
CCAPÍTULOAPÍTULO 1
Introducción

TEMAS

1.1 INTRODUCCIÓN A LA PROGRAMACIÓN
LENGUAJE DE MÁQUINA ORIENTACIONES A PROCEDIMIENTOS Y A OBJETOS

LENGUAJES ENSAMBLADORES SOFTWARE DE APLICACIÓN Y DE SISTEMA

LENGUAJES DE NIVELES BAJO Y ALTO EL DESARROLLO DE C++

1.2 SOLUCIÓN DE PROBLEMAS Y DESARROLLO DE SOFTWARE
FASE I. DESARROLLO Y DISEÑO FASE III. MANTENIMIENTO

FASE II. DOCUMENTACIÓN RESPALDO

1.3 ALGORITMOS

1.4 ERRORES COMUNES DE PROGRAMACIÓN

1.5 RESUMEN DEL CAPÍTULO

1.6 APÉNDICE DEL CAPÍTULO: HARDWARE DE COMPUTACIÓN

Y CONCEPTOS DE ALMACENAMIENTO
ALMACENAMIENTO DE COMPUTADORA PALABRAS Y DIRECCIONES

NÚMEROS EN COMPLEMENTO A DOS CONSIDERACIÓN DE LAS OPCIONES DE

CARRERA: INGENIERÍA AERONÁUTICA

Y AEROESPACIAL

Introducción

1

1

www.FreeLibros.me

CAPÍTULO 1 Introducción2

1.1 INTRODUCCIÓN A LA PROGRAMACIÓN

Una computadora es una máquina y, como otras máquinas, como un automóvil o una poda-
dora, debe encenderse y luego conducirse, o controlarse, para hacer la tarea que se pretende
realizar. En un automóvil, por ejemplo, el control es proporcionado por el conductor, quien
se sienta en su interior y lo dirige. En una computadora, el conductor es un conjunto de ins-
trucciones llamado programa. De manera más formal, un programa de computadora es un
conjunto independiente de instrucciones usado para operar una computadora con el fin de
producir un resultado específico. Otro término para un programa o conjunto de programas
es software, y se usarán ambos términos de manera indistinta a través del texto.1

El proceso de escribir un programa, o software, se llama programación, mientras al
conjunto que puede usarse para construir un programa se llama lenguaje de programación.
Los lenguajes de programación disponibles se presentan en una variedad de formas y tipos.

Lenguaje de máquina
En su nivel más fundamental, los únicos programas que pueden usarse en realidad para ope-
rar una computadora son los programas en lenguaje de máquina. Tales programas, los cua-
les también se conocen como programas ejecutables, o ejecutables para abreviar, consisten
en una secuencia de instrucciones compuestas por números binarios como:2

11000000 000000000001 000000000010

11110000 000000000010 000000000011

Estas instrucciones en lenguaje de máquina constan de dos partes: una de instrucción y una
de dirección. La parte de instrucción, a la cual se conoce como opcode (abreviatura de “có-
digo de operación”), por lo general es el conjunto de bits en el extremo izquierdo de la ins-
trucción y le indica a la computadora la operación a realizar, como sumar, restar, multiplicar,
etc., mientras los bits en el extremo derecho especifican las direcciones de memoria de los
datos que se van a usar. Por ejemplo, suponiendo que los ocho bits en el extremo izquierdo
de la primera instrucción enlistada antes contienen el código de operación para sumar, y los
siguientes dos grupos de doce bits son las direcciones de los dos operandos que se van a su-
mar, esta instrucción sería un comando para “sumar los datos en la ubicación 1 de la me-
moria a los datos en la ubicación 2 de la memoria”. Del mismo modo, suponiendo que el
opcode 11110000 significa multiplicar, la siguiente instrucción es un comando para “mul-
tiplicar los datos en la ubicación 2 de la memoria por los datos en la ubicación 3”. (La sec-
ción 1.6 explica cómo convertir de números binarios a decimales.)

Lenguajes ensambladores
Debido a que cada clase de computadora, como IBM, Apple y Hewlett Packard, tiene su pro-
pio lenguaje de máquina particular, es muy tedioso y tardado escribir esos programas en len-
guaje de máquina.3 Uno de los primeros avances en la programación fue la sustitución de

1De una manera más incluyente, el término software también se usa para denotar tanto los programas como los datos con los que
operarán los programas.

2Revise la sección 1.6 al final de este capítulo si no está familiarizado con los números binarios.
3En la actualidad, el lenguaje en el nivel de máquina está definido por el procesador alrededor del cual está construida la compu-
tadora.

www.FreeLibros.me

31.1 Introducción a la programación

símbolos en forma de palabras, como ADD, SUB, MUL, por los opcodes binarios y los nú-
meros decimales y etiquetas por las direcciones en memoria. Por ejemplo, usando estos sím-
bolos y valores decimales para las direcciones en memoria, las dos instrucciones en lenguaje
de máquina anteriores pueden escribirse como:

ADD 1, 2

MUL 2, 3

Los lenguajes de programación que usan este tipo de notación simbólica se conocen como len-
guajes ensambladores. Debido a que las computadoras sólo pueden ejecutar programas en
lenguaje de máquina, el conjunto de instrucciones contenido dentro de un programa en len-
guaje ensamblador debe traducirse a un programa de lenguaje de máquina antes que pue-
da ejecutarse en una computadora. Los programas traductores que realizan esta función para
los programas en lenguaje ensamblador se conocen como ensambladores (véase la figura 1.1).

Figura 1.1 Los programas ensambladores deben traducirse.

Lenguajes de niveles bajo y alto

Tanto los lenguajes de máquina como los ensambladores se clasifican como lenguajes de ni-
vel bajo. Esto se debe a que ambos tipos de lenguaje usan instrucciones que se vinculan en
forma directa con un tipo de computadora. Como tal, un programa en lenguaje ensambla-
dor está limitado porque sólo puede usarse con el tipo de computadora específica para el cual
se escribió. Sin embargo, estos programas permiten usar las características especiales de un
tipo de computadora particular y por lo general se ejecutan en el nivel más rápido posible.

En contraste con los lenguajes de nivel bajo están los lenguajes de alto nivel. Un lengua-
je de alto nivel usa instrucciones que se parecen a los lenguajes escritos, como el inglés, y
pueden ejecutarse en una variedad de tipos de computadora. Visual Basic, C, C++ y Java son
ejemplos de lenguajes de alto nivel. Usando C++, una instrucción para sumar dos números y
multiplicarlos por un tercer número puede escribirse como:

resultado = (primero + segundo) * tercero;

Los programas escritos en un lenguaje de computadora (de alto o bajo nivel) se conocen co-
mo programas fuente y código fuente. Una vez que se ha escrito un programa en un len-
guaje de alto nivel también debe traducirse, como un programa ensamblador de bajo nivel,
al lenguaje de máquina de la computadora en que se va a ejecutar. Esta traducción puede
lograrse en dos formas.

Cuando cada declaración en un programa fuente de alto nivel es traducida de manera in-
dividual y ejecutada inmediatamente después de la traducción, el lenguaje de programación
usado se llama lenguaje interpretado y el programa que hace la traducción se llama intér-
prete.

Cuando todas las instrucciones en un programa fuente de alto nivel son traducidas como
una unidad completa antes que cualquier declaración sea ejecutada, el lenguaje de programa-

Un programa
en lenguaje
ensamblador

Programa
de traducción
(ensamblador)

Programa
en lenguaje
de máquina

www.FreeLibros.me

4 CAPÍTULO 1 Introducción

ción usado se llama lenguaje compilado. En este caso, el programa que hace la traducción se
llama compilador. Pueden existir tanto versiones compiladas como interpretadas de un len-
guaje, aunque de manera típica predomina una. C++ es predominantemente un lenguaje com-
pilado.

La figura 1.2 ilustra la relación entre un código fuente de C++ y su compilación en un
programa ejecutable en lenguaje de máquina. Como se muestra, el programa fuente se intro-
duce usando un programa editor. Éste es en efecto un programa procesador de palabras que
es parte del ambiente de desarrollo proporcionado por el compilador. Debe entenderse, sin
embargo, que la introducción del código sólo puede comenzar después que una aplicación se
ha analizado y comprendido en forma minuciosa y el diseño del programa ha sido planeado
con cuidado. La forma en que se logra esto se explica en la siguiente sección.

La traducción del programa fuente C++ en un programa en lenguaje de máquina comien-
za con el compilador. La salida producida por el compilador se llama programa objeto, el cual
es una versión en lenguaje de máquina del código fuente. En casi todos los casos, su código
fuente usará código preprogramado existente, con código que ha escrito con anterioridad o
código proporcionado por el compilador. Éste podría incluir código matemático para encon-
trar una raíz cuadrada, por ejemplo, o código que se está reutilizando de otra aplicación.
Además, un programa C++ grande puede almacenarse en dos o más archivos de programa
separados. En todos estos casos, este código adicional debe combinarse con el programa ob-
jeto antes que el programa pueda ejecutarse. Es tarea del ligador lograr este paso. El resul-
tado del proceso de ligamiento es un programa en lenguaje de máquina completado, que
contiene todo el código requerido por el programa, el cual está listo para su ejecución. El úl-
timo paso en el proceso es cargar este programa en lenguaje de máquina en la memoria prin-
cipal de su computadora para su ejecución real.

