5}3 o
CAPITULO 1

b .
> Introduccion
SR,

NN
/
1.1 INTRODUCCION A LA PROGRAMACION
LENGUAJE DE MAQUINA ORIENTACIONES A PROCEDIMIENTOS Y A OBJETOS
LENGUAJES ENSAMBLADORES SOFTWARE DE APLICACION Y DE SISTEMA
LENGUAJES DE NIVELES BAJO Y ALTO EL pbesarRrRoLLO DE C++
1.2 SOLUCION DE PROBLEMAS Y DESARROLLO DE SOFTWARE
FASE |. DESARROLLO Y DISENO Fase 1ll. MANTENIMIENTO
Fase II. DOCUME!\}ACION RESPALDO

1.3 ALGORITMOS

1.4 ERRORES COMUNES DE PROGRAMACION

1.5 RESUMEN DEL CAPITULO

1.6 APENDICE DEL CAPITULO: HARDWARE DE COMPUTACION

Y CONCEPTOS DE ALMACENAMIENTO

ALMACENAMIENTO DE COMPUTADORA PALABRAS Y DIRECCIONES

NUMEROS EN COMPLEMENTO A DOS CONSIDERACION DE LAS OPCIONES DE
CARRERA: INGENIERIA AERONAUTICA
Y AEROESPACIAL

/

www.FreelLibros.me

CarituLo 1 Introduccion

1.1 > INTRODUCCION A LA PROGRAMACION

Una computadora es una mdquina y, como otras maquinas, como un automévil o una poda-
dora, debe encenderse y luego conducirse, o controlarse, para hacer la tarea que se pretende
realizar. En un automévil, por ejemplo, el control es proporcionado por el conductor, quien
se sienta en su interior y lo dirige. En una computadora, el conductor es un conjunto de ins-
trucciones llamado programa. De manera mas formal, un programa de computadora es un
conjunto independiente de instrucciones usado para operar una computadora con el fin de
producir un resultado especifico. Otro término para un programa o conjunto de programas
es software, y se usaran ambos términos de manera indistinta a través del texto.

El proceso de escribir un programa, o software, se llama programacién, mientras al
conjunto que puede usarse para construir un programa se llama lenguaje de programacion.
Los lenguajes de programacion disponibles se presentan en una variedad de formas y tipos.

Lenguaje de maquina

En su nivel mds fundamental, los unicos programas que pueden usarse en realidad para ope-
rar una computadora son los programas en lenguaje de maquina. Tales programas, los cua-
les también se conocen como programas ejecutables, o ejecutables para abreviar, consisten
en una secuencia de instrucciones compuestas por niimeros binarios como:*

11000000 000000000001 000000000010
11110000 000000000010 000000000011

Estas instrucciones en lenguaje de maquina constan de dos partes: una de instruccion y una
de direccion. La parte de instruccion, a la cual se conoce como opcode (abreviatura de “c6-
digo de operacion”), por lo general es el conjunto de bits en el extremo izquierdo de la ins-
truccion y le indica a la computadora la operacién a realizar, como sumar, restar, multiplicar,
etc., mientras los bits en el extremo derecho especifican las direcciones de memoria de los
datos que se van a usar. Por ejemplo, suponiendo que los ocho bits en el extremo izquierdo
de la primera instruccion enlistada antes contienen el c6digo de operacion para sumar, y los
siguientes dos grupos de doce bits son las direcciones de los dos operandos que se van a su-
mar, esta instruccion seria un comando para “sumar los datos en la ubicaciéon 1 de la me-
moria a los datos en la ubicacion 2 de la memoria”. Del mismo modo, suponiendo que el
opcode 11110000 significa multiplicar, la siguiente instruccion es un comando para “mul-
tiplicar los datos en la ubicacion 2 de la memoria por los datos en la ubicacion 3”. (La sec-
ciéon 1.6 explica como convertir de nimeros binarios a decimales.)

Lenguajes ensambladores

Debido a que cada clase de computadora, como IBM, Apple y Hewlett Packard, tiene su pro-
pio lenguaje de maquina particular, es muy tedioso y tardado escribir esos programas en len-
guaje de maquina.’ Uno de los primeros avances en la programacién fue la sustitucién de

'De una manera mas incluyente, el término software también se usa para denotar tanto los programas como los datos con los que
operarén los programas.

>Revise la seccién 1.6 al final de este capitulo si no esta familiarizado con los niimeros binarios.

En la actualidad, el lenguaje en el nivel de maquina esta definido por el procesador alrededor del cual esta construida la compu-
tadora.

www.FreelLibros.me

1.1 Introduccién a la programacién 3

simbolos en forma de palabras, como ADD, SUB, MUL, por los opcodes binarios y los nu-
meros decimales y etiquetas por las direcciones en memoria. Por ejemplo, usando estos sim-
bolos y valores decimales para las direcciones en memoria, las dos instrucciones en lenguaje
de maquina anteriores pueden escribirse como:

ADD 1,2
MUL 2, 3

Los lenguajes de programacion que usan este tipo de notacién simbélica se conocen como len-
guajes ensambladores. Debido a que las computadoras sélo pueden ejecutar programas en
lenguaje de maquina, el conjunto de instrucciones contenido dentro de un programa en len-
guaje ensamblador debe traducirse a un programa de lenguaje de mdquina antes que pue-
da ejecutarse en una computadora. Los programas traductores que realizan esta funcion para
los programas en lenguaje ensamblador se conocen como ensambladores (véase la figura 1.1).

Un programa Programa Programa
en lenguaje de traduccion > en lenguaje
ensamblador ([ensamblador) de maquina

Figura 1.1 Los programas ensambladores deben traducirse.

Lenguajes de niveles bajo y alto

Tanto los lenguajes de maquina como los ensambladores se clasifican como lenguajes de ni-
vel bajo. Esto se debe a que ambos tipos de lenguaje usan instrucciones que se vinculan en
forma directa con un tipo de computadora. Como tal, un programa en lenguaje ensambla-
dor esta limitado porque s6lo puede usarse con el tipo de computadora especifica para el cual
se escribio. Sin embargo, estos programas permiten usar las caracteristicas especiales de un
tipo de computadora particular y por lo general se ejecutan en el nivel mas rapido posible.

En contraste con los lenguajes de nivel bajo estan los lenguajes de alto nivel. Un lengua-
je de alto nivel usa instrucciones que se parecen a los lenguajes escritos, como el inglés, y
pueden ejecutarse en una variedad de tipos de computadora. Visual Basic, C, C++ y Java son
ejemplos de lenguajes de alto nivel. Usando C++, una instruccion para sumar dos nimeros y
multiplicarlos por un tercer nimero puede escribirse como:

resultado = (primero + segundo) * tercero;

Los programas escritos en un lenguaje de computadora (de alto o bajo nivel) se conocen co-
mo programas fuente y cédigo fuente. Una vez que se ha escrito un programa en un len-
guaje de alto nivel también debe traducirse, como un programa ensamblador de bajo nivel,
al lenguaje de maquina de la computadora en que se va a ejecutar. Esta traduccion puede
lograrse en dos formas.

Cuando cada declaracion en un programa fuente de alto nivel es traducida de manera in-
dividual y ejecutada inmediatamente después de la traduccion, el lenguaje de programacion
usado se llama lenguaje interpretado y el programa que hace la traduccion se llama intér-
prete.

Cuando todas las instrucciones en un programa fuente de alto nivel son traducidas como
una unidad completa antes que cualquier declaracion sea ejecutada, el lenguaje de programa-

www.FreelLibros.me

CarituLo 1 Introduccion

cion usado se llama lenguaje compilado. En este caso, el programa que hace la traduccion se
llama compilador. Pueden existir tanto versiones compiladas como interpretadas de un len-
guaje, aunque de manera tipica predomina una. C++ es predominantemente un lenguaje com-
pilado.

La figura 1.2 ilustra la relacion entre un codigo fuente de C++ y su compilaciéon en un
programa ejecutable en lenguaje de maquina. Como se muestra, el programa fuente se intro-
duce usando un programa editor. Este es en efecto un programa procesador de palabras que
es parte del ambiente de desarrollo proporcionado por el compilador. Debe entenderse, sin
embargo, que la introduccion del c6digo s6lo puede comenzar después que una aplicacion se
ha analizado y comprendido en forma minuciosa y el disefio del programa ha sido planeado
con cuidado. La forma en que se logra esto se explica en la siguiente seccion.

La traduccion del programa fuente C++ en un programa en lenguaje de maquina comien-
za con el compilador. La salida producida por el compilador se llama programa objeto, el cual
es una version en lenguaje de maquina del codigo fuente. En casi todos los casos, su codigo
fuente usara codigo preprogramado existente, con cddigo que ha escrito con anterioridad o
cédigo proporcionado por el compilador. Este podria incluir cédigo matematico para encon-
trar una raiz cuadrada, por ejemplo, o cddigo que se esta reutilizando de otra aplicacion.
Ademas, un programa C++ grande puede almacenarse en dos o mds archivos de programa
separados. En todos estos casos, este codigo adicional debe combinarse con el programa ob-
jeto antes que el programa pueda ejecutarse. Es tarea del ligador lograr este paso. El resul-
tado del proceso de ligamiento es un programa en lenguaje de maquina completado, que
contiene todo el codigo requerido por el programa, el cual esta listo para su ejecucion. El ul-
timo paso en el proceso es cargar este programa en lenguaje de maquina en la memoria prin-
cipal de su computadora para su ejecucion real.

