Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Unidad 4 cont.

Clases de Almacenamiento de Variables
(Capitulo 6)

Algoritmos de Busqueda y Ordenamiento
(Capitulo 11 bibliografia)

» Ing. Ventre, Luis O.

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

OBJETIVO

 EI ALCANCE (local, global) de una variable, puede verse
como la dimension _espacial dentro de un programa
donde esa variable es valida.

 Las variables también tienen una dimension temporal
dentro de la ejecucion de un programa, y esta puede
alterarse como veremos a continuacion.

* El espacio temporal, se refiere al tiempo de «vida» de la
variable.

N 2

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

OBJETIVO

 Las variables, e identificadores consumen recursos.
Algunas variables solo son utilizadas en pequenas
partes del codigo, por lo que no es necesario que
existen a lo largo de todo el programa. En algunas es
Imprescindible que no pierdan su valor; e incluso a
veces es necesario utilizar el mismo identificador para
distintas variables.

 Todo estos problemas son resueltos a traves de las
clases de almacenamiento de las variables. Con ellas
es posible modificar el alcance de las variables, y la
duracion temporal de reserva de los recursos.

e R

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

INTRODUCCION

Variable:
Referencia semantica o nombre de un espacio de memoriareservado
para almacenar un valor.

Toda variable tiene asociado:

= — Un tipo de dato (booleano, entero, caracter, decimal, puntero..etc)
= — Un alcance (dimensién fisica) (Global o Local)

= —Una clase de almacenamiento (dimensién
temporal)

S EEEENEEN__—————

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases y Utilizacion

Clases de almacenamiento de variables:

Auto Static Extern Register

4 4 4 I

(Por omision) Persistencia/Privacidad Alcance extendido Optimizacion

Ej. de declaraciones de vbles. con clase de almacenamiento:

auto int numero static int millas
register float factor extern int watts

IS

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases y Utilizacion

Clases de almacenamiento de variables locales:

Auto Static Register

Clases de almacenamiento de variables globales:

Static Extern

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES

La clase AUTO:

. Mas utilizada. Por omision. Su nombre deriva de
automatica.

= Omitir la declaracion de la clase en una funcion implica
que la vble. es “auto”’.

= El almacenamiento es reservado cada vez que se llama a
la funcion y durante su ejecucion (viva), y devueltos cuando
finaliza la ejecucion de la misma (muerta).

w= El proceso anterior se repite cada vez que es llamada la
funcion.

N ©

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES

Ejemplo de clase AUTO:

Int main()

{

INt cuenta,;

for(cuenta=1;cuenta <=3; cuenta ++) _ _

{ La salida producida es:
probarclaseauto();

} El valor de la vble. Automaticaes 0

return O; El valor de la vble. Automatica es O

} El valor de la vble. Automatica es O

void probarclaseauto()

{

auto int num=0; // ..o solo “int num” ya que por omision se crea auto

cout<<* El valor de la vble. Automatica es’<<num<<end!;
num-++;

}ﬂ

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES

La clase STATIC:

= A veces es necesario recordar el valor por mas que
finalice la ejecucion de la funcion.

wUna vez creadas, las vbles. locales static, permanecen
con “vida” hasta la finalizacion del programa.

w Estas variables no se inicializan en tiempo de ejecucion.

= Cuando no se da una inicializacion explicita, son
Inicializadas a 0.

B

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES

Ejemplo de clase STATIC:

Int main()
{
Int cuenta;
for(cuenta=1;cuenta <=3; cuenta ++)
{ La salida producida es:
probarstatic();
} | El valor de la vble. STATIC ahora es 0
return O; El valor de la vble. STATIC ahora es 1
J El valor de la vble. STATIC ahora es 2

void probarstatic()

{

static int num=0; // ..o solo “ static int num” ya que por omisién se inicializa 0

cout<<® El valor de la vble. STATIC ahora es’<<num<<endlI;
num-++;

}ﬁ

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES

Cual es la diferencia entre las siguientes funciones, que resultado dara el
invocarlas 3 veces?