Orientaciones a procedimientos y a objetos

Además de clasificar los lenguajes de programación como de alto o bajo nivel, también se cla-
sifican por su orientación a procedimientos u objetos. En un lenguaje orientado a procedi-
mientos las instrucciones disponibles se usan para crear unidades independientes, conocidas
como procedimientos. El propósito de un procedimiento es aceptar datos como entrada y
transformarlos de alguna manera para producir un resultado específico como una salida.
Hasta la década de los años 90 la mayor parte de los lenguajes de programación de alto ni-
vel eran orientados a procedimientos.

En la actualidad, un segundo enfoque, la orientación a objetos, ha tomado el escenario
central. Una de las motivaciones para lenguajes orientados a objetos fue el desarrollo de pan-
tallas gráficas y soporte para las interfaces gráficas de usuario (GUI), capaces de desplegar
múltiples ventanas que contienen tanto formas gráficas como texto. En tal ambiente, cada ven-
tana en la pantalla puede considerarse un objeto con características asociadas, como color, po-
sición y tamaño. Usando un enfoque orientado a objetos, un programa debe definir primero
los objetos que manipulará, incluyendo una descripción de las características generales de los
objetos y unidades específicas para manipularlos, como cambiar el tamaño y la posición y
transferir datos entre objetos. Es de igual importancia que los lenguajes orientados a objetos
tiendan a soportar la reutilización del código existente con más facilidad, lo cual elimina la ne-
cesidad de revalidar y reexaminar código nuevo o modificado. C++, el cual se clasifica como
un lenguaje orientado a objetos, contiene características que se encuentran en los lenguajes
orientados a procedimientos y a objetos. En este texto se diseñarán, desarrollarán y presenta-
rán ambos tipos de código, que es la forma en que se escribe la mayor parte de los programas
C++ actuales. Debido a que el código C++ orientado a objetos siempre contiene algún código

www.FreeLibros.me

de procedimientos, y muchos programas C++ simples se escriben por completo usando sólo
código de procedimientos, este tipo de código se presenta primero.

Figura 1.2 Creación de un programa C++ ejecutable.

Software de aplicación y de sistema

El software de aplicación y el software de sistema son dos categorías lógicas de programas
de computadora. El software de aplicación consiste en aquellos programas escritos para rea-
lizar tareas particulares requeridas por los usuarios. Todos los programas en este libro son
ejemplos de software de aplicación.

El software de sistema es la colección de programas que deben estar disponibles en cual-
quier sistema de cómputo en el que ha de operar. En los primeros entornos de cómputo de las
décadas de los años 50 y 60, el usuario tenía que cargar al inicio el software de sistema en for-
ma manual para preparar la computadora para que hiciera algo. Esto se llevaba a cabo usan-
do hileras de conmutadores en un panel frontal. Se decía que aquellos comandos iniciales

Editor

Un
programa
ejecutable

Escibir el
programa C++

El
programa

fuente
C++

Compilador

El
programa

objeto
C++

Otro
Objeto

Archivos
(Biblioteca)

Ligador

1.1 Introducción a la programación 5

www.FreeLibros.me

6 CAPÍTULO 1 Introducción

introducidos en forma manual iniciaban (boot) la computadora, una expresión derivada de la
expresión inglesa pulling oneself up by the bootstraps que significa “salir adelante sin ayuda”.
En la actualidad, el llamado cargador inicial (bootstrap loader) es un componente permanen-
te que se ejecuta de manera automática desde el software del sistema de la computadora.

De manera colectiva, el conjunto de programas de sistema usados para operar y controlar
una computadora se llama sistema operativo. Los sistemas operativos modernos incluyen las
siguientes tareas: administración de memoria; asignación de tiempo de CPU; control de unida-
des de entrada y salida como teclado, pantalla e impresoras, y la administración de todos los
dispositivos de almacenamiento secundarios. Muchos sistemas operativos manejan progra-
mas grandes y múltiples usuarios, en forma concurrente, dividiendo los programas en segmen-
tos que son movidos entre el disco y la memoria conforme se necesita. Tales sistemas operativos
permiten que más de un usuario ejecute un programa en la computadora, lo cual le da a cada
usuario la impresión que la computadora y los periféricos son sólo suyos. Esto se conoce
como un sistema multiusuario. Además, muchos sistemas operativos, incluyendo la mayor
parte de los ambientes con ventanas, permiten a cada usuario ejecutar múltiples programas.
Dichos sistemas operativos se conocen como sistemas multiprogramados y multitareas.

El desarrollo de C++

En un nivel básico, el propósito de casi todos los programas de aplicación es procesar datos
para producir uno o más resultados específicos. En un lenguaje de procedimientos, un progra-
ma se construye a partir de conjuntos de instrucciones, con cada conjunto nombrado como un
procedimiento, como se señaló con anterioridad. En efecto, cada procedimiento mueve los da-
tos un paso más cerca de la salida final deseada a lo largo de la ruta mostrada en la figura 1.3.

Figura 1.3 Operaciones de procedimiento básicas.

El proceso de programación ilustrado en la figura 1.3 refleja en forma directa las unidades
de hardware de entrada, procesamiento y salida usadas para construir una computadora
(véase la sección 1.6). Esto no fue accidental porque los primeros lenguajes de programación
fueron diseñados de manera específica para corresponder y controlar en forma directa, lo
más óptimamente posible, a las unidades de hardware apropiadas.

El primer lenguaje de procedimientos, llamado FORTRAN, cuyo nombre se deriva de
FORmula TRANslation, fue introducido en 1957 y siguió siendo popular durante la década
de los años 60 y principios de la década de los años 70. (Otro lenguaje de programación de
nivel alto desarrollado en forma casi concurrente con FORTRAN, pero que nunca logró la
aceptación abrumadora de FORTRAN, fue nombrado ALGOL.) FORTRAN tiene instruc-
ciones tipo álgebra que se concentran en la fase de procesamiento mostrada en la figura 1.3
y fue desarrollado para aplicaciones científicas y de ingeniería que requerían salidas numéri-
cas de gran precisión, incluyendo muchos lugares decimales. Por ejemplo, calcular la trayec-
toria de un cohete o el nivel de concentración bacteriana en un estanque contaminado, como
se ilustra en la figura 1.4, requiere evaluar una ecuación matemática a un alto grado de pre-
cisión numérica y es típico de las aplicaciones basadas en FORTRAN.

Salida de
resultados

Datos de
entrada

Proceso
de los
datos

www.FreeLibros.me

Figure 1.4 FORTRAN fue desarrollado para aplicaciones científicas y de ingeniería.

En orden de aparición, el siguiente lenguaje de aplicación de nivel alto significativo fue CO-
BOL, el cual fue introducido en la década de los años 60 y permaneció como un lenguaje de
procedimientos importante hasta la década de los años 80. La palabra COBOL se formó por
las siglas de COmmon Business-Oriented Language. Este lenguaje tenía características enfo-
cadas hacia aplicaciones de negocios que requerían cálculos matemáticos más simples que los
necesarios para aplicaciones de ingeniería. Uno de los beneficios más notables de COBOL fue
que proporcionaba formatos de salida extensos que facilitaban la creación de informes que
contenían muchas columnas de números y totales en dólares y centavos formateados con es-
mero, como se ilustra en la figura 1.5. Esto obligó a los programadores a construir procedi-
mientos estructurados bien definidos que seguían un patrón más consistente que el requerido
por FORTRAN.

Figure 1.5 COBOL fue desarrollado para aplicaciones de negocios.

Otro lenguaje, BASIC (o Beginners All-purpose Symbolic Instruction Code), fue desarrolla-
do en Dartmouth College más o menos al mismo tiempo que COBOL. BASIC era en esencia
una versión ligeramente reducida de FORTRAN y pretendía ser un lenguaje introductorio
para estudiantes universitarios. Era un lenguaje relativamente sencillo, fácil de entender, que
no requería un conocimiento detallado de una aplicación específica. Su principal desventaja
era que no requería ni imponía un enfoque consistente o estructurado para crear programas.
Con frecuencia, el programador no podía comprender con facilidad qué hacía su programa
BASIC después de un tiempo breve.

 12230 #16

 1.09
 1.09

 1.29
 1.35

 12225 #4
 12226 #6
 12227 #8
 12228 #10
 12229 #12

25 cajas
30 cajas
65 cajas
57 cajas
42 cajas

Clavos, normales

No. de parte Descripción Cantidad Precio

Clavos, normales
Clavos, normales
Clavos, normales
Clavos, normales
Clavos, normales

Tiempo

N
iv

el
 d

e
co

n
ce

n
tr

ac
ió

n

crecimiento de
bacterias

en un estanque
contaminado

1.1 Introducción a la programación 7

www.FreeLibros.me

Para remediar esto y adecuar la programación a una base más científica y racional que hi-
ciera más fácil entender y reutilizar el código, se desarrolló el lenguaje Pascal. (Pascal no es
una sigla, sino que se le puso este nombre en honor al matemático del siglo XVII Blaise Pas-
cal.) Introducido en 1971, proporcionó a los estudiantes un fundamento más firme en el di-
seño de programación estructurada que lo aportado por versiones anteriores de BASIC.

