREADTH (INCHES);
IF ZERO ON ENTRY, THE SECTION IS PROPORTIONED
WITH B/D = 0.4, AND B IS OVERWRITTEN.
COMPUTED EFFECTIVE DEPTH (INCH)
COMPUTED TENSION STEEL AREA (SQ.IN.)

USES ROUTINE ASTBAL.
FHRERRRERRERERRRREERNRENRERRRERRERRRRERRRERRRERRRRERERENNNNEE
REAL MOD
CALL ASTBAL(FC,FY,BETA1, RHOB)
CHECK FOR MAXIMUM STEEL RATIO
RHOMAX=0. 75*RHOB
IF(RHO.GT.RHOMAX) RHO=RHOMAX
Q=RHO*FY/FC
MOD=FC*Q¥*(1.0 - 0.59%Q)
TEST IF B SPECIFIED

IF(B.GT

.0.0) GOTO 10

D=(2.5*BM/MOD) *##(1,0/3.0)

B=0.U4%D
GOTO 20

10 CONTINUE

D=SQRT(BM/ (B¥MOD) )
20 CONTINUE
COMPUTE STEEL AREA
AST=RHO*B¥*D

RETURN
END
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SUBROUTINE TAB1(N,M,A,B,C)
***************************************************i********
ROUTINES TAB1, TAB2 AND TAB3 ARE INTENDED FOR USE WITH
ROUTINE SIMPLEX TO OUTPUT THE TABLEAUX AT EACH ITERATION
OF THE SIMPLEX PROCEDURE.
REFERENCE SHOULD BE MADE TO THE LISTING OF SIMPLEX TO
DETERMINE THE SIGNIFICANCE OF THE VARIABLES USED.
************************************************************
DIMENSION A(M,N),B(M),C(N)
WRITE(6,601)
601 FORMAT(///,20H THE INITIAL TABLEAU)
WRITE(6,602)(I,I=1,N)
602  FORMAT(16X,5I10)
WRITE(6,603)(C(I),I=1,N)
603 FORMAT(10H OBJ.FNCTN,10X,5E10.4)

DO 10 I=1,M
WRITE(6,604)B(1),(A(T,J),d=1,N)
604 FORMAT (10X,6E10.4,/(20X,5E10.4))
10 CONTINUE (
RETURN
END

SUBROUTINE TAB2(SIMCO,SCMIN,NTABLE,N,Z)
DIMENSION SIMCO(N)
WRITE(5,601)(SIMCO(J),J=1,N)

601 FORMAT(10H SIMPLEX C,10X,5E10.4)
WRITE(6,602)Z

602  FORMAT(1X,10X,30HOBJECTIVE FUNCTION VALUE IS ,F15.5)
IF(SCMIN.GE.0.0) RETURN
WRITE(6,603)NTABLE

603 FORMAT(//,12H TABLEAU NO.,I6)
WRITE(6,604)(I,I=1,N)

604  FORMAT(10X,6HSTIP ,5I10)
RETURN
END

SUBROUTINE TAB3(N,M,NBASIC,A,B,I)
DIMENSION NBASIC(M) ,A(M,N),B(M) 1
WRITE(6,601)NBASIC(I),B(I),(A(T,J),d=1,N)
601 FORMAT (4H X(,I2,4H) ,6E10.4)
RETURN
END

SUBROUTINE TGSORT(A,ITAG,N,M)

B 3E 3006363036362 00 00 3030 300000 00 00 00 00 36 06 30 00 00 00 0 0 000000 00 6 0000 00 06 36 0000 0 0 MO0 NN
THE ROUTINE PROCESSES AN ARRAY OF VALUES A(N) AND
GENERATES AN INTEGER ARRAY ITAG(N) SUCH THAT THE
SEQUENCE A(ITAG(1)), A(ITAG(2)), A(ITAG(3))...
IS IN ASCENDING OR DESCENDING ORDER

A = ARRAY OF SIZE (N) CONTAINING ON

ENTRY THE VALUES TO BE SORTED.
A(N) IS UNCHANGED ON EXIT.

ITAG = INTEGER ARRAY OF SIZE (N) CONTAINING
ON EXIT THE COMPUTED VALUES OF THE
TAGS (SUBSCRIPTS) IN ORDER.