}/Oid funcl() La salida producida es:
SEE e emes = 145 S El valor de afios es 1
cout<<“El valor de anos es” << anos<<endl; El valor de afios es 3
afnos = afos + 2; .

} El valor de anos es 5 ...
void func2() La salida producida es:
{

static int afios; El valor de afos es 1
anos = 1; El valor de afos es 1
cout<<“El valor de anos es” << anos<<endl;| | E| valor de afios es 1...
anos = anos + 2; Impide el propésito de la vble.
} Static!!!!!

R ———

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles LOCALES Ejemplo: Declaracion de variable

La clase REGISTER: register double factor;

= Su utilizacion no es tan extensa.

= Duracion igual que clase auto. Es decir se crea cuando se
introduce la funcion que la declara y se destruye cuando se completa su
ejecucion.

w.La unica diferencia con la variable auto es donde se
localiza el almacenamiento.

wUnica restriccion, imposibilidad de usar el operador de
direccionamiento &. Puede ser ignorada por compilador.

N 1>

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles GLOBALES

La clase EXTERN en variables globales:

= Una variable global, existe hasta la finalizacion del
programa. Las clases de almacenamiento en estas variables
afectan el alcance no la duracion.

= Proposito extender el alcance mas alla de los limites
normales.

= La declaracion NO origina una variable nueva, y no
reserva un espacio nuevo de almacenamiento.

wla inicializacion va en declaracion original, no en
extern.

... s

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles GLOBALES

Archivo 1 Archivo 2
int distancia=100; int trabajo=0;
double metros=0; extern double metros;
static double factor;
extern int trabajo; int func3()
| {
int main()
{ }
Funcl();
Func2(); int func4()
Func3(); {
Func4(); extern int distancia;

\ \
Extienden el alcance de las
variables globales de cada

archivo

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Clases de Almac. Vbles GLOBALES

La clase STATIC en variables globales:

= Objetivo, prevencion de extension de una variable global
a un segundo archivo.

= Declaracion idéntica a vbles. locales static, pero difiere el
lugar de la instruccion de declaracion.

= Proporciona un grado de privacidad. Otros archivos no
pueden acceder ni cambiar valores.

wNunca una vble. global static puede extendida a otro
archivo mediante el uso de extern.

= Por defecto una vble. global puede ser extendida a otra ﬁb

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Integrando conceptos _ _
Archivo 1 Archivo 2

char eleccion;

int marcador=0; char tipo_b:

float fecha, tiempo; double resistencia;
static float fecha; [RLsEL . i

A cxtern int marcador; ?OUb'e roi()

}

extern char eleccion;
Por omision es int empuije()
‘auto” y no guarda K| [..
su valor!... double ultimo=0; double calculo=0;

static double calculo=0

double promedio()

int const;
y register double ultimo=0
@ hanabtiningeicempaneeHid D The) g 814 Ay ,.-‘; = SN[(380 (B
-~SOY AU I‘...' W] (1. » t-;'i‘ 17 TG TS -E.V‘ (1o @ i o (!;U‘cl.- A v.-,a'-)"
ERRER ': R R N e R s o

'WQ%@R&Q&@&@C@S

—

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

Unidad 5
Arreglos cont.

Algoritmos de Busqueda y Ordenamiento
(Capitulo 11 bibliografia)

» Ventre, Luis O.

N 17

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Hay, muchas ocasiones en donde el programador se
enfrenta a |la tarea de buscar en una lista si se encuentra
un nombre, y/o tener que ordenar una lista de manera
ascendente o de acuerdo al orden alfabético. Para hacerlo
existen algoritmos de busqueda y ordenamiento.