Orientaciones a procedimientos y a objetos

Ademas de clasificar los lenguajes de programacion como de alto o bajo nivel, también se cla-
sifican por su orientacion a procedimientos u objetos. En un lenguaje orientado a procedi-
mientos las instrucciones disponibles se usan para crear unidades independientes, conocidas
como procedimientos. El propdsito de un procedimiento es aceptar datos como entrada y
transformarlos de alguna manera para producir un resultado especifico como una salida.
Hasta la década de los afios 90 la mayor parte de los lenguajes de programacion de alto ni-
vel eran orientados a procedimientos.

En la actualidad, un segundo enfoque, la orientacion a objetos, ha tomado el escenario
central. Una de las motivaciones para lenguajes orientados a objetos fue el desarrollo de pan-
tallas graficas y soporte para las interfaces graficas de usuario (GUI), capaces de desplegar
multiples ventanas que contienen tanto formas graficas como texto. En tal ambiente, cada ven-
tana en la pantalla puede considerarse un objeto con caracteristicas asociadas, como color, po-
sicion y tamafo. Usando un enfoque orientado a objetos, un programa debe definir primero
los objetos que manipulara, incluyendo una descripcion de las caracteristicas generales de los
objetos y unidades especificas para manipularlos, como cambiar el tamafo y la posicion y
transferir datos entre objetos. Es de igual importancia que los lenguajes orientados a objetos
tiendan a soportar la reutilizacién del codigo existente con mas facilidad, lo cual elimina la ne-
cesidad de revalidar y reexaminar c6digo nuevo o modificado. C++, el cual se clasifica como
un lenguaje orientado a objetos, contiene caracteristicas que se encuentran en los lenguajes
orientados a procedimientos y a objetos. En este texto se disefiaran, desarrollaran y presenta-
ran ambos tipos de cddigo, que es la forma en que se escribe la mayor parte de los programas
C++ actuales. Debido a que el codigo C++ orientado a objetos siempre contiene algin codigo

www.FreelLibros.me

1.1 Introduccion a la programacién 5

de procedimientos, y muchos programas C++ simples se escriben por completo usando sélo
codigo de procedimientos, este tipo de codigo se presenta primero.

Escibir el
programa C++

J

Editor

&

El
programa
fuente
C++

pu -

Compilador

a b

El
programa
objeto
C++

L
Otro

Objeto
Archivos
(Biblioteca)

Ligador

7V

JL

Un
programa
ejecutable

Figura 1.2 Creacion de un programa C++ ejecutable.

Software de aplicacion y de sistema

El software de aplicacion y el software de sistema son dos categorias l6gicas de programas
de computadora. El software de aplicacién consiste en aquellos programas escritos para rea-
lizar tareas particulares requeridas por los usuarios. Todos los programas en este libro son
ejemplos de software de aplicacion.

El software de sistema es la coleccion de programas que deben estar disponibles en cual-
quier sistema de computo en el que ha de operar. En los primeros entornos de computo de las
décadas de los afios 50 y 60, el usuario tenia que cargar al inicio el software de sistema en for-
ma manual para preparar la computadora para que hiciera algo. Esto se llevaba a cabo usan-
do hileras de conmutadores en un panel frontal. Se decia que aquellos comandos iniciales

www.FreelLibros.me

CarituLo 1 Introduccion

introducidos en forma manual iniciaban (boot) la computadora, una expresion derivada de la
expresion inglesa pulling oneself up by the bootstraps que significa “salir adelante sin ayuda”.
En la actualidad, el llamado cargador inicial (bootstrap loader) es un componente permanen-
te que se ejecuta de manera automatica desde el software del sistema de la computadora.

De manera colectiva, el conjunto de programas de sistema usados para operar y controlar
una computadora se llama sistema operativo. Los sistemas operativos modernos incluyen las
siguientes tareas: administracion de memoria; asignacion de tiempo de CPU; control de unida-
des de entrada y salida como teclado, pantalla e impresoras, y la administracion de todos los
dispositivos de almacenamiento secundarios. Muchos sistemas operativos manejan progra-
mas grandes y multiples usuarios, en forma concurrente, dividiendo los programas en segmen-
tos que son movidos entre el disco y la memoria conforme se necesita. Tales sistemas operativos
permiten que mas de un usuario ejecute un programa en la computadora, lo cual le da a cada
usuario la impresion que la computadora y los periféricos son sélo suyos. Esto se conoce
como un sistema multiusuario. Ademas, muchos sistemas operativos, incluyendo la mayor
parte de los ambientes con ventanas, permiten a cada usuario ejecutar multiples programas.
Dichos sistemas operativos se conocen como sistemas multiprogramados y multitareas.

El desarrollo de C++

En un nivel basico, el propdsito de casi todos los programas de aplicacion es procesar datos
para producir uno o mas resultados especificos. En un lenguaje de procedimientos, un progra-
ma se construye a partir de conjuntos de instrucciones, con cada conjunto nombrado como un
procedimiento, como se sefial6 con anterioridad. En efecto, cada procedimiento mueve los da-
tos un paso mas cerca de la salida final deseada a lo largo de la ruta mostrada en la figura 1.3.

Datos de A Proceso s, Salida de
entrada de los resultados
datos

Figura 1.3 Operaciones de procedimiento basicas.

El proceso de programacién ilustrado en la figura 1.3 refleja en forma directa las unidades
de hardware de entrada, procesamiento y salida usadas para construir una computadora
(véase la seccion 1.6). Esto no fue accidental porque los primeros lenguajes de programacion
fueron disefiados de manera especifica para corresponder y controlar en forma directa, lo
mas 6ptimamente posible, a las unidades de hardware apropiadas.

El primer lenguaje de procedimientos, llamado FORTRAN, cuyo nombre se deriva de
FORmula TRANslation, fue introducido en 1957 y sigui6 siendo popular durante la década
de los afios 60 y principios de la década de los afnos 70. (Otro lenguaje de programacion de
nivel alto desarrollado en forma casi concurrente con FORTRAN, pero que nunca logré la
aceptacion abrumadora de FORTRAN, fue nombrado ALGOL.) FORTRAN tiene instruc-
ciones tipo algebra que se concentran en la fase de procesamiento mostrada en la figura 1.3
y fue desarrollado para aplicaciones cientificas y de ingenieria que requerian salidas numéri-
cas de gran precision, incluyendo muchos lugares decimales. Por ejemplo, calcular la trayec-
toria de un cohete o el nivel de concentraciéon bacteriana en un estanque contaminado, como
se ilustra en la figura 1.4, requiere evaluar una ecuacién matematica a un alto grado de pre-
cision numérica y es tipico de las aplicaciones basadas en FORTRAN.

www.FreelLibros.me

1.1 Introduccién a la programacion 7

crecimiento de
bacterias

en un estanque

contaminado

Nivel de concentracion

N
Tiempo

Figure 1.4 FORTRAN fue desarrollado para aplicaciones cientificas y de ingenieria.

En orden de aparicion, el siguiente lenguaje de aplicacion de nivel alto significativo fue CO-
BOL, el cual fue introducido en la década de los afios 60 y permanecié como un lenguaje de
procedimientos importante hasta la década de los afios 80. La palabra COBOL se formé por
las siglas de COmmon Business-Oriented Language. Este lenguaje tenia caracteristicas enfo-
cadas hacia aplicaciones de negocios que requerian calculos matemadticos mas simples que los
necesarios para aplicaciones de ingenieria. Uno de los beneficios mas notables de COBOL fue
que proporcionaba formatos de salida extensos que facilitaban la creacion de informes que
contenian muchas columnas de nimeros y totales en dolares y centavos formateados con es-
mero, como se ilustra en la figura 1.5. Esto oblig6 a los programadores a construir procedi-
mientos estructurados bien definidos que seguian un patrén mas consistente que el requerido
por FORTRAN.

No. de parte Descripcion Cantidad Precio
12225 #4 Clavos, normales 25 cajas 1.09
12226 #6 Clavos, normales 30 cajas 1.09
12227 #8 Clavos, normales 65 cajas 1.29
12228 #10 Clavos, normales 57 cajas 1.35
12229 #12 Clavos, normales i
12230 a

Figure 1.5 COBOL fue desarrollado para aplicaciones de negocios.