NUMBER OF ELEMENTS TO BE PROCESSED.

+VE FOR DESCENDING ORDER

-VE FOR ASCENDING ORDER.,

FOR EXAMPLE IF A(8) CONTAINS THE VALUES

2.1 9.2 5.3 3.7 4.2 11.0 6.7 12.5

THE ARRAY ITAG(8) WILL BE ASSIGNED THE VALUES
1 L 5
***i**l********!***2****1****!3*!********!***&i****
DIMENSTION A(N),ITAG(N)
LOGICAL TIME1
N1=N+1
N2=N1/2
DO 10 J=1,N
ITAG(J)=-1
10 CONTINUE
DO 11 K=1,N2
TIME1=,TRUE.
DO 12 J=1,N
IF(ITAG(J) .GT.0) GOTO 12
IF(.NOT.TIME1) GOTO 14
TIME1=,FALSE.
SMALL=A(J)
BIG=A(J)
JS=J
JB=J
GOTO 12
14 IF(A(J).GT.SMALL) GOTO 13
SMALL=A(J)
JS=J
13 IF(A(J).LE.BIG) GOTO 12
BIG=A(J)
JB=J
12 CONTINUE
L=N1-K
ITAG(JB)=IABS(ITAG(JB))
ITAG(JS)=IABS(ITAG(JS))
IF(M.LT.0) GOTO 15
ITAG(L)=ISIGN(JS,ITAG(L))
ITAG(K)=ISIGN(JB,ITAG(K))
GOTO 11
15 ITAG(L)=ISIGN(JB,ITAG(L))
ITAG(K)=ISIGN(JS,ITAG(K))
11 CONTINUE
RETURN
END

N
M
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SUBROUTINE TREE(NA,NB,C,NUS,COPT,I,J,CJ,N,L)

RHRRNERNNNNRNNNENENBNNRNNNNRNNEENNRNRRNNNN NN NRNNNRNENENENNNRR
THE ROUTINE OPERATES ON A NETWORK COMPRISING A COMPLETE
PLANAR GRAPH OF DIRECTED OR UNDIRECTED LINKS THE COSTS

OF WHICH ARE SPECIFIED.

FOR ANY SPECIFIED ORIGIN (OR HOME) NODE THE ROUTINE

FINDS THE SHORTEST (I.E. MINIMUM COST) CHAIN (OR DIRECTED
PATH) TO ALL OR A SUBSET OF THE OTHER NODES.

FOR EACH NODE THE OPTIMAL UPSTREAM NODE IS ALSO FOUND

THUS ENABLING THE INTERMEDIATE NODES IN THE CHAIN TO BE

TRACED.

NA = SPECIFIED ORIGIN OR HOME NODE.

NB = SPECIFIED DESTINATION NODE. SET ZERO IF ALL
NODES ARE TO BE PROCESSED.

C = ARRAY (N,N) OF DIRECTED LINK COSTS.

NUS = ARRAY (N) OF COMPUTED UPSTREAM OPTIMAL NODES.

COPT = ARRAY (N) OF COMPUTED MINIMUM COST CHAINS.

I =)

J = ) WORK ARRAYS OF SIZE (L)

cJ =)

N = NO. OF NODES.

L = NO. OF LINKS.

IT IS ASSUMED THAT ONLY ONE LINK BETWEEN ANY PAIR OF NODES
MAY EXIST BUT THAT THE COST IN EACH DIRECTION MAY DIFFER.
WHERE NO DIRECTED LINK EXISTS THE COST SHOULD BE SET
*Ig*Eszgi***************************************************
DIMENSION C(N,N),NUS(N),COPT(N),I(L),J(L),CJd(L)
M=0
BIGM=1.0E10
SET ARRAYS TO LARGE VALUE TO INDICATE NON-PROCESSED
STATE.
DO 10 JJ=1,L
CJ(JJ)=BIGM
CONTINUE
DO 12 JJ=1,N
COPT(JJ)=BIGM
CONTINUE
COPT(NA)=0.0
NUS(NA)=0
K1=NA
MAIN LOOP STARTS HERE.
CONTINUE
DO 20 K=1,N
SKIP IF NO DIRECTED LINK EXISTS.
IF(C(K1,K) .LE.0.0) GOTO 20
SKIP IF DOWNSTREAM NODE ALREADY MADE PERMANENT.
IF(COPT(K) .LT.BIGM) GOTO 20
M=M+1
I(M)=K1
J(M) =K
CJ(M)=COPT(K1) + C(K1,K)
CONTINUE
CONTINUE