Entre los algoritmos de BUSQUEDA los dos métodos mas
comunes de busqueda son los siguientes:

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

BUSQUEDA LINEAL:

Es el método mas simple, también llamado “busqueda
secuencial”, cada elemento de la lista se compara con el
objeto deseado hasta que hay una coincidencia o se
termina la lista.

No es lo mas eficiente en listas alfabéeticas largas.
Sin embargo tiene las siguientes ventajas

Este algoritmo comienza con el primer elemento de la lista,

y continua su analisis hasta el ultimo elemento o match. m

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

El pseudocodigo de este algoritmo sera:

int busquedalineal (int li=ta[], int tamanho, int clawve)

i
int i;

for (i = 0; i < tamanho;

{
if (li=ta[i] == clawve)
retorn i:

i+4)

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

$include <iostreams S esta funcion retorna la vbicacion de la clave en la lista
n=ing namespace =std: A4 me devpelve un -1 51 =21 waleor ne =5 sncontrade

int busquedalineal (int lista[], int tamanho, int clawve)

{

int busguedalineal {(int [], int, int) int 1;
for (i = 0; i < tamanho; i++)
i
if (lista[i] == clawve)
retorn i;

int main()

{
con=st int HNUMEL = 10;
int nums=s [NUMEL] = {5,10,22,32,45,¢€ }
int item, ubicacion;

H
cout << "Ingrese el item que e3La —oaaew 7
cin >»> item;

ubicacion = busagquedalLineal (num=s, NUMEL, item):

Ingresze el item gque esta buscando: 45

if (uwbicacion > -1} E]l item fue encontrado en la wubicacion 4

cout << "El item fues encontrado en la ubic
<< ubicacion << endl;

Presione una tecla para continuar . . .

else
cout << "EL item no fue encontrado en la listan™:

system ("PLATSE") ;
retorn 0;

e P

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA Y ORDENAMIENTO
BUSQUEDA BINARIA:

En este método la lista DEBE estar ordenada.

El elemento buscado se compara con el elemento del
“medio de la lista”; pudiendo existir 3 resultados:

 Que el numero sea el buscado, lo cual indica el fin de la
busqueda,

 Que el numero sea mayor que el resultado, por lo cual se
descarta la primer mitad y se hace el mismo ciclo para la
segunda mitad.

 Que el numero sea menor y se hace lo analogo con la
primera mitad.

N 22

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Ventaja:

El numero de elementos donde debe buscarse se va
reduciendo a la mitad con cada ciclo de comparacion.

En una lista de n elementos, luego de la primera busqueda
solo resta verificar n/2 elementos, ya que se han
descartado n/2, y en el siguiente paso n/4 y asi
sucesivamente.

e D

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Pseudocddigo: VER en la pagina 656 BIBLIOGRAFIA PRINCIPAL

int busgquedaBinaria(int li=sta[], int tamanho, int clawve)
{

int izguierdo, derecho, puntomedio;

D izquierdo

izguierdo = 0;
derecho = tamanho -1:

while (izguierdo <= derecho)
{
puntomedio = (int) ({izguierdo + derecho) / 2):
if (clave == lista[puntomedic])
{
retorn puntomedio;
}
el=se if (clave > lista[puntomedic])
izguierdo = puntomedio + 1;

) v .
<\—puntomedlo

A

y,
else ——— derecho

derecho = puntomedio - 1;

© 00 N O 0~ WwN - O

retorn -1:
H

e ————————————MMMMMMMM——— .1,

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

$include <iostream>
n=ing namespace std:

Ingrese el item gue esta buscando: 45
El item fue encontrado en la wubicacion 4
Presione uwna tecla para continuar . . .

int busquedaBinaria(int [], int, int):

int main{)

{
const int WUMEL = 10;
int nums [NUMEL] = {5,10,22,32,45,67,73, 9|/ ==
int item, uwbicacion; -

int busquedaBinaria(int listal

{

cout << "Ingrese el item gue esta buscanc int izgquierdo, derecho, puntomedio;

cin >> item;

- - - - izguierdo = 0;
ubicacion = busquedaBinaria (nums, NUMEL, o=

i .) derecho = tamanho -1:;
if (ubicacion > -1)
cout << "EL item fue encontrado en la u while (izquierdo «= derechno)
<< ubicacion << endl; {
puntomedio = (int) ((izguierdo + derecho) / 2);:
el=se) . .
if (clave == lista[puntomedio])
cout << "El item no fue encontrado en € I

return puntomedio;

}

else if (clave > lista[puntomedio])
izguierdo = puntomedioc + 1;

} else

svastem ("FPATSE"™) ;
retuorn O;

derecho = puntomedio - 1;

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

En la pagina 660 puede observarse una comparacion de recorridos o
ciclos por cada metodo para encontrar el elemento, dependiendo de la
cantidad de elementos de la lista.

Tamafio Arreglo 50.000 elem. 500.000
elem.

Recorridos de 25.000 250.000
busqueda lineal

promedio.

Recorridos Busqg. 4 6 16 19

Binaria maximos

De esta comparacion se observa que un criterio adecuado seria para
listas con menos de 50 elementos es aceptable el meétodo de

busqueda lineal o secuencial, para listas mayores debe usarse
bUsqueda binaria.

EEEEEeeeeeeeeeeeeeen D

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

ALGORITMOS DE ORDENAMIENTO

Existen 2 categorias de tecnicas de ordenamiento, internos vy
externos; lo cual hace referencia a si la lista puede ordenarse
cargandose en la memoria de la computadora o no, lo que esta
vinculado al tamafo de la lista a ordenar. Veremos 2 métodos de
algoritmos de ordenamiento INTERNO.

ORDENAMIENTO POR SELECCION:

Inicia con la seleccion del valor mas pequefio de la lista completa y
se intercambia con el primero. Luego de esta seleccion e
Intercambio, el siguiente elemento mas pequeio en la lista restante se
selecciona e intercambia con el segundo elemento. Este segundo
recorrido va desde el segundo al ultimo. Esto se repite en una lista de
n elementos n-1 veces.

N 27

Catedra de Informatica — Dpto. Computacion

Universidad Nacional de Cérdoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

i

i
min = num([i]
indicemin = i;

{
if (nmum[j] < min)
{
min = num[3]:
indicemin = j;
}
}
if (min < num[i])
{

tenp = num[i]:
num[i] = min;
num[indicemin] =
movimientos++;

retorn movimientos;

int ordenSeleccion{int num([], int numel)

int i, j, min, indicemin, temp, movimientos = 0;

for (i = 0; i < (numel - 1); i++)

SUpone gue €40 minimo €58 €10 D
g o . -
1ndicse del Silamentd M1nIimo

for(j = 41i + 1; j < nmumel; Jj++)

temp;

O Wik | N |k

temp

N — | 28

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Algoritmo de Ordenamiento por seleccion:

w
O W |k | N |00 | O

10 20 30 40 50
lteracion.

Arreglo con 6 elementos. N — 1 iteraciones

RESSSSSSSSSNESEAAEREAENERNEASSESNEESSNSSS 5

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

A OR OS DE B O DA ORD A O
finclude <iostream> LaillgtaEDrgengdaﬂen orden ascendente, es:
nsing namespace std; Se hicieron 5 movimientos para ordenar esta lista

Presione wuna tecla para continuar . . .