Los programas estructurados se crean usando un conjunto de estructuras bien definidas
organizadas en secciones de programación individuales, cada una de las cuales ejecuta una
tarea específica que puede probarse y modificarse sin perturbar otras secciones del progra-
ma. Sin embargo, el lenguaje Pascal estaba estructurado en forma tan rígida que no existían
escapes de las secciones estructuradas cuando hubieran sido útiles. Esto era una limitante pa-
ra muchos proyectos del mundo real y es una de las razones por las que Pascal no fue acep-
tado en forma amplia en los campos científico y de ingeniería. En cambio, el lenguaje C, el
cual es un lenguaje de procedimientos estructurado desarrollado en la década de los años 70
en AT&T Bell Laboratories por Ken Thompson, Dennis Ritchie y Brian Kernighan, se con-
virtió en el lenguaje para aplicaciones de ingeniería dominante de la década de los años 80.
Este lenguaje tiene un amplio conjunto de capacidades que permite que se escriba como un
lenguaje de nivel alto mientras conserva la capacidad de acceso directo a las características
del nivel de máquina de una computadora.

C++ fue desarrollado a principios de la década de los años 80, cuando Bjarne Stroustrup
(también en AT&T) usó sus conocimientos en lenguaje de simulación para crear un lengua-
je de programación orientado a objetos. Una característica central de los lenguajes de simu-
lación es que modelan situaciones de la vida real como objetos. Esta orientación a objetos, la
cual era ideal para objetos gráficos presentados en pantalla como rectángulos y círculos, se
combinó con características de C, existentes para formar el lenguaje C++. Por tanto, C++
conservó el conjunto extenso de capacidades estructuradas y de procedimientos proporcio-
nadas por C, pero agregó su propia orientación a objetos para convertirse en un verdadero
lenguaje de programación de uso general. Como tal, C++ puede usarse desde programas in-
teractivos simples, hasta programas de ingeniería y científicos sofisticados y complejos, den-
tro del contexto de una estructura en verdad orientada a objetos.

Ejercicios 1.1

1. Defina los siguientes términos:

a. programa de computadora
b. programación
c. lenguaje de programación
d. lenguaje de alto nivel
e. lenguaje de bajo nivel
f. lenguaje de máquina
g. lenguaje ensamblador
h. lenguaje orientado a procedimientos
i. lenguaje orientado a objetos
j. programa fuente
k. compilador
l. intérprete

2. Describa el propósito y usos principales del software de aplicación y de sistema.

CAPÍTULO 1 Introducción8

www.FreeLibros.me

3. a. Describa la diferencia entre lenguajes de alto y bajo nivel.
b. Describa la diferencia entre lenguajes orientados a procedimientos y a objetos.

4. Describa las semejanzas y diferencias entre ensambladores, intérpretes y compiladores.

5. a. Dados los siguientes códigos de operación,

11000000 significa sumar el 1er. operando al 2o. operando
10100000 significa restar el 1er. operando del 2o. operando
11110000 significa multiplicar el 2o. operando por el 1er. operando
11010000 significa dividir el 2o. operando entre el 1er. operando

traduzca las siguientes instrucciones al español:

Dirección del Dirección del
opcode 1er. operando 2o. operando
11000000 000000000001 0000000000010
11110000 000000000010 0000000000011
10100000 000000000100 0000000000011
11010000 000000000101 0000000000011

b. Suponiendo que las siguientes ubicaciones contienen los datos proporcionados,
determine el resultado producido por las instrucciones listadas en el ejercicio 5a.
Para este ejercicio, suponga que cada instrucción es ejecutada de manera indepen-
diente de cualquier instrucción.

Dirección Valor inicial (en decimales)
almacenado en esta dirección

00000000001 5
00000000010 3
00000000011 6
00000000100 14
00000000101 4

6. Reescriba las instrucciones en el nivel de máquina enlistadas en el ejercicio 5a usan-
do notación de lenguaje ensamblador. Use los nombres simbólicos ADD, SUB, MUL
y DIV para operaciones de adición, sustracción, multiplicación y división, respecti-
vamente. Al escribir las instrucciones use valores decimales para las direcciones.

1.2 SOLUCIÓN DE PROBLEMAS Y DESARROLLO DE SOFTWARE

Sin importar cuál campo de trabajo elija o cuál pueda ser su estilo de vida, tendrá que resol-
ver problemas. Muchos de éstos, como sumar el cambio en su bolsillo, pueden resolverse rá-
pido y fácil. Otros, como montar en bicicleta, requieren algo de práctica pero pronto se
vuelven automáticos. Otros más requieren de una planeación y premeditación considera-
bles para que la solución sea apropiada y eficiente. Por ejemplo, construir una red telefóni-
ca celular o crear un sistema de administración de inventarios para un gran almacén son
problemas para los cuales las soluciones por ensayo y error podrían resultar costosas y de-
sastrosas.

1.2 Solución de problemas y desarrollo de software 9

www.FreeLibros.me

Crear un programa no es diferente porque un programa es una solución desarrollada pa-
ra resolver un problema particular. Por ello, escribir un programa casi es el último paso en
un proceso de determinar primero cuál es el problema y el método que se usará para resol-
verlo. Cada campo de estudio tiene su propio nombre para el método sistemático usado pa-
ra resolver problemas mediante el diseño de soluciones adecuadas. En las ciencias y la
ingeniería el enfoque se conoce como el método científico, mientras en el análisis cuantitati-
vo el enfoque se denomina enfoque de sistemas.

El método usado por los profesionales que desarrollan software para entender el proble-
ma que se va a solucionar y para crear una solución de software efectiva y apropiada se lla-
ma procedimiento de desarrollo de software. Este procedimiento, como se ilustra en la
figura 1.6, consiste en tres fases que se superponen:

• Diseño y desarrollo

• Documentación

• Mantenimiento

Como disciplina, la ingeniería de software se encarga de crear programas y sistemas legibles,
eficientes, confiables y mantenibles, utilizando el procedimiento de desarrollo de software pa-
ra lograr esta meta.

Figura 1.6 Las tres fases del desarrollo de programas.

Fase I. Desarrollo y diseño

La fase I comienza con el planteamiento de un problema o con una solicitud específica de un
programa, lo cual se conoce como requerimiento de programa. Una vez que se ha plantea-
do un problema o se ha hecho una solicitud específica para un programa, comienza la fase
de diseño y desarrollo. Esta fase consta de cuatro pasos bien definidos, como se ilustra en la
figura 1.7 y se resume a continuación.

Programa ya
no utilizado

mantenimiento

documentaciónEtapas del ciclo
de vida del
programa desarrollo

y diseño

Tiempo

Solicitud de
un programa

CAPÍTULO 1 Introducción10

www.FreeLibros.me

Figura 1.7 Los pasos de diseño y desarrollo.

Paso 1 Analizar el problema

Este paso es necesario para asegurar que el problema está definido y se entiende con clari-
dad. La determinación de que el problema está definido en forma clara se hace sólo después
que quien realiza el análisis entiende qué salidas se requieren y qué entradas se necesitarán.
Para lograr esto el analista debe tener una comprensión de la forma en que se pueden usar
las entradas para producir la salida deseada. Por ejemplo, suponga que recibe la siguiente ta-
rea:

Escriba un programa que nos proporcione la información que necesitamos
sobre los círculos. Termínelo para mañana.

— La gerencia

Un análisis simple de esta solicitud de programa revela que no es un problema bien definido
en absoluto, porque no sabemos con exactitud qué información de salida se requiere. Por
ello, sería un error enorme comenzar de inmediato a escribir un programa para solucionar-
lo. Para aclarar y definir el planteamiento del problema, su primer paso deberá ser ponerse
en contacto con “La gerencia” para definir con exactitud qué va a producir el programa (sus
salidas). Suponga que hizo esto y se enteró que lo que en realidad se deseaba es un progra-
ma para calcular y mostrar la circunferencia de un círculo cuando se da el radio. Debido a
que existe una fórmula para convertir la entrada en la salida, puede proceder al siguiente
paso. Si no se está seguro de cómo obtener la salida requerida o exactamente cuáles entra-
das se necesitan, se requiere un análisis más profundo. Esto de manera típica significa obte-
ner más información antecedente acerca del problema o aplicación. Con frecuencia también
implica hacer uno o más cálculos manuales para asegurar que se entiende qué entradas son
necesarias y cómo deben combinarse para lograr la salida deseada.

Innumerables horas se han dedicado a escribir programas de computadora que nunca se
han usado o han causado una animosidad considerable entre el programador y el usuario
debido a que el programador no produjo lo que el usuario necesitaba o esperaba. Los pro-
gramadores exitosos entienden y evitan esto al asegurarse que entienden los requerimien-
tos del problema. Éste es el primer paso en la creación de un programa y el más importante,

pruebas

codificación
Pasos de
desarrollo
y diseño

diseño

análisis

Tiempo

1.2 Solución de problemas y desarrollo de software 11

www.FreeLibros.me

porque en él se determinan las especificaciones para la solución final del programa. Si los
requerimientos no son entendidos por completo antes que comience la programación, los re-
sultados casi siempre son desastrosos.

Por ejemplo, imagine diseñar y construir una casa sin entender por completo las especifi-
caciones del propietario. Después que se ha terminado, el propietario le dice que se requería
un baño en el primer piso, donde usted ha construido una pared entre la cocina y el comedor.
Además, esa pared en particular es una de las paredes de soporte principales para la casa y
contiene numerosas tuberías y cables eléctricos. En este caso, agregar un baño requiere una
modificación bastante importante a la estructura básica de la casa.

Los programadores experimentados entienden la importancia de analizar y comprender
los requerimientos del programa antes de codificarlo, en especial si también han elaborado
programas que después han tenido que desmantelarse y rehacerse por completo. La clave del
éxito aquí, la cual a fin de cuentas determina el éxito del programa final, es determinar el
propósito principal del sistema visto por la persona que hace la solicitud. Para sistemas gran-
des, el análisis por lo general es realizado por un analista de sistemas. Para sistemas más pe-
queños o programas individuales, el análisis de manera típica se lleva a cabo en forma directa
por el programador.

Sin tener en cuenta cómo se hizo el análisis, o por quién, al concluirlo deberá haber una
comprensión clara de:

• Qué debe hacer el sistema o programa

• Qué salidas debe producir

• Qué entradas se requieren para crear las salidas deseadas

Paso 2 Desarrollar una solución

En este paso, se selecciona el conjunto exacto de pasos, llamado algoritmo, que se usará para
resolver el problema. La solución se obtiene de manera típica por una serie de refinamientos,
comenzando con el algoritmo inicial encontrado en el paso de análisis, hasta que se obtenga
un algoritmo aceptable y completo. Este algoritmo debe verificarse, si no se ha hecho en el pa-
so de análisis, para asegurar que produce en forma correcta las salidas deseadas. Por lo gene-
ral la verificación se hace realizando uno o más cálculos manuales que no se han hecho.

Para programas pequeños el algoritmo seleccionado puede ser en extremo simple y con-
sistir de sólo uno o más cálculos. De manera más general, la solución inicial debe refinarse y
organizarse en subsistemas más pequeños, con especificaciones sobre la forma en que los sub-
sistemas interactuarán entre sí. Para lograr este objetivo, la descripción del algoritmo comien-
za desde el requerimiento de nivel más alto (superior) y procede en forma descendente a las
partes que deben elaborarse para lograr este requerimiento. Para hacer esto más significati-
vo, considere un programa de computadora para dar seguimiento al número de partes en un
inventario. La salida requerida para este programa es una descripción de todas las partes que
se llevan en el inventario y el número de unidades de cada artículo en existencia; las entradas
dadas son la cantidad inicial en inventario de cada parte, el número de artículos vendidos, el
número de artículos devueltos y el número de artículos comprados.

Para estas especificaciones, el diseñador podría organizar al principio los requerimientos
para el programa en las tres secciones ilustradas en la figura 1.8. Esto se llama diagrama de
estructura de primer nivel porque representa la primera estructura general del programa se-
leccionado por el diseñador.

CAPÍTULO 1 Introducción12

www.FreeLibros.me

Figura 1.8 Diagrama de estructura de primer nivel.

Una vez que se ha desarrollado una estructura inicial, se refina hasta que las tareas indicadas
en los cuadros están definidas por completo. Por ejemplo, tanto los módulos de introducción
de datos como de reportes que se muestran en la figura 1.8 deberían refinarse más. El módu-
lo de introducción de datos por supuesto debe incluir provisiones para introducir los datos.
Debido a que es responsabilidad del diseñador del sistema planear las contingencias y el er-
ror humano, también deben tomarse provisiones para cambiar datos incorrectos después que
se ha hecho una entrada y para eliminar por completo un valor introducido con anteriori-
dad. También pueden hacerse subdivisiones similares para el módulo de reportes. La figura
1.9 ilustra un diagrama de estructura de segundo nivel para un sistema de seguimiento de in-
ventario que incluye estos refinamientos adicionales.

Figura 1.9 Diagrama de una estructura refinada de segundo nivel.

El proceso de refinar una solución continúa hasta que el requerimiento más pequeño se ha
incluido dentro de la solución. Note que el diseño produce una estructura en forma de árbol,
donde los niveles se ramifican conforme pasamos de la parte superior de la estructura a la
parte inferior. Cuando el diseño está completo cada tarea designada en un cuadro es codifi-
cada, por lo general, en conjuntos separados de instrucciones que se ejecutan cuando son lla-
madas por tareas superiores en la estructura.

Reportes
impresos

Programa de
control

de inventario

Sección de
introducción

de datos

Sección
de cálculos

Sección
de reportes

Introducir
datos

Cambiar
datos

Eliminar
datos

Reportes
en pantalla

Sección
de reportes

Programa de
control

de inventario

Sección de
introducción

de datos

Sección
de cálculos

1.2 Solución de problemas y desarrollo de software 13

www.FreeLibros.me

Paso 3 Codificar la solución

Este paso, el cual también se conoce como escribir el programa y poner en práctica la solu-
ción, consiste en traducir la solución de diseño elegida en un programa de computadora. Si
los pasos de análisis y solución se han realizado en forma correcta, el paso de codificación se
vuelve bastante mecánico. En un programa bien diseñado, los planteamientos que forman el
programa se conformarán, sin embargo, con ciertos patrones o estructuras bien definidos en
el paso de solución. Estas estructuras controlan la forma en que el programa se ejecuta y con-
siste en los siguientes tipos:

1. Secuencia

2. Selección

3. Iteración

4. Invocación

La secuencia define el orden en que son ejecutadas las instrucciones por el programa. La es-
pecificación de cuál instrucción entra primero, cuál en segundo lugar, etc., es esencial si el
programa ha de lograr un propósito bien definido.

La selección proporciona la capacidad para hacer una elección entre diferentes operacio-
nes, dependiendo del resultado de alguna condición. Por ejemplo, el valor de un número pue-
de comprobarse antes que una divisións sea realizada. Si el número no es cero, puede usarse
como el denominador de una operación de división; de lo contrario, la división no se ejecu-
tará y se mostrará al usuario un mensaje de advertencia.

La iteración, la cual también se denomina bucle, ciclo o repetición, proporciona la ca-
pacidad para que la misma operación se repita con base en el valor de una condición. Por
ejemplo, podrían introducirse y sumarse grados de manera repetida hasta que un grado ne-
gativo sea introducido. Ésta sería la condición que significa el fin de la entrada y adición re-
petitiva de grados. En ese punto podría ejecutarse el cálculo de un promedio para todos los
grados introducidos.

La invocación implica invocar, o solicitar, un conjunto de instrucciones cuando sea nece-
sario. Por ejemplo, el cálculo del pago neto de una persona implica las tareas de obtener las
tarifas de salario y las horas trabajadas, calcular el pago neto y proporcionar un reporte o che-
que por la cantidad requerida. Por lo general una de estas tareas individuales se codificarían
como unidades separadas que son llamadas a ejecución, o invocadas, según se necesiten.

Paso 4 Probar y corregir el programa

El propósito de probar es verificar que el programa funciona en forma correcta y en reali-
dad cumple con sus requerimientos. En teoría, las pruebas revelarían todos los errores del
programa. (En terminología de computación, un error de programa se conoce como bug.4)
En la práctica, esto requeriría comprobar todas las combinaciones posibles de ejecución de
las instrucciones. Debido al tiempo y al esfuerzo requeridos, esto por lo general es una meta
imposible, excepto para programas simples en extremo. (En la sección 4.8 se ilustra por qué
por lo general ésta es una meta imposible.)

CAPÍTULO 1 Introducción14

4La derivación de este término es bastante interesante. Cuando un programa dejó de ejecutarse en la Mark I, en la Universidad
de Harvard, en septiembre de 1945, Grace Hopper rastreó el mal funcionamiento hasta llega a un insecto muerto que había en-
trado en los circuitos eléctricos. Registró el incidente en su bitácora a las 15:45 horas como “Interruptor #70. . . (polilla) en el
interruptor. Primer caso real de bug (insecto) encontrado”.

www.FreeLibros.me

Debido a que no es posible realizar pruebas exhaustivas para la mayor parte de los pro-
blemas, han evolucionado diferentes filosofías y métodos de prueba. En su nivel más básico,
sin embargo, la prueba requiere de un esfuerzo consciente para asegurarse que un programa
funciona en forma correcta y produce resultados significativos. Esto quiere decir que debe
meditarse con cuidado lo que se pretende lograr con la prueba y los datos que se usarán en
la misma. Si la prueba revela un error (bug), puede iniciarse el proceso de depurar, el cual in-
cluye localizar, corregir y verificar la corrección. Es importante percatarse que aunque la
prueba puede revelar la presencia de un error, no necesariamente indica la ausencia de uno.
Por tanto, el hecho que una prueba revele un error no indica que otro no esté al acecho en
algún otro lugar del programa.

Para detectar y corregir errores en un programa es importante desarrollar un conjunto
de datos de prueba por medio de los cuales determinar si el programa proporciona respues-
tas correctas. De hecho, un paso comúnmente aceptado en el desarrollo de software muchas
veces incluye planear los procedimientos de prueba y crear datos de prueba significativos an-
tes de escribir el código. Esto ayuda a ser más objetivo respecto a lo que debe hacer el pro-
grama debido a que en esencia elude cualquier tentación subconsciente después de codificar
datos de prueba que no funcionarán. Los procedimientos para probar un programa deberán
examinar toda las situaciónes posibles bajo las que se usará el programa. El programa debe-
rá probarse con datos en un rango razonable, al igual que dentro de los límites y en áreas
donde el programa debería indicar al usuario que los datos son inválidos. Desarrollar bue-
nos procedimientos y datos de prueba para problemas complejos puede ser más difícil que
escribir el código del programa en sí.

La tabla 1.1. enumera la cantidad relativa de esfuerzo que por lo general se dedica en ca-
da uno de estos cuatro pasos de desarrollo y diseño en proyectos de programación comercial
grandes. Como muestra este listado, la codificación no es el mayor esfuerzo en esta fase. Mu-
chos programadores novatos tienen problemas debido a que dedicaron la mayor parte de su
tiempo a escribir el programa, sin entender por completo el problema o diseñar una solución
apropiada. En este aspecto, vale la pena recordar el proverbio de programación, “Es impo-
sible escribir un programa exitoso para un problema o aplicación que no se ha comprendi-
do por completo”. Un proverbio equivalente e igual de valioso es “Entre más pronto se
comienza a codificar un programa, por lo general tomará más tiempo completarlo”.

Tabla 1.1 Esfuerzo dedicado a la fase I

Fase II. Documentación

Una gran cantidad de trabajo se vuelve inútil o se pierde y deben repetirse demasiadas tareas
debido a una documentación inadecuada, por lo que se puede concluir que documentar el
trabajo es uno de los pasos más importantes en la solución de problemas. En realidad, du-
rante los pasos de análisis, diseño, codificación y prueba se crean muchos documentos esen-

10%

20%

20%

50%

Paso Esfuerzo

Analizar el problema

Desarrollar una solución

Codificar la solución

Probar el programa

1.2 Solución de problemas y desarrollo de software 15

www.FreeLibros.me

ciales. Completar la documentación requiere recopilar estos documentos, agregar material
práctico para el usuario y presentarlo en una forma que sea de la mayor utilidad.

Aunque no es unánime la clasificación, en esencia existen cinco documentos para toda
solución de problema:

1. Descripción del programa

2. Desarrollo y cambios del algoritmo

3. Listado del programa bien comentado

4. Muestras de las pruebas efectuadas

5. Manual del usuario

“Ponerse en los zapatos” de un integrante del equipo de una empresa grande que podría ser
el usuario de su trabajo, desde la secretaria hasta el programador, analistas y la gerencia, de-
bería ayudarle a hacer claro el contenido de la documentación importante. La fase de docu-
mentación comienza de manera formal en la fase de desarrollo y diseño y continúa hasta la
fase de mantenimiento.

Fase III. Mantenimiento

Esta fase tiene que ver con la corrección continua de problemas, revisiones para satisfacer ne-
cesidades cambiantes y la adición de características nuevas. El mantenimiento con frecuencia
es el esfuerzo mayor, la fuente principal de ingresos y la más duradera de las fases de ingenie-
ría. Mientras el desarrollo puede tomar días o meses, el mantenimiento puede continuar por
años o décadas. Entre más completa es la documentación, el mantenimiento podrá efectuar-
se de manera más eficiente y el cliente y el usuario serán más felices.

Respaldo

Aunque no es parte del proceso de diseño formal, es esencial hacer y conservar copias de res-
paldo del programa en cada paso del proceso de programación y depuración. Es fácil elimi-
nar o cambiar la versión de trabajo actual de un programa más allá del reconocimiento. Las
copias de respaldo permiten la recuperación de la última etapa de trabajo con un esfuerzo
mínimo. La versión de trabajo final de un programa útil deberá respaldarse al menos dos ve-
ces. A este respecto, otro proverbio de programación útil es “El respaldo no es importante si
no le importa empezar todo de nuevo”.

Muchas empresas conservan al menos un respaldo en el sitio, donde pueda recuperarse
con facilidad, y otra copia de respaldo ya sea en una caja fuerte a prueba de fuego o en una
ubicación remota.

Ejercicios 1.2

1. a. Enumere y describa los cuatro pasos requeridos en la etapa de diseño y desarro-
llo de un programa.

b. Además de la etapa de diseño y desarrollo, ¿cuáles son las otras dos etapas reque-
ridas para producir un programa y por qué son necesarias?

CAPÍTULO 1 Introducción16

www.FreeLibros.me

2. Una nota de su supervisor, el señor J. Bosworth, dice:

Solucione nuestros problemas de iluminación.

— J. Bosworth

a. ¿Cuál debería ser su primera tarea?
b. Cómo se llevaría a cabo esta tarea?
c. ¿Cuánto tiempo espera que tome esta tarea, suponiendo que todos cooperen?

3. El desarrollo del programa es sólo una fase en el procedimiento de desarrollo de soft-
ware general. Asumiendo que la documentación y el mantenimiento requieren 60%
del esfuerzo de software total en el diseño de un sistema, y usando la tabla 1.1, de-
termine la cantidad de esfuerzo requerido para la codificación del programa inicial
como un porcentaje del esfuerzo de software total.

4. Muchas personas que solicitan un programa o sistema por primera vez consideran
que la codificación es el aspecto más importante del desarrollo del programa. Sien-
ten que saben lo que necesitan y piensan que el programador puede comenzar a
codificar con un tiempo mínimo dedicado al análisis. Como programador, ¿qué di-
ficultades puede prever al trabajar en esas condiciones?

5. Muchos usuarios novatos tratan de contratar a los programadores por una cuota fi-
ja (la cantidad total que se va a pagar se fija con anticipación). ¿Cuál es la ventaja
para el usuario al hacer este arreglo? ¿Cuál es la ventaja para el programador al ha-
cer este arreglo? ¿Cuáles son algunas desventajas tanto para el usuario como para el
programador en este arreglo?

6. Muchos programadores prefieren trabajar con una tarifa por hora. ¿Por qué piensa
que esto es así? ¿Bajo qué condiciones sería ventajoso para un programador darle a
un cliente un precio fijo por el esfuerzo de programación?

7. Los usuarios experimentados por lo general desean una descripción redactada con
claridad del trabajo de programación que se hará, incluyendo una descripción com-
pleta de lo que hará el programa, fechas de entrega, calendarios de pago y requeri-
mientos de prueba. ¿Cuál es la ventaja para el usuario al requerir esto? ¿Cuál es la
ventaja para el programador al trabajar bajo este acuerdo? ¿Qué desventajas tiene
este acuerdo tanto para el usuario como para el programador?

1.3 ALGORITMOS

Antes que se escriba un programa, el programador debe entender con claridad qué datos van
a usarse, el resultado deseado y el procedimiento que va a utilizarse para producir este resul-
tado. El procedimiento, o solución, seleccionado se conoce como algoritmo. Con más preci-
sión, un algoritmo se define como una secuencia paso a paso de instrucciones que deben
realizarse y describe cómo han de procesarse los datos para producir las salidas deseadas. En
esencia, un algoritmo responde la pregunta: “¿Qué método se usará para resolver este pro-
blema?”.

Sólo después de entender con claridad los datos que se usarán y seleccionar un algorit-
mo (los pasos específicos requeridos para producir el resultado deseado) podemos codificar

1.3 Algoritmos 17

www.FreeLibros.me

el programa. Vista bajo esta luz, la programación es la traducción de un algoritmo seleccio-
nado a un lenguaje que pueda usar la computadora.

Para ilustrar un algoritmo, se considerará un problema simple. Suponga que un progra-
ma debe calcular la suma de todos los números enteros del 1 al 100. La figura 1.10 ilustra
tres métodos que podrían usarse para encontrar la suma requerida. Cada método constituye
un algoritmo.

Es evidente que la mayoría de las personas no se molestaría en enumerar las posibles
alternativas en una manera paso por paso detallada, como lo hemos hecho aquí, y luego
seleccionar uno de los algoritmos para solucionar el problema. Pero claro, la mayoría de las
personas no piensa en forma algorítmica; tiende a pensar de manera heurística.

Figura 1.10 Sumar los números del 1 al 100.

Método 1 - Columnas: Ordenar los números del 1 al 100 en una columna
 y sumarlos

1
2
3
4
.
.
.

98
99

+100
 5050

Método 2 - Grupos: Ordenar los números en grupos que sumen 101 y
 multiplicar el número de grupos por 101

1+100=101
 2+99=101
 3+98=101
 4+97=101
 . .
 . .
49+52=101
50+51=101

50 grupos

 (50x101=5050)

Método 3 - Fórmula: Usar la fórmula

 donde
 n = número de términos que se van a sumar (100)
 a = primer número que será sumado (1)
 b = último número que será sumado (100)

suma =

n a b()+
2

100 1 100

2
5050

()+ =

suma =

CAPÍTULO 1 Introducción18

www.FreeLibros.me

Figura 1.11 Símbolos de diagrama de flujo.

Terminal

Entrada/Salida

Proceso

Líneas de flujo

Decisión

Iteración

Proceso predefinido

Conector

Reporte

Indica el principio o fin de un programa

Indica una operación de entrada o salida

Indica cálculo o manipulación de datos

Usadas para conectar los otros símbolos del
diagrama de flujo e indica el flujo lógico

Indica un punto de ramificación del programa

Indica los valores inicial, límite y de incremento
de una iteración

Indica un proceso predefinido, como llamar a
una función

Indica una entrada a, o salida de, otra parte de
un diagrama de flujo o un punto de conexión

Indica un reporte de salida escrito

Símbolo Nombre Descripción

1.3 Algoritmos 19

www.FreeLibros.me

CAPÍTULO 1 Introducción20

Por ejemplo, si tuviera que cambiar una llanta desinflada en su automóvil, no pensaría en to-
dos los pasos requeridos, tan sólo cambiaría la llanta o llamaría a alguien que hiciera el tra-
bajo. Éste es un ejemplo de pensamiento heurístico.

Por desgracia, las computadoras no responden a comandos heurísticos. Una instrucción
general como “sumar los números del 1 al 100” no significa nada para una computadora
porque sólo puede responder a comandos algorítmicos escritos en un lenguaje aceptable co-
mo C++. Para programar una computadora con éxito, debe entender con claridad esta dife-
rencia entre comandos algorítmicos y heurísticos. Una computadora es una máquina “que
responde a algoritmos”; no es una máquina “que responda a la heurística”. No se le puede
decir a una computadora que cambie una llanta o sume los números del 1 al 100. En cam-
bio, debe dársele a la computadora un conjunto de instrucciones paso por paso detallado
que, de manera colectiva, forma un algoritmo. Por ejemplo, el siguiente conjunto de instruc-
ciones forma un método detallado, o algoritmo, para determinar la suma de los números del
1 al 100:

Establezca que n es igual a 100
Establezca a = 1
Establezca que b es igual a 100

n(a + b)
Calcule la suma =

2
Imprima la suma

Note que estas instrucciones no son un programa de computadora. A diferencia de un pro-
grama, el cual debe escribirse en un lenguaje al que pueda responder la computadora, un al-
goritmo puede escribirse o describirse en varias formas. Cuando se utilizan enunciados en
español o en inglés para describir el algoritmo (los pasos de procesamiento), como en este
ejemplo, la descripción se llama seudocódigo. Cuando se usan ecuaciones matemáticas, la
descripción se llama fórmula. Cuando se usan diagramas que emplean los símbolos mostra-
dos en la figura 1.11, la descripción se conoce como un diagrama de flujo. La figura 1.12
ilustra el uso de estos símbolos para describir un algoritmo para determinar el promedio de
tres números.

Debido a que los diagramas de flujo son engorrosos para revisar y pueden soportar con
facilidad prácticas de programación poco estructuradas, han perdido el favor de los progra-
madores profesionales, mientras el uso de seudocódigo para expresar la lógica de los algorit-
mos ha ganado una aceptación creciente. Al describir un algoritmo usando seudocódigo, se
usan enunciados cortos en español. Por ejemplo, un seudocódigo aceptable para describir los
pasos necesarios para calcular el promedio de tres números es:

Introducir los tres números en la memoria de la computadora
Calcular el promedio sumando los números y dividiendo la suma entre tres
Mostrar el promedio

Sólo después que se ha seleccionado un algoritmo y el programador entiende los pasos reque-
ridos puede escribirse el algoritmo usando instrucciones en lenguaje de computadora. La re-
dacción de un algoritmo usando instrucciones en lenguaje de computadora se llama codificar
el algoritmo, lo cual es el tercer paso en nuestro procedimiento de desarrollo del programa
(véase la figura 1.13). La mayor parte de la primera parte de este texto está dedicada a mos-
trarle cómo desarrollar y codificar algoritmos en C++.

www.FreeLibros.me

1.3 Algoritmos 21

Figura 1.12 Diagrama de flujo para calcular el promedio de tres números.

Figura 1.13 Codificación de un algoritmo.

Ejercicios 1.3

1. Determine un procedimiento paso a paso (lista de pasos) para hacer las siguientes ta-
reas. (Nota: No hay una sola respuesta correcta para cada una de estas tareas. El ejer-
cicio está diseñado para brindarle práctica en convertir comandos tipo heurístico en
algoritmos equivalentes y hacer el cambio entre los procesos de pensamiento implica-
dos en los dos tipos de pensamiento.)

a. Arreglar una llanta desinflada
b. Hacer una llamada telefónica
c. Iniciar sesión en una computadora
d. Asar un pavo

2. ¿Los procedimientos que desarrolló en el ejercicio 1 son algoritmos? Discuta por qué sí
o por qué no.

Requerimientos

Traducir el
algoritmo

a C++
(codificación)

Seleccionar
un algoritmo

(procedimiento
paso por paso)

inicio

fin

introducir
tres

valores

calcular
el

promedio

mostrar
el

promedio

www.FreeLibros.me

CAPÍTULO 1 Introducción22

3. Determine y describa un algoritmo (lista de pasos) para intercambiar los contenidos
de dos tazas de líquido. Suponga que dispone de una tercera taza para conservar el
contenido de cualquier taza de manera temporal. Cada taza deberá enjuagarse antes
que cualquier líquido nuevo se vierta en ella.

4. Escriba un conjunto de instrucciones detallado, en español, para calcular la resisten-
cia de los siguientes resistores conectados en serie: n resistores, cada uno con una re-
sistencia de 56 ohmios, m resistores, cada uno con una resistencia de 33 ohmios, y p
resistores, cada uno con una resistencia de 15 ohmios. Note que la resistencia total
de los resistores conectados en serie es la suma de todas las resistencias individuales.

5. Escriba un conjunto de instrucciones detalladas paso a paso, para encontrar el nú-
mero más pequeño en un grupo de tres números enteros.

6. a. Escriba un conjunto de instrucciones detalladas paso a paso, para calcular el nú-
mero menor de billetes en dólares necesarios para pagar una factura de una can-
tidad TOTAL. Por ejemplo, si TOTAL fuera $97, los billetes consistirían en uno
de $50, dos de $20, uno de $5 y dos de $1. (Para este ejercicio, suponga que só-
lo están disponibles billetes de $100, $50, $20, $10, $5 y $1.)

b. Repita el ejercicio 6a, pero suponga que la factura debe pagarse sólo con billetes
de $1.

7. a. Escriba un algoritmo para localizar la primera ocurrencia del nombre JEANS en
una lista de nombres ordenada al azar.

b. Discuta cómo podría mejorar su algoritmo para el ejercicio 7a si la lista de nom-
bres estuviera en orden alfabético.

8. Escriba un algoritmo para determinar las ocurrencias totales de la letra e en cual-
quier enunciado.

9. Determine y escriba un algoritmo para clasificar cuatro números en orden ascenden-
te (de menor a mayor).

1.4 ERRORES COMUNES DE PROGRAMACIÓN

Los errores más comunes asociados con el material presentado en este capítulo son los
siguientes:

1. Un error de programación importante cometido por la mayoría de los programado-
res principiantes es apresurarse a escribir y correr un programa antes de entender
por completo qué se requiere, incluyendo los algoritmos que se usarán para produ-
cir el resultado deseado. Un síntoma de esta prisa por introducir un programa en la
computadora es la falta de cualquier documentación, o incluso un bosquejo de un
programa o programa escrito en sí. Pueden detectarse muchos problemas con sólo
revisar una copia del programa o incluso una descripción del algoritmo escrito en
seudocódigo.

2. Un segundo error importante es no respaldar un programa. Casi todos los progra-
madores nuevos cometen este error hasta que pierden un programa que les ha to-
mado un tiempo considerable codificar.

www.FreeLibros.me

1.5 Resumen del capítulo 23

3. El tercer error cometido por muchos programadores novatos es la falta de
comprensión de que las computadoras sólo responden a algoritmos definidos de
manera explícita. Pedirle a una computadora que sume un grupo de números es
bastante diferente que decirle a un amigo que sume los números. A la computadora
deben dársele las instrucciones precisas para hacer la adición en un lenguaje de
programación.