c

30

SCAN WORK ARRAY FOR MINIMUM COST NODE.
SMALL=BIGM
DO 30 K=1,L
IF(CJ(X) .GE.SMALL) GOTO 30
SMALL=CJ (K)
IMIN=I(K)
JMIN=J(K)
KMIN=K
CONTINUE
IF (SMALL.EQ.BIGM) RETURN
DELETE LINK (BOTH DIRECTIONS) FROM FURTHER CONSIDERATION.
C(K1,JMIN)==1.0
C(JMIN,K1)==1.0
NUS(JMIN)=IMIN
COPT (JMIN)=SMALL
DELETE CURRENT COST FROM FURTHER SCANNING SEARCHES.
CJ (KMIN)=BIGM
DELETE ALL OTHER LINKS LEADING TO THIS NODE FROM
FURTHER CONSIDERATION.
DO 40 K=1,L
IF(J(K) .NE.JMIN) GOTO 40
CJ(K)=BIGM
CONTINUE
TERMINATE IF A SPECIFIED DESTINATION NODE HAS BEEN REACHED.
IF(JMIN.EQ.NB) RETURN
K1=JMIN
IF(M.LT.L) GOTO 15
ALL CHAINS COMPUTED...CONTINUE SCANNING.
GOTO 25
END
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SUBROUTINE URAND(IY,P)

P Y S Tt s s s a2 TS 2T 2222242222222 22222 22 24 24 24

GENERATES A UNIFORMLY DISTRIBUTED RANDOM NUMBER IN THE
INTERVAL 0.0 TO 1.0. ALSO RE-GENERATES A NEW SEED
VALUE FOR SUBSEQUENT CALL.

IY = INTEGER CONTAINING ON ENTRY AN ARBITRARY
SEED VALUE. A NEW RANDOM VALUE IS CONTAINED
ON EXIT.

P = COMPUTED RANDOM VALUE UNIFORMLY DISTRIBUTED

IN THE INTERVAL 0.0 .LE. P .LE. 1.0
BASED ON FORSYTHE, MALCOLM AND MOLER (1977) AFTER
D.A.KNUTH (1969).

BN NI 2620 3636060630 36 30 96 30 96 96 30 30 36 36 36 30 30 30 3 36 36 30 36 30 36 30 36 36 30 96 30 96 6 3 36 3 3N

DOUBLE PRECISION HALFM,DATAN,DSQRT
DATA M2/0/, ITWO/2/
IF(M2.NE.0) GOTO 20
IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH
M=1
10 CONTINUE
M2=M
M=ITWO¥*M2
IF(M.GT.M2) GOTO 10
HALFM=M2
COMPUTE MULTIPLIER AND INCREMENT FOR LINEAR
CONGRUENTIAL METHOD
TA=8*IDINT(HALFM*DATAN(1.D0)/8.D0) + 5
TIC=2*IDINT (HALFM*(0.5D0-DSQRT(3.D0)/6.D0)) + 1
MIC=(M2-IC) + M2
S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT
S = 0.5/HALFM
COMPUTE NEXT RANDOM NUMBER
20 CONTINUE
IY = IY*IA
THE FOLLOWING STATEMENT IS FOR COMPUTERS WHICH DO NOT
ALLOW INTEGER OVERFLOW ON ADDITION
IF(IY.GT.MIC) IY=(IY-M2)-M2
Iy = IY + IC:
THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE THE
WORD LENGTH FOR ADDITION IS GREATER THAN FOR
MULTIPLICATION
IF(IY/2.GT.M2) TY=(1Y-M2)-M2
THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER
OVERFLOW AFFECTS THE SIGN BIT
IF(IY.LT.0) IY¥=(IY+M2)+M2
P = FLOAT(IY)*S
RETURN
END
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