%%
>>>

%

/YiCA ITfULC) 2

Soluciép /gé groblemawmedlante C++

%

%

'l/'éMAs %

2.1

2.2

2.3

Ao

2.6

2.7

2.8
2.9

INTRODUCCION A C++))

LA FUNCION main ()
EL oBJETO cout

ESTILO DE PROGRAMACION)

COMENTARIOS

TIPOS DE DATOS

TiPOS DE DATOS ENTEROS TiPOS DE PUNTO FLOTANTE
DETERMINACION DEL TAMARO NOTACION EXPONENCIAL

DE ALMACENAMIEN
OPERACIONES ARITMETICAS

TiPOS DE EXPRESION NEGACION

DivisION DE ENTEROS PRECEDENCIA DEL OPERADOR Y ASOCIATIVIDAD

V/ARIABLES E INSTRUCCIONES DE DECLARACION

INSTRUCCIONES DE DECLARACION ASIGNACION DE MEMORIA

DECLARACIONES MULTIPLES DESPLIEGUE DE LA DIRECCION DE UNA VARIABLE

APLICACION DEL PROCEDIMIENTO DE DESARROLLO

DE SOFTWARE

PAaso 1: ANALIZAR EL PROBLEMA Paso 3: CODIFICAR LA SOLUCION

PAso 2: DESARROLLAR UNA PAsO 4: PRUEBA y/CORRECCION DEL PROGRAMA
SOLUCION

APLICACIONES

APLICACION 1: TRAMPAS DE UN RADAR DE VELOCIDAD
APLICACION 2: REDES DE CONMUTACION TELEFONICA

ERRORES COMUNES DE PROGRAMACION

RESUMEN DEL CAPITULO
CONSIDERACION DE LAS OPCIONES DE CARRERA: INGENIERIA ELECTRICA

33

www.FreelLibros.me

34

CarituLo 2 Programacion orientada a procedimientos en C++

2.1 > INTRODUCCION A C++

Un programa bien disefiado se construye utilizando una filosofia similar a la usada para
edificar un edificio bien disefiado: no sélo sucede; depende de una planeacién y ejecucion
cuidadosa si el disefio final ha de cumplir su propésito pretendido. Del mismo modo en que
una parte integral del disefio de un edificio es su estructura, lo mismo sucede con un pro-
grama.

Los programas cuyas estructuras consisten de segmentos interrelacionados, organizados
en un orden légico y facilmente comprensible para formar una unidad integrada y completa,
se conocen como programas modulares (figura 2.1). Los programas modulares son notoria-
mente mas faciles de desarrollar, corregir y modificar que los programas construidos de algu-
na otra manera. En terminologia de programacion, los segmentos mas pequefios usados para
construir un programa modular se conocen como médulos.

Cada modulo esta diseniado y desarrollado para realizar una tarea especifica y en reali-
dad es un subprograma pequefo en si mismo. Un programa C++ completo se construye com-
binando tantos médulos como sea necesario para producir el resultado deseado. La ventaja
de la construccion modular es que el disefio general del programa puede desarrollarse antes de
escribir cualquier médulo individual. Una vez que se finalizan los requerimientos para cada
modulo, los modulos pueden programarse e integrarse dentro del programa general confor-
me se completan.

Modulo 1

Modulo 2 Modulo 3

Modulo 4 Modulo 5 Modulo 6

Figura 2.1 Un programa bien disefado se construye usando modulos.

En C++, los médulos pueden ser clases o funciones. Ayuda pensar en una funcién como
una maquina pequefa que transforma los datos que recibe en un producto terminado. Por
ejemplo, la figura 2.2 ilustra una funciéon que acepta dos nimeros como entradas y multi-
plica los dos nimeros para producir una salida. Como se muestra, la interfaz para la fun-
cién son sus entradas y resultados. El proceso de convertir las entradas en resultados se
encapsula y oculta dentro de la funcion. A este respecto, la funcién puede considerarse co-
mo una sola unidad que proporciona una operacion de propésito especial. Una analogia
similar es apropiada para una clase.

www.FreelLibros.me

2.1 Introduccion a C++ 35

Primer Segundo
numero numero

RN Resultado

Figura 2.2 Una funcion multiplicadora.

Una clase es una unidad mas complicada que una funcién, debido a que contiene tanto da-
tos como funciones apropiadas para manipular los datos. Por tanto, a diferencia de una
funcion, la cual se usa para encapsular un conjunto de operaciones, una clase encapsula
tanto datos como uno o mds conjuntos de operaciones. Por ello, cada clase contiene todos
los elementos requeridos para la entrada, salida y procesamiento de sus objetos y puede
considerarse como una pequefa fabrica que contiene materia prima (los datos) y maquinas
(las funciones). Al principio, nos interesaremos de manera predominante en el médulo de
funciéon mas basico.

Un requerimiento importante para disefiar una buena funcion o clase es darle un nom-
bre que le transmita al lector alguna idea de lo que hace la funcién o clase. Los nombres
admitidos para funciones y clases también se usan para nombrar otros elementos del len-
guaje C++ y se denominan de manera colectiva identificadores. Los identificadores pueden
formarse por cualquier combinacion de letras, digitos o subrayados (_) seleccionados de
acuerdo con las siguientes reglas:

1. El primer caracter del nombre debe ser una letra o subrayado (_).

2. Sélo pueden seguir a la letra inicial, letras, digitos o subrayados. No se permiten
espacios en blanco; se usa el subrayado para separar palabras en un nombre
consistente de multiples palabras o se usan maytsculas para la primera letra de
una o mds palabras.

3. El nombre de una funcién no puede ser una de las palabras clave enumeradas en
la tabla 2.1. (Una palabra clave es una palabra que es apartada por el lenguaje
para un proposito especial y s6lo puede usarse en una manera especificada.)’

4. El nimero maximo de caracteres en una funcién es 1024.>

"Las palabras clave en C también son palabras reservadas, lo cual significa que deben usarse sélo para el propésito especificado.
Intentar usarlas para cualquier otro propdsito generard un mensaje de error.

2Este es el minimo requerido por el estindar ANSL

www.FreelLibros.me

36 CarituLo 2 Programacion orientada a procedimientos en C++

Tabla 2.1 Palabras clave

auto delete goto public this
break do if register template
case double inline return typedef
catch else int short union
char enum long signed unsigned
class extern new sizeof virtual
const float overload static void
continue for private struct volatile
default friend protected switch while

Son ejemplos de identificadores validos de C++:

GradARad interseccién sumarNum pendiente
bess mult dos HallarMax densidad

Son ejemplos de identificadores invalidos:

1AB3 (empieza con un numero, lo cual viola la regla 1)
E*6 (contiene un caricter especial, lo cual viola la regla 2)

while (ésta es una palabra clave, lo cual viola la regla 3)

Ademas de apegarse a las reglas de identificadores de C++, el nombre de la funcion siem-
pre debe ser seguido por paréntesis. (La razon para esto se explicara mas adelante.) Ade-
mas, un buen nombre de funcion deberd ser mneménico, esto es, una palabra o nombre
designado como un auxiliar para la memoria. Por ejemplo, el nombre de funcién GradA-
Rad () (note que hemos incluido los paréntesis requeridos después del identificador, lo cual
lo senala con claridad como un nombre de funcién) es un mnemonico si es el nombre de
una funcién que convierte grados a radianes. Aqui, el nombre en si ayuda a identificar lo
que hace la funcion.
Son ejemplos de nombres de funcién validos que no son mnemonicos:

facil() c3po() r2d2() la fuerza() miguel()

Los nombres de funciéon que no son mnemonicos no deberdn usarse porque no transmiten
informacion sobre lo que hace la funcion.

Ademas, los nombres de funcion se pueden escribir como una mezcla de letras mayuscu-
las y mintsculas. Esto se esta volviendo cada vez mds comuin en C++, aunque no es absolu-
tamente necesario. Los identificadores escritos por completo en maytsculas por lo general
se reservan para constantes simbdlicas, un tema que se cubre en la seccion 3.5.

Por afiadidura, C++ es un lenguaje sensible al uso de mayusculas y minusculas. Esto sig-
nifica que el compilador distingue entre letras mayusculas y minusculas. Por tanto, en C++,
los nombres TOTAL, total y Total, representan tres nombres distintos.

www.FreelLibros.me

2.1 Introduccion a C++ 37

La funcion main ()

Una ventaja distintiva de usar funciones y clases en C++ es que la estructura total del pro-
grama en general, y de modulos individuales en particular, puede planearse con anticipa-
cién, incluyendo provisiones para probar y verificar la operacion de cada modulo. Cada
funcién y clase puede escribirse entonces para cumplir con su objetivo pretendido.

Para facilitar la colocacion y ejecucion ordenada de los modulos, cada programa C++
debe tener una y s6lo una funcién llamada main(). La funcién main () se conoce como
una funcién controladora, porque controla, o indica, a los otros modulos la secuencia en la
que tienen que ejecutarse (figura 2.3).?

main()
Tu vas primero

' ler.
] : Modulo
Ya lo hice
Tu vas segundo
N

20.

: modulo I
Ya lo hice

Tu vas tercero
3er.

modulo
Ya lo hice

Tu vas al ultimo
{ Ultimo

Ya lo hice modulo

Figura 2.3 La funcion main () dirige a todas las otras funciones.

La figura 2.4 ilustra una estructura para la funciéon main(). La primera linea de la fun-
cion, en este caso int main(), se conoce como linea de encabezado de la funcién. Una li-
nea de encabezado de la funcion, la cual siempre es la primera linea de una funcion,
contiene tres fragmentos de informacion:*

1. Qué tipo de dato, si hay alguno, es devuelto por la funcion.
2. El nombre de la funcion.
3. Qué tipo de dato, si hay alguno, es enviado a la funcion.

La palabra clave antes del nombre de la funcién define el tipo de valor que devuelve la fun-
ci6n cuando ha completado su operacion. Cuando se coloca antes del nombre de la funcion,

3Los médulos ejecutados a partir de main () pueden, a su vez, ejecutar otros médulos. Cada médulo, sin embargo, siempre re-
gresa al médulo que inicié su ejecucion. Esto se aplica incluso a main (), la cual regresa el control al sistema operativo cuando
fue iniciado main().

*Un método de clase también debe empezar con una linea de encabezado que se apega a estas mismas reglas.

www.FreelLibros.me

38

CarituLo 2 Programacion orientada a procedimientos en C++

la palabra clave int (véase la tabla 2.1) indica que la funcion devolvera el valor de un niime-
ro entero. Del mismo modo, cuando los paréntesis que siguen al nombre de la funcion estan
vacios, significa que no se transmitirdn datos a la funcién cuando se esté ejecutando. (Los da-
tos transmitidos a una funcién al momento de ejecutarla se llaman argumentos de la funcion.)
Las llaves { y }, determinan el principio y el fin del cuerpo de la funcién y encierran las instruc-
ciones que la componen. Las instrucciones dentro de las llaves determinan lo que hace la fun-
cion. Cada instruccion dentro de la funcion debe terminar con un punto y coma (;).

Nombre de la funcion /Lista de argumentos vacia
Tipo de valor devuelto —>int main ()
— {

Cuerpo de la funcion — las instrucciones del programa van aqui

return 0;

—>}

Figura 2.4 La estructura de una funcion main().

Se pueden nombrar y escribir muchas de las funciones C++ personalizadas. De hecho, el
resto de este libro se ocupa de manera principal de las instrucciones requeridas para elabo-
rar funciones utiles y la forma de combinar funciones y datos en clases y programas utiles.
Cada programa, sin embargo, debe tener una y sélo una funciéon main(). Hasta que
aprenda cOmo pasar y regresar los datos de una funcion (los temas del capitulo 6), la linea
de encabezado ilustrada en la figura 2.4 servird para todos los programas que sea necesa-
rio escribir. Para programas simples, hay que considerar que las primeras dos lineas (que
se explican con mas detalle en el capitulo 6):

int main()
{
tan solo senalan que “el programa comienza aqui”, mientras las Gltimas dos lineas

return 0;

}

sefialan el final del programa. Por suerte, muchas funciones y clases ttiles ya se presentan
escritas. Ahora se vera como usar un objeto creado a partir de una de estas clases para crear
nuestro primer programa funcional en C++.

El objeto cout

Uno de los objetos mas versatiles y mas usados en C++ se llama cout (pronunciado “si
out”). Este objeto, cuyo nombre se deriva de Console OUTput, es un objeto de salida que
envia datos introducidos en él al dispositivo estandar de salida.’ Para la mayoria de los sis-

SEl objeto cout se crea de manera formal a partir de la clase ostream, la cual se describe con mas detalle en el capitulo 7.

www.FreelLibros.me

W)

)

W
¢)
)y

#include <iostream>
using namespace std;

int main()

{

.

cout << "Hola mundo!";

return 0;

2.1 Introduccién a C++ 39

temas, este dispositivo de salida es una pantalla de video. El objeto cout muestra en el mo-
nitor cualquier cosa enviada a él. Por ejemplo, si se envian los datos iHola mundo! a
cout, estos datos se imprimen (o despliegan) en la pantalla de la terminal. Los datos iHo-
la mundo! se envian al objeto cout encerrando el texto entre comillas, "poner cade-
na aqui", y colocando el simbolo de insercion << (“enviar a”), antes del mensaje y
después del nombre del objeto, como se muestra en la figura 2.5.

cout << "iHola mundo!";
Figura 2.5 Envio de un mensaje a cout.

Ahora juntemos todo esto en un programa C++ funcional que pueda ejecutarse en su compu-
tadora. Considere el programa 2.1.

> ~ Programa 2.1

> ~

La primera linea del programa,

#include <iostream>

es un comando preprocesador que utiliza la palabra reservada include. Los comandos pre-
procesadores comienzan con un signo de nimero (#) y ejecutan alguna accién antes que el
compilador traduzca el programa fuente a codigo de maquina. De manera especifica, el co-
mando preprocesador #include causa que el contenido del archivo invocado, en este caso
el archivo iostream, sea insertado en donde el comando #include aparezca en el progra-
ma. El iostream es una parte de la biblioteca estindar que contiene, entre otro c6digo, dos
clases nombradas istream y ostream. Estas dos clases proporcionan las declaraciones
de datos y métodos utilizados para la entrada y salida de datos, respectivamente. El archi-
vo iostream se conoce como un archivo de encabezado debido a que siempre se coloca una
referencia a €l en la parte superior, o cabeza, de un programa C++ usando el comando #in-
clude. Puede ser que se pregunte qué tiene que ver el archivo iostream con este programa
simple. La respuesta es que el objeto cout se crea a partir de la clase ostream. Por tanto,
el archivo de encabezado iostream debe incluirse en todos los programas que usen cout.
Como se indico en el programa 2.1, los comandos preprocesadores no terminan con un pun-
to y coma.

www.FreelLibros.me

40

CarituLo 2 Programacion orientada a procedimientos en C++

| L W W |1
—— Punto de Informacién || |
N Y

¢Qué es la sintaxis?

La sintaxis de un lenguaje de programacion es el conjunto de reglas para formular instrucciones
gramaticalmente correctas en un lenguaje. En la practica esto significa que una instruccion en C++
con sintaxis correcta tiene la forma apropiada especificada para el compilador. Como tal, el com-
pilador aceptaré la instruccion y no generara un mensaje de error.

Debe sefalarse que una instruccion o programa individual puede ser correcto desde el pun-
to de vista sintactico, pero incorrecto desde el punto de vista l6gico. Una instruccion o programa
asi estaria estructurado de manera correcta pero produciria un resultado incorrecto. Esto es simi-
lar a un enunciado en espaiol que es correcto desde el punto de vista gramatical pero no tiene
sentido. Por ejemplo, aunque el enunciado “El arbol es un gato andrajoso” es gramaticalmente co-
rrecto, no tiene sentido.

Después del comando preprocesador include hay una instruccion que contiene la pala-
bra reservada using. La instruccion,

using namespace std;

le dice al compilador donde buscar para encontrar los archivos de encabezado en ausencia
de cualquier designaciéon explicita adicional. Se puede pensar en un espacio de nombres co-
mo un archivo de codigo fuente al que tiene acceso el compilador cuando busca clases o fun-
ciones preescritas. Debido a que el archivo de encabezado iostream esta contenido dentro
de un espacio de nombres llamado std, el compilador usara de manera automatica el ob-
jeto cout de iostream a partir de este espacio de nombres siempre que se haga referen-
cia a cout. El uso de espacio de nombres le permite crear sus propias clases y funciones con
los mismos nombres provistos por la biblioteca estindar y colocarlos en espacios de nombres
invocados de manera diferente. Puede sefialar al programa cual clase o funcion usar al indi-
car el espacio de nombres donde desea que el compilador busque la clase o funcion.

La instruccion using es seguida por el inicio de la funcién main() del programa. Es-
ta funciéon comienza con la linea de encabezado desarrollada al principio de esta seccion. El
cuerpo de la funcion, entre llaves, consta de s6lo dos instrucciones. La primera instruccion
enmain() pasa un mensaje al objeto cout. El mensaje es la cadena " iHola mundo!".

Debido a que cout es un objeto de una clase preescrita, no tenemos que escribirlo; esta
disponible para su uso con sélo activarlo en forma correcta. Como todos los objetos de C++,
cout s6lo puede ejecutar ciertas acciones bien definidas. Para cout, la accion es ensamblar
datos para mostrar la salida. Cuando se pasa una cadena de caracteres a cout, el objeto ase-
gura que la cadena se despliegue de manera correcta en su monitor, como se muestra en la fi-
gura 2.6.

iHola mundo!

Figura 2.6 La salida del programa 2.1.

www.FreelLibros.me

=

N

SN

2.1 Introduccion a C++ 41

Las cadenas en C++ son cualquier combinacién de letras, nimeros y caracteres especiales
encerrados entre comillas (“colocar cadena aqui”). Las comillas se usan para delimitar
(marcar) el comienzo y el final de la cadena y no se consideran parte de la cadena. Por tan-
to, la cadena de caracteres que forma el mensaje enviado a cout debe encerrarse entre co-
millas, como se ha hecho en el programa 2.1.

Escribiremos otro programa para ilustrar la versatilidad de cout. Lea el programa 2.2
para determinar qué hace.

~ Programa 2.2

>

>

Dy v

-

S

N

%}/
=

\

> b

K¢

#include <iostream>
using namespace std;

int main()
{
cout << "Computadoras,
cout << "\n

computadoras por todos lados";
tan lejos como pueda llegar C";

return 0;

Cuando se ejecuta el programa 2.2 se despliega lo siguiente:

Computadoras, computadoras por todos lados
tan lejos como pueda llegar C

Tal vez se pregunte por qué no aparecié \n en la salida. Los dos caracteres \ y n, cuando
se usan juntos, se llaman secuencia de escape para una linea nueva. Le indican a cout que
envie instrucciones al dispositivo de salida para iniciar una linea nueva. En C++, el caric-
ter de diagonal inversa (\) proporciona un “escape” de la interpretacion normal del carac-
ter que la sigue, alterando el significado del siguiente caracter. Si se omitiera la diagonal
inversa de la segunda instrucciéon cout en el programa 2.2, la n se imprimiria como la le-
tra n y el programa desplegaria:

Computadoras, tan lejos como pue-

da llegar C

computadoras por todos lados

Pueden colocarse secuencias de escape para una linea nueva en cualquier parte dentro del
mensaje que se transmite a cout. Vea si puede determinar el despliegue producido por el
programa 2.3.

www.FreelLibros.me

42 CarituLo 2 Programacion orientada a procedimientos en C++

\ j—\ Programa 2.3

> ~

#include <iostream>
using namespace std;

int main()
{

cout << "Computadoras por todos lados\n tan lejos como\n\npueda llegar C";

return 0;

La salida para el programa 2.3 es:

Computadoras por todos lados tan lejos como
puede llegar C

puedo ver

Ejercicios 2.1

1. Indique si los siguientes son nombres de funcion validos. Si son validos, indique si
son nombres mnemonicos. (Recuerde que un nombre de funciéon mnemonico trans-
mite alguna idea sobre el propdsito de la funcién.) Si son nombres invalidos, indi-
que por qué.

poder densidad ml234$ ampnuevo 1234 abcd
total tangente valAbs computado b34a 34ab
voltios$ a2B3 while valMin seno $seno
coseno velocidad distancianeta suma return pila

2. Suponga que se han escrito las siguientes funciones:

obtenerLargo(), obtenerAncho(), calcArea(), mostrarArea()

a. A partir de los nombres de las funciones, ¢qué piensa que podria hacer cada
funcién?

b. ¢En qué orden piensa que una funcién main () podria ejecutar estas funciones
(con base en sus nombres)?

3. Suponga que se han escrito las siguientes funciones:
velocidad(), distancia(), aceleracidn()
A partir de los nombres de las funciones, ¢qué piensa que podria hacer cada fun-
cion?

4. Determine nombres para funciones que hagan lo siguiente:

a. Encontrar el promedio de un conjunto de numeros.
b. Encontrar el area de un rectangulo.

www.FreelLibros.me

C.
d.
e.

2.1 Introduccion a C++ 43

Encontrar el valor minimo en un conjunto de numeros.
Encontrar la densidad de una puerta de acero.
Clasificar un conjunto de niimeros de menor a mayor.

Del mismo modo en que la palabra clave int se usa para indicar que una funcién
devolvera un nimero entero, las palabras clave void, char, float y double se
usan para indicar que una funcién no devolvera ningun valor o devolvera un cardc-
ter, un nimero en punto flotante en precision simple, y un nimero en precision do-
ble, respectivamente. Usando esta informacion, escriba lineas de encabezado para
una funcién main () que no recibird argumentos pero que devolvera:

angoy

d.

ningun valor

un caracter

un numero de punto flotante en precision simple
un namero en precision doble

Usando cout, escriba un programa en C++ que despliegue su nombre en una
linea, su domicilio en una segunda linea, y su ciudad, estado y cddigo postal en
una tercera linea.

Ejecute el programa que ha escrito para el ejercicio 6a en una computadora.
(Nota: Debe entender los procedimientos para introducir y ejecutar un progra-
ma C++ en la computadora particular que esté usando.)

Escriba un programa en C++ para desplegar lo siguiente:

La cosecante de un &angulo
es igual a uno dividido entre
el seno del &angulo.

Compile y ejecute el programa que ha escrito para el ejercicio 7a en una compu-
tadora.

¢Cuantas instrucciones cout usaria para desplegar lo siguiente:

Grados Radianes
0 0.0000
90 1.5708
180 3.1416
270 4.7124
360 6.2832

¢Cual es el nimero minimo de instrucciones cout que podrian usarse para im-
primir la tabla en el ejercicio 8a?

Escriba un programa en C++ completo para producir la salida ilustrada en el
ejercicio 8a.

Ejecute el programa que ha escrito para el ejercicio 8c en una computadora.

. En respuesta a una secuencia de escape de linea nueva, cout coloca el siguiente ca-
racter desplegado al principio de una linea nueva. Esta colocacion del siguiente ca-
racter en realidad representa dos operaciones distintas. ¢Cudles son?

www.FreelLibros.me

44

CarituLo 2 Programacion orientada a procedimientos en C++

10. a. Suponiendo un compilador que no es sensible al uso de mayusculas y mintsculas,
determine cudles de estos nombres de unidades de programa son equivalentes:

PROMEDIO promedio MODO BESSEL Modo
Total besseL TeMp Densidad TEMP
densiDAD MEDIA total media moDO

b. Vuelva a hacer el ejercicio 10a suponiendo que el compilador es sensible al uso
de mayusculas y minusculas.

Ejercicios para estructurar un proyecto

La mayor parte de los proyectos, tanto de programacién como de otro tipo, por lo general
pueden estructurarse en subtareas o unidades de actividad mas pequenas. Estas subtareas
mas pequenias a menudo pueden delegarse a diferentes personas, de modo que cuando to-
das las tareas se terminan e integran, el proyecto o programa esta completo. Para los ejerci-
cios 11 a 16, determine un conjunto de subtareas que, unidas, completen el proyecto. Tome
en cuenta que hay muchas soluciones posibles para cada ejercicio. El tnico requisito es que
el conjunto de subtareas seleccionadas, cuando se junten, completen la tarea requerida.

Norta: El propdsito de estos ejercicios es que considere las diferentes formas en que
pueden estructurarse tareas complejas. Aunque no hay una solucion correcta para estos
ejercicios, hay soluciones incorrectas y soluciones que son mejores que otras. Una solucion
incorrecta es aquella que no especifica por completo la tarea. Una solucion es mejor que
otra si identifica con mds claridad o mads facilidad lo que debe hacerse.

11. Sele dio la tarea de cablear e instalar luces en el atico de su casa. Determine un con-
junto de subtareas que, unidas, haran que logre esto. (Sugerencia: La primera sub-
tarea deberia determinar la colocacion de las lamparas.)

12. Se le da el trabajo de preparar una comida completa para cinco personas el proxi-
mo fin de semana. Determine un conjunto de subtareas que, unidas, haran que pue-
dan lograr esto. (Sugerencia: Una subtarea, no necesariamente la primera, deberia
ser comprar los alimentos.)

13. Usted es un estudiante de segundo afio de bachillerato y estd planeando ir a una es-
cuela superior para estudiar ingenieria eléctrica después de graduarse. Enumere un
conjunto de objetivos principales que debe cumplir para alcanzar esta meta. (Suge-
rencia: Una subtarea es “Determinar los cursos adecuados que debera tomar”.)

14. Se le ha dado el trabajo de cultivar un huerto. Determine un conjunto de subtareas
para lograr esto. (Sugerencia: Una de las subtareas seria planear la disposicion del
huerto.)

15. Usted es responsable de planificar y organizar un viaje de la familia a un campa-
mento este verano. Enumere un conjunto de subtareas que, unidas, lo lleven a al-
canzar este objetivo con éxito. (Sugerencia: Una subtarea seria seleccionar la
ubicacion del campamento.)

16. a. Un laboratorio nacional de exdmenes médicos desea un sistema de computo
nuevo para analizar los resultados de sus exdmenes. El sistema debe ser capaz
de procesar los resultados diarios. Ademads, el laboratorio requiere recuperar y
obtener un informe impreso de todos los resultados que cumplen con ciertos cri-

www.FreelLibros.me

2.2 Estilo de programacién 45

terios, por ejemplo, todos los resultados obtenidos por un medico particular o
todos los resultados obtenidos para los hospitales en un estado particular. De-
termine tres o cuatro unidades del programa en los que podria tratarse por se-
parado este sistema. (Sugerencia: Una unidad del programa posible es “Preparar
los resultados diarios” para crear los informes de cada dia.)

Suponga que alguien introduce datos incorrectos para un resultado de examen
particular, lo cual se descubre después que los datos se han introducido y alma-
cenado en el sistema. ¢Qué unidad del programa es necesaria para corregir es-
te problema? Discuta por qué una unidad del programa como ésta podria
requerirse 0 no en la mayor parte de los sistemas.

Suponga que existe una unidad del programa que permite a un usuario alterar
o cambiar datos que se han introducido y almacenado en forma incorrecta. Dis-
cuta la necesidad de incluir un “rastreo de auditoria” que permitiria una recons-
truccion posterior de los cambios hechos, cuando se hicieron y quién los hizo.

2.2 > ESTILO DE PROGRAMACION

Los programas en C++ empiezan la ejecucion al principio de la funciéon main (). Debido
a que un programa sélo puede tener un punto de inicio, todo programa en lenguaje C++
debe contener una y sélo una funcién main (). Como hemos visto, todas las instrucciones
que forman la funcién main() se incluyen luego dentro de las llaves que siguen al nom-
bre de la funcién. Aunque la funcién main() debe estar presente en todos los programas
C++, éste no requiere que la palabra main, los paréntesis () o las llaves {} se coloquen en
alguna forma particular. La forma usada en la seccion anterior,

int main()

{

}

las instrucciones del programa van aqui;

return 0;

se eligi6 so6lo por claridad y facilidad en la lectura del programa. Si una de las instruccio-
nes del programa usa el objeto cout, debe incluirse el archivo de encabezado iostream,
al igual que la instrucciéon using namespace std;. Por ejemplo, la siguiente forma ge-
neral de una funcién main () también funcionaria:

int main

(
)

{ primera instruccidén; segunda instruccién;
tercera instruccidn; cuarta

instruccidn;
return 0;}

Note que puede ponerse mds de una instruccion en una linea, o una instruccién puede es-
cribirse en mas de una linea. Con excepcion de las cadenas, comillas, identificadores y pa-
labras clave, C++ ignora todo el espacio en blanco. (El espacio en blanco se refiere a
cualquier combinacion de uno o mas espacios en blanco, tabuladores o lineas nuevas.) Por

www.FreelLibros.me

46

CarituLo 2 Programacion orientada a procedimientos en C++

ejemplo, cambiar el espacio en blanco en el programa 2.1 y asegurarse que no se divide la
cadena jHola mundo! en dos lineas produce el siguiente programa valido:

#include <iostream>
using namespace std;

int main
(

) {

cout <<

"iHola mundo!";
return 0;

}

Aunque esta version de main () funciona, es un ejemplo de un estilo de programacién po-
bre en extremo. Es dificil de leer y entender. Para legibilidad, la funcién main() siempre
debera escribirse en forma estindar como:

int main()

{

las instrucciones del programa van aqui;

return 0;

}

En esta forma estidndar el nombre de la funcién empieza en la columna 1 y se coloca con
los paréntesis requeridos en una sola linea. La llave de apertura del cuerpo de la funcion
sigue en la siguiente linea y se coloca bajo la primera letra de la linea que contiene el nom-
bre de la funcion. Del mismo modo, la llave que cierra la funcién se coloca sola en la co-
lumna 1 como la dltima linea de la funcion. Esta estructura sirve para resaltar la funcion
como una unidad independiente.

Dentro de la funcion en si, todas las instrucciones del programa tienen una sangria de
por lo menos dos espacios. La sangria es otra buena practica de programacion, en especial
si se usa la misma sangria para grupos similares de instrucciones. Revise el programa 2.2
para ver que se us6 la misma sangria para ambas llamadas al objeto cout.

Mientras progresa en su comprension y dominio de C++, desarrollard sus propios es-
tandares para las sangrias. S6lo tenga en cuenta que la forma final de sus programas debe-
rdn ser consistentes y servir siempre como un auxiliar para la lectura y comprension de sus
programas.

Comentarios

Los comentarios son observaciones explicativas que se hacen dentro de un programa. Cuan-
do se usan con cuidado, los comentarios pueden ser muy ttiles para aclarar de qué trata el
programa completo, qué pretende lograr un grupo especifico de instrucciones o qué pretende
hacer una linea. C++ acepta dos tipos de comentarios: de linea y de bloque. Ambos tipos de
comentarios pueden colocarse en cualquier parte dentro de un programa y no tienen efecto

www.FreelLibros.me

2.2 Estilo de programacion 47

en la ejecucion del mismo. El compilador ignora todos los comentarios; estan ahi estrictamen-
te para la conveniencia de cualquiera que lea el programa.

Un comentario de linea empieza con dos diagonales (//) y contintia hasta el final de la
linea. Por ejemplo, las siguientes lineas son comentarios de linea:

// éste es un comentario
// este programa imprime un mensaje
// este programa calcula una raiz cuadrada

Los simbolos //, sin espacio en blanco entre ellos, designan el inicio del comentario de linea.
El final de la linea en la que estd escrito el comentario designa el final del comentario.

Un comentario de linea puede escribirse ya sea en una sola linea o al final de la misma
linea que contiene una instruccion del programa. El programa 2.4 ilustra el uso de comenta-
rios de linea dentro de un programa.

.~ ~ Programa 2.4

>
~

e 2

> E> >

y

// este programa despliega un mensaje
#include <iostream>
using namespace std;

int main()
{

cout << "iHola mundo!"; // esto produce el despliegue

return 0;

El primer comentario aparece en una linea aparte al principio del programa y describe lo que
hace el programa. Por lo general ésta es una buena ubicacion para incluir un comentario bre-
ve que describa el proposito del programa. Si se requieren mas comentarios, puede colocar-
se uno por linea. Por tanto, cuando un comentario es demasiado largo para que quepa en
una linea, puede separarse en dos 0 mas comentarios de linea, con cada comentario separa-
do precedido por el simbolo de doble diagonal establecido //. El comentario

// este comentario es invalido porque
se extiende en dos lineas

producird un mensaje de error de C++ en su computadora. Este comentario es correcto cuan-
do se escribe asi

// este comentario se usa para ilustrar un
// comentario que se extiende en dos lineas

www.FreelLibros.me

48

CarituLo 2 Programacion orientada a procedimientos en C++

Sin embargo, los comentarios que abarcan dos o mas lineas se escriben de manera mas con-
veniente como comentarios en bloque tipo C que como multiples comentarios de linea. Los
comentarios en bloque comienzan con los simbolos /* y terminan con los simbolos * /. Por
ejemplo,

/* Este es un comentario en bloque que
abarca
tres lineas */

En C++, la estructura del programa pretende que sea legible y comprensible, haciendo inne-
cesario el uso de comentarios extensos. Esto se refuerza si los nombres de funcion, clase y va-
riable, que se describen en el siguiente capitulo, son seleccionados con cuidado para transmitir
su significado a cualquiera que lea el programa. Sin embargo, si el propésito de una funcion,
clase o instruccion aun no esta claro a partir de su estructura, nombre o contexto, incluya co-
mentarios donde se necesiten aclaraciones. El codigo oscuro, sin comentarios, es una sefal
segura de mala programacion y se hace presente cuando el programa debe ser sometido a
mantenimiento o ser leido por otros. Del mismo modo, los comentarios excesivos también
son una sefial de mala programacion, porque implican que hubo un razonamiento insuficien-
te para hacer que el codigo se explicara por si solo. Por lo general, cualquier programa que
escriba debera comenzar con una serie de comentarios iniciales al programa que incluyan una
descripcion breve de éste, su nombre y la fecha de la tGltima modificacion. Por consideracio-
nes de espacio, y debido a que todos los programas en este texto fueron escritos por el autor,
solo se usaran comentarios iniciales para descripciones breves de los programas cuando no se
proporcionen como parte del texto descriptivo acompanante.

Ejercicios 2.2

1. a. ¢Funcionara el siguiente programa?

#include <iostream>
using namespace std;
int main() {cout << "iHola mundo!"; return 0;}

b. ¢Por qué el programa dado en el ejercicio 1a no es un buen programa?

2. Vuelva a escribir los siguientes programas para que se ajusten a una buena préctica
de programacioén y una sintaxis correcta.

a. #include <iostream>
int main(
) {
cout <<
"El momento ha llegado"
; return 0;}

b. #include <iostream>
using namespace std;
int main
() {cout << "Newark es una ciudad\n";cout <<
"En Nueva Jersey\n"; cout <<
"También es una ciudad\n"
cout << "En Delaware\n"
return 0;}

.
14
.
14

www.FreelLibros.me

C.

d.

2.2 Estilo de programacion 49

#include <iostream>
using namespace std;
int main() {cout << Leer un programal\n";cout <<
"es mucho mas facil\n"
cout << "si se usa una forma estandar para main\n")
cout
<<"y cada instruccidén se escribe\n";cout
<< "en una linea separadaln")
; return 0;}

.
I
)
4

#include <iostream.h>
using namespace std;

int main

(){ cout << "Todo programa en C++"
; cout

<<"\ndebe tener una y sélo una"

I
cout << "funcidén main"

I
cout <<

"\n la secuencia de escape de caracteres")
; cout <<
"\npara una linea nueva puede colocarse en cualquier
parte"
; cout
<<"\n dentro del mensaje transmitido a cout"
; return 0;}

Cuando se usa en un mensaje, el caracter de diagonal inversa altera el significado
del caracter que le sigue inmediatamente. Si deseamos imprimir el caracter de dia-
gonal inversa, tendriamos que proporcionan a cout una secuencia de escape para
que interprete normalmente la diagonal inversa. ¢;Qué caracter piensa que se usa
para alterar la forma en que se interpreta un solo caracter de diagonal inversa?
Usando su respuesta al ejercicio 3a, escriba la secuencia de escape para imprimir
una diagonal inversa.

Una sefal (token en inglés) de un lenguaje de computadora es cualquier secuencia
de caracteres que, como una unidad, sin caracteres que intervengan o espacios en
blanco, tiene un significado tunico. Usando esta definicion de token, determine si
las secuencias de escape, nombres de funcion y las palabras clave enumeradas en
la tabla 1.2 son tokens del lenguaje C++.

Analice si agregar un espacio en blanco a un mensaje lo altera. Analice si los men-
sajes pueden considerarse tokens de C++.

Utilizando la definicion de token que se dio en el ejercicio 4a, determine si la si-
guiente instruccion es verdadera: “Excepto por las tokens del lenguaje, C++ igno-
ra todos los espacios en blanco.”

www.FreelLibros.me

50

CariTuLo 2 Programacion orientada a procedimientos en C++

/
"",m‘

2.3 > TIPOS DE DATOS

El objetivo de todos los programas es procesar datos, sean numéricos, alfabéticos, de audio o
de video. Es fundamental para este objetivo la clasificacion de los datos en tipos especificos.
Por ejemplo, calcular la trayectoria de un cohete requiere operaciones matematicas con da-
tos numéricos, y alfabetizar una lista de nombres requiere operaciones de comparacién con
datos basados en caracteres. Ademas, algunas operaciones no son aplicables a ciertos tipos
de datos. Por ejemplo, no tiene sentido sumar nombres. Para impedir que los programado-
res intenten ejecutar una operacion inapropiada, C++ solo permite que se ejecuten ciertas
operaciones con ciertos tipos de datos.

Los tipos de dato permitidos y las operaciones apropiadas definidas para cada tipo se co-
nocen como tipo de dato. De manera formal, un tipo de dato se define como un conjunto de
valores y un conjunto de operaciones que pueden aplicarse a estos valores. Por ejemplo, el
conjunto de todos los nimeros enteros constituye un conjunto de valores, como lo es el con-
junto de todos los nimeros reales (niumeros que contienen un punto decimal). Estos dos
conjuntos de nimeros, sin embargo, no constituyen un tipo de dato hasta que se incluye
un conjunto de operaciones. Estas operaciones, por supuesto, son las operaciones matemati-
cas y de comparacion. La combinacion de un conjunto de valores mas las operaciones se
vuelve un tipo de dato verdadero.

C++ clasifica los tipos de datos en uno de dos agrupamientos fundamentales: tipos de da-
to de clase y tipos de dato integrados. Un tipo de dato de clase, al cual se hace referencia co-
mo una clase, para abreviar, es un tipo de dato creado por el programador. Esto significa que
el conjunto de valores y operaciones admitidas es definido por un programador, usando c6-
digo C++.

Un tipo de dato integrado es proporcionado como una parte integral del compilador C++
y no requiere c6digo C++ externo. Por tanto, un tipo de dato integrado puede usarse sin re-
currir a adiciones de lenguaje complementarias, como las proporcionadas por el archivo de
encabezado iostream necesario para el objeto cout. Los tipos de dato integrados, los cua-
les también se conocen como tipos primitivos, consisten en los tipos numéricos bdsicos mos-
trados en la figura 2.7 y las operaciones enumeradas en la tabla 2.2. Como se puede observar
en esta tabla, la mayor parte de las operaciones para tipos integrados son proporcionadas co-
mo simbolos. Esto contrasta con los tipos de clases, donde la mayor parte de las operaciones
son proporcionadas como funciones.

Tipos de dato numericos

Tipos de numeros Tipos de numeros
enteros de punto flotante

Figura 2.7 Tipos de dato integrados.

www.FreelLibros.me

2.3 Tipos de datos 51

Tabla 2.2 Operaciones con tipos de dato integrados

Tipos de dato integrados | Operaciones

Nimeros enteros +, =, %,/

g, =, ==, |=,

<=, >=vsizeof(),

y operaciones con bits
(véase el capitulo 15)

Nimeros de punto + - %, /,
flotante ===, 1=

> > * T

<=, >= sizeof ()

Al introducir tipos de dato integrados de C++, usaremos literales. Una literal es un valor acep-
table para un tipo de dato. El término literal refleja que dicho valor se identifica de manera
explicita a si mismo. (Otro nombre para una literal es un valor literal o constante.) Por ejem-
plo, todos los nimeros, como 2, 3.6 y 8.2, se denominan valores literales porque despliegan
sus valores de manera literal. El texto, como " iHola mundo!" también se denomina va-
lor literal porque el texto se despliega. Usted ha utilizado valores literales a través de su vida
y los ha conocido por lo comin como ntimeros y palabras. En la seccion 2.5, se puede ob-
servar algunos ejemplos de valores no literales, es decir, valores que no se despliegan a si mis-
mos sino que son almacenados y se tiene acceso a ellos por medio de identificadores.

Tipos de datos enteros

C++ proporciona nueve tipos de datos integrados, como se muestra en la figura 2.8. La dife-
rencia esencial entre los diversos tipos de datos enteros es la cantidad de almacenamiento usa-
do por cada tipo, el cual afecta al rango de valores que cada tipo es capaz de representar. Los
tres tipos mas importantes usados en forma casi exclusiva en la mayor parte de las aplicacio-
nes son los tipos de datos int, char y bool. La razén para los tipos restantes es historica,
ya que fueron implementados para acomodar situaciones especiales (un rango de ntimeros
pequeiio o grande). Esto permitia al programador maximizar el uso de memoria al seleccio-
nar un tipo de datos que usara la cantidad mas pequefia de memoria consistente con los re-
querimientos de una aplicacion. Cuando las memorias de las computadoras eran pequenas y
costosas en comparacion con las actuales, ésta era una preocupacion importante. Aunque ya
no es una preocupacion para la mayor parte de los programas, estos tipos todavia le propor-
cionan al programador la capacidad para optimizar el uso de memoria cuando es necesario.
Por lo general, estas situaciones ocurren en aplicaciones de ingenieria, como en sistemas de
control usados en aparatos domésticos y automéviles.

www.FreelLibros.me

52 CarituLo 2 Programacion orientada a procedimientos en C++

bool
char
short int
int

Tipos de dato enteros long int
unsigned char
unsigned short int
unsigned int
unsigned long int

Figura 2.8 Tipos de dato enteros en C++.

El tipo de dato int

El conjunto de valores admitidos por el tipo de dato int son nimeros enteros. Un valor en-
tero consiste s6lo de digitos y de manera opcional puede estar precedido por un signo de mas
(+) o menos (-). Por tanto, un valor entero puede ser el nimero cero o cualquier valor nu-
mérico positivo o negativo sin un punto decimal. Ejemplos de enteros validos son:

0 5 -10 +25 1000 253 -26351 +36

Como ilustran estos ejemplos, los enteros pueden contener un signo explicito. No se permi-
ten comas, puntos decimales ni simbolos especiales, como el signo de délares. Son ejemplos
de enteros invalidos:

$255.62 2523 3. 6243892 1492.89 +6.0

Los diferentes compiladores tienen su propio limite interno para los valores enteros mas
grande (mds positivo) y mds pequefio (mdas negativo) que pueden almacenarse en cada tipo
de dato.® La asignacién de almacenamiento mas comun es cuatro bytes para el tipo de dato
int, lo cual restringe el conjunto de valores permitido en este tipo de dato a representar en-
teros en el rango de -2,147,483,648 a2,147,483,647.7

El tipo de dato char

El tipo de dato char se usa para almacenar caracteres individuales. Los caracteres incluyen
las letras del alfabeto (mayusculas y minusculas), los diez digitos 0 a 9 y simbolos especiales
como los siguientes: + $., — y ! Un valor de caricter individual es cualquier letra, digito o
simbolo especial encerrado entre comillas sencillas. Los siguientes son ejemplos de valores de
caracter validos:

IAI l$l lbl l7| lYl I!l |Ml lql

Los limites impuestos por el compilador pueden encontrarse en el archivo de encabezado 1imits y se definen como las cons-
tantes hexadecimales int_max e int_min.

En todos los casos, la magnitud del niimero entero mas negativo siempre es un niimero mayor que la magnitud del entero mas
positivo. Esto se debe al método de almacenamiento de enteros de complemento a dos, el cual se describi6 en la seccion 1.6.

www.FreelLibros.me

2.3 Tipos de datos 53

. '||||||J

+— Punto de Informacién |
N Y Y Y Y Y i

Datos atémicos

Un valor de dato atémico es un valor considerado una entidad completa en si misma y que no
puede descomponerse en un tipo de dato mas pequeo. Por ejemplo, aunque un entero puede
descomponerse en digitos individuales, C++ no posee un tipo de digito numérico. Mas bien, cada
entero es considerado como un valor completo por si mismo y, como tal, se considera un dato
atémico. Del mismo modo, debido a que el tipo de dato entero sélo admite valores de datos ato-
micos, se dice que es un tipo de dato atémico. Como se podria esperar, todos los tipos de datos
integrados son tipos de datos atomicos.

Los valores de caracter se almacenan por lo general en una computadora usando los codigos
ASCII o Unicode. ASCII (se pronuncia as-ki) son las siglas de codigo estindar americano pa-
ra intercambio de informacion (American Standard Code for Information Interchange). El
codigo ASCII proporciona cédigos para un conjunto de caracteres basado en el idioma in-
glés, mas codigos para control de impresion y de despliegue, como c6digos de nueva linea y
de expulsion del papel de la impresora. Cada codigo de caracter estd contenido dentro de un
solo byte, lo cual proporciona 256 c6digos distintos. La tabla 2.3 enumera los codigos en by-
te ASCII para las letras mayusculas.

Ademas, C++ proporciona el c6digo Unicode mas nuevo que usa dos bytes por caracter
y puede representar 65 536 caracteres. Este codigo se usa para aplicaciones internacionales
al proporcionar conjuntos de caracteres en otros idiomas ademas del inglés. Como los pri-
meros 256 codigos de Unicode tienen el mismo valor numérico que los 256 codigos ASCII
(el byte adicional se codifica con ceros), no es necesario preocuparse por cual codigo de al-
macenamiento se usa cuando se utilizan caracteres en inglés.

Tabla 2.3 Los cddigos ASCII para las letras mayusculas

Letra Codigo ASCII Letra Codigo ASCII
A 01000001 N 01001110
B 01000010 (0] 01001111
C 01000011 P 01010000
D 01000100 0 01010001
E 01000101 R 01010010
F 01000110 S 01010011
G 01000111 T 01010100
H 01001000 U 01010101
I 01001001 \Y% 01010110
J 01001010 W 01010111
K 01001011 X 01011000
L 01001100 Y 01011001
M 01001101 Z 01011010

Usando la tabla 2.3, podemos determinar como se almacenan dentro de una computadora
los caracteres ‘B, ‘A’, ‘R’, “T?, ‘E’ y ‘R’, por ejemplo, usando el codigo de caracteres ASCII.
Esta secuencia de seis caracteres requiere seis bytes de almacenamiento (un byte por cada le-
tra) y se almacenaria como se ilustra en la figura 2.9.

www.FreelLibros.me

54 CarituLo 2 Programacion orientada a procedimientos en C++

01000010 rOlOOOOOl (01010010 r01010100 rOIOOOIOI (01010010 ’
B A R T E R

16 bytes de almacenamiento N

Figura 2.9 Las letras BARTER almacenadas dentro de una computadora.

El caracter escape

Un cardcter que tiene un significado especial en C++ es la diagonal inversa, \, que se conoce
como caracter de escape. Cuando se coloca este caracter directamente frente a un grupo se-
lecto de caracteres, esto indica al compilador que escape de la forma en que estos caracteres
se interpretarian en forma normal. La combinacion de una diagonal inversa y estos caracte-
res especificos se llama secuencia de escape. Se ha mostrado un ejemplo de ésta en la secuen-
cia de escape de linea nueva, ‘\n’, en el capitulo 1. La tabla 2.4 enumera las secuencias de
escape mas comunes en C++.

Tabla 2.4 Secuencias de escape

Secuencia | Caracter Cadigo

de escape | representado Significado ASCII

\n Linea nueva Se mueve a una linea nueva 00001010

\t Tabulador horizontal | Se mueve a la siguiente posicion del tabulador 00001001
horizontal

\v Tabulador vertical | Se mueve a la siguiente posicion del tabulador 00001011
vertical

\b Retroceso Retrocede un espacio 00001000

\r Retorno de carro Mueve el cursor al inicio de la linea actual; 00001101
se escribe para sobrescribir

\f Alimentacién Expulsa una hoja para iniciar otra 00001100

de forma

\a Alerta Emite una alerta 00000111
(por lo general un sonido de campana)

AN\ Diagonal inversa Inserta un cardcter de diagonal inversa (ésta se usa 01011100
para colocar un cardcter de diagonal inversa real
dentro de una cadena)

\? Signo de interrogacion | Inserta un caracter de signo de interrogacion 00111111

S Comilla sencilla Inserta un caricter de comilla sencilla (ésta se usa 00100111
para colocar una comilla sencilla interior dentro
de un conjunto de comillas sencillas exteriores)

\" Comillas dobles Inserta un caracter de comilla doble (ésta se usa 00100010
para colocar una comilla doble interior dentro
de un conjunto de comillas dobles exteriores)

\nnn Numero octal El nimero nnn (n es un digito) se considerara -
un nimero octal

\xhhhh Nimero El nimero hhhh (h es un digito) se considerard -

hexadecimal un nimero hexadecimal

\0 Caracter nulo Inserta el cardcter Null, el cual se define 00000000

con un valor de 0

www.FreelLibros.me

iV

Wo

#include <iostream>

using

int main()

{

cout << "\nTipo de datos Bytes"

return 0;

>

e
a T o~
gy

2.3 Tipos de datos 55

Aunque cada secuencia de escape enumerada en la tabla 2.4 esta formada por dos caracteres
distintos, la combinacién de ambos, sin un espacio en blanco entre ellos, causa que el com-
pilador cree el codigo individual enumerado en la columna de cédigo ASCII de la tabla 2.4.