Otro lenguaje, BASIC (o Beginners All-purpose Symbolic Instruction Code), fue desarrolla-
do en Dartmouth College mas o menos al mismo tiempo que COBOL. BASIC era en esencia
una version ligeramente reducida de FORTRAN vy pretendia ser un lenguaje introductorio
para estudiantes universitarios. Era un lenguaje relativamente sencillo, facil de entender, que
no requeria un conocimiento detallado de una aplicacion especifica. Su principal desventaja
era que no requeria ni imponia un enfoque consistente o estructurado para crear programas.
Con frecuencia, el programador no podia comprender con facilidad qué hacia su programa
BASIC después de un tiempo breve.

www.FreelLibros.me

CarituLo 1 Introduccion

Para remediar esto y adecuar la programacion a una base mas cientifica y racional que hi-
ciera mas facil entender y reutilizar el codigo, se desarroll6 el lenguaje Pascal. (Pascal no es
una sigla, sino que se le puso este nombre en honor al matematico del siglo xvi Blaise Pas-
cal.) Introducido en 1971, proporcioné a los estudiantes un fundamento mas firme en el di-
seflo de programacion estructurada que lo aportado por versiones anteriores de BASIC.

Los programas estructurados se crean usando un conjunto de estructuras bien definidas
organizadas en secciones de programacion individuales, cada una de las cuales ejecuta una
tarea especifica que puede probarse y modificarse sin perturbar otras secciones del progra-
ma. Sin embargo, el lenguaje Pascal estaba estructurado en forma tan rigida que no existian
escapes de las secciones estructuradas cuando hubieran sido utiles. Esto era una limitante pa-
ra muchos proyectos del mundo real y es una de las razones por las que Pascal no fue acep-
tado en forma amplia en los campos cientifico y de ingenieria. En cambio, el lenguaje C, el
cual es un lenguaje de procedimientos estructurado desarrollado en la década de los afios 70
en AT&T Bell Laboratories por Ken Thompson, Dennis Ritchie y Brian Kernighan, se con-
virtio en el lenguaje para aplicaciones de ingenieria dominante de la década de los afios 80.
Este lenguaje tiene un amplio conjunto de capacidades que permite que se escriba como un
lenguaje de nivel alto mientras conserva la capacidad de acceso directo a las caracteristicas
del nivel de maquina de una computadora.

C++ fue desarrollado a principios de la década de los afios 80, cuando Bjarne Stroustrup
(también en AT&T) usé sus conocimientos en lenguaje de simulacion para crear un lengua-
je de programacion orientado a objetos. Una caracteristica central de los lenguajes de simu-
lacion es que modelan situaciones de la vida real como objetos. Esta orientacion a objetos, la
cual era ideal para objetos graficos presentados en pantalla como rectangulos y circulos, se
combiné con caracteristicas de C, existentes para formar el lenguaje C++. Por tanto, C++
conservo el conjunto extenso de capacidades estructuradas y de procedimientos proporcio-
nadas por C, pero agregd su propia orientacion a objetos para convertirse en un verdadero
lenguaje de programacion de uso general. Como tal, C++ puede usarse desde programas in-
teractivos simples, hasta programas de ingenieria y cientificos sofisticados y complejos, den-
tro del contexto de una estructura en verdad orientada a objetos.

Ejercicios 1.1
1. Defina los siguientes términos:

programa de computadora
programacion

lenguaje de programacion
lenguaje de alto nivel
lenguaje de bajo nivel
lenguaje de maquina
lenguaje ensamblador
lenguaje orientado a procedimientos
lenguaje orientado a objetos
programa fuente
compilador

intérprete

SQ@moango

il

2. Describa el proposito y usos principales del software de aplicacion y de sistema.

www.FreelLibros.me

1.2 Solucién de problemas y desarrollo de software 92

3. a. Describa la diferencia entre lenguajes de alto y bajo nivel.
b. Describa la diferencia entre lenguajes orientados a procedimientos y a objetos.

4. Describa las semejanzas y diferencias entre ensambladores, intérpretes y compiladores.

5. a. Dados los siguientes codigos de operacion,

11000000 significa sumar el ler. operando al 2o. operando

10100000 significa restar el ler. operando del 2o0. operando
11110000 significa multiplicar el 2o0. operando por el ler. operando
11010000 significa dividir el 2o. operando entre el ler. operando

traduzca las siguientes instrucciones al espafol:

Direccién del Direccién del
opcode ler. operando 20. operando
11000000 000000000001 0000000000010
11110000 000000000010 0000000000011
10100000 000000000100 0000000000011
11010000 000000000101 0000000000011

b. Suponiendo que las siguientes ubicaciones contienen los datos proporcionados,
determine el resultado producido por las instrucciones listadas en el ejercicio Sa.
Para este ejercicio, suponga que cada instruccion es ejecutada de manera indepen-
diente de cualquier instruccion.

Direccién Valor inicial (en decimales)
almacenado en esta direccién

00000000001 5

00000000010 3

00000000011 6

00000000100 14

00000000101 4

6. Reescriba las instrucciones en el nivel de maquina enlistadas en el ejercicio 5a usan-
do notacion de lenguaje ensamblador. Use los nombres simbolicos ADD, SUB, MUL
y DIV para operaciones de adicion, sustraccion, multiplicacion y division, respecti-
vamente. Al escribir las instrucciones use valores decimales para las direcciones.

1.2 > SOLUCION DE PROBLEMAS Y DESARROLLO DE SOFTWARE

Sin importar cudl campo de trabajo elija o cual pueda ser su estilo de vida, tendra que resol-
ver problemas. Muchos de éstos, como sumar el cambio en su bolsillo, pueden resolverse ra-
pido y facil. Otros, como montar en bicicleta, requieren algo de practica pero pronto se
vuelven automaticos. Otros mas requieren de una planeacion y premeditacion considera-
bles para que la solucion sea apropiada y eficiente. Por ejemplo, construir una red telef6ni-
ca celular o crear un sistema de administracion de inventarios para un gran almacén son
problemas para los cuales las soluciones por ensayo y error podrian resultar costosas y de-
sastrosas.

www.FreelLibros.me

10

CarituLo 1 Introduccion

Crear un programa no es diferente porque un programa es una solucion desarrollada pa-
ra resolver un problema particular. Por ello, escribir un programa casi es el ultimo paso en
un proceso de determinar primero cudl es el problema y el método que se usara para resol-
verlo. Cada campo de estudio tiene su propio nombre para el método sistematico usado pa-
ra resolver problemas mediante el disefo de soluciones adecuadas. En las ciencias y la
ingenieria el enfoque se conoce como el método cientifico, mientras en el analisis cuantitati-
vo el enfoque se denomina enfoque de sistemas.

El método usado por los profesionales que desarrollan software para entender el proble-
ma que se va a solucionar y para crear una solucion de software efectiva y apropiada se lla-
ma procedimiento de desarrollo de software. Este procedimiento, como se ilustra en la
figura 1.6, consiste en tres fases que se superponen:

e Disefio y desarrollo
* Documentacion

e Mantenimiento

Como disciplina, la ingenieria de software se encarga de crear programas y sistemas legibles,
eficientes, confiables y mantenibles, utilizando el procedimiento de desarrollo de software pa-
ra lograr esta meta.

» (Mmantenimiento
| |
de vida del | |
programd desarrollo
y disefio I
|
N
1‘ Tiempo T
Solicitud de Programa ya
un programa no utilizado

Figura 1.6 Las tres fases del desarrollo de programas.

Fase I. Desarrollo y diseno

La fase I comienza con el planteamiento de un problema o con una solicitud especifica de un
programa, lo cual se conoce como requerimiento de programa. Una vez que se ha plantea-
do un problema o se ha hecho una solicitud especifica para un programa, comienza la fase
de disefio y desarrollo. Esta fase consta de cuatro pasos bien definidos, como se ilustra en la
figura 1.7 y se resume a continuacion.

www.FreelLibros.me

1.2 Solucién de problemas y desarrollo de software 11

N
I pruebas |
| |
I codificacion |
Pasos de | |
desarrollo I disefio |
y disefio | |
analisis |
N
Tiempo

Figura 1.7 Los pasos de disefio y desarrollo.

Paso 1 Analizar el problema

Este paso es necesario para asegurar que el problema esta definido y se entiende con clari-
dad. La determinacion de que el problema esta definido en forma clara se hace s6lo después
que quien realiza el analisis entiende qué salidas se requieren y qué entradas se necesitaran.
Para lograr esto el analista debe tener una comprension de la forma en que se pueden usar
las entradas para producir la salida deseada. Por ejemplo, suponga que recibe la siguiente ta-
rea:

Escriba un programa que nos proporcione la informacién que necesitamos
sobre los circulos. Terminelo para mariana.

— La gerencia

Un analisis simple de esta solicitud de programa revela que no es un problema bien definido
en absoluto, porque no sabemos con exactitud qué informacioén de salida se requiere. Por
ello, serfa un error enorme comenzar de inmediato a escribir un programa para solucionar-
lo. Para aclarar y definir el planteamiento del problema, su primer paso debera ser ponerse
en contacto con “La gerencia” para definir con exactitud qué va a producir el programa (sus
salidas). Suponga que hizo esto y se enterd que lo que en realidad se deseaba es un progra-
ma para calcular y mostrar la circunferencia de un circulo cuando se da el radio. Debido a
que existe una formula para convertir la entrada en la salida, puede proceder al siguiente
paso. Si no se esta seguro de como obtener la salida requerida o exactamente cudles entra-
das se necesitan, se requiere un analisis mas profundo. Esto de manera tipica significa obte-
ner mas informacion antecedente acerca del problema o aplicacion. Con frecuencia también
implica hacer uno o mds calculos manuales para asegurar que se entiende qué entradas son
necesarias y como deben combinarse para lograr la salida deseada.

