
1

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Clase String

Repaso General

Unidades 4 y 5
(Capitulo 6 y 11 bibliografía)

» Ing. Ventre, Luis O.

2

CLASE STRING

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• A lo largo del curso hemos usado por ejemplo el “objeto” cout,
perteneciente a la clase “iostream”; sin conocer en detalle su
estructura interna; la ventaja de los objetos es exactamente esta,
poder utilizarlos sin mayor conocimiento de sus formalismos.

• Ahora usaremos otra clase proporcionada por la biblioteca estándar de
C++ que es la clase string. Y crearemos objetos pertenecientes a esta
clase antes de usarlos.

• Una clase, es un tipo de dato no integrado en el compilador, es
necesario que el usuario lo construya usando código.

• Como todo tipo de dato un objeto de una clase, debe definir un
conjunto de valores validos y un conjunto de operaciones.

3

CLASE STRING

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Los valores permitidos por la clase string se conoce como literales de
cadena, que son cualquier secuencia de caracteres encerrada entre
comillas.

• Las comillas indican inicio y final y no se almacenan con la
cadena!!.

• Por convención al primer elemento de una cadena se le asigna el
subíndice 0.

Ejemplos:

“Esta es una cadena”

“Hola mundo”

“xyz 123 *!·”

4

CLASE STRING

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Si se declara la cadena Hielo como un string la representación seria:

• FUNCIONES DE LA CLASE STRING:

• La clase string proporciona diversas funciones para declarar, crear, e
inicializar una cadena.

• VER tabla 7.2 pagina 393 bibliografía.

H i e l o

Posición: 0 1 2 3 4

5

CLASE STRING

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Algunas de las funciones mas usadas son:

• string nombreObjeto = “valor”

• string nombreObjeto (“valor”)

• string nombreObjeto (str1, m)

• Ejemplos:

• string str2=“Hot Dog”;

• string str3(“Buen Dia”);

• string str4(str3,4);

H o t D

0 1 2 3 4

D

4

o

5

g

6

B u e n D

0 1 2 3 4

4

D

5

i

6

a

7

D

4

0

D

1

i

2

a

3

6

CLASE STRING – Entrada / Salida

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Además de inicializarse con los constructores mostrados
anteriormente, una cadena puede ingresarse por teclado e
imprimirse en pantalla.

• Puede utilizarse cout, cin o getline. Cin tiene la desventaja que deja
de ingresar datos a la cadena cuando se ingresa un espacio en
blanco.

• El método getline, permite determinar cual será el elemento de fin de
cadena, o por omisión es el carácter de escape de línea nueva \n que
se ingresa mediante la tecla enter.

• Forma mas general del método getline:

getline (cin, strObj, carácter-de-terminación)

7

CLASE STRING – Entrada / Salida

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ejemplos: En el primer caso, introduciré vía terminal o teclado los literales
de la cadena str1 hasta que se ingrese “!” no incluido en cadena.

• En el segundo ejemplo, ingresare hasta que se presione enter, y en el
tercero??

• Los objetos string, tienen ventajas como la asignación dinámica en
memoria, y los métodos disponibles en la tabla 7.4 página 399 donde se
puede determinar el largo, concatenar etc…

getline (cin, str1, !)

getline (cin, str1, \n)

getline (cin, str1)

8

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• APLICACIONES - ARREGLOS Pág. 627 Bibliogr.

• Desarrollar un programa que acepte una lista de un máximo de
100 voltajes como entrada, determine tanto el promedio como la
desviación estándar de los voltajes introducidos y luego
despliegue los resultados.

• Del análisis del enunciado se observa que se requieren dos salidas, el
valor promedio de los voltajes ingresados y la desviación estándar.
Como pueden ingresarse hasta 100 voltajes, la primer entrada será
cuantos voltajes deseara ingresar.

9

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Para el calculo del promedio de los valores ingresados, es simple
deben sumarse el total de ingresos y dividirse por la cantidad.

• Para el calculo de la desviación estándar se debe realizar la siguiente
formula.

• Los pasos para el calculo de la desviación estándar serán:

• Calcular el promedio.

• Restar el promedio a cada voltaje individual; esto generara un
nuevo grupo de datos llamado desviaciones.

• Elevar al cuadrado cada una de las desviaciones.

• Sumar las desviaciones cuadradas y dividir por la cantidad de
desviaciones.

• La raíz cuadrada del numero encontrado en el ultimo paso es la
desviación estándar.

10

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

11

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Pasaje de

arreglo como

argumento

Pasajes por

valor, solo

copia su

contenido

12

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

La función que calcula la desviación es:

13

REPASO

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

La salida producida por la ejecución es:

Recomendación: Ver segundo caso de aplicación, lista ordenada

página 630 Bibliografía.

14

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Unidad 4 – Unidad 5

REPASO

» Ventre, Luis O.

15

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• ANTES QUE UNA FUNCION PUEDA SER LLAMADA DEBE SER
DECLARADA, LA DECLARACION INICIAL DE LA MISMA SE
CONOCE COMO PROTOTIPO DE LA FUNCION

• En el prototipo de una función se puede reconocer, su NOMBRE,
sus datos validos como ARGUMENTOS Y EL ORDEN, y su valor
DEVUELTO.

• Por ejemplo el siguiente prototipo:

 Declara una función llamada encontrarMax, la cual recibe dos valores

enteros como parámetro y no devuelve ningún valor(void).

void encontrarMax(int, int);

16

Declaración de Funciones y Parámetros

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• La forma general de escritura de un prototipo de función es:

• Ejemplos de prototipos de funciones:

• Los prototipos de funciones permiten la verificación de errores en
los tipos de datos por el compilador. Y asegura la conversión de
todos los argumentos enviados al tipo de datos declarado.

tipo-de-datos-a-devolver nombre-de-función (lista de tipos de datos argumento)

int fmax(int, int);

double intercambio(int, char, char, double);

cout<<encontrarMax(num1, num2);
17

Devolver un solo valor

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Para que la función retorne el valor solo es necesario colocar la
instrucción:

 Debe cuidarse para evitar errores indeseados que el tipo de dato
devuelto por la función y el tipo utilizado en la instrucción de
return coincidan!.

 Desde el punto de vista del receptor, la función que llama debe:

 * Ser alertada del tipo de valor a esperar (prototipo de función)

 * Usar de manera apropiada el valor.

 La variable utilizada para almacenar el valor devuelto debe ser del
mismo tipo de dato.

return expresion;

max = encontrarMax(num1, num2);

void sumar(int& a)

18

PASAJE ARGUMENTOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Al llamar a una funcion sumar, y colocar el nombre de la variable total
como argumento:

int total=10;

sumar(total);

void sumar(int a)

Si el prototipo de la funcion, en su

argumento tiene una declaracion de

int a, SOLO se copia el valor de la

variable total en la variable a.

Y ésta última NO PUEDE modificar

el valor de la variable TOTAL.

Si el prototipo de la funcion, en su

argumento tiene una declaracion de

parametro de REFERENCIA con &

a, pasa a ser una referencia de total.

Y al MODIFICAR esta última en la

función se modifica TOTAL.

2 variables diferentes: a y total 1 misma variable, dos nombres dif.

por valor por referencia

void sumar(int a[])

19

PASAJE ARGUMENTOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Al llamar a una funcion sumar, si deseo pasarle uno o mas valores de
un arreglo por valor, debo colocar cada subindice:

int total[10];

sumar(total[0],total[1]);

void sumar(int a, int b)

El prototipo de funcion tiene como

argumento dos variables del mismo

tipo de los elementos del arreglo.

Se copian los valores de los elementos

del arreglo a las variables nuevas

a y b

El prototipo de la funcion alerta que

el argumento es un arreglo. De esta

forma se tiene acceso a todo el

arreglo y se modifica desde la funcion

los valores del mismo

1 mismo arreglo, dos nombres dif.

int total[10];

sumar(total);

20

Devolver múltiples valores

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 Existen ocasiones en donde es necesario darle a la función llamada
acceso directo a las variables de la función que llama.

 Para lograr esto se necesita enviarle a la función llamada, la dirección
de la variable.

 Una vez que la función llamada conoce la dirección de la variable
“conoce donde vive” y puede tener acceso y cambiar su valor de
manera directa.

 Este tipo de transmisión se llama “pasaje o transmisión por
referencia”.

 C++ proporciona dos tipos de parámetros de dirección, referencia
y apuntadores. En esta materia veremos referencia.

21

Transmisión de parámetros de referencia

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

 La invocación a una función con pasaje por referencia desde el emisor
es idéntica. Solo debe declararse los tipos de parámetros como
referencia; esto se hace con la siguiente sintaxis:

 Ej.:

 Indica que num1 es un parámetro de referencia que se utilizara para
almacenar la dirección de un double. O leer al revés por ejemplo num1
es la dirección de una variable de precisión doble.

tipo-de-datos& nombre-referencia

double& num1;

22

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Lista de valores relacionadas con “el mismo tipo de datos” que se
almacena bajo un “nombre de grupo único”.

• En la declaración de un arreglo de dimensión única es necesario
indicar:

– El tipo de datos del conjunto

– El nombre del arreglo o del grupo.

– La cantidad de elementos del grupo entre corchetes []

 Sintaxis de declaración:

tipo-de-datos nombreArreglo [numero-elementos]

23

Arreglos Unidimensionales

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Continuando con el ejemplo anterior los subíndices de los
componentes serán:

• Una vez declarado el array, cada componente es una variable
indexada ya que debe darse su nombre y su subíndice para hacer
referencia a ese elemento.

Arreglo

 temp

temp[0]

temp[1]

temp[2]

temp[3]

temp[4]

24

Entrada y Salida de valores del arreglo

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• A los objetos del arreglo se les puede asignar valores de manera
interactiva usando cin!.

• Ej:

• De manera análoga, puede utilizarse un ciclo for para la introducción
interactiva de todos los datos del arreglo:

Arreglo

 temp
cin>> temp[0];

cin>> temp[1] >> temp[2] >> voltios [4];

Arreglo

 voltios

for (i=0; i<numels; i++)

{

 cout<<“Introduzca el elemento “<<i;

 cin>>temp[i];

}

25

Inicialización de arreglos

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Al igual que las variables vistas, los arreglos pueden inicializarse
cuando son declarados, la DIFERENCIA entre ambas
declaraciones radica en que los valores del arreglo deben ir entre
llaves { }

• La inicialización de valores puede extenderse a múltiples líneas:

• Si el numero de valores es menor serán inicializados a “0”.

int temp[5] = { 98, 87, 92, 79, 85};

char codigos[6] = { „m‟, „u‟, „e‟, „s‟, „t‟, „r‟, „a‟};

int voltios [9] = { 98, 87, 92,

 79, 85, 66,

 94, 55, 67};

26

Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Un arreglo bidimensional, a veces llamado tabla, es un arreglo de
elemento que posee filas y columnas. Por ejemplo un arreglo
bidimensional de números enteros se observa a continuación:

• Para reservar los lugares de almacenamiento en su declaración
deben incluirse el numero de filas y el numero de columnas

8 16 9 52

3 15 27 6

14 25 2 10 14 25 2 10

3 15 27 6

8 16 9 52

Col 0

Col 1

Col 2

Col 3

Fil 0

Fil 1

Fil 2

int val [3] [4];

val[1][3]

val[2][1]

27

Entrada y salida de valores Arreglos BIDIMENSIONALES

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Un ciclo for exterior recorrerá las filas o renglones.

• Un ciclo for interior recorrerá las columnas.

14 25 2 10

3 15 27 6

8 16 9 52

Controlado por for interno

“j”

Controlado

por for

Externo “i”

for (i=0; i<FILAS; i++) // ciclo externo

{

 for(j=0; j<COLUMNAS; j++) //ciclo interno

 {

 cout<<“Ingrese el elemento temp“<<i<<j;

 cin>>temp[i][j];

}

for (i=0; i<FILAS; i++) // recorre filas

{ cout<<endl;

 for(j=0; j<COLUMNAS; j++) // recorre colum.

 {

 cout<<“El elemento temp“<<i<<j<<“es: “;

 cout>>temp[i][j];

}

0

1

2

0 1 2 3

28

Arreglos Como ARGUMENTOS

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

• Ante este problema es posible poner a disposición de la función todo
el arreglo. Esto se logra con la siguiente llamada:

• Esta llamada, envía a la función la dirección del primer componente
del arreglo, y de esta manera en la función se accede directamente a
todo el arreglo de manera análoga a como sucedía con el “pasaje por
referencia”.

• En el caso del llamado anterior la función llamada debe ser alertada
que el argumento es un arreglo por lo que su encabezado será:

Arreglo

 temp
Componente

hallarmin(voltios);

int hallarmin (int voltios[5])

{….

Ing. Ventre, Luis O.

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Recursividad

29

• Hemos visto que DESDE una función, podemos llamar a
OTRA función.

• Que pasa, si esta segunda FUNCION, llama a la PRIMERA
que la invoco a ella?

Función 2 Función 1

Ing. Ventre, Luis O.

Cátedra de Informática – Dpto. Computación

Universidad Nacional de Córdoba.

Recursión

30

• Y peor aun, que pasaría si una función se llama a si misma?

Función 1

• Ambos casos son posibles!.

• Una función que se llama a si mismo es RECURSIVIDAD
DIRECTA.

• El anterior, que incluye una función numero 2, es llamado
RECURSIVIDAD INDIRECTA.