int ordenSeleccion{int [], int):

int ordenSeleccion(int num|[], int numel)
int main() {
{ int i, j, min, indicemin, temp, movimientos = 0;
con=t int NUHEL = &;
’ for (i = 0; i < (numel - 1}; i++)
int nums[NUMEL] = {5,8,7,1,3,6}: :
int i, movimientos:; min = nam[i]: supons que =1 el prim=r s=l=m=ntc
indicemin = i; indice d=l =1 1mo
L) for({j = 1i + 1; j < numel; j++)
movimientos = ordenSeleccion (nums, {
if (num[j] < min) 51 52 ha localizadeo un valor infearior
cout << "La lista ordenada en orden t s& lo captura
. R R min = nmum[j] -
for (L1 = 0; 1 < NUMEL; i++) indicemin = i;
cout << " " Z<nums[i];)
- e if (min < num[i verifica 51 hay uUn NUeEVe MIinlmo
cout << endl << "S5e hicieron " << : i =1 R
<< " movimientos para ordenar temp = num[i];)
num[i] = min;
system ("EFATUSE"™) n-arr._[i:_'ldicerr.in] - bemed
movimientos++:
retorn O;
retuorn movimientos;

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

ORDENAMIENTO DE LA BURBUJA - POR INTERCAMBIO:

Este método basa su funcionamiento en el intercambio de elementos
adyacentes de tal manera que la lista quede ordenada.

Se comparan los elementos sucesivos de una lista comenzando por
los dos primeros.

Dependiendo si el orden sera ascendente o descendente se ubican los
elementos.

Luego se compara el segundo con el tercero y asi sucesivamente.
Debemos observar que esto asegura que el mayor elemento quede
al ultimo. Si hubo cambios en la secuencia debe ejecutarse
nuevamente pero sin incluir el ultimo elemento.

El ultimo no se cuenta, porque el método hunde al fondo de la lista el
valor mas positivo.

———SSSSAESAESSSNNNNNNNNNNNNNNNNNNNNNNNNNN.

Catedra de Informatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

int ordenBurbuja(int num[], int numel) temp 1
{
int i, j, temp, movimientos = 0; temp 7
for (i = 0; 1i €« (numel - 1); i++) .
num(j-1
. -1] 1
fm:':j = 1; 3 < numel; j++) numi‘]{jl]] 1
if (num[j] < num[j-1]} .
; numfj] | 7 Arreglo
temp = num[3]; 5 Original
num[j] = num[j-1]: 3
num[j-1] = temp’ 3 0 8
movimientos++; 4
¥ 1 1
} 5| 6 :
¥ 2
3 5
retuorn movimientos; 4 3
X
5 6

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Por lo general el ordenamiento por seleccion responde igual o mejor
gue el ordenamiento de la burbuja. De todas maneras el orden de
ordenamiento de ambos métodos es el mismo, pero en casos
especiales se comporta mejor el método por seleccion.

S

S

KIS,

w
O W o1 N | = |0
w
O W | o0l N |00 |-
w
O | W | 01|00 | N |
(@I I 00 I o o B N © 2 I B NI I
(@ @ o I I 06 I I © 2 I B N R A S

1° Paso

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

4° Paso

5° Paso

Céatedra de Informéatica — Dpto. Computacion
Universidad Nacional de Cordoba.

ALGORITMOS DE BUSQUEDA'Y ORDENAMIENTO

nsing namespace std; La lista ordenada en orden ascendente, es:
i 3 5% 6 7 8
int ordenSurbuia(int [], int): %e hicieron ? movimientos para ordenar esta lista
= - ’ : Prezione wuna tecla para continuwar . . .
int main{()
{
con=t int NUOMEL = &;
int nums[NUMEL] = {8,1,7,5,3,6}; int ordenBurbuja(int num[], int numel)
int i, movimientos; i
int i, j, temp, movimientos = 0;
movimientos = ordenBurbuja (nums, HUMEL) ;
for (i = 0; i < (numel - 1); i++)
cout << "La li=sta ordenada en orden ascendente, {
for (i1 = 0; i < HNUMEL; ++i) for(j = 1; 7 < numel; J++)
cout << " " <<num=s[i]: {
if (num[j] < num[j-1])
cont << endl << "Se hicieron " << movimientos {
<< " movimientos para ordenar esta lista\n temp = num[j];
num[ji] = num[j-1]:
system("PFATUSE"™) ; num[j-1] = temp;
return O: movimientos++:
retorn movimientos; m