Innumerables horas se han dedicado a escribir programas de computadora que nunca se
han usado o han causado una animosidad considerable entre el programador y el usuario
debido a que el programador no produjo lo que el usuario necesitaba o esperaba. Los pro-
gramadores exitosos entienden y evitan esto al asegurarse que entienden los requerimien-
tos del problema. Este es el primer paso en la creacién de un programa y el mas importante,

www.FreelLibros.me

12

CarituLo 1 Introduccion

porque en €l se determinan las especificaciones para la solucién final del programa. Si los
requerimientos no son entendidos por completo antes que comience la programacion, los re-
sultados casi siempre son desastrosos.

Por ejemplo, imagine disefiar y construir una casa sin entender por completo las especifi-
caciones del propietario. Después que se ha terminado, el propietario le dice que se requeria
un bafio en el primer piso, donde usted ha construido una pared entre la cocina y el comedor.
Ademas, esa pared en particular es una de las paredes de soporte principales para la casa y
contiene numerosas tuberias y cables eléctricos. En este caso, agregar un bafio requiere una
modificacion bastante importante a la estructura basica de la casa.

Los programadores experimentados entienden la importancia de analizar y comprender
los requerimientos del programa antes de codificarlo, en especial si también han elaborado
programas que después han tenido que desmantelarse y rehacerse por completo. La clave del
éxito aqui, la cual a fin de cuentas determina el éxito del programa final, es determinar el
proposito principal del sistema visto por la persona que hace la solicitud. Para sistemas gran-
des, el analisis por lo general es realizado por un analista de sistemas. Para sistemas mds pe-
quefios o programas individuales, el analisis de manera tipica se lleva a cabo en forma directa
por el programador.

Sin tener en cuenta como se hizo el andlisis, o por quién, al concluirlo debera haber una
comprension clara de:

® Qué debe hacer el sistema o programa
® Qué salidas debe producir

* Qué entradas se requieren para crear las salidas deseadas

Paso 2 Desarrollar una solucion

En este paso, se selecciona el conjunto exacto de pasos, llamado algoritmo, que se usarad para
resolver el problema. La solucién se obtiene de manera tipica por una serie de refinamientos,
comenzando con el algoritmo inicial encontrado en el paso de andlisis, hasta que se obtenga
un algoritmo aceptable y completo. Este algoritmo debe verificarse, si no se ha hecho en el pa-
so de analisis, para asegurar que produce en forma correcta las salidas deseadas. Por lo gene-
ral la verificacion se hace realizando uno o mas calculos manuales que no se han hecho.

Para programas pequenos el algoritmo seleccionado puede ser en extremo simple y con-
sistir de s6lo uno o mas calculos. De manera mas general, la solucion inicial debe refinarse y
organizarse en subsistemas mds pequefios, con especificaciones sobre la forma en que los sub-
sistemas interactuaran entre si. Para lograr este objetivo, la descripcion del algoritmo comien-
za desde el requerimiento de nivel mas alto (superior) y procede en forma descendente a las
partes que deben elaborarse para lograr este requerimiento. Para hacer esto mas significati-
vo, considere un programa de computadora para dar seguimiento al numero de partes en un
inventario. La salida requerida para este programa es una descripcion de todas las partes que
se llevan en el inventario y el nimero de unidades de cada articulo en existencia; las entradas
dadas son la cantidad inicial en inventario de cada parte, el nimero de articulos vendidos, el
numero de articulos devueltos y el numero de articulos comprados.

Para estas especificaciones, el disenador podria organizar al principio los requerimientos
para el programa en las tres secciones ilustradas en la figura 1.8. Esto se llama diagrama de
estructura de primer nivel porque representa la primera estructura general del programa se-
leccionado por el disenador.

www.FreelLibros.me

1.2 Solucién de problemas y desarrollo de software 13

Programa de
control
de inventario

Seccion de L, .,
. -, Seccion Seccion
introduccion .,
de calculos de reportes
de datos

Figura 1.8 Diagrama de estructura de primer nivel.

Una vez que se ha desarrollado una estructura inicial, se refina hasta que las tareas indicadas
en los cuadros estan definidas por completo. Por ejemplo, tanto los médulos de introduccion
de datos como de reportes que se muestran en la figura 1.8 deberian refinarse mas. El modu-
lo de introduccion de datos por supuesto debe incluir provisiones para introducir los datos.
Debido a que es responsabilidad del disefiador del sistema planear las contingencias y el er-
ror humano, también deben tomarse provisiones para cambiar datos incorrectos después que
se ha hecho una entrada y para eliminar por completo un valor introducido con anteriori-
dad. También pueden hacerse subdivisiones similares para el médulo de reportes. La figura
1.9 ilustra un diagrama de estructura de segundo nivel para un sistema de seguimiento de in-
ventario que incluye estos refinamientos adicionales.

Programa de
control

de inventario
)

Seccion de

. - Seccion Seccion
introduccion .
de calculos de reportes
de datos
1 | | I
Introducir Cambiar Eliminar Reportes Reportes
datos datos datos en pantalla impresos

Figura 1.9 Diagrama de una estructura refinada de segundo nivel.

El proceso de refinar una soluciéon continia hasta que el requerimiento mas pequefio se ha
incluido dentro de la solucion. Note que el disefio produce una estructura en forma de arbol,
donde los niveles se ramifican conforme pasamos de la parte superior de la estructura a la
parte inferior. Cuando el disefio estd completo cada tarea designada en un cuadro es codifi-
cada, por lo general, en conjuntos separados de instrucciones que se ejecutan cuando son lla-
madas por tareas superiores en la estructura.

www.FreelLibros.me

14

CarituLo 1 Introduccion

Paso 3 Codificar la solucion

Este paso, el cual también se conoce como escribir el programa y poner en practica la solu-
cion, consiste en traducir la solucion de disefio elegida en un programa de computadora. Si
los pasos de analisis y solucion se han realizado en forma correcta, el paso de codificacion se
vuelve bastante mecanico. En un programa bien disefiado, los planteamientos que forman el
programa se conformaran, sin embargo, con ciertos patrones o estructuras bien definidos en
el paso de solucion. Estas estructuras controlan la forma en que el programa se ejecuta y con-
siste en los siguientes tipos:

Secuencia

Seleccion

w b=

Iteracion
4. Invocacion

La secuencia define el orden en que son ejecutadas las instrucciones por el programa. La es-
pecificacion de cudl instruccion entra primero, cudl en segundo lugar, etc., es esencial si el
programa ha de lograr un propésito bien definido.

La seleccién proporciona la capacidad para hacer una eleccion entre diferentes operacio-
nes, dependiendo del resultado de alguna condicion. Por ejemplo, el valor de un nimero pue-
de comprobarse antes que una divisions sea realizada. Si el niimero no es cero, puede usarse
como el denominador de una operacién de division; de lo contrario, la division no se ejecu-
tard y se mostrara al usuario un mensaje de advertencia.

La iteracién, la cual también se denomina bucle, ciclo o repeticion, proporciona la ca-
pacidad para que la misma operacion se repita con base en el valor de una condiciéon. Por
ejemplo, podrian introducirse y sumarse grados de manera repetida hasta que un grado ne-
gativo sea introducido. Esta serfa la condicién que significa el fin de la entrada y adicion re-
petitiva de grados. En ese punto podria ejecutarse el cilculo de un promedio para todos los
grados introducidos.

La invocacion implica invocar, o solicitar, un conjunto de instrucciones cuando sea nece-
sario. Por ejemplo, el calculo del pago neto de una persona implica las tareas de obtener las
tarifas de salario y las horas trabajadas, calcular el pago neto y proporcionar un reporte o che-
que por la cantidad requerida. Por lo general una de estas tareas individuales se codificarian
como unidades separadas que son llamadas a ejecucion, o invocadas, seglin se necesiten.

Paso 4 Probar y corregir el programa

El proposito de probar es verificar que el programa funciona en forma correcta y en reali-
dad cumple con sus requerimientos. En teoria, las pruebas revelarian todos los errores del
programa. (En terminologia de computacién, un error de programa se conoce como bug.*)
En la practica, esto requeriria comprobar todas las combinaciones posibles de ejecucion de
las instrucciones. Debido al tiempo y al esfuerzo requeridos, esto por lo general es una meta
imposible, excepto para programas simples en extremo. (En la seccién 4.8 se ilustra por qué
por lo general ésta es una meta imposible.)