1.5 RESUMEN DEL CAPÍTULO

1. Los programas usados para operar una computadora se denominan software.

2. Los lenguajes de programación se presentan en una variedad de formas y tipos. Los
programas en lenguaje de máquina, también conocidos como programas ejecuta-
bles, contienen los códigos binarios que pueden ser ejecutados por una computado-
ra. Los lenguajes ensambladores permiten el uso de nombres simbólicos para
operaciones
matemáticas y direcciones de memoria. Los programas escritos en lenguajes ensam-
bladores deben ser convertidos en lenguajes de máquina, usando programas traduc-
tores llamados ensambladores, antes que los programas puedan ser ejecutados. Los
lenguajes ensambladores y de máquina se denominan lenguajes de nivel bajo.

Los lenguajes compilados e interpretados se denominan lenguajes de alto nivel. Esto
significa que son escritos usando instrucciones que se parecen a un lenguaje escrito,
como el inglés, y pueden ejecutarse en una variedad de tipos de computadora. Los
lenguajes compilados requieren un compilador para traducir el programa en una
forma de lenguaje binario, mientras los lenguajes interpretados requieren un intér-
prete para hacer la traducción.

3. Como una disciplina, la ingeniería de software se ocupa de crear programas y siste-
mas legibles, eficientes, confiables y mantenibles.

4. El procedimiento de desarrollo de software consta de tres fases:

• Desarrollo y diseño del programa

• Documentación

• Mantenimiento

5. La fase de desarrollo y diseño del programa consta de cuatro pasos bien definidos:

• Analizar el problema

• Desarrollar una solución

• Codificar la solución

• Prueba y corrección de la solución

6. Un algoritmo es un procedimiento paso por paso que deben realizarse y describe
cómo ha de ejecutarse un cálculo o tarea.

www.FreeLibros.me

7. Un programa de computadora es una unidad independiente de instrucciones y da-
tos usados para operar una computadora y producir un resultado específico.

8. Las cuatro estructuras de control fundamentales usadas en la codificación de un
algoritmo son

• Secuencia

• Selección

• Iteración

• Invocación

1.6 APÉNDICE DEL CAPÍTULO: HARDWARE DE COMPUTACIÓN
Y CONCEPTOS DE ALMACENAMIENTO

Todas las computadoras, desde las grandes supercomputadoras que cuestan millones de dó-
lares hasta las computadoras personales de escritorio más pequeñas, deben realizar un con-
junto mínimo de funciones y proporcionar la capacidad para:

1. Aceptar entradas

2. Mostrar salidas

3. Almacenar información en un formato lógico consistente (tradicionalmente binario)

4. Ejecutar operaciones aritméticas y lógicas en los datos de entrada o en los almace-
nados

5. Supervisar, controlar y dirigir la operación y secuencia general del sistema

La figura 1.14 ilustra los componentes de la computadora que respaldan estas capacidades y
que de manera colectiva forman el hardware de la computadora.

La unidad de aritmética y lógica (ALU) ejecuta todas las funciones aritméticas y lógicas
como adición y sustracción, y las proporcionadas por la computadora.

La unidad de control dirige y supervisa la operación general de la computadora. Rastrea
el lugar de la memoria donde reside la siguiente instrucción, emite las señales necesarias pa-
ra leer datos y escribir datos en otras unidades en el sistema y controla la ejecución de todas
las instrucciones.

La unidad de memoria almacena información en un formato lógico consistente. De ma-
nera típica, tanto instrucciones como datos se almacenan en la memoria, por lo general en
áreas separadas y distintas.

La unidad de entrada y salida (I/O o E/S) proporciona la interfaz a la que se conectan
dispositivos periféricos como teclados, monitores, impresoras y lectores de tarjetas.

Almacenamiento secundario: Debido a que la memoria principal en cantidades muy
grandes aún es relativamente cara y volátil (lo cual significa que la información se pierde
cuando se suspende la energía), no es práctica como un área de almacenamiento permanen-
te para programas y datos. Para este propósito se usan dispositivos de almacenamiento se-
cundario o auxiliar. Aunque los datos se han almacenado en tarjetas perforadas, cinta de
papel y otros medios en el pasado, casi todo el almacenamiento secundario se hace ahora en
cintas magnéticas, discos magnéticos y CD-ROM.

CAPÍTULO 1 Introducción24

www.FreeLibros.me

1.6 Apéndice del capítulo: harware de computación y conceptos de almacenamiento 25

En las primeras computadoras disponibles en forma comercial en la década de los años
50, todas las unidades de hardware se construían usando relés y tubos catódicos, y el alma-
cenamiento secundario consistía en tarjetas perforadas. Las computadoras resultantes eran
piezas de equipo grandes en extremo, capaces de hacer miles de cálculos por segundo que
costaban millones de dólares.

Figura 1.14 Unidades básicas de hardware de una computadora.

En la década de los años 60 con la introducción de los transistores, se redujeron tanto el ta-
maño como el costo del hardware de la computadora. El transistor era aproximadamente una
vigésima parte de su contraparte, el tubo catódico. El tamaño pequeño del transistor permi-
tió a los fabricantes combinar la unidad de aritmética y lógica con la unidad de control en una
sola unidad. Esta unidad combinada se llama unidad central de procesamiento (CPU). La
combinación de la ALU y la unidad de control en una CPU tiene sentido porque la mayoría
de las señales de control generadas por un programa están dirigidas a la ALU en respuesta a
instrucciones aritméticas y lógicas dentro del programa. Combinar la ALU con la unidad de
control simplificó la interfaz entre estas dos unidades y proporcionó una velocidad de proce-
samiento mejorada.

A mediados de la década de los años 60 se implementó la introducción de circuitos inte-
grados (IC), los cuales produjeron otra reducción significativa en el espacio requerido para
producir una CPU. Al principio, los circuitos integrados se fabricaban hasta con 100 transis-
tores en un solo chip de silicio de 1 cm2. Tales dispositivos se conocen como circuitos inte-
grados de pequeña escala (SSI). Las versiones actuales de estos chips contienen cientos de
miles a más de un millón de transistores y se conocen como chips integrados a gran escala
(VLSI).

La tecnología de chips VLSI ha proporcionado los medios para transformar las compu-
tadoras gigantes de la década de los años 50 en las computadoras personales de escritorio y
portátiles de la actualidad. Cada unidad individual requerida para formar una computadora
(CPU, memoria e I/O) se fabrica ahora en un chip VLSI individual, y la CPU de un solo chip

control

almacenamiento
secundario

unidad central de
procesamiento (CPU)

unidad de
aritmética
y lógica
(ALU)

entrada salida

memoria

www.FreeLibros.me

se denomina microprocesador. La figura 1.15 ilustra cómo se conectan estos chips en forma
interna dentro de las computadoras personales actuales, como las PC de IBM.

Figura 1.15 Conexiones de chips VLSI para una computadora de escritorio.

En forma concurrente con la reducción notable en el tamaño del hardware de la computado-
ra ha habido una disminución igual de impresionante en el costo y un aumento en las velo-
cidades de procesamiento. Hardware de computadora equivalente que costaba más de un
millón de dólares en 1950 ahora puede comprarse por menos de quinientos dólares. Si las mis-
mas reducciones ocurrieran en la industria automotriz, por ejemplo, ¡un Rolls Royce podría
comprarse ahora por diez dólares! Las velocidades de procesamiento de las computadoras ac-
tuales también se han incrementado por un factor de miles sobre sus predecesores de la déca-
da de los años 50, con las velocidades de cómputo de las máquinas actuales midiéndose en
millones de instrucciones por segundo (MIPS) y miles de millones de instrucciones por segun-
do (BIPS).

Almacenamiento de computadora

Los componentes físicos usados en la fabricación de una computadora requieren que los nú-
meros y letras dentro de su unidad de memoria no se almacenen usando los mismos símbo-
los que la gente usa. El número 126, por ejemplo, no se almacena usando los números 1, 2
y 6. Ni la letra que reconocemos como A se almacena usando este símbolo. En esta sección
veremos por qué es así y cómo almacenan números las computadoras. En el capítulo 2 se ve-
rá cómo se almacenan las letras.

La pieza más pequeña y básica de datos en una computadora se llama bit. Desde el pun-
to de vista físico, un bit en realidad es un interruptor que puede abrirse o cerrarse. La con-
vención que se seguirá es que las posiciones abierto y cerrado de cada interruptor se
representan como un 0 y un 1, respectivamente.5

Un solo bit que puede representar los valores 0 y 1, por sí solo, tiene utilidad limitada.
Todas las computadoras, por consiguiente, agrupan un número establecido de bits, tanto pa-
ra su almacenamiento como para su transmisión. El agrupamiento de ocho bits para formar
una unidad más grande es un estándar casi universal en la computación. Tales grupos se co-
nocen como bytes. Un solo byte consistente en ocho bits, donde cada bit es 0 o 1, puede re-
presentar cualquiera de 256 patrones distintos. Éstos consisten del patrón 00000000 (los
ocho interruptores abiertos) al patrón 11111111 (los ocho interruptores cerrados) y todas las

microprocesador
(CPU) salidamemoria entrada

CAPÍTULO 1 Introducción26

5Esta convención, por desgracia, es bastante arbitraria, y con frecuencia se encontrará la correspondencia inversa donde las posi-
ciones abierto y cerrado son representadas como 1 y 0, respectivamente.

www.FreeLibros.me

1.6 Apéndice del capítulo: harware de computación y conceptos de almacenamiento 27

combinaciones intermedias posibles de 0 y 1. Cada uno de estos patrones puede usarse para
representar ya sea una letra del alfabeto, otros caracteres individuales como un signo de dó-
lar, una coma, etc., un solo dígito, o números que contienen más de un dígito. La colección
de patrones consistentes en 0 y 1 que se usan para representar letras, dígitos individuales y
otros caracteres individuales se llama código de caracteres. (Uno de estos códigos, llamado
código ASCII, se presenta en la sección 2.3.) Los patrones usados para almacenar números
se llaman código de números, uno de los cuales se presenta a continuación.