El tipo de datos bool

En C++, el tipo de datos bool se usa para representar datos booleanos (16gicos). Por ello, es-
te tipo de datos esta restringido a uno de dos valores: verdadero o falso. Este tipo de datos
es mas util cuando un programa debe examinar una condicion especifica y, debido a la con-
dici6én de ser verdadera o falsa, tomar un curso de accién prescrito. Por ejemplo, en una apli-
cacion de ventas, la condicion que se estd examinando podria ser “la compra total es por
$100 0 més”. S6lo cuando esta condicion es verdadera se aplica un descuento. Sin embargo,
debido a que un tipo de datos booleano usa un c6digo de almacenamiento de enteros, tiene
implicaciones utiles explotadas por casi todos los programadores profesionales en C++. Los
usos practicos de las condiciones booleanas se consideran en el capitulo 4, asi que pospon-
dremos la exposicion de los datos booleanos hasta entonces.

Determinacion del tamano de almacenamiento

Una caracteristica unica de C++ es que le permite al programador ver donde y como se al-
macenan los valores. Por ejemplo, C++ proporciona un operador denominado sizeof ()
que proporciona el nimero de bytes usados para almacenar valores para cualquier nombre
de tipo de datos incluidos dentro de los paréntesis del operador. (Repase la seccion 1.6 si no
esta familiarizado con el concepto de byte.) Este es un operador integrado que no usa un sim-
bolo aritmético para ejecutar su operacion. El programa 2.5 usa este operador para determi-
nar la cantidad de almacenamiento reservado para los tipos de datos, int, char y bool.

v

o

f Programa 2.5

S

»

namespace std;

<< "\Ne—mmm———m —m—e e "

<< "\nint " << sizeof(int)
<< "\nchar " << sizeof(char)
<< "\nbool " << sizeof(bool)
<< '\n';

www.FreelLibros.me

56

CarituLo 2 Programacion orientada a procedimientos en C++

o L N W ___WWYN |

|— Punto de Informacién |
ok A A AR A

El caracter ‘\n’ y la cadena "\n"
El compilador reconoce tanto ‘\n’ como "\n" como el caracter linea nueva. La diferencia esta
en el tipo de datos que se usa. De manera formal, “\n’ es un caracter literal, mientras "\n" es
una cadena literal. Desde un punto de vista practico, ambos hacen que suceda lo mismo: Una li-
nea nueva es forzada en el despliegue de salida. Sin embargo, al encontrar el valor de caracter
“\n’, el compilador lo traduce usando el codigo de byte tnico 00001010 (véase la tabla 2.4). Al
encontrar el valor de cadena "\n", el compilador traduce esta cadena usando el cédigo de carac-
ter correcto pero también agrega un carécter extra de fin de cadena, el cual es *\0".

La buena préctica de programacion requiere que se termine el dltimo despliegue de salida con
una secuencia de escape de linea nueva. Esto asegura que la primera linea de salida de un progra-
ma no termina en la ultima linea desplegada por el programa ejecutado con anterioridad.

Al revisar el programa 2.5, notara que se inserta un solo valor de caracter en cout al ence-
rrarlo dentro de comillas sencillas, como en la insercion de la secuencia de escape ‘\n"’ al fi-
nal de la instruccion cout. Dentro de las primeras cinco lineas desplegadas, este caracter se
incluye dentro de cada cadena de salida. Cada vez que el compilador encuentra la secuencia
de escape de linea nueva, como un caracter individual o como parte de una cadena, la tradu-
ce como un solo cardcter que fuerza que el despliegue empiece en una linea nueva. Aunque
pueden usarse comillas dobles para la insercion de linea nueva final, como "\n", esto desig-
naria una cadena. Debido a que sélo se transmite un caracter, y para enfatizar que los carac-
teres unicos se designan usando comillas sencillas, se ha usado ‘\n’ en lugar de "\n".
Desde un punto de vista practico, sin embargo, ambas notaciones forzaran una linea nueva
en la pantalla.

La salida del programa 2.5 depende del compilador. Es decir, cada compilador reporta-
ra en forma correcta la cantidad de almacenamiento que proporciona para el tipo de datos
con el que esta trabajando. Cuando se ejecutd en la computadora del autor, la cual usa el
compilador actual Visual C++.net de Microsoft, se produjo la siguiente salida:

Tipos de datos Bytes

inf 4
char 1
bool 1

Para esta salida, la cual es el almacenamiento tipico proporcionado por casi todos los com-
piladores C++ actuales, podemos determinar el rango de valores que pueden almacenarse en
cada uno de estos tipos de datos int. Hacerlo, sin embargo, requiere comprender la diferen-
cia entre un tipo de datos con signo y uno sin signo.

www.FreelLibros.me

2.3 Tipos de datos 57

. e B B bk |

+— Punto de Informacién |
N Y Y Y YN i

Programas orientados a objetos y orientados a procedimientos
Con excepcion del tipo booleano, todos los tipos de datos integrados de C++ son trasladados di-
recto del lenguaje de procedimientos de C. No es sorprendente que los programas que solo usen
tipos integrados individuales no seran programas orientados a objetos. Mas bien, como en el pro-
grama 2.5, se vuelven programas por procedimientos, es decir, un programa basado primordial-
mente en procedimientos, como main ().

Sélo cuando los tipos integrados se unen para formar un paquete de datos, el cual se con-
vierte en un objeto, puede existir un programa orientado a objetos.

Tipos de datos con signo y sin signo

Un tipo de datos con signo se define como uno que permite almacenar valores negativos ade-
mas del cero y valores positivos. Por ello, el tipo de datos int es un tipo de datos con signo.
Un tipo de datos sin signo es uno que prevé solo valores no negativos (es decir, cero y posi-
tivos).

Hay casos, sin embargo, donde una aplicacion podria requerir sélo valores numéricos sin
signo. Por ejemplo, muchas aplicaciones de fecha las almacenan en la forma numérica asno-
mesdia (por tanto, la fecha 25/12/2007 se almacenaria como 20071225) y s6lo procesan fe-
chas después de 0. Para tales aplicaciones, las cuales nunca requerirdn un valor negativo,
puede usarse un tipo de datos sin signo.

Todos los tipos enteros sin signo, como unsigned int, proporcionan un rango de va-
lores positivos que es, para todos los propdsitos practicos, el doble del rango provisto por su
contraparte los enteros con signo. Este rango positivo extra queda disponible al usar el ran-
go negativo de su version con signo para nimeros positivos adicionales.

Mediante la comprension de la diferencia entre un tipo de datos con signo y sin signo, la
tabla 2.5 puede utilizarse para determinar el rango de valores enteros admitido por los com-
piladores actuales de C++.

En la tabla 2.5, un long int usa la misma cantidad de almacenamiento (cuatro bytes)
que un int. El dnico requerimiento del estindar ANSI de C++ es que un int debe pro-
porcionar al menos tanto almacenamiento como un short int, y un long int debe pro-
porcionar al menos tanto almacenamiento como un int. En los primeros sistemas de
computadora de escritorio (década de los afios 80), las cuales estaban limitadas en su capa-
cidad de memoria a miles de bytes, un short int usaba de manera tipica un byte de alma-
cenamiento, un int dos bytes y un long int cuatro bytes. Este almacenamiento limitaba
el rango de valores int de —32 768 a +32 767, mientras el uso de un unsigned int pro-
porcionaba un rango de valores de 0 a 65 535, duplicando por tanto el nimero de valores
positivos posibles, lo cual era considerable. Con el rango actual de valores int que abarca
de -2 a +2 mil millones, la duplicaciéon de valores positivos rara vez es algo que hay que to-
mar en cuenta. Ademds, usar un long int se vuelve innecesario porque usa la misma capa-
cidad de almacenamiento que un int.

www.FreelLibros.me

58 CarituLo 2 Programacion orientada a procedimientos en C++

Tabla 2.5 Almacenamiento de tipo de datos enteros

Tamaino del

Nombre del almacenamiento | Rango de valores

tipo de datos (en bytes)

char 1 256 caracteres

bool 1 verdadero (lo cual es considerado

como cualquier valor positivo)
y falso (lo cual es un cero)

short int -32,768 a +32,767

unsigned short int 0a 65,535

-2,147,483,648 a +2,147,483,647

int

unsigned int 0 a 4,294,967,295

long int ~2,147,483,648 a +2,147,483,647

0a 4,294,967,295

PO I NG G NG (OO Y

unsigned long int

Tipos de punto flotante

Un namero de punto flotante, al cual se le lama numero real, puede ser el niimero cero o
cualquier nimero positivo o negativo que contenga un punto decimal. Los siguientes son
ejemplos de nimeros de punto flotante:

+10.625 5. -6.2 3251.92 0.0 0.33 -6.67 +2.

Los numeros 5., 0.0 y +2. se clasifican como valores de punto flotante, pero los mismos na-
meros escritos sin un punto decimal (5, 0, +2) serian valores enteros. Como con los valores
enteros, en éstos no se permiten simbolos especiales como el signo de dolar y la coma en los
nameros reales. Los siguientes son ejemplos de nimeros reales invalidos:

5,326.25 24 6,459 $10.29 7.007.645

C++ acepta tres tipos de datos de punto flotante: £loat, double y long double. La di-
ferencia entre estos tipos de datos es la cantidad de almacenamiento que usa un compilador
para cada tipo. La mayor parte de los compiladores usan el doble de cantidad de almacena-
miento para dobles que para flotantes, lo cual permite que un double tenga aproximada-
mente el doble de precision de un £1oat. Por esta razon, a veces se hace referencia a un valor
float como un numero de precisién simple y a un valor double como un nimero de pre-
cision doble. La asignacion de almacenamiento real para cada tipo de datos, sin embargo, de-
pende del compilador particular. El estaindar ANSI C++ solo requiere que un double tenga
al menos la misma cantidad de precision que un float y un long double tenga al menos
la misma cantidad de almacenamiento que un double. En la actualidad, la mayor parte
de los compiladores C++ asignan cuatro bytes para el tipo de datos £1loat y ocho bytes para
los tipos de datos double y long double. Esto produce el rango de niimeros mostrado en
la tabla 2.6.

www.FreelLibros.me

2.3 Tipos de datos 59

Tabla 2.6 Tipos de datos de punto flotante

Tipo Almacenamiento | Rango absoluto de valores (+y -)

float 4 bytes 1.40129846432481707e-45

3.40282346638528860e+38

double y 8 bytes 4.94065645841246544e-324
long double

=

.79769313486231570e+308

En compiladores que usan la misma cantidad de almacenamiento para numeros double y
long double, estos dos tipos de datos se vuelven idénticos. (El operador sizeof() que se uso6 en
el programa 2.5 siempre puede usarse para determinar la cantidad de almacenamiento reser-
vada por su compilador para estos tipos de datos.) Una literal tipo £loat se indica al afia-
dir una f o F después del nimero y se crea un long double al afadir una 1 o L al nimero.
En ausencia de estos sufijos, un nimero de punto flotante por defecto se establece como
double. Por ejemplo, observe lo siguiente:

9.234 indica una doble literal
9.234F indica una literal flotante
9.234L indica una literal de doble largo

La unica diferencia en estos niimeros es la cantidad de almacenamiento que puede usar una
computadora para almacenarlos. El apéndice C describe el formato de almacenamiento bi-
nario usado para nameros de punto flotante y su impacto en la precision de los nameros.

Notacién exponencial

Los numeros de punto flotante pueden escribirse en notacion exponencial, la cual es seme-
jante a la notacion cientifica y se usa por lo comun para expresar valores grandes y peque-
flos en forma compacta. Los siguientes ejemplos ilustran como pueden expresarse nimeros
con decimales en notacion exponencial y cientifica:

Notacidén decimal Notacidén exponencial Notacidén cientifica

1625. 1.625e3 1.625 x 10°
63421. 6.3421e4 6.3421 x 10
.00731 7.31le-3 7.31 x 10-3
.000625 6.25e-4 6.25 x 10-4

En notacién exponencial, la letra e representa exponente. El niimero que sigue a la e repre-
senta una potencia de 10 e indica el nimero de lugares que deberia moverse el punto deci-
mal para obtener el valor decimal estandar. El punto decimal se mueve a la derecha si el
numero después de la e es positivo o se mueve a la izquierda si el nimero después de la e es
negativo. Por ejemplo, el e3 en 1.625¢3 significa mover el punto decimal tres lugares a la de-
recha, de modo que el numero se vuelve 1625. El e-3 en 7.31e-3 significa mover el punto
decimal tres lugares a la izquierda de modo que 7.31e-3 se convierte en .00731.

www.FreelLibros.me

60 CarituLo 2 Programacion orientada a procedimientos en C++

A J_ Punto de Informacién | |
= kA .
{Qué es precision?

En teoria numérica, el término precision por lo general se refiere a exactitud numérica. En este
contexto, se usa una declaracion como “este calculo es exacto, o preciso, hasta el quinto lugar de-
cimal”. Esto significa que el quinto digito después del punto decimal ha sido redondeado y el nu-
mero es exacto dentro de £0.00005.

En programacion de computadoras, la precision puede referirse a la exactitud de un ndmero o
a la cantidad de digitos significativos en el nimero, donde los digitos significativos se definen como
el nimero de digitos claramente correctos mas 1. Por ejemplo, si el nimero 12.6874 se ha redondea-
do hasta el cuarto lugar decimal, es correcto decir que este nimero es preciso (es decir, exacto) has-
ta el cuarto lugar decimal. En otras palabras, todos los digitos en el nimero son exactos excepto el
cuarto digito decimal, el cual ha sido redondeado. Del mismo modo, este mismo nimero tiene una
precision de seis digitos, lo cual significa que los primeros cinco digitos son correctos y el sexto di-
gito ha sido redondeado. Otra forma de decir esto es que el nimero 12.6874 tiene seis digitos signi-
ficativos.

Los digitos significativos en un nimero no necesitan tener alguna relacion con el nimero de
digitos desplegado. Por ejemplo, si el nimero 68745678921 tiene cinco digitos significativos, solo
es exacto hasta el valor 68746, donde se supone que el ultimo digito estd redondeado. De una ma-
nera similar, los valores en ddlares en muchas aplicaciones financieras grandes con frecuencia son
redondeados al centenar de miles de dodlares mas cercano. En tales aplicaciones, un valor en dola-
res desplegado de $12 400 000, por ejemplo, no es preciso hasta el dolar mas cercano. Si este va-
lor se especifica con tres digitos significativos, sélo es exacto hasta el digito de cientos de miles.

Ejercicios 2.3

1. Determine los tipos de datos apropiados para los siguientes datos:

el promedio de cuatro calificaciones
el nimero de dias en un mes

la longitud del puente Golden Gate
los nimeros en una loteria estatal

la distancia de Brooklyn, N.Y., a Newark, N.J.
el prefijo de caracter tnico que especifica un tipo de componente

m0o QN g

2. Convierta los siguientes nimeros en forma decimal estandar:

6.34e5 1.95162e2 8.395¢l 2.95¢e-3 4.623e-4

3. Escriba los siguientes nimeros decimales usando notacion exponencial:
126. 656.23 3426.95 4893.2 .321 .0123 .006789

4. Compile y ejecute el programa 2.5 en su computadora.

5. Modifique el programa 2.5 para determinar el almacenamiento usado por su compi-
lador para todos los tipos de datos enteros de C++.

6. Usando los manuales de referencia del sistema para su computadora, determine el c6-
digo de caracteres usado por su computadora.

www.FreelLibros.me

2.3 Tipos de datos 61

7. Muestre como se almacenaria el nombre KINGSLEY dentro de una computadora
que usa el codigo ASCIL. Es decir, trace un dibujo similar a la figura 2.9 para el nom-
bre KINGSLEY.

8. Repita el gjercicio 7 usando las letras de su propio apellido.

9. Modifique el programa 2.5 para determinar cuantos bytes asigna su compilador a los
tipos de datos £loat, double y long double.