*La derivacion de este término es bastante interesante. Cuando un programa dej6 de ejecutarse en la Mark I, en la Universidad
de Harvard, en septiembre de 1945, Grace Hopper rastreé el mal funcionamiento hasta llega a un insecto muerto que habia en-
trado en los circuitos eléctricos. Registro el incidente en su bitdcora a las 15:45 horas como “Interruptor #70. . . (polilla) en el
interruptor. Primer caso real de bug (insecto) encontrado”.

www.FreelLibros.me

1.2 Solucién de problemas y desarrollo de software 15

Debido a que no es posible realizar pruebas exhaustivas para la mayor parte de los pro-
blemas, han evolucionado diferentes filosofias y métodos de prueba. En su nivel mas bésico,
sin embargo, la prueba requiere de un esfuerzo consciente para asegurarse que un programa
funciona en forma correcta y produce resultados significativos. Esto quiere decir que debe
meditarse con cuidado lo que se pretende lograr con la prueba y los datos que se usardn en
la misma. Si la prueba revela un error (bug), puede iniciarse el proceso de depurar, el cual in-
cluye localizar, corregir y verificar la correccion. Es importante percatarse que aunque la
prueba puede revelar la presencia de un error, no necesariamente indica la ausencia de uno.
Por tanto, el hecho que una prueba revele un error no indica que otro no esté al acecho en
algiin otro lugar del programa.

Para detectar y corregir errores en un programa es importante desarrollar un conjunto
de datos de prueba por medio de los cuales determinar si el programa proporciona respues-
tas correctas. De hecho, un paso cominmente aceptado en el desarrollo de software muchas
veces incluye planear los procedimientos de prueba y crear datos de prueba significativos an-
tes de escribir el codigo. Esto ayuda a ser mas objetivo respecto a lo que debe hacer el pro-
grama debido a que en esencia elude cualquier tentacion subconsciente después de codificar
datos de prueba que no funcionaran. Los procedimientos para probar un programa deberan
examinar toda las situaciénes posibles bajo las que se usara el programa. El programa debe-
ra probarse con datos en un rango razonable, al igual que dentro de los limites y en areas
donde el programa deberia indicar al usuario que los datos son invalidos. Desarrollar bue-
nos procedimientos y datos de prueba para problemas complejos puede ser mas dificil que
escribir el codigo del programa en si.

La tabla 1.1. enumera la cantidad relativa de esfuerzo que por lo general se dedica en ca-
da uno de estos cuatro pasos de desarrollo y disefio en proyectos de programacioén comercial
grandes. Como muestra este listado, la codificacion no es el mayor esfuerzo en esta fase. Mu-
chos programadores novatos tienen problemas debido a que dedicaron la mayor parte de su
tiempo a escribir el programa, sin entender por completo el problema o disefiar una solucion
apropiada. En este aspecto, vale la pena recordar el proverbio de programacion, “Es impo-
sible escribir un programa exitoso para un problema o aplicacion que no se ha comprendi-
do por completo”. Un proverbio equivalente e igual de valioso es “Entre mds pronto se
comienza a codificar un programa, por lo general tomard mds tiempo completarlo”.

Tabla 1.1 Esfuerzo dedicado a la fase |

Paso Esfuerzo
Analizar el problema 10%
Desarrollar una solucién 20%
Codificar la solucion 20%
Probar el programa 50%

Fase Il. Documentacion

Una gran cantidad de trabajo se vuelve indtil o se pierde y deben repetirse demasiadas tareas
debido a una documentacion inadecuada, por lo que se puede concluir que documentar el
trabajo es uno de los pasos mas importantes en la solucion de problemas. En realidad, du-
rante los pasos de analisis, disefio, codificacion y prueba se crean muchos documentos esen-

www.FreelLibros.me

16

CarituLo 1 Introduccion

ciales. Completar la documentacién requiere recopilar estos documentos, agregar material
practico para el usuario y presentarlo en una forma que sea de la mayor utilidad.

Aunque no es unanime la clasificacion, en esencia existen cinco documentos para toda
solucion de problema:

Descripcion del programa
Desarrollo y cambios del algoritmo
Listado del programa bien comentado

Muestras de las pruebas efectuadas

M e

Manual del usuario

“Ponerse en los zapatos” de un integrante del equipo de una empresa grande que podria ser
el usuario de su trabajo, desde la secretaria hasta el programador, analistas y la gerencia, de-
beria ayudarle a hacer claro el contenido de la documentacién importante. La fase de docu-
mentacion comienza de manera formal en la fase de desarrollo y disefio y contintia hasta la
fase de mantenimiento.

Fase lll. Mantenimiento

Esta fase tiene que ver con la correccion continua de problemas, revisiones para satisfacer ne-
cesidades cambiantes y la adicion de caracteristicas nuevas. El mantenimiento con frecuencia
es el esfuerzo mayor, la fuente principal de ingresos y la mds duradera de las fases de ingenie-
ria. Mientras el desarrollo puede tomar dias o meses, el mantenimiento puede continuar por
afios o décadas. Entre mds completa es la documentacion, el mantenimiento podra efectuar-
se de manera mas eficiente y el cliente y el usuario seran mas felices.

Respaldo

Aungque no es parte del proceso de disefio formal, es esencial hacer y conservar copias de res-
paldo del programa en cada paso del proceso de programacion y depuracion. Es facil elimi-
nar o cambiar la version de trabajo actual de un programa mas alla del reconocimiento. Las
copias de respaldo permiten la recuperacion de la dltima etapa de trabajo con un esfuerzo
minimo. La version de trabajo final de un programa util debera respaldarse al menos dos ve-
ces. A este respecto, otro proverbio de programacion util es “El respaldo no es importante si
no le importa empezar todo de nuevo”.

Muchas empresas conservan al menos un respaldo en el sitio, donde pueda recuperarse
con facilidad, y otra copia de respaldo ya sea en una caja fuerte a prueba de fuego o en una
ubicacion remota.

Ejercicios 1.2

1. a. Enumere y describa los cuatro pasos requeridos en la etapa de disefio y desarro-
llo de un programa.
b. Ademas de la etapa de disefio y desarrollo, ¢cuales son las otras dos etapas reque-
ridas para producir un programa y por qué son necesarias?

www.FreelLibros.me

1.3 Algoritmos 17

2. Una nota de su supervisor, el sefior J. Bosworth, dice:

Solucione nuestros problemas de iluminacion.
—J. Bosworth

a. ¢Cual deberia ser su primera tarea?
b. Cémo se llevaria a cabo esta tarea?
¢. ¢Cuanto tiempo espera que tome esta tarea, suponiendo que todos cooperen?

3. Eldesarrollo del programa es sélo una fase en el procedimiento de desarrollo de soft-
ware general. Asumiendo que la documentacion y el mantenimiento requieren 60%
del esfuerzo de software total en el disefio de un sistema, y usando la tabla 1.1, de-
termine la cantidad de esfuerzo requerido para la codificacion del programa inicial
como un porcentaje del esfuerzo de software total.

4. Muchas personas que solicitan un programa o sistema por primera vez consideran
que la codificacion es el aspecto mas importante del desarrollo del programa. Sien-
ten que saben lo que necesitan y piensan que el programador puede comenzar a
codificar con un tiempo minimo dedicado al andlisis. Como programador, ¢qué di-
ficultades puede prever al trabajar en esas condiciones?

5. Muchos usuarios novatos tratan de contratar a los programadores por una cuota fi-
ja (la cantidad total que se va a pagar se fija con anticipacion). ¢Cual es la ventaja
para el usuario al hacer este arreglo? ¢;Cudl es la ventaja para el programador al ha-
cer este arreglo? ¢Cuadles son algunas desventajas tanto para el usuario como para el
programador en este arreglo?

6. Muchos programadores prefieren trabajar con una tarifa por hora. ;Por qué piensa
que esto es asi? ¢Bajo qué condiciones seria ventajoso para un programador darle a
un cliente un precio fijo por el esfuerzo de programacion?

7. Los usuarios experimentados por lo general desean una descripcion redactada con
claridad del trabajo de programacion que se hara, incluyendo una descripcion com-
pleta de lo que hara el programa, fechas de entrega, calendarios de pago y requeri-
mientos de prueba. ¢Cual es la ventaja para el usuario al requerir esto? ¢Cuadl es la
ventaja para el programador al trabajar bajo este acuerdo? ¢Qué desventajas tiene
este acuerdo tanto para el usuario como para el programador?

/
/
/

1.3 > ALGORITMOS

Antes que se escriba un programa, el programador debe entender con claridad qué datos van
a usarse, el resultado deseado y el procedimiento que va a utilizarse para producir este resul-
tado. El procedimiento, o solucién, seleccionado se conoce como algoritmo. Con mas preci-
sidén, un algoritmo se define como una secuencia paso a paso de instrucciones que deben
realizarse y describe como han de procesarse los datos para producir las salidas deseadas. En
esencia, un algoritmo responde la pregunta: “;Qué método se usarad para resolver este pro-
blema?”.

Solo después de entender con claridad los datos que se usaran y seleccionar un algorit-
mo (los pasos especificos requeridos para producir el resultado deseado) podemos codificar

www.FreelLibros.me

18

CarituLo 1 Introduccion

el programa. Vista bajo esta luz, la programacion es la traduccion de un algoritmo seleccio-
nado a un lenguaje que pueda usar la computadora.

Para ilustrar un algoritmo, se considerara un problema simple. Suponga que un progra-
ma debe calcular la suma de todos los niameros enteros del 1 al 100. La figura 1.10 ilustra
tres métodos que podrian usarse para encontrar la suma requerida. Cada método constituye
un algoritmo.

Es evidente que la mayoria de las personas no se molestaria en enumerar las posibles
alternativas en una manera paso por paso detallada, como lo hemos hecho aqui, y luego
seleccionar uno de los algoritmos para solucionar el problema. Pero claro, la mayoria de las
personas no piensa en forma algoritmica; tiende a pensar de manera heuristica.

Método 1 - Columnas: Ordenar los nimeros del 1 al 100 en una columna
y sumarlos

H WN —

98
99
+100
5050

Método 2 - Grupos: Ordenar los numeros en grupos que sumen 101 y
multiplicar el numero de grupos por 101

1+100=101)
2+99=101
3+98=101

4+97=101 >50 grupos

. _ (50x101=5050)
49452=101
50+51=101)

Método 3 - Formula: Usar la formula
n(a+b)
2

suma =
donde
N = numero de términos que se van a sumar (100)
a = primer numero que sera sumado (1)
b = dultimo numero que sera sumado (100)

suma = M =5050

Figura 1.10 Sumar los numeros del 1 al 100.

www.FreelLibros.me

Simbolo Nombre

"’% Terminal

Entrada/Salida

Proceso

A\ Lineas de flujo

Decision

Iteracion

Proceso predefinido

Conector

Reporte

Figura 1.11 Simbolos de diagrama de flujo.

1.3 Algoritmos 19

Descripcion

Indica el principio o fin de un programa

Indica una operacién de entrada o salida

Indica calculo o manipulacion de datos

Usadas para conectar los otros simbolos del
diagrama de flujo e indica el flujo l6gico

Indica un punto de ramificacion del programa

Indica los valores inicial, limite y de incremento
de una iteracion

Indica un proceso predefinido, como llamar a
una funcién

Indica una entrada a, o salida de, otra parte de
un diagrama de flujo o un punto de conexion

Indica un reporte de salida escrito

www.FreelLibros.me

20

CarituLo 1 Introduccion

Por ejemplo, si tuviera que cambiar una llanta desinflada en su automévil, no pensaria en to-
dos los pasos requeridos, tan s6lo cambiaria la llanta o llamaria a alguien que hiciera el tra-
bajo. Este es un ejemplo de pensamiento heuristico.

Por desgracia, las computadoras no responden a comandos heuristicos. Una instruccion
general como “sumar los nimeros del 1 al 100” no significa nada para una computadora
porque s6lo puede responder a comandos algoritmicos escritos en un lenguaje aceptable co-
mo C++. Para programar una computadora con éxito, debe entender con claridad esta dife-
rencia entre comandos algoritmicos y heuristicos. Una computadora es una maquina “que
responde a algoritmos”; no es una maquina “que responda a la heuristica”. No se le puede
decir a una computadora que cambie una llanta o sume los numeros del 1 al 100. En cam-
bio, debe darsele a la computadora un conjunto de instrucciones paso por paso detallado
que, de manera colectiva, forma un algoritmo. Por ejemplo, el siguiente conjunto de instruc-
ciones forma un método detallado, o algoritmo, para determinar la suma de los nimeros del
1 al 100:

Establezca que n es igual a 100
Establezca a =1
Establezca que b es igual a 100
n(a+ b)

2

Calcule la suma =

Imprima la suma

Note que estas instrucciones no son un programa de computadora. A diferencia de un pro-
grama, el cual debe escribirse en un lenguaje al que pueda responder la computadora, un al-
goritmo puede escribirse o describirse en varias formas. Cuando se utilizan enunciados en
espafiol o en inglés para describir el algoritmo (los pasos de procesamiento), como en este
ejemplo, la descripcion se llama seudocédigo. Cuando se usan ecuaciones matematicas, la
descripcion se llama férmula. Cuando se usan diagramas que emplean los simbolos mostra-
dos en la figura 1.11, la descripcion se conoce como un diagrama de flujo. La figura 1.12
ilustra el uso de estos simbolos para describir un algoritmo para determinar el promedio de
tres numeros.

Debido a que los diagramas de flujo son engorrosos para revisar y pueden soportar con
facilidad précticas de programacion poco estructuradas, han perdido el favor de los progra-
madores profesionales, mientras el uso de seudocddigo para expresar la 16gica de los algorit-
mos ha ganado una aceptacion creciente. Al describir un algoritmo usando seudocédigo, se
usan enunciados cortos en espafiol. Por ejemplo, un seudocédigo aceptable para describir los
pasos necesarios para calcular el promedio de tres nimeros es:

Introducir los tres nitmeros en la memoria de la computadora
Calcular el promedio sumando los niimeros y dividiendo la suma entre tres
Mostrar el promedio

Sélo después que se ha seleccionado un algoritmo y el programador entiende los pasos reque-
ridos puede escribirse el algoritmo usando instrucciones en lenguaje de computadora. La re-
daccion de un algoritmo usando instrucciones en lenguaje de computadora se llama codificar
el algoritmo, lo cual es el tercer paso en nuestro procedimiento de desarrollo del programa
(véase la figura 1.13). La mayor parte de la primera parte de este texto estd dedicada a mos-
trarle como desarrollar y codificar algoritmos en C++.

www.FreelLibros.me

1.3 Algoritmos 21

inicio ﬁ

introducir
tres
valores

calcular

promedlo

mostrar
el
promedio

a1
fin %

Figura 1.12 Diagrama de flujo para calcular el promedio de tres numeros.

Seleccionar Traducir el
Requerimientos A, un alg_ori_tmo &, algoritmo
(procedimiento a C++
paso por paso) (codificacion)

Figura 1.13 Codificacion de un algoritmo.

Ejercicios 1.3

1.

Determine un procedimiento paso a paso (lista de pasos) para hacer las siguientes ta-
reas. (Nota: No hay una sola respuesta correcta para cada una de estas tareas. El ejer-
cicio estd disefiado para brindarle prdctica en convertir comandos tipo heuristico en
algoritmos equivalentes y hacer el cambio entre los procesos de pensamiento implica-
dos en los dos tipos de pensamiento.)

a. Arreglar una llanta desinflada

b. Hacer una llamada telefonica

¢. Iniciar sesion en una computadora
d. Asar un pavo

¢Los procedimientos que desarroll6 en el ejercicio 1 son algoritmos? Discuta por qué si
o por qué no.

www.FreelLibros.me

22

CarituLo 1 Introduccion

1.4

1.

Determine y describa un algoritmo (lista de pasos) para intercambiar los contenidos
de dos tazas de liquido. Suponga que dispone de una tercera taza para conservar el
contenido de cualquier taza de manera temporal. Cada taza debera enjuagarse antes
que cualquier liquido nuevo se vierta en ella.

Escriba un conjunto de instrucciones detallado, en espaiiol, para calcular la resisten-
cia de los siguientes resistores conectados en serie: 7 resistores, cada uno con una re-
sistencia de 56 ohmios, 7 resistores, cada uno con una resistencia de 33 ohmios, y p
resistores, cada uno con una resistencia de 15 ohmios. Note que la resistencia total
de los resistores conectados en serie es la suma de todas las resistencias individuales.

Escriba un conjunto de instrucciones detalladas paso a paso, para encontrar el nu-
mero mas pequefio en un grupo de tres numeros enteros.

a. Escriba un conjunto de instrucciones detalladas paso a paso, para calcular el nu-
mero menor de billetes en dolares necesarios para pagar una factura de una can-
tidad TOTAL. Por ejemplo, si TOTAL fuera $97, los billetes consistirian en uno
de $50, dos de $20, uno de $5 y dos de $1. (Para este ejercicio, suponga que s6-
lo estan disponibles billetes de $100, $50, $20, $10, $5 y $1.)

b. Repita el ejercicio 6a, pero suponga que la factura debe pagarse solo con billetes

de $1.

a. Escriba un algoritmo para localizar la primera ocurrencia del nombre JEANS en
una lista de nombres ordenada al azar.

b. Discuta como podria mejorar su algoritmo para el ejercicio 7a si la lista de nom-
bres estuviera en orden alfabético.

Escriba un algoritmo para determinar las ocurrencias totales de la letra e en cual-
quier enunciado.

Determine y escriba un algoritmo para clasificar cuatro nimeros en orden ascenden-
te (de menor a mayor).

ERRORES COMUNES DE PROGRAMACION

Los errores mds comunes asociados con el material presentado en este capitulo son los
siguientes:

Un error de programacion importante cometido por la mayoria de los programado-
res principiantes es apresurarse a escribir y correr un programa antes de entender
por completo qué se requiere, incluyendo los algoritmos que se usaran para produ-
cir el resultado deseado. Un sintoma de esta prisa por introducir un programa en la
computadora es la falta de cualquier documentacion, o incluso un bosquejo de un
programa o programa escrito en si. Pueden detectarse muchos problemas con sélo
revisar una copia del programa o incluso una descripcion del algoritmo escrito en
seudocodigo.

Un segundo error importante es no respaldar un programa. Casi todos los progra-
madores nuevos cometen este error hasta que pierden un programa que les ha to-
mado un tiempo considerable codificar.

www.FreelLibros.me

/
",m"‘

1.?

1.5 Resumen del capitulo 23

El tercer error cometido por muchos programadores novatos es la falta de
comprension de que las computadoras s6lo responden a algoritmos definidos de
manera explicita. Pedirle a una computadora que sume un grupo de niimeros es
bastante diferente que decirle a un amigo que sume los nimeros. A la computadora
deben darsele las instrucciones precisas para hacer la adicion en un lenguaje de
programacion.

RESUMEN DEL CAPITULO

. Los programas usados para operar una computadora se denominan software.

. Los lenguajes de programacion se presentan en una variedad de formas y tipos. Los

programas en lenguaje de mdquina, también conocidos como programas ejecuta-
bles, contienen los cddigos binarios que pueden ser ejecutados por una computado-
ra. Los lenguajes ensambladores permiten el uso de nombres simbdlicos para
operaciones

matematicas y direcciones de memoria. Los programas escritos en lenguajes ensam-
bladores deben ser convertidos en lenguajes de maquina, usando programas traduc-
tores llamados ensambladores, antes que los programas puedan ser ejecutados. Los
lenguajes ensambladores y de maquina se denominan lenguajes de nivel bajo.

Los lenguajes compilados e interpretados se denominan lenguajes de alto nivel. Esto
significa que son escritos usando instrucciones que se parecen a un lenguaje escrito,
como el inglés, y pueden ejecutarse en una variedad de tipos de computadora. Los
lenguajes compilados requieren un compilador para traducir el programa en una
forma de lenguaje binario, mientras los lenguajes interpretados requieren un intér-
prete para hacer la traduccion.

Como una disciplina, la ingenieria de software se ocupa de crear programas y siste-
mas legibles, eficientes, confiables y mantenibles.

. El procedimiento de desarrollo de software consta de tres fases:

e Desarrollo y disefio del programa
¢ Documentacion

e Mantenimiento

. La fase de desarrollo y disefio del programa consta de cuatro pasos bien definidos:

Analizar el problema

Desarrollar una solucién

Codificar la solucién

Prueba y correccion de la solucion

. Un algoritmo es un procedimiento paso por paso que deben realizarse y describe

cémo ha de ejecutarse un célculo o tarea.

www.FreelLibros.me

24

CarituLo 1 Introduccion

7. Un programa de computadora es una unidad independiente de instrucciones y da-
tos usados para operar una computadora y producir un resultado especifico.

8. Las cuatro estructuras de control fundamentales usadas en la codificacion de un
algoritmo son

e Secuencia
e Seleccion
e Jteracion

e Invocacion

1.6 > APENDICE DEL CAPITULO: HARDWARE DE COMPUTACION
Y CONCEPTOS DE ALMACENAMIENTO

Todas las computadoras, desde las grandes supercomputadoras que cuestan millones de do-
lares hasta las computadoras personales de escritorio mds pequefias, deben realizar un con-
junto minimo de funciones y proporcionar la capacidad para:

1. Aceptar entradas

2. Mostrar salidas

3. Almacenar informacién en un formato logico consistente (tradicionalmente binario)
4

Ejecutar operaciones aritméticas y logicas en los datos de entrada o en los almace-
nados

5. Supervisar, controlar y dirigir la operacion y secuencia general del sistema

La figura 1.14 ilustra los componentes de la computadora que respaldan estas capacidades y
que de manera colectiva forman el hardware de la computadora.

La unidad de aritmética y I6gica (ALU) ejecuta todas las funciones aritméticas y logicas
como adicién y sustraccion, y las proporcionadas por la computadora.

La unidad de control dirige y supervisa la operacion general de la computadora. Rastrea
el lugar de la memoria donde reside la siguiente instruccion, emite las sefiales necesarias pa-
ra leer datos y escribir datos en otras unidades en el sistema y controla la ejecucion de todas
las instrucciones.

La unidad de memoria almacena informacion en un formato légico consistente. De ma-
nera tipica, tanto instrucciones como datos se almacenan en la memoria, por lo general en
areas separadas y distintas.

La unidad de entrada y salida (/O o E/S) proporciona la interfaz a la que se conectan
dispositivos periféricos como teclados, monitores, impresoras y lectores de tarjetas.

Almacenamiento secundario: Debido a que la memoria principal en cantidades muy
grandes aun es relativamente cara y volatil (lo cual significa que la informacion se pierde
cuando se suspende la energia), no es practica como un drea de almacenamiento permanen-
te para programas y datos. Para este proposito se usan dispositivos de almacenamiento se-
cundario o auxiliar. Aunque los datos se han almacenado en tarjetas perforadas, cinta de
papel y otros medios en el pasado, casi todo el almacenamiento secundario se hace ahora en
cintas magnéticas, discos magnéticos y CD-ROM.

www.FreelLibros.me

1.6 Apéndice del capitulo: harware de computacion y conceptos de almacenamiento 25

En las primeras computadoras disponibles en forma comercial en la década de los afios
50, todas las unidades de hardware se construian usando relés y tubos catédicos, y el alma-
cenamiento secundario consistia en tarjetas perforadas. Las computadoras resultantes eran
piezas de equipo grandes en extremo, capaces de hacer miles de célculos por segundo que
costaban millones de ddlares.

unidad central de
procesamiento (CPU)

unidad de
aritmética
y logica
(ALU)

N
A
N

> control salida

entrada

L L
almacenamiento
secundario

memoria

Figura 1.14 Unidades basicas de hardware de una computadora.

En la década de los afios 60 con la introduccion de los transistores, se redujeron tanto el ta-
mafio como el costo del hardware de la computadora. El transistor era aproximadamente una
vigésima parte de su contraparte, el tubo catddico. El tamafio pequefio del transistor permi-
ti6 a los fabricantes combinar la unidad de aritmética y légica con la unidad de control en una
sola unidad. Esta unidad combinada se llama unidad central de procesamiento (CPU). La
combinacion de la ALU y la unidad de control en una CPU tiene sentido porque la mayoria
de las sefiales de control generadas por un programa estan dirigidas a la ALU en respuesta a
instrucciones aritméticas y logicas dentro del programa. Combinar la ALU con la unidad de
control simplifico la interfaz entre estas dos unidades y proporcioné una velocidad de proce-
samiento mejorada.

A mediados de la década de los afios 60 se implement6 la introduccion de circuitos inte-
grados (IC), los cuales produjeron otra reduccion significativa en el espacio requerido para
producir una CPU. Al principio, los circuitos integrados se fabricaban hasta con 100 transis-
tores en un solo chip de silicio de 1 cm?. Tales dispositivos se conocen como circuitos inte-
grados de pequena escala (SSI). Las versiones actuales de estos chips contienen cientos de
miles a mas de un millén de transistores y se conocen como chips integrados a gran escala
(VLSI).

La tecnologia de chips VLSI ha proporcionado los medios para transformar las compu-
tadoras gigantes de la década de los afios 50 en las computadoras personales de escritorio y
portatiles de la actualidad. Cada unidad individual requerida para formar una computadora
(CPU, memoria e I/O) se fabrica ahora en un chip VLSI individual, y la CPU de un solo chip

www.FreelLibros.me

26

CarituLo 1 Introduccion

se denomina microprocesador. La figura 1.15 ilustra como se conectan estos chips en forma
interna dentro de las computadoras personales actuales, como las PC de IBM.

microprocesador
(CPU) memoria’ entrada’ salida ’

Figura 1.15 Conexiones de chips VLSI para una computadora de escritorio.

En forma concurrente con la reduccion notable en el tamafio del hardware de la computado-
ra ha habido una disminucion igual de impresionante en el costo y un aumento en las velo-
cidades de procesamiento. Hardware de computadora equivalente que costaba mas de un
millon de délares en 1950 ahora puede comprarse por menos de quinientos dolares. Si las mis-
mas reducciones ocurrieran en la industria automotriz, por ejemplo, jun Rolls Royce podria
comprarse ahora por diez dolares! Las velocidades de procesamiento de las computadoras ac-
tuales también se han incrementado por un factor de miles sobre sus predecesores de la déca-
da de los afos 50, con las velocidades de computo de las maquinas actuales midiéndose en
millones de instrucciones por segundo (MIPS) y miles de millones de instrucciones por segun-
do (BIPS).

Almacenamiento de computadora

Los componentes fisicos usados en la fabricacion de una computadora requieren que los nu-
meros y letras dentro de su unidad de memoria no se almacenen usando los mismos simbo-
los que la gente usa. El nimero 126, por ejemplo, no se almacena usando los ntimeros 1, 2
y 6. Ni la letra que reconocemos como A se almacena usando este simbolo. En esta seccion
veremos por qué es asi y como almacenan numeros las computadoras. En el capitulo 2 se ve-
rd como se almacenan las letras.

La pieza mas pequeiia y basica de datos en una computadora se llama bit. Desde el pun-
to de vista fisico, un bit en realidad es un interruptor que puede abrirse o cerrarse. La con-
vencion que se seguird es que las posiciones abierto y cerrado de cada interruptor se
representan como un 0 y un 1, respectivamente.’

Un solo bit que puede representar los valores 0 y 1, por si solo, tiene utilidad limitada.
Todas las computadoras, por consiguiente, agrupan un nimero establecido de bits, tanto pa-
ra su almacenamiento como para su transmision. El agrupamiento de ocho bits para formar
una unidad mds grande es un estandar casi universal en la computacion. Tales grupos se co-
nocen como bytes. Un solo byte consistente en ocho bits, donde cada bit es 0 o 1, puede re-
presentar cualquiera de 256 patrones distintos. Estos consisten del patrén 00000000 (los
ocho interruptores abiertos) al patron 11111111 (los ocho interruptores cerrados) y todas las

Esta convencion, por desgracia, es bastante arbitraria, y con frecuencia se encontrara la correspondencia inversa donde las posi-
ciones abierto y cerrado son representadas como 1y 0, respectivamente.

www.FreelLibros.me

1.6 Apéndice del capitulo: harware de computacion y conceptos de almacenamiento 27

combinaciones intermedias posibles de 0 y 1. Cada uno de estos patrones puede usarse para
representar ya sea una letra del alfabeto, otros caracteres individuales como un signo de do-
lar, una coma, etc., un solo digito, o nimeros que contienen mas de un digito. La coleccion
de patrones consistentes en 0 y 1 que se usan para representar letras, digitos individuales y
otros caracteres individuales se llama cédigo de caracteres. (Uno de estos codigos, llamado
codigo ASCII, se presenta en la seccion 2.3.) Los patrones usados para almacenar niimeros
se llaman cédigo de nameros, uno de los cuales se presenta a continuacion.

Numeros en complemento a dos

El c6digo de nimeros mas comun para almacenar valores enteros dentro de una computado-
ra es la representacion de complemento a dos. Usando este codigo, el equivalente entero de
cualquier patrén de bits, como 10001101, es facil de determinar y puede encontrarse para en-
teros positivos o negativos sin cambio en el método de conversion. Por conveniencia se asu-
mirdn patrones de bits del tamafio de un byte consistente en un conjunto de ocho bits cada
uno, aunque el procedimiento puede utilizarse en patrones de bits de tamafio mas grande.

La forma mas facil de determinar el entero representado por cada patron de bits es cons-
truir primero un recurso simple llamado caja de valores. La figura 1.16 ilustra una de estas
cajas para un solo byte. Desde el punto de vista matematico, cada valor en la caja ilustrada
en la figura 1.16 representa un aumento en una potencia de dos. Ya que los niumeros com-
plementados a dos deben ser capaces de representar tanto enteros positivos como negativos,
la posicion en el extremo izquierdo, ademas de tener la magnitud absoluta mas grande, tam-
bién tiene un signo negativo.

-128| 64 | 32 | 16 | 8| 4| 2| 1

Figura 1.16 Una caja de valores de ocho bits.

La conversion de cualquier numero binario, por ejemplo 10001101, tan sélo requiere insertar
el patron de bits en la caja de valores y sumar los valores que tienen 1 bajo ellos. Por tanto, co-
mo se ilustra en la figura 1.17, el patrén de bits 10001101 representa el nimero entero —115.

-128 | 64 | 32 | 16| 8| 4| 2] 1

e e e R B e B B

1] o] of of 1] 1] of 1
-128+ 0+ 0+ 0+ 8+ 4+ 0+ 1=-115

Figura 1.17 Conversién de 10001101 a un numero en base 10.

También puede usarse la caja de valores a la inversa para convertir un niimero entero en ba-
se 10 en su patrén de bits binario equivalente. Algunas conversiones, de hecho, pueden ha-
cerse por inspeccion. Por ejemplo, el nimero en base 10 —125 se obtiene sumando 3 a —128.
Por tanto, la representacion binaria de =125 es 10000011, la cual es igual a =128 + 2 + 1. Del
mismo modo, la representacion en complemento a dos del nimero 40 es 00101000, la cual
es 32 + 8.

Aunque el método de conversion de la caja de valores es enganosamente simple, se rela-
ciona de manera directa con la base matematica subyacente de los nimeros binarios de com-

www.FreelLibros.me

28

CarituLo 1 Introduccion

plemento a dos. El nombre original del c6digo de complemento a dos era codigo de signo
ponderado, el cual se correlaciona en forma directa con la caja de valores. Como implica el
nombre signo ponderado, cada posicion de bit tiene un peso, o valor, de dos elevado a una
potencia y un signo. Los signos de todos los bits excepto el bit de la extrema izquierda son
positivos y el de la extrema izquierda es negativo.

Al revisar la caja de valores, es evidente que cualquier numero binario en complemento
a dos con un 1 inicial representa un nimero negativo, y cualquier patrén de bits con un 0 ini-
cial representa un nimero positivo. Usando la caja de valores, es facil determinar los valores
mas positivos y negativos que pueden almacenarse. El valor mas negativo que puede almace-
narse en un solo byte es el nimero decimal —128, el cual tiene el patrén de bits 10000000.
Cualquier otro bit diferente de cero tan solo agregard una cantidad positiva al niumero. Ade-
mads, es claro que un nimero positivo debe tener un 0 como su bit en la extrema izquierda. A
partir de esto se puede ver que el nimero de complemento de dos de ocho bits positivo mas
grande es 01111111 o 127.

Palabras y direcciones

Uno o mas bytes pueden agruparse en unidades mas grandes, llamadas palabras, lo cual faci-
lita un acceso mas rapido y mas extenso a los datos. Por ejemplo, recuperar una palabra con-
sistente en cuatro bytes de la memoria de una computadora proporciona mds informacion que
la obtenida al recuperar una palabra consistente de un solo byte. Dicha recuperacion también
es considerablemente mas rapida que cuatro recuperaciones de bytes individuales. Sin embar-
go, este incremento en la velocidad y la capacidad se logra por un aumento en el costo y com-
plejidad de la computadora.

Las primeras computadoras personales, como las maquinas Apple Ile y Commodore, al-
macenaban y transmitian internamente palabras consistentes de bytes individuales. Las pri-
meras PC de IBM usaban tamafos de palabra consistentes de dos bytes, mientras que las PC
mas actuales almacenan y procesan palabras consistentes de cuatro bytes cada una.

El numero de bytes en una palabra determina los valores maximo y minimo que pueden
ser representados por la palabra. La tabla 1.2 enumera estos valores para palabrasde 1, 2 y
4 bytes (cada uno de los valores enumerados puede derivarse usando cajas de valores de 8,
16 y 32 bits, respectivamente).

Tabla 1.2 Valores enteros y tamano de una palabra

Valor del Valor del
Tamano de | namero entero namero entero
la palabra maximo minimo
1 Byte 127 -128
2 Bytes 32767 -32 768
4 Bytes 2 147 483 647 -2 147 483 648

Ademas de representar valores enteros, las computadoras también deben almacenar y trans-
mitir nimeros que contienen puntos decimales, los cuales se conocen en matemadticas como
numeros reales. Los codigos usados para nimeros reales, los cuales son mas complejos que
los usados para enteros, se presentan en el apéndice C.

www.FreelLibros.me

1.6 Apéndice del capitulo: harware de computacion y conceptos de almacenamiento

29

1.

™
Consideracion de opciones de carrera

| W R ek b Ahkb

Ingenieria aeronautica y aeroespacial

Entre las mas jovenes de las disciplinas de ingenieria, la ingenieria aerondutica y aeroes-
pacial se ocupa de todos los aspectos del disefio, produccion, prueba y utilizacion de ve-
hiculos o dispositivos que vuelan en el aire (aeronautica) o en el espacio (aeroespacial),
desde alas delta hasta transbordadores espaciales. Debido a que los principios cientificos
y de ingenieria implicados son tan amplios, los aeroingenieros por lo general se especia-
lizan en una subarea que puede superponerse con otros campos de la ingenieria como la
ingenieria mecanica, metaldrgica o de materiales, quimica, civil o eléctrica. Estas subdreas
incluyen las siguientes:

Aerodinamica. Estudia las caracteristicas de vuelo de varias estructuras o configura-
ciones. Las consideraciones tipicas son el arrastre y elevacion asociados con el dise-

flo de aviones o la aparicion del flujo turbulento. Es esencial tener un conocimiento

de la dindmica de fluidos. El modelamiento y prueba de todas las formas de aerona-
ves es parte de esta disciplina.

Disefio estructural. El disefio, produccion y prueba de aeronaves y naves espaciales
para resistir la amplia gama de demandas de vuelo de estos vehiculos, asi como
naves submarinas, son el territorio del ingeniero estructural.

Sistemas de propulsion. El disefio de motores de combustion interna, a reaccion, y
de combustible liquido y sélido para cohetes y su coordinacion en el disefio general
del vehiculo. Los motores de cohete, en especial, requieren ingenieria innovadora
para adecuarse a las temperaturas extremas de almacenamiento, mezcla e ignicion
de combustibles como el oxigeno liquido.

Instrumentacion y conduccion. La industria aeroespacial ha sido lider en el desarro-
llo y utilizacion de electréonica de estado sélido en forma de microprocesadores para
vigilar y ajustar las operaciones de cientos de funciones de aviones y naves espacia-
les. Este campo usa la pericia de ingenieros eléctricos y aeroingenieros.

Navegacion. El calculo de érbitas dentro y fuera de la atmosfera, y la determinacion
de la orientacion de un vehiculo con respecto a puntos en la tierra o en el espacio.

www.FreelLibros.me

www.FreelLibros.me