Números en complemento a dos

El código de números más común para almacenar valores enteros dentro de una computado-
ra es la representación de complemento a dos. Usando este código, el equivalente entero de
cualquier patrón de bits, como 10001101, es fácil de determinar y puede encontrarse para en-
teros positivos o negativos sin cambio en el método de conversión. Por conveniencia se asu-
mirán patrones de bits del tamaño de un byte consistente en un conjunto de ocho bits cada
uno, aunque el procedimiento puede utilizarse en patrones de bits de tamaño más grande.

La forma más fácil de determinar el entero representado por cada patrón de bits es cons-
truir primero un recurso simple llamado caja de valores. La figura 1.16 ilustra una de estas
cajas para un solo byte. Desde el punto de vista matemático, cada valor en la caja ilustrada
en la figura 1.16 representa un aumento en una potencia de dos. Ya que los números com-
plementados a dos deben ser capaces de representar tanto enteros positivos como negativos,
la posición en el extremo izquierdo, además de tener la magnitud absoluta más grande, tam-
bién tiene un signo negativo.

-128	ƒ64ƒ	ƒ32ƒ	ƒ16ƒ	ƒƒ8ƒ	ƒƒ4ƒ	ƒƒ2ƒ	ƒƒ1
ƒƒƒ ƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ

Figura 1.16 Una caja de valores de ocho bits.

La conversión de cualquier número binario, por ejemplo 10001101, tan sólo requiere insertar
el patrón de bits en la caja de valores y sumar los valores que tienen 1 bajo ellos. Por tanto, co-
mo se ilustra en la figura 1.17, el patrón de bits 10001101 representa el número entero –115.

-128ƒ|ƒ64ƒ|ƒ32ƒ|ƒ16ƒ|ƒƒ8ƒ|ƒƒ4ƒ|ƒƒ2ƒ|ƒƒ1
ƒ----|----|----|----|----|----|----|---
ƒƒ ƒ1ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ1ƒ|ƒƒ1ƒ|ƒƒ0ƒ|ƒƒ1ƒ
-128ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ8ƒ+ƒƒ4ƒ+ƒƒ0ƒ+ƒƒ1ƒ=ƒ-115

Figura 1.17 Conversión de 10001101 a un número en base 10.

También puede usarse la caja de valores a la inversa para convertir un número entero en ba-
se 10 en su patrón de bits binario equivalente. Algunas conversiones, de hecho, pueden ha-
cerse por inspección. Por ejemplo, el número en base 10 –125 se obtiene sumando 3 a –128.
Por tanto, la representación binaria de –125 es 10000011, la cual es igual a –128 + 2 + 1. Del
mismo modo, la representación en complemento a dos del número 40 es 00101000, la cual
es 32 + 8.

Aunque el método de conversión de la caja de valores es engañosamente simple, se rela-
ciona de manera directa con la base matemática subyacente de los números binarios de com-

www.FreeLibros.me

CAPÍTULO 1 Introducción28

plemento a dos. El nombre original del código de complemento a dos era código de signo
ponderado, el cual se correlaciona en forma directa con la caja de valores. Como implica el
nombre signo ponderado, cada posición de bit tiene un peso, o valor, de dos elevado a una
potencia y un signo. Los signos de todos los bits excepto el bit de la extrema izquierda son
positivos y el de la extrema izquierda es negativo.

Al revisar la caja de valores, es evidente que cualquier número binario en complemento
a dos con un 1 inicial representa un número negativo, y cualquier patrón de bits con un 0 ini-
cial representa un número positivo. Usando la caja de valores, es fácil determinar los valores
más positivos y negativos que pueden almacenarse. El valor más negativo que puede almace-
narse en un solo byte es el número decimal –128, el cual tiene el patrón de bits 10000000.
Cualquier otro bit diferente de cero tan sólo agregará una cantidad positiva al número. Ade-
más, es claro que un número positivo debe tener un 0 como su bit en la extrema izquierda. A
partir de esto se puede ver que el número de complemento de dos de ocho bits positivo más
grande es 01111111 o 127.

Palabras y direcciones

Uno o más bytes pueden agruparse en unidades más grandes, llamadas palabras, lo cual faci-
lita un acceso más rápido y más extenso a los datos. Por ejemplo, recuperar una palabra con-
sistente en cuatro bytes de la memoria de una computadora proporciona más información que
la obtenida al recuperar una palabra consistente de un solo byte. Dicha recuperación también
es considerablemente más rápida que cuatro recuperaciones de bytes individuales. Sin embar-
go, este incremento en la velocidad y la capacidad se logra por un aumento en el costo y com-
plejidad de la computadora.

Las primeras computadoras personales, como las máquinas Apple IIe y Commodore, al-
macenaban y transmitían internamente palabras consistentes de bytes individuales. Las pri-
meras PC de IBM usaban tamaños de palabra consistentes de dos bytes, mientras que las PC
más actuales almacenan y procesan palabras consistentes de cuatro bytes cada una.

El número de bytes en una palabra determina los valores máximo y mínimo que pueden
ser representados por la palabra. La tabla 1.2 enumera estos valores para palabras de 1, 2 y
4 bytes (cada uno de los valores enumerados puede derivarse usando cajas de valores de 8,
16 y 32 bits, respectivamente).

Tabla 1.2 Valores enteros y tamaño de una palabra

Además de representar valores enteros, las computadoras también deben almacenar y trans-
mitir números que contienen puntos decimales, los cuales se conocen en matemáticas como
números reales. Los códigos usados para números reales, los cuales son más complejos que
los usados para enteros, se presentan en el apéndice C.

Valor del
número entero
mínimo

Valor del
número entero
máximo

Tamaño de
la palabra

1 Byte 127 –128

2 Bytes 32 767 –32 768

4 Bytes 2 147 483 647 –2 147 483 648

www.FreeLibros.me

1.6 Apéndice del capítulo: harware de computación y conceptos de almacenamiento 29

Ingeniería aeronáutica y aeroespacial
Entre las más jóvenes de las disciplinas de ingeniería, la ingeniería aeronáutica y aeroes-
pacial se ocupa de todos los aspectos del diseño, producción, prueba y utilización de ve-
hículos o dispositivos que vuelan en el aire (aeronáutica) o en el espacio (aeroespacial),
desde alas delta hasta transbordadores espaciales. Debido a que los principios científicos
y de ingeniería implicados son tan amplios, los aeroingenieros por lo general se especia-
lizan en una subárea que puede superponerse con otros campos de la ingeniería como la
ingeniería mecánica, metalúrgica o de materiales, química, civil o eléctrica. Estas subáreas
incluyen las siguientes:

1. Aerodinámica. Estudia las características de vuelo de varias estructuras o configura-
ciones. Las consideraciones típicas son el arrastre y elevación asociados con el dise-
ño de aviones o la aparición del flujo turbulento. Es esencial tener un conocimiento
de la dinámica de fluidos. El modelamiento y prueba de todas las formas de aerona-
ves es parte de esta disciplina.

2. Diseño estructural. El diseño, producción y prueba de aeronaves y naves espaciales
para resistir la amplia gama de demandas de vuelo de estos vehículos, así como
naves submarinas, son el territorio del ingeniero estructural.

3. Sistemas de propulsión. El diseño de motores de combustión interna, a reacción, y
de combustible líquido y sólido para cohetes y su coordinación en el diseño general
del vehículo. Los motores de cohete, en especial, requieren ingeniería innovadora
para adecuarse a las temperaturas extremas de almacenamiento, mezcla e ignición
de combustibles como el oxígeno líquido.

4. Instrumentación y conducción. La industria aeroespacial ha sido líder en el desarro-
llo y utilización de electrónica de estado sólido en forma de microprocesadores para
vigilar y ajustar las operaciones de cientos de funciones de aviones y naves espacia-
les. Este campo usa la pericia de ingenieros eléctricos y aeroingenieros.

5. Navegación. El cálculo de órbitas dentro y fuera de la atmósfera, y la determinación
de la orientación de un vehículo con respecto a puntos en la tierra o en el espacio.

Consideración de opciones de carrera

www.FreeLibros.me

www.FreeLibros.me