10. Debido a que las computadoras usan diferentes representaciones para almacenar va-
lores enteros, de punto flotante, de precisién doble y de caracter, analice como un
programa podria alertar a la computadora de los tipos de datos de los diversos valo-
res que usara.

. Aunque nos hemos concentrado en operaciones que implican nameros enteros y de

11. A h trad | t d
punto flotante, C++ permite que se sumen o resten caracteres y enteros. Esto puede
hacerse porque un caricter se almacena usando un codigo de enteros (es un tipo de
datos entero). Por tanto, los caracteres y enteros pueden mezclarse con libertad en ex-

b

presiones aritméticas. Por ejemplo, si su computadora usa el cédigo ASCII, la expre-
sion ‘a’ + 1 esigual a ‘b’, y ‘2’ — 1 es igual a ‘y’. Del mismo modo, ‘A’ + 1 es ‘B’ y ‘Z’
— 1 es ‘°Y’. Con esto como antecedente, determine el cardcter que resulta de las si-
guientes expresiones. (Asuma que todos los caracteres se almacenan usando el codi-

go ASCIL.)
a. ‘m-395
b. ‘m+35
c. ‘ G+6
d ‘G-6
e. ‘b-a
f. ‘-2 +1
g ‘GC-A+1

Norta: Para completar el siguiente ejercicio, necesita comprender los conceptos bdsicos
del almacenamiento en las computadoras. De manera especifica, si no estd familiarizado
con el concepto de byte, refiérase a la seccion 1.6 antes de realizar el siguiente ejercicio.

12. Aunque el nimero total de bytes varia de una computadora a otra, son comunes los
tamafios de memoria de 65 536 a mas de varios millones de bytes. En lenguaje de
computadora, la letra K representa el nimero 1 024, el cual es 2 elevado a la décima
potencia, y M representa el nimero 1 048 576, el cual es 2 elevado a la vigésima po-
tencia. Por tanto, un tamafio de memoria de 640K en realidad es 640 por 1024, o
655 360 bytes, y un tamafio de memoria de 4M en realidad es 4 por 1 048 576, lo
cual es 4 194 304 bytes. Usando esta informacion, calcule el nimero total de bytes
en lo siguiente:

una memoria que contiene 128M bytes

una memoria que contiene 256 M bytes

una memoria que contiene 512M bytes

una memoria que consta de 256M palabras, donde cada palabra es de 2 bytes

una memoria que consta de 256M palabras, donde cada palabra es de 4 bytes

un disco que especifica 1.44M bytes

un disco que especifica 250MB

@moanoTy

www.FreelLibros.me

62

CarituLo 2 Programacion orientada a procedimientos en C++

2.4 > OPERACIONES ARITMETICAS

En la seccion anterior se presentaron los valores de datos correspondientes para cada tipo de
datos integrado de C++. En esta seccion, se proporciona el conjunto de operaciones aritmé-
ticas que pueden aplicarse a estos valores.

Los numeros enteros y reales pueden sumarse, restarse, multiplicarse y dividirse. Aunque
por lo general es mejor no mezclar nimeros enteros y reales cuando se realizan operaciones
aritméticas, se obtienen resultados predecibles cuando se usan diferentes tipos de datos en la
misma expresion aritmética. Es sorprendente que se puedan sumar, o restar, datos de carac-
ter a datos de caracter y enteros para producir resultados ttiles. (Por ejemplo, ‘A’ + 1 produ-
ce el caricter ‘B’.) Esto es posible debido a que los caracteres se almacenan usando c6digos
de almacenamiento de nimeros enteros.

Los operadores usados en operaciones aritméticas se llaman operadores aritméticos y
son los siguientes:

Operacion Operador
Adicién +
Sustraccion -
Multiplicacion
Division /

Divisiéon de médulo %

No hay que preocuparse en esta etapa si no entiende el término “division de modulo”.
Aprendera mas sobre este operador mas adelante en esta seccion.

Estos operadores se conocen como operadores binarios. Este término refleja el hecho que
el operador requiere dos operandos para producir un resultado. Un operando puede ser un
valor literal o un identificador que tiene un valor asociado con él. Una expresion aritmética
binaria simple consta de un operador aritmético binario que conecta dos valores literales en
la forma:

valorLiteral operador valorLiteral

Los siguientes son ejemplos de expresiones aritméticas binarias simples:

3+ 7

18 - 3
12.62 + 9.8
.08 * 12.2
12.6 / 2.

Los espacios alrededor de los operadores aritméticos en estos ejemplos se insertan estricta-
mente para ganar en claridad y pueden omitirse sin afectar el valor de la expresion. Una ex-
presion en C++ debe ser introducida en forma de una linea recta. Por tanto, por ejemplo, la
expresion de C++ equivalente a 12.6 dividido entre 2 debe introducirse como 12.6 / 2 y no
como la expresion algebraica

12.6
2

www.FreelLibros.me

2.4 Operaciones aritméticas 63

Puede usar cout para desplegar el valor de cualquier expresion aritmética en la pantalla de
la computadora. Para hacer esto, el valor deseado debe transladarse al objeto. Por ejemplo,
esta instruccion produce el despliegue 21:

cout << (6 + 15);

En sentido estricto, los paréntesis que rodean a la expresion 6 + 15 no se requieren para in-
dicar que el valor de la expresion (es decir, 21) se esta desplegando.® Ademas de desplegar un
valor numérico, cout puede desplegar una cadena identificando la salida, como se hizo en
la seccion 1.3. Por ejemplo, esta instruccion causa que dos piezas de datos, una cadena y un
valor, se envien a cout:

cout << "La suma de 6 y 15 es " << (6 + 15);

De manera individual, cada conjunto de datos enviados a cout debe ir precedido por su pro-
pio simbolo de insercién de operador (<<). Aqui, los primeros datos enviados para desplie-
gue es la cadena "La suma de 6 y 15 es ",y el segundo elemento enviado es el valor
de la expresion 6 + 15. El despliegue producido por esta instruccion es el siguiente:

La suma de 6 y 15 es 21

El espacio entre la palabra “es” y el numero 21 se da por el espacio colocado dentro de la
cadena pasada a cout. En lo que respecta a cout, su entrada es un conjunto de caracteres
que son enviados para ser desplegados en el orden en que son recibidos. Los caracteres de la
entrada hacen cola, uno detras de otro, y son enviados a la consola para su despliegue. Co-
locar un espacio en la entrada provoca que este espacio sea parte del flujo de caracteres que
se despliega. Por ejemplo, examine la siguiente instruccion:

cout << "La suma de 12.2 y 15.754 es " << (12.2 + 15.754);

Que produce el siguiente despliegue:

La suma de 12.2 y 15.754 es 27.954

Cuando se hacen muiltiples inserciones a cout, el c6digo puede extenderse a lo largo de mul-
tiples lineas. Sin embargo, s6lo debe usarse un punto y coma, el cual se coloca después de la
ultima insercion y termina la instruccién completa. Por tanto, el despliegue anterior es pro-
ducido por la siguiente instruccion:

cout << "La suma de 12.2 y 15.754 es "
<< (12.2 + 15.754);

Sin embargo, cuando permite que una instruccion asi ocupe multiples lineas, deben seguirse
dos reglas: una cadena contenida entre comillas no puede extenderse mas de una linea, y el
punto y coma final s6lo debera aparecer en la tltima linea. Siempre pueden colocarse multi-
ples simbolos de insercién dentro de una linea.

Los numeros de punto flotante se despliegan con suficientes lugares decimales a la dere-
cha del punto decimal para acomodar la parte fraccionaria del nimero. Esto es cierto si el
namero tiene seis 0 menos digitos decimales. Si el nimero tiene mds de seis digitos decima-

8Esto se debe a que el operador + tiene una precedencia mayor que el operador <<; por tanto, la adicién se ejecuta antes de la
insercién.

www.FreelLibros.me

64

y/)
vQ/'
9\

V\y\/

> >

#include <iostream>
using namespace std;

int maing()
{
cout << "15.0 méds 2.0 es igual a " << (15.0 + 2.0) << endl
<< "15.0 menos 2.0 es igual a " << (15.0 - 2.0) << endl
<< "15.0 por 2.0 es igual a " << (15.0 * 2.0) << endl

return 0;

CarituLo 2 Programacion orientada a procedimientos en C++

les, la parte fraccionaria se redondea a seis digitos decimales, y si el niimero no tiene digitos
decimales, no se desplegaran ni un punto decimal ni algtin digito decimal.’

El programa 2.6 ilustra el uso de cout para desplegar los resultados de expresiones arit-
méticas dentro de las instrucciones de un programa completo.

.~ Programa 2.6

s
o

<< "15.0 dividido entre 2.0 es igual a " << (15.0 / 2.0) << endl;

La salida del programa 2.6 es la siguiente:

15.0 mds 2.0 es igual a 17

15.0 menos 2.0 es igual a 13

15.0 por 2.0 es igual a 30

15.0 dividido entre 2.0 es igual a 7.5

El tnico elemento nuevo presentado en el programa 2.6 es el término endl, el cual es un
ejemplo de un manipulador C++. Un manipulador es un elemento usado para manipular c6-
mo se despliega el flujo de salida de caracteres. En particular, el manipulador end1 provoca
que primero se inserte un caracter de linea nueva (“\n’) en el despliegue y obliga a que to-
das las inserciones actuales se desplieguen de inmediato, en lugar de esperar por mas datos.
(La seccion 3.2 contiene una lista de los manipuladores mas comunes.)

Tipos de expresion

Una expresion es cualquier combinacion de operadores y operandos que pueden ser evalua-
dos para producir un valor. Una expresion que contiene s6lo valores enteros como operandos
se llama expresién entera, y el resultado de la expresion es un valor entero. Del mismo mo-
do, una expresion que s6lo contiene valores de punto flotante (de precision simple y precision

“No se define ninguna de estas salidas como parte del lenguaje C++. Mds bien es definida por un sistema de clases y de rutinas
proporcionadas de cada recopilador de C++.

www.FreelLibros.me

17
15
14

o o° o°

o°

N B WD

2.4 Operaciones aritméticas 65

doble) como operandos se llama expresién de punto flotante, y el resultado de una expresion
asi es un valor de punto flotante (también se usa el término expresién real). Una expresion que
contiene valores enteros y de punto flotante se llama expresién en modo mixto. Aunque por
lo general es mejor no mezclar valores enteros y de punto flotante en una operacion aritméti-
ca, el tipo de datos de cada operacion se determina por las siguientes reglas:

1. Si ambos operandos son enteros, el resultado de la operacion es un entero.

2. Siun operando es un valor real, el resultado de la operacion es un valor de
precision doble.

El resultado de una expresion aritmética nunca es un namero de precision simple (£loat).
Esto se debe a que, durante la ejecucion, un programa C++ convierte de manera temporal to-
dos los nimeros de precision simple a numeros de precision doble cuando se esta evaluando
una expresion aritmética.

Division de enteros

La division de dos valores enteros puede producir resultados bastante extrafios para los in-
cautos. Por ejemplo, la expresion 15/2 produce el resultado entero 7. Debido a que los ente-
ros no pueden contener una parte fraccionaria, no puede obtenerse un valor de 7.5. La parte
fraccionaria obtenida cuando se dividen dos enteros, es decir, el residuo, siempre se elimina
(se trunca). Por tanto, el valor de 9/4 es 2, y 20/3 es 6.

Sin embargo, con frecuencia puede ser necesario conservar el residuo de una division de
enteros. Para hacer esto, C++ proporciona un operador aritmético que tiene el simbolo %.
Este operador, llamado médulo (y también conocido como operador de residuo), captura el
residuo cuando un numero entero es dividido entre un entero (usar un valor no entero con
el operador de modulo produce un error en el compilador):

es 1 (es decir, el residuo cuando 9 se divide entre 4 es 1)
es 2 (es decir, el residuo cuando 17 se divide entre 3 es 2)
es 3 (es decir, el residuo cuando 15 se divide entre 4 es 3)
es 0 (es decir, el residuo cuando 14 se divide entre 2 es 0)

Con mas precision, el operador de modulo determina primero el nimero entero de veces que
el dividendo, el cual es el numero que sigue al operador %, puede dividirse entre el divisor, el
cual es el niimero anterior al operador %. Entonces devuelve el residuo.

Negacion

Ademas de los operadores aritméticos binarios, C++ proporciona operadores unitarios. Un
operador unitario opera sobre un operando individual. Uno de estos operadores unitario usa
el mismo simbolo que la sustraccion binaria (-). El signo de menos frente a un valor numé-
rico individual niega el nimero (invierte su signo).

La tabla 2.7 resume las seis operaciones aritméticas que se han descrito hasta ahora y
enumera el tipo de datos para el resultado producido por cada operador, basado en el tipo
de datos de los operandos involucrados.

www.FreelLibros.me

66

CarituLo 2 Programacion orientada a procedimientos en C++

o L N W ___WWYN |

|— Punto de Informacién |
ok A A AR A

El manipulador end1

En muchos sistemas, el manipulador endl y la secuencia de escape \n se procesan en la misma
forma y producen el mismo efecto. La tnica excepcion se da en aquellos sistemas donde la salida
se acumula en forma interna hasta que se colectan suficientes caracteres para que sea ventajoso
desplegarlos a todos en una rafaga en la pantalla. En tales sistemas, los cuales se conocen como
sistemas con memoria intermedia o “buffer”, el manipulador end1 fuerza a la salida acumulada a
ser desplegada de inmediato, sin esperar que ningun caracter adicional llene el area de buffer an-
tes de imprimirse. Practicamente, no notara una diferencia en el despliegue final. Por tanto, como
regla general, deberd usar la secuencia de escape \n siempre que pueda ser incluida dentro de una
cadena existente y usar el manipulador endl siempre que aparezca \n por si mismo o para de-
terminar de manera formal el final de un grupo especifico de despliegue de salida.

Tabla 2.7 Resumen de operadores aritméticos

Operacion Operador | Tipo Operando Resultado
Adicidn + Binario Ambos son enteros Entero

Un operando no Precisidn

es un entero doble
Sustraccién - Binario Ambos son enteros Entero

Un operando no Precisidn

es un entero doble
Multiplicacién | * Binario Ambos son enteros | Entero

Un operando no Precisidn

es un entero doble
Divisidn / Binario Ambos son enteros Entero

Un operando no Precisidn

es un entero doble
Médulo % Binario Ambos son enteros | Entero

Un operando no Precisidn

es un entero doble
Negacidn - Unitario | Entero o doble Igual que el

operando

Precedencia del operador y asociatividad

Ademas de expresiones simples como 5 + 12 y .08 * 26.2, pueden crearse expresiones arit-
méticas mas complejas. C++, como la mayor parte de otros lenguajes de programacion, re-

www.FreelLibros.me

2.4 Operaciones aritméticas 67

quiere que se sigan ciertas reglas cuando se escriben expresiones que contengan mas de un
operador aritmético. Estas reglas son las siguientes:

1. Nunca deben colocarse dos simbolos de operadores aritméticos binarios uno al

lado del otro. Por ejemplo, 5 * % 6 es invalido porque los dos operadores,
*y %, estan colocados uno junto al otro.

Pueden usarse paréntesis para formar agrupamientos, y todas las expresiones
encerradas dentro de paréntesis son evaluadas primero. Esto permite a los
paréntesis alterar la evaluacion en cualquier orden deseado. Por ejemplo, en la
expresion (6 +4) /(2 + 3), 6 + 4y 2 + 3 se evaltan primero para producir
10/ 5. Luego se evalaa 10/ 5 para producir 2.

Conjuntos de paréntesis pueden ser encerrados por otros paréntesis. Por ejemplo, la
expresion (2 * (3 + 7))/ 5 es valida y evalaa para 4. Cuando se incluyen paréntesis
dentro de paréntesis, las expresiones en los paréntesis interiores siempre se evaltian
primero. La evaluacion continda desde los paréntesis mas interiores hasta los mas
exteriores hasta que se han evaluado las expresiones en todos los paréntesis.

El niimero de paréntesis de cierre,), siempre debe ser igual al numero de paréntesis
de apertura, (, de modo que no existan conjuntos sin par.

No pueden usarse paréntesis para indicar multiplicacion; en su lugar, debe usarse el
operador de multiplicacion, *. Por ejemplo, la expresion (3 + 4) (5 + 1) es invalida.
La expresion correcta es (3 +4) * (5 + 1).

Los paréntesis deberian especificar agrupamientos logicos de operandos e indicarle con cla-
ridad, al compilador y a los programadores, el orden previsto de las operaciones aritméticas.
Aunque las expresiones dentro de paréntesis siempre se evalian primero, las expresiones que
contienen multiples operadores, con y sin paréntesis, se evaldan por la prioridad, o preceden-
cia, de los operadores. Hay tres niveles de precedencia:

P1: todas las negaciones se realizan primero.

P2: a continuacion se calculan las operaciones de multiplicacion, division y médulo.
Las expresiones que contienen mas de un operador de multiplicacion, division o
modulo se evaltan de izquierda a derecha conforme se encuentra cada operador.
Por ejemplo, en la expresion 35 /7 % 3 * 4, todas las operaciones son de la misma
prioridad, asi que las operaciones se ejecutaran de izquierda a derecha conforme se
encuentre cada operador. Por tanto, la division se hace primero, produciendo la ex-
presion 5 % 3 * 4. La operacion de médulo se ejecuta a continuacion, produciendo
un resultado de 2. Por ualtimo, se calcula el valor de 2 * 4 para producir 8.

P3: la adicion y la sustraccion se calculan al Gltimo. Las expresiones que contienen
mas de una adicion o sustraccion se evaluan de izquierda a derecha conforme se
encuentre cada operador.

Ademas de la precedencia, los operadores tienen una asociatividad, la cual es el orden en que
se evaluan los operadores de la misma precedencia, como se describié en la regla P2. Por
ejemplo, ¢la expresion 6.0 * 6/4 produce 9.0, lo cual es (6.0 * 6)/4: 0 6.0, lo cual es 6.0 *
(6/4)? La respuesta es 9.0, porque los operadores de C++ usan la misma asociatividad que en

www.FreelLibros.me

68

CarituLo 2 Programacion orientada a procedimientos en C++

las matematicas generales, las cuales evaltan la multiplicacion de izquierda a derecha, como
lo indica la regla P2. La tabla 2.8 enumera la precedencia y asociatividad de los operadores
considerados en esta seccion. Como se ha visto, la precedencia de un operador establece su
prioridad en relacion con todos los demas operadores. Los operadores en la parte superior
de la tabla 2.8 tienen una prioridad mayor que los operadores en la parte inferior de la ta-
bla. En expresiones que contienen multiples operadores de diferente precedencia, el operador
con la mayor precedencia se usa antes que un operador con menor precedencia. Por ejemplo,
en la expresion 6 + 4 /2 + 3, debido a que el operador de division tiene una precedencia ma-
yor (P2) que la adicion, la division se hace primero, produciendo un resultado intermedio de
6 + 2 + 3. Entonces se ejecutan las adiciones, de izquierda a derecha, para producir un resul-
tado final de 11.

Tabla 2.8 Precedencia y asociatividad de operadores

Operador Asociatividad

unitario — derecha a izquierda
*1 % izquierda a derecha
+ - izquierda a derecha

Por tltimo, usaremos la tabla 2.8 o las reglas de precedencia para evaluar una expresion que
contiene operadores de diferente precedencia, como 8 + 5 * 7 % 2 * 4. Debido a que los ope-
radores de multiplicacion y modulo tienen una mayor precedencia que el operador de adi-
cion, estas dos operaciones se evaluan primero (P2), usando su asociatividad de izquierda a
derecha, antes que se evalte la adicion (P3). Por tanto, la expresion completa se evalaa co-
mo sigue:

8 + 5 * 7
8 + 35
8

+ o0 oo
o~ NN
SO DD

+ * o+ *

12

Ejercicios 2.4

1. A continuacion se enumeran expresiones algebraicas correctas y expresiones C++ in-
correctas correspondientes a ellas. Encuentre los errores y escriba las expresiones C++

corregidas.
Algebra Expresion C++
a. (2)(3) + (4)(5) (2)(3) + (4)(5)
b. 6 + 18 6 + 18 / 2
2
Cc. 4.5 4.5 / 12.2 - 3.1
12.2 - 3.1

www.FreelLibros.me

2.4 Operaciones aritméticas 69

d. 4.6(3.0 + 14.9) 4.6(3.0 + 14.9)

e. (12.1 + 18.9)(15.3 - 3.8) (12.1 + 18.9)(15.3 - 3.8)

2. Determine el valor de las siguientes expresiones enteras:

a. 3+4%6 f. 20-2/(6+3)
b.3%*4/6+6 g. (20-2)/6+3
c. 2%3/12%8/4 h. (20-2)/(6 + 3)
d. 10* (1+7*3) i. 50 % 20

e. 20-2/6+3 j. (10+3)% 4

3. Determine el valor de las siguientes expresiones de punto flotante:

3.0+ 4.0 * 6.0
3.0%4.0/6.0 + 6.0

2.0 %3.0/12.0 * 8.0/ 4.0
10.0 * (1.0 + 7.0 * 3.0)
20.0-2.0/6.0 + 3.0
20.0 - 2.0/ (6.0 + 3.0)
(20.0 = 2.0) /6.0 + 3.0
(20.0 = 2.0) / (6.0 + 3.0)

Se@moangTy

4. Evalue las siguientes expresiones en modo mixto y enumere el tipo de datos del re-
sultado. Al evaluar las expresiones, esté consciente de los tipos de datos de todos los
calculos intermedios.

10,0+ 15/2+4.3
10.0 + 15.0/2 + 4.3
3.04/6+6

3 40/6+6
200-2/6+3
10+17 %3 +4
10+17/3.+4
304 % 6 +6
10+17 % 3 + 4.

~TQmoanTy

5. Suponga que amount almacena el valor entero 1, m almacena el valor entero 50, n
almacena el valor entero 10 y p almacena el valor entero 5. Evalue las siguientes ex-

presiones:

a.n/ p+ 3

b.m / p+n - 10 * amount
C. m- 3 *n+ 4 * amount
d. amount / 5

e. 18 / p

f. -p * n

g. -m / 20

h. (m + n) / (p + amount)
i m+ n / p + amount

www.FreelLibros.me

70 CarituLo 2 Programacion orientada a procedimientos en C++

6. Repita el gjercicio 5, suponiendo que amount almacena el valor 1.0, m almacena el
valor 50.0, n almacena el valor 10.0 y p almacena el valor 5.0.

7. Introduzca, compile y ejecute el programa 2.2 en su sistema de computo.

8. Determine la salida del siguiente programa:

#include <iostream>
using namespace std;

int main() // un programa que ilustra el truncamiento de
enteros

{

cout << "respuestal es el entero " << 9/4;
cout << "\nrespuesta2 es el entero " << 17/3;

return 0O;

}

9. Determine la salida del siguiente programa:

#include <iostream>
using namespace std;

int main() // un programa que ilustra el operador %

{
cout << "El residuo de 9 dividido entre 4 es " << 9 % 4;
cout << "\nEl residuo de 17 dividido entre 3 es " << 17 % 3;
return 0;

}

10. Escriba un programa C++ que despliegue los resultados de las expresiones 3.0 * 5.0,
7.1 %8.3-22y3.2/(6.1*5). Calcule el valor de estas expresiones en forma ma-
nual para verificar que los valores desplegados son correctos.

11. Escriba un programa C++ que despliegue los resultados de las expresiones 15/ 4, 15
% 4yS5*3-(6*4). Calcule el valor de estas expresiones en forma manual para ve-
rificar que los valores desplegados son correctos.

/

) /

2.5 > VARIABLES E INSTRUCCIONES DE DECLARACION

Todos los valores enteros, de punto flotante y otros usados en un programa de computado-
ra se almacenan en la unidad de memoria de la computadora y se recuperan de ella. Desde
el punto de vista conceptual, las ubicaciones individuales de memoria en la unidad de memo-
ria estan ordenadas como las habitaciones en un gran hotel. Como en un hotel, cada ubica-
cién de memoria tiene una direccion tnica (“nimero de habitacion”). Antes que existieran
lenguajes de alto nivel como C++, se hacia referencia a las ubicaciones de memoria por sus
direcciones. Por ejemplo, almacenar los valores enteros 45 y 12 en las ubicaciones de memo-
ria 1652 y 2548 (véase la figura 2.10), respectivamente, requeria instrucciones equivalentes a

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 71

Coloque un 45 en la ubicaciéon 1652
Coloque un 12 en la ubicacion 2548

Para sumar los dos nimeros que se acaban de almacenar y guardar el resultado en otra ubi-
cacioén de memoria, por ejemplo en la ubicacion 3000, se necesita una instrucciéon compara-

ble a

Sume el contenido de la ubicacion 1652
al contenido de la ubicacion 2548
y almacene el resultado en la ubicacion 3000

Almacenamiento para un entero Almacenamiento para un entero

e ——— e —
1652 2548
\ N\

Direcciones de memoria

Figura 2.10 Almacenamiento suficiente para dos enteros.

Es evidente que este método de almacenamiento y recuperacion es un proceso engorroso.
En lenguajes de alto nivel como C++, se usan nombres simbélicos en lugar de direcciones de
memoria reales. Estos nombres simboélicos se llaman variables. Una variable es tan sélo un
nombre dado por el programador para referirse a ubicaciones de almacenamiento de la com-
putadora. Se usa el término variable porque el valor almacenado en la variable puede cam-
biar, o variar. Para cada nombre que usa el programador, la computadora se mantiene al
tanto de la direccion de memoria real correspondiente a ese nombre. En nuestra analogia de
la habitacion de hotel, esto es equivalente a poner un nombre en la puerta de una habitacion
y referirse a la habitacion con ese nombre, como la habitacion AZUL, en lugar de usar el nu-
mero real de la habitacion.

En C++, la seleccion de nombres de variables se deja al programador siempre que obser-
ve las reglas para seleccionar nombres de identificadores. Estos se presentaron en la pagina
35 y se resumen a continuacion.

1. El nombre de la variable debe comenzar con una letra o subrayado (_) y s6lo puede
contener letras, subrayados o digitos. No puede contener ningin espacio en blanco,
comas ni simbolos especiales, como () & , $ #.!\?

2. Un nombre de variable no puede ser una palabra clave (véase la tabla 2.1).
3. El nombre de la variable no puede consistir en mas de 1024 caracteres.

Ademads, los nombres de variables deben ser mnemonicos que den algin indicio del uso de la
variable. Por ejemplo, un buen nombre para una variable usada para almacenar un valor que
es el total de algunos otros valores seria suma o total. No deberan seleccionarse nombres
de variables que no dan ningtn indicio del valor almacenado, como r2d2, 1inda, betoy
getum. Como con los nombres de funcién, los nombres de variables pueden escribirse con
letras mayusculas y minusculas.

www.FreelLibros.me

72

CarituLo 2 Programacion orientada a procedimientos en C++

Ahora suponga que a la primera ubicacion de memoria ilustrada en la figura 2.11, la cual
tiene la direccion 1652, se le da el nombre numl. También suponga que a la ubicacién de
memoria 2548 se le da el nombre de variable num2, y a la ubicacién de memoria 3000 se le
da el nombre de variable total, como se ilustra en la figura 2.11.

Nombres de variable

L JL JL
num 1 num 2 total
1652 2548 45

\ \ \

Direcciones de memoria

Figura 2.11 Denominacion de las ubicaciones de almacenamiento.

Usando estos nombres de variable, la operacion de almacenar 45 en la ubicacion 1652, al-
macenar 12 en la ubicacién 2548 y sumar los contenidos de estas dos ubicaciones se logra
con las instrucciones de C++

numl = 45;
num2 = 12;
total = numl + num2;

Cada una de estas tres instrucciones se llama instruccién de asignacién porque le indica a la
computadora que asigne (almacene) un valor en una variable. Las instrucciones de asigna-
cion siempre tienen un signo de igual (=) y un nombre de variable inmediatamente a la iz-
quierda de este signo. El valor a la derecha del signo de igual se determina primero, y este
valor se asigna a la variable a la izquierda del signo de igual. Los espacios en blanco en las
instrucciones de asignacion se insertan para una mayor legibilidad. En el siguiente capitulo
se hablara mas sobre las instrucciones de asignacion, pero por ahora pueden usarse para al-
macenar valores en variables.

Un nombre de variable es de utilidad porque libera al programador en lo que concierne
a donde se almacenan los datos en forma fisica dentro de la computadora. Tan sélo se usa el
nombre de variable y se deja que el compilador se preocupe por el lugar de la memoria en
que se almacenan los datos. Sin embargo, antes de almacenar un valor en una variable, C++
requiere que se declare con claridad el tipo de datos que se van a almacenar en ella. Debe in-
dicarse al compilador, con anticipacion, los nombres de las variables que se usaran para ca-
racteres, los nombres que se usaran para enteros y los nombres que se usardn para almacenar
los otros tipos de datos de C++.

Instrucciones de declaracion

Nombrar una variable y especificar el tipo de datos que pueden almacenarse en ella se logra
usando instrucciones de declaracién. Una instruccion de declaracion tiene la forma general

‘ tipo-de-datos nombreDeVariable;

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 73

. e B B bk |

+— Punto de Informacién |
N Y Y Y Y Y i

Datos atomicos

Las variables que declaramos aqui se han usado para almacenar valores de datos atomicos. Un
valor de datos atomicos es aquel que se considera una entidad completa por si misma y que no
puede descomponerse en un tipo de datos mas pequeno respaldado por el lenguaje. Por ejemplo,
aunque un entero puede descomponerse en digitos individuales, C++ posee un tipo de digitos nu-
méricos. Mas bien, cada entero es considerado como un valor completo por si mismo y, como tal,
se considera dato atomico. Del mismo modo, en vista que el tipo de datos enteros solo respalda
valores de datos atomicos, se dice que es un tipo de datos atémicos. Como podria esperarse, dou-
ble, char y bool también son tipos de datos atomicos.

donde tipo-de-datos designa un tipo de datos validos en C++ y nombreDeVariable es un
nombre de variable seleccionado por el usuario. Por ejemplo, las variables usadas para con-
tener valores enteros se declaran usando la palabra clave int para especificar el tipo de da-
tos y tiene la forma:

int nombreDeVariable;

Por tanto, la instruccion de declaracion
int sum;

declara suma como el nombre de una variable capaz de almacenar un valor entero.
Ademas de la palabra reservada int usada para especificar un entero, la palabra reser-
vada long se usa para especificar un entero largo.'? Por ejemplo, la instrucciéon

long fechanum;

declara fechanum como una variable que se usara para almacenar un entero largo. Cuan-
do se usa el calificador 1long puede incluirse la palabra clave int. Por tanto, la declaracion
anterior también puede escribirse como

long int fechanum;

Las variables usadas para contener valores de precision simple se declaran usando la palabra
clave float, mientras las variables que se usaran para contener valores de precision doble
se declaran usando la palabra clave double. Por ejemplo, la instruccion

float primernum;

declara primernum como una variable que se usara para almacenar un nimero de precision
simple. Del mismo modo, la instruccién

double segundonum;

declara que la variable segundonum se usara para almacenar un ntimero de precision doble.

Aunque las instrucciones de declaracion pueden colocarse en cualquier parte dentro de
una funcion, por lo general las declaraciones se agrupan y se colocan inmediatamente des-
pués de la llave de apertura de la funcién. En todos los casos, sin embargo, una variable de-

19Ademas, las palabras reservadas unsigned int se usan para especificar un entero que sélo puede almacenar nimeros no ne-
gativos y la palabra reservada short se usa para especificar un entero corto.

www.FreelLibros.me

74 CarituLo 2 Programacion orientada a procedimientos en C++

be declararse antes que pueda usarse y, como todas las instrucciones de C++, las instruccio-
nes de declaracion deben terminar con un punto y coma. Si las instrucciones de declaracion
se colocan después de la llave de apertura de la funcién, una funcion main () simple que con-
tenga instrucciones de declaracion tendria la forma general

#include <iostream>
using namespace std;

int main()

{

instrucciones de declaracidn;
otras instrucciones;

return 0;

}

El programa 2.7 ilustra esta forma al declarar y usar cuatro variables de precision doble,
usando el objeto cout para desplegar el contenido de una de las variables.

ol

S

v

~ Programa 2.7

N/
Wi

v
YO
Wi

VAN
YV

4
v

> >

#include <iostream>
using namespace std;

int main()

{
double califl; // declara califl como una variable de precisién doble
double calif2; // declara calif2 como una variable de precisién doble
double total; // declara total como una variable de precisidén doble
double promedio; // declara promedio como una variable de precisidén doble

califl 85.5;

calif2 97.0;

total = califl + calif2;

promedio = total/2.0; // divide el total entre 2.0

cout << "El promedio de las calificaciones es " << promedio << endl;

return 0;

La colocacion de las instrucciones de declaracion en el programa 2.7 es simple, aunque pron-
to se verd que las cuatro declaraciones individuales pueden combinarse en una sola declara-
cion. Cuando se ejecuta el programa 2.7, se despliega la siguiente salida:

El promedio de las calificaciones es 91.25

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 75

Hay que observar que cuando se inserta un nombre de variable en un objeto cout, el valor
almacenado en la variable se coloca en el flujo de salida y se despliega.

Del mismo modo en que las variables de numeros enteros y reales (de precision simple,
de precision doble y de doble largo) deben declararse antes que puedan utilizarse, también
debe declararse una variable usada para almacenar un caracter individual. Las variables de
caracter se declaran usando la palabra reservada char. Por ejemplo, la declaracion

char ch;

declara que ch es una variable de caricter. El programa 2.8 ilustra esta declaracién y el uso
de cout para desplegar el valor almacenado en una variable de caracter.

— Programa 2.8

>/’ v v

SN
- _
s

v

N
\(

=

#include <iostream>
using namespace std;

int main()

{
char ch; // esto declara una variable de carécter
ch = 'a'; // almacena la letra a en ch
cout << "El caracter almacenado en ch es " << ch << endl;
ch = 'm'; // ahora almacena la letra m en ch
cout << "El caracter almacenado ahora en ch es "<< ch << endl;
return 0;
}

Cuando se ejecuta el programa 2.8, la salida producida es:

El caracter almacenado en ch es a
El caracter almacenado ahora en ch es m

Hay que observar en el programa 2.8 que la primera letra almacenada en la variable ch es a
y la segunda letra almacenada es m. En vista que una variable s6lo puede usarse para alma-
cenar un valor a la vez, la asignacion de m a la variable causa de manera automatica que a
se sobrescriba.

Declaraciones multiples

Las variables que tienen el mismo tipo de datos siempre pueden agruparse y declararse usan-
do una sola instruccion de declaracion. La forma comun de dicha declaracion es

‘tz’po de datos listaDeVariables;

www.FreelLibros.me

76

CarituLo 2 Programacion orientada a procedimientos en C++

Por ejemplo, las cuatro declaraciones separadas usadas en el programa 2.7,

double califl;
double calif2;
double total;
double promedio;

pueden reemplazarse por la instruccion de declaracion sencilla

double califl, calif2, total, promedio;

Del mismo modo, las dos declaraciones de caracter,

char ch;
char clave;

pueden reemplazarse con la instruccion de declaracion sencilla

char ch, clave;

Hay que observar que declarar multiples variables en una sola declaracion requiere que el ti-
po de datos de las variables s6lo se dé una vez, que todos los nombres de las variables se se-
paren con comas y que s6lo se use un punto y coma para terminar la declaracion. El espacio
después de cada coma se inserta por legibilidad y no es indipensable.

Las instrucciones de declaracion también pueden usarse para almacenar un valor en va-
riables declaradas. Por ejemplo, la instruccion de declaracion

int numl = 15;

declara al mismo tiempo la variable numl como una variable entera y establece el valor de
15 en la variable. Cuando se usa una instruccion de declaracion para almacenar un valor en
una variable, se dice que la variable fue inicializada. Por tanto, en este ejemplo es correcto de-
cir que la variable num1l fue inicializada en 15. Del mismo modo, las instrucciones de decla-
racion

double califl = 87.0;

double calif2 = 93.5;

double total;

declaran tres variables de precision doble e inicializan dos de ellas. Cuando se usan iniciali-
zaciones, la buena practica de programacion dicta que cada variable inicializada sea declara-
da en una linea individual. Pueden usarse como inicializadores dentro de una funcion las
constantes, las expresiones que usan s6lo constantes (como 87.0 + 12 — 2) y expresiones que
usan constantes y variables inicializadas con anterioridad. Por ejemplo, el programa 2.7 con
una inicializacion de declaracion se convierte en el programa 2.7a.

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion

77

.8 j> -~ Programa 2.7a

= >

#include <iostream>
using namespace std;

int main()

{
double califl = 85.5;
double calif2 = 97.0;
double total, promedio;
total = califl + calif2;
promedio = total/2.0; // divide el total entre 2.0
cout << "El promedio de las calificaciones es " << promedio << endl;
return 0;
}

Observe la linea en blanco después de la tltima instruccion de declaracion. Insertar una linea
en blanco después de las declaraciones de variables colocadas en la parte superior del cuer-
po de una funcién es una buena practica de programacion. Mejora tanto la apariencia de un
programa como su legibilidad.

Una caracteristica interesante de C++ es que las declaraciones de variables pueden entre-
mezclarse libremente e incluso estar contenidas con otras instrucciones; el unico requisito es
que una variable debe declararse antes de usarla. Por ejemplo, la variable total en el pro-
grama 2.7a podria haberse declarado cuando se usé por primera vez empleando la instruc-
ciéon double total = califl + calif2. En situaciones muy restringidas (como en la
depuracion, como se describe en la seccion 3.9, o en una iteracion tipo for, descrita en la sec-
cion 5.4), puede ser util declarar una variable en el punto de su primer uso. En general, sin
embargo, es preferible no dispersar las declaraciones sino mas bien agruparlas en la manera
mds concisa y clara posible, al principio de cada funcion.

Asignacion de memoria

Las instrucciones de declaracion que se han introducido ejecutan tareas tanto de software co-
mo de hardware. Desde una perspectiva del software, las instrucciones de declaracion siem-
pre proporcionan una lista de todas las variables y sus tipos de datos. En esta funcion de
software, las declaraciones de variable también ayudan a controlar un error comun y proble-
matico causado por la escritura equivocada del nombre de una variable dentro de un progra-
ma. Por ejemplo, suponga que una variable nombrada distancia se declara e inicializa
usando la instruccién

int distancia = 26;

Ahora suponga que esta variable se escribe mal en forma inadvertida en la instruccion
mpg = distncia / galones;

www.FreelLibros.me

78

CariTuLO 2 Programacion orientada a procedimientos en C++

En lenguajes que no requieren declaraciones de variable, el programa trataria distancia
como una variable nueva y le asignaria un valor inicial de cero a la variable o usaria cual-
quier valor que resultara estar en el area de almacenamiento de la variable. En cualquier ca-
so se calcularia un valor y se asignaria a mpg, y encontrar el error o siquiera saber que ocurrié
podria ser en extremo problematico. Tales errores son imposibles en C++ porque el compila-
dor sefalard distancia como una variable no declarada. El compilador no puede, por su-
puesto, detectar cuando una variable declarada se escribe en lugar de otra variable declarada.

Ademas de su funcién en el software, las instrucciones de declaracién también pueden
realizar una tarea de hardware distinta. Debido a que cada tipo de datos tiene sus propios re-
querimientos de almacenamiento, la computadora puede asignar suficiente almacenamiento
para una variable s6lo después de conocer el tipo de datos de ésta. Debido a que las declara-
ciones de variable proporcionan esta informacién, pueden usarse para forzar al compilador
a reservar almacenamiento suficiente en la memoria fisica para cada variable. Las instruccio-
nes de declaracion usadas con este proposito de hardware se llaman también instrucciones
de definicion porque definen o le indican al compilador cuanta memoria es necesaria para el
almacenamiento de datos.

Todas las instrucciones de declaracion que hemos encontrado hasta ahora han sido ins-
trucciones de definicion. Mas adelante, se veran casos de instrucciones de declaracion que no
causan que se asigne ningun almacenamiento nuevo y se usan tan solo para declarar o aler-
tar al programa de los tipos de datos de variables que se crean en otras partes del programa.

Indica a la computadora que

=

Reserve suficiente espacio
para un numero entero
int total;
f 4 bytes

Indica a Ia “Etiquete” al primer byte de
computadora que \ almacenamiento reservado
con el nombre total

Figura 2.12a Definicion de una variable de entero llamada total.

Indica a la computadora que

=

Reserve suficiente espacio para

un numero de precision simple
float pendiente; ’

f 4 bytes

Indica a la “Etiquete” el primer byte de
computadora que \ almacenamiento reservado
con el nombre pendiente

Figura 2.12b Definicion de la variable de punto flotante llamada pendiente.

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 79

Indica a la computadora que

= i

Reserve suficiente espacio para

) un numero de precision doble
double empuje; ’

f 8 bytes

Indica a la “Etiquete” el primer byte de
computadora que \ almacenamiento reservado
con el nombre empuje

Figura 2.12c Definicion de la variable de precision doble llamada empuje.

Indica a la computadora que

=

Reserve suficiente espacio
para un caracter

lbte'
f Y

Indica a la “Etiquete” el primer byte de
computadora que 4 almacenamiento reservado
con el nombre clave

char clave;

Figura 2.12d Definicion de la variable de caracter llamada clave.

La figura 2.12 (partes a-d) ilustra la serie de operaciones puestas en movimiento por instruc-
ciones de declaracion que también desempefian un papel de definicion. La figura muestra que
las instrucciones de definicion (o, si lo prefiere, instrucciones de declaracion que también cau-
san que se asigne memoria) “etiquetan” el primer byte de cada conjunto de bytes reservados
con un nombre. Este nombre es, por supuesto, el nombre de la variable y es usado por la
computadora para ubicar en forma correcta el punto de inicio del drea de memoria reserva-
da de cada variable.

Dentro de un programa, después que se ha declarado una variable, por lo general ésta es
usada por el programador para referirse al contenido de la variable (es decir, el valor de la
variable). En qué parte de la memoria se almacena este valor cominmente es de poco interés
para el programador. El compilador, sin embargo, debe estar al tanto de donde se almacena
cada valor y ubicar en forma correcta cada variable. En esta tarea la computadora usa el
nombre de la variable para ubicar el primer byte de almacenamiento asignado con anteriori-
dad a la variable. Conocer el tipo de datos de la variable le permite luego al compilador al-
macenar o recuperar el nimero correcto de bytes.

Despliegue de la direccion de una variable''

Cada variable tiene tres elementos importantes asociados a ella: su tipo de datos, el valor real
almacenado en la variable y la direccion de la variable. El valor almacenado en la variable se
conoce como el contenido de la variable, mientras la direccion de la primera ubicacion de

Este tema puede omitirse en la primera lectura sin perder la continuidad.

www.FreelLibros.me

80 CarituLo 2 Programacion orientada a procedimientos en C++

memoria usada para la variable constituye su direccion. Cudntas ubicaciones se usan en rea-
lidad para la variable, como acabamos de ver, depende del tipo de datos de ésta. La relacion
entre estos tres elementos (tipo, contenido, ubicacién) se ilustra en la figura 2.13.

Uno o mas bytes en la memoria
e —

contenido de
la variable
Direcciéon de la variable

Figura 2.13 Una variable tipica.

Los programadores por lo general sdlo se interesan en el valor asignado a la variable (su con-
tenido) y ponen poca atencion al lugar donde esta almacenado el valor (su direccion). Por
ejemplo, considere el programa 2.9.

]

=

_ Programa 2.9

'
VA

=

WY

>R
> e >

#include <iostream>

using namespace std;

int main()

{

int num;

num = 22;
cout << "El valor almacenado en num es " << num << endl;

return 0;

La salida desplegada cuando se ejecuta el programa 2.9 es

El valor almacenado en num es 22

El programa 2.9 tan sélo imprime el valor 22, el cual es el contenido de la variable num. Po-
demos ir mas alla, sin embargo, y preguntar “;Dénde esta almacenado en realidad el nime-
ro 22?” Aunque la respuesta es “en num”, ésta es s6lo la mitad de la respuesta. El nombre
de la variable num tan sélo es un simbolo conveniente para ubicaciones fisicas reales en la
memoria, como se ilustra en la figura 2.14.

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 81

4 bytes de memoria

I\
7 p)

22
X X X X \
Direccion del primer l

byte usado por num Contenido de num
Figura 2.14 Algun lugar en la memoria.

Para determinar la direccion de num, podemos usar el operador de direccion de C++, &, el
cual significa “la direccion de”. Excepto cuando se usa en una expresion, el operador de di-
reccion colocado enfrente del nombre de una variable se refiere a la direccion de la variable.'?
Por ejemplo, &num significa la direccion de num, &total significa la direccion de total y
&precio significa la direccion de precio. El programa 2.10 usa el operador de direccion
para mostrar la direccion de la variable num.

v

.~ ~Programa 2.10
PSS e >

‘A

)
Y/

#include <iostream>
using namespace std;

int main()

{

int num;
num = 22;
cout << "El valor almacenado en num es " << num << endl;

cout << "La direccidén de num = " << &num << endl;

return 0;

La salida del programa 2.10 es

El valor almacenado en num es 22
La direccién de num = 0012FED4

2Cuando se usa para declarar variables y argumentos de referencia, los cuales se presentan en el capitulo 7, el signo & se refie-
re al tipo de datos que lo preceden. Por tanto, la declaraciéon double &num se lee como “num es la direccién de un double”
0, de manera mas comtin, como “num es una referencia a un double”

www.FreelLibros.me

82

CarituLo 2 Programacion orientada a procedimientos en C++

La figura 2.15 ilustra la informacién de direccion adicional proporcionada por la salida del
programa 2.10.

4 bytes de memoria
——

22
0012FED4 \

Direccion del primer)
Contenido de num

byte usado por num
Figura 2.15 Un panorama mas completo de la variable num.

Es evidente que la salida de direccion del programa 2.10 depende de la computadora usada
para ejecutar el programa. Sin embargo, cada vez que se ejecuta el programa 2.10 muestra
la direccion de la primera ubicacion de memoria usada para almacenar la variable num. Co-
mo lo ilustra la salida del programa 2.10, el despliegue de la direccion esta en notacion he-
xadecimal. Este despliegue no tiene efecto en la manera en que se usan las direcciones en
forma interna en el programa; tan sélo nos proporciona un medio de desplegar direcciones
que es util para comprenderlas. Como se vera en los capitulos 6 y 12, usar direcciones, en
oposicion a sélo desplegarlas, es una herramienta de programacion importante y poderosa
en extremo.

Ejercicios 2.5

1. Establezca si los siguientes nombres de variables son validos o no. Si son invalidos,
explique por qué.

prod_a cl234 abed _c3 12345
ampnuevo vatios Stotal Salnuevo alb2c3d4
9ab6 suma.de promedio voltiosl finvoltios

2. Establezca si los siguientes nombres de variable son validos o no. Si son invalidos, ex-
plique por qué. También indique cudl de los nombres de variable vilidos no deberian
usarse debido a que no transmiten informacion sobre la variable.

actual az243 r2d2 primer_num cc_al

hector susana c3p0 total suma

maximo okay a increible veporel
3suma for tot.al c$cinco potencianeta

3. a. Escriba una instruccion de declaracion para declarar que se usara la variable
cuenta para almacenar un entero.
b. Escriba una instruccion de declaracion para declarar que se usara la variable
voltio para almacenar un nimero de punto flotante.
¢. Escriba una instruccion de declaracion para declarar que se usara la variable po-
tencia para almacenar un numero de precision doble.

www.FreelLibros.me

2.5 Variables e instrucciones de declaracion 83

d. Escriba una instruccion de declaracion para declarar que se usara la variable de
caricter clave para almacenar un caricter.

4. Escriba instrucciones de declaracion para las siguientes variables:

a. numl, num2 y num3 usados para almacenar niimeros enteros

b. ampsl, amps2, amps3 y amps4 usados para almacenar nimeros de precision
doble

c. voltiosl, voltios2 y voltios3 usados para almacenar nimeros de preci-
sion doble

d. codigoA, codigoB, codigoC, codigoD y codigoE usados para almacenar ti-
pos de caracter

5. Escriba instrucciones de declaracion para las siguientes variables:

a. primernumy segundonum usados para almacenar enteros

b. velocidad, aceleracién y distancia usados para almacenar nimeros de
precision doble

¢. empuje usado para almacenar un nimero de precision doble

6. Vuelva a escribir cada una de estas instrucciones de declaracién como tres declara-
ciones individuales.

int mes, dia = 30, anio;

double horas, voltios, potencia = 15.62;

double precio, cantidad, impuestos;

char teclaEntrada, ch, opcién = 'f';

angoy

7. a. Determine el efecto de cada instruccion en el siguiente programa:

#include <iostream>
using namespace std;

int main()

{
int numl, num2, total;
numl = 25;
num2 = 30;
total = numl + num2;
cout << "El total de" << numl << " y "
<< num2 << " es " << total << endl;
return 0;
}

b. ¢Cual es la salida que se imprimira cuando se ejecute el programa mostrado en el
ejercicio 7a?

8. Toda variable tiene tres elementos asociados. ¢Cudles son estos tres elementos?

NOTA PARA LOS EJERCICIOS 9 A 11: Suponga que un cardcter requiere un byte de almace-
namiento, un entero cuatro bytes, un niimero de precision simple cuatro bytes, un niimero
de precision doble ocho bytes y que a las variables se les asigna almacenamiento en el or-
den en que son declaradas. (Repase la seccion 1.6 si no estd familiarizado con el concepto

de byte.)

www.FreelLibros.me

84 CarituLo 2 Programacion orientada a procedimientos en C++

Direcciones

.l M159 160 161 162 163 164 165 166

_rrerer e
_rer e rr
S rerrrrt

y
186 187 188 189 190
o

Crr

Figura 2.16 Bytes de memoria para los ejercicios 9, 10y 11.

9. a. Usando la figura 2.16 y suponiendo que el nombre de la variable tasa se asigna
al byte que tiene direccion de memoria 159, determine la direccién correspon-
diente a cada variable declarada en las siguientes instrucciones. También llene los
bytes apropiados con los datos de inicializacion incluidos en las instrucciones de
declaracion. (Use letras para los caracteres, no los codigos de computadora que
se almacenarian en realidad.)

float tasa;

char chl = 'M', ch2 = '"E', ch3 = 'L', chd = 'T';
double impuestos;
int num, count = 0;

b. Repita el ejercicio 9a, pero sustituya los patrones de byte reales que usaria una
computadora que utilice el cédigo ASCII para almacenar los caracteres en las va-
riables ch1, ch2, ch3 y ch4. (Sugerencia: Use el apéndice B.)

10. a. Usando la figura 2.16 y suponiendo que a la variable nombrada cn1 se le asigna
al byte en la direccion de memoria 159, determine las direcciones correspondien-
tes a cada variable declarada en las siguientes instrucciones. Ademas, llene los by-
tes apropiados con los datos de inicializacion incluidos en las instrucciones de
declaracion. (Use letras para los caracteres y no los codigos de computadora que
se almacenarian en realidad.)

char ¢cnl = 'P', ¢cn2 = 'E', cn3 = 'R', cn4 = 'F', cn5 = 'E';
char cn6 = 'C', cn7 = 'T', key = '\\', sch = '\'', inc = 'A';
char incl = 'T';

b. Repita el ejercicio 10a, pero sustituya los patrones de byte reales que usaria una
computadora que utilice el codigo ASCII para almacenar los caracteres en cada
una de las variables declaradas. (Sugerencia: Use la tabla 2.3.)

11. Usando la figura 2.16 y suponiendo que el nombre de variable millas se asigna al
byte en la direccion de memoria 159, determine las direcciones correspondientes a ca-
da variable declarada en las siguientes instrucciones.

float millas;
int cuenta, num;
double dist, temp;

www.FreelLibros.me

2.6 Aplicacién del procedimiento de desarrollo de software 85

2.6 > APLICACION DEL PROCEDIMIENTO DE DESARROLLO
DE SOFTWARE

Recordara de la seccion 1.2 que escribir un programa en C++ es en esencia el tercer paso en
el proceso de programacion. Los primeros dos pasos en el proceso son determinar lo que se
requiere y seleccionar el algoritmo que se va a codificar en C++. En esta seccion se muestra
coémo los pasos presentados en la seccion 1.2 se aplican en la practica cuando se convierten
problemas de programacién de trabajo en programas C++. Para repasar, una vez que se es-
tablece el requerimiento o problema de un programa, el procedimiento de desarrollo de soft-
ware consiste de los siguientes pasos:

4 Paso 1: Analizar el problema

El analisis de un problema puede consistir hasta de dos partes. La primera parte es un anali-
sis basico que debe realizarse en todos los problemas y consiste en extraer la informacion
completa de entrada y salida proporcionada por los problemas. Es decir, debe:

1. Determinar y entender los elementos de salida deseados que debe producir el pro-
grama

2. Determinar los elementos de entrada

Juntos, estos dos elementos se conocen como la entrada/salida del problema, I/O (por sus si-
glas en inglés), para abreviar. S6lo después que se ha determinado la I/O de un problema es
posible seleccionar un algoritmo para transformar las entradas en las salidas deseadas. En es-
te punto, en ocasiones es necesario o util, 0 ambas cosas, realizar un calculo manual para ve-
rificar que en efecto puede obtenerse la salida a partir de las entradas. Es claro que si se ha
proporcionado una formula que relaciona las entradas con las salidas, este paso puede omi-
tirse en esta etapa. Si las entradas requeridas estan disponibles y la salida o salidas deseadas
pueden producirse, se dice que el problema esta definido con claridad y puede resolverse.

Por una variedad de razones puede no ser posible completar un analisis basico. Si esto es
asi, puede ser necesario un andlisis extendido. Un analisis extendido tan sélo significa que
debe obtener informacién adicional sobre el problema, de modo que pueda entender a fon-
do lo que se esta pidiendo y como lograr el resultado. En este texto cualquier informacion
adicional requerida para una comprension del problema se suministrard junto con el plan-
teamiento de éste.

¢ Paso 2: Desarrollar una solucion

Este paso con frecuencia se conoce como paso de disefio, y usaremos los términos disefio y
desarrollo de forma indistinta. En este paso debe elegir un algoritmo para transformar los ele-
mentos de entrada en las salidas deseadas y refinarlo segtin sea necesario para definir de ma-
nera adecuada todas las caracteristicas que desea que tenga el programa. Si no ha realizado un
calculo manual usando el algoritmo en el paso de analisis, deberia hacerlo ahora, usando va-
lores de entrada especificos.

Al disefiar una solucion, el enfoque especifico que adoptaremos se conoce a menudo co-
mo enfoque descendente. Este enfoque consiste en comenzar con la solucién mas general y
refinarla de tal manera que la solucion final consista en tareas definidas con claridad que pue-
dan ser completadas por funciones individuales del programa.

www.FreelLibros.me

86

CarituLo 2 Programacion orientada a procedimientos en C++

€ Paso 3: Codificar Ia solucion

En este punto se escribe en realidad el programa de C++ que corresponde a la solucion desa-
rrollada en el paso 2.

@ Paso 4: Prueba y correccion del programa

Esto se realiza por medio de datos de prueba seleccionados y se utliza para hacer correccio-
nes al programa cuando se encuentran errores. Un conjunto de datos de prueba que siempre
deberia usarse son los datos utilizados en su calculo manual previo.

Para ver como pueden aplicarse cada uno de estos pasos en la practica, ahora los em-
pleamos en el siguiente problema de programacion simple.

La resistencia eléctrica, r, de un alambre metdlico, en obmios, estd dada por la formula
r = (ml)/a, donde m es la resistividad del metal; | es el largo del alambre, en pies; y a es el drea
de corte transversal del alambre, en circular mils. Usando esta informacion, escriba un pro-
grama en C++ para calcular la resistencia de un alambre que mide 125 pies de largo, tiene
un drea de corte transversal de 500 mils circulares y es de cobre. La resistividad del cobre,
m, es 10.4.

Paso 1 Analizar el problema

El primer paso para desarrollar un programa para este problema planteado es realizar un
analisis basico. Comenzaremos por determinar las salidas requeridas. Con frecuencia, en el
planteamiento del problema usaran palabras como calcular, imprimir, determinar, encontrar
o comparar, las cuales pueden emplearse para determinar las salidas deseadas.

Para el planteamiento del problema de muestra, el enunciado clave es “calcular la resis-
tencia de un alambre”. Esto identifica con claridad un elemento de salida. Debido a que no
hay otros enunciados asi en el problema, sélo se requiere una salida.

Después que se ha identificado con claridad la salida deseada, el paso de analisis basico
continda con la identificacion de todos los elementos de entrada. Es esencial en esta etapa
distinguir entre elementos de entrada y valores de entrada. Un elemento de entrada es el
nombre de una cantidad de entrada, mientras un valor de entrada es un nimero o cantidad
especifica que puede ser el elemento de entrada. Por ejemplo, en el planteamiento del proble-
ma de muestra, los elementos de entrada son la resistividad, m, el largo del alambre, 1, y el
area de corte transversal del alambre, a. Aunque estos elementos de entrada tienen valores
numéricos especificos, estos valores de los elementos de entrada por lo general no son de im-
portancia en esta etapa.

La razén por la que los valores de entrada no son necesarios en este punto es que la se-
leccion de un algoritmo por lo general es independiente de valores de entrada especificos. El
algoritmo depende de saber cuiles son los elementos de salida y entrada y si hay algunos limi-
tes especiales. Veamos por qué esto es asi.

Del planteamiento del problema es claro que el algoritmo para transformar los elemen-
tos de entrada en la salida deseada esta dado por la férmula » = (ml)/a. Hay que observar que
esta formula puede usarse sin tener en cuenta los valores especificos asignados a m, [o a.
Aunque no se puede producir un valor numérico real para el elemento de salida (resistencia)
a menos que se tengan valores numéricos reales para el elemento de entrada, la relacién
correcta entre entradas y salidas estd expresada por la formula. Recuerde que esto es pre-
cisamente lo que proporciona un algoritmo: una descripcion de como las entradas se trans-
forman en salidas que funcione para todas las entradas.

www.FreelLibros.me

2.6 Aplicacion del procedimiento de desarrollo de software 87

Paso 2 Desarrollar una solucion

El algoritmo bdsico para transformar las entradas en la salida deseada es proporcionado por
la formula dada. Ahora debe refinarse enumerando, con detalle, como se han de combinar
las entradas, las salidas y el algoritmo para producir una solucion. Este listado indica los pa-
sos que seguira el programa para resolver el problema. Como tal constituye un esbozo de la
forma final que seguira el codigo del programa. Usando seudocodigo, el algoritmo completo
para resolver este problema es

Asignar valoresam, ly a
Calcular la resistencia usando la formula r = (ml)/a
Mostrar la resistencia

Hay que observar que la estructura de este algoritmo se ajusta a la estructura de control se-
cuencial presentada en la seccion 1.2.

Habiendo seleccionado y depurado el algoritmo, el siguiente paso en el disefio (si no se
hizo ya en el paso de analisis) es comprobar el algoritmo en forma manual usando datos es-
pecificos. Realizar un calculo manual, ya sea con papel y lapiz o por medio de una calcula-
dora, ayuda a verificar que en realidad ha entendido el problema. Una ventaja adicional de
hacer un calculo manual es que los resultados pueden usarse después para compararlos con
la operacion del programa en la fase de prueba. Entonces, cuando el programa final se use
con otros datos, habra establecido un grado de confianza en que se esta calculando un resul-
tado correcto.

Hacer un calculo manual requiere que se tengan valores de entrada especificos que pue-
dan ser asignados y usados por el algoritmo para producir la salida deseada. Para este pro-
blema se dan tres valores de entrada: una resistividad de 10.4, un area de corte transversal
de 500 circular mils y un largo de 125 pies. Al sustituir estos valores en la formula, se obtie-
ne una resistencia = (10.4)(125)/500 = 2.60 ohmios para el alambre de cobre.

Paso 3 Codificar la solucion

Debido a que se ha desarrollado en forma minuciosa una solucién de programa, todo lo que
resta es codificar el algoritmo de solucion en C++. Esto significa declarar variables de entra-
da y salida apropiadas, inicializar las variables de entrada en forma correcta, calcular la re-
sistencia e imprimir el valor de resistencia calculado. El programa 2.11 ejecuta estos pasos.

www.FreelLibros.me

88

=

{

= %
2SN
o

»//v

vV

#include <iostream>
using namespace std;
int main()

double resistividad, area, longitud, resistenciaj;
resistividad = 10.4;

area = 500;

longitud = 125;

resistencia = (resistividad * longitud) / area;

cout << "La resistencia del alambre (en ohmios) es "

return 0;

CarituLo 2 Programacion orientada a procedimientos en C++

v

~ Programa 2.11

>

N

>

Vi

=3

<< resistencia << endl;

Cuando se ejecuta el programa 2.11, se produce la siguiente salida:

La resistencia del alambre (en ohmios) es 2.6

Ahora que se tiene un programa funcional que produce un resultado, puede comenzar el pa-
so final en el proceso de desarrollo, probar el programa.

Paso 4 Prueba y correccidon del programa

El propdsito de probar un programa es verificar que funciona en forma correcta y en realidad
satisface los requerimientos. Una vez que se ha completado la prueba, el programa puede usar-
se para calcular salidas para diferentes datos de entrada sin necesidad de volver a probarlo.
Este es, por supuesto, uno de los valores reales de escribir un programa; el mismo programa
puede usarse una y otra vez con datos de entrada nuevos.

El método de prueba mas simple es verificar la operacion del programa con conjuntos de
datos de entrada seleccionados cuidadosamente. Un conjunto de datos de entrada que siem-
pre deberia usarse son los datos que se seleccionaron para el calculo manual realizado con
anterioridad en el paso 2 del procedimiento de desarrollo. En este caso el programa es rela-
tivamente simple y s6lo ejecuta un calculo. Debido a que la salida producida por la ejecucion
de prueba coincide con el calculo manual se tiene un buen grado de confianza de que puede
ser usado para calcular correctamente la resistencia de otros valores de entrada.

Ejercicios 2.6

Norta: En cada uno de estos ejercicios se expone un problema de programacion. Lea
el planteamiento del problema primero y luego responda las preguntas relacionadas con él.

www.FreelLibros.me

2.6 Aplicacién del procedimiento de desarrollo de software 89

No escriba un programa para resolver los problemas, sino tan sélo responda las preguntas
que siguen a la especificacion del programa.

1. Suponga que tiene que escribir un programa en C++ para calcular la resistencia total
de un circuito en serie. En dicho circuito la resistencia total es la suma de todos los
valores de resistencia individuales. Suponga que el circuito consiste en una cantidad
de resistores de 56 ohmios, 33 ohmios y 15 ohmios.

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cudntas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida. Suponga que la cantidad de resistores de 56 ohmios es 72, la cantidad de re-
sistores de 33 ohmios es 7, la cantidad de resistores de 15 ohmios es p.

d. Pruebe el algoritmo escrito para la parte ¢ usando la siguiente muestra de datos:
m=17,n=24yp=12.

2. Suponga que tiene que escribir un programa para calcular el valor de la distancia, en
millas, dada la relacion:

distancia = velocidad * tiempo transcurrido

Para este problema de programacion, ¢cuantas salidas se requieren?

¢Cuantas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando la siguiente muestra de datos:
velocidad es 55 millas por hora y tiempo transcurrido es 2.5 horas.

e. ¢Como debe modificarse el algoritmo que determiné en la parte ¢ si el tiempo

transcurrido se diera en minutos en lugar de horas?

oo

3. Suponga que tiene que escribir un programa para determinar el valor de ergios, da-
das las relaciones:

Ergios = fergios * [lergios

Lergios =2 * mt * "

Para este problema de programacion, ¢cuantas salidas se requieren?

¢Cuantas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando la siguiente muestra de datos:

fergios = 14.65, m = 3.1416, 1 = 1.672y e = 2.7818.

T

4. Suponga que tiene que escribir un programa para mostrar las siguientes especifica-

ciones:

Amplificacion de voltaje: 35

Potencia de salida: 2.5 vatios

Ancho de banda: 15KHz
a. Para este problema de programacion, ¢cuantas lineas de salida se requieren?
b. ¢Cudntas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

www.FreelLibros.me

90

CariTuLo 2 Programacion orientada a procedimientos en C++

5. Escriba un programa en C++ para determinar la distancia recorrida por un automo-

vil después de 10 segundos, suponiendo que el automovil viaja inicialmente a 60 mi-

llas por hora y el conductor aplica los frenos para desacelerar de manera uniforme a

una velocidad de 12 millas/s*. Use el hecho que distancia = s — (1/2)de, donde s es la

velocidad inicial del automovil, d es la desaceleracion y ¢ es el tiempo transcurrido.

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cuantas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando los datos proporcionados en el
problema.

. Considere el siguiente problema de programacion: en 1627, la isla de Manhattan fue

vendida a los colonizadores holandeses por aproximadamente 24 délares. Si las ga-

nancias de esa venta se hubieran depositado en un banco holandés que pagara 5%

de interés anual compuesto, ¢cual seria el saldo principal al final de 2002? Se requie-

re un despliegue como sigue: El saldo al 31 de diciembre de 2002 es: xxxxxx, donde

xxxxxx es la cantidad calculada por su programa.

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cuantas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando los datos proporcionados en el
planteamiento del problema.

. Escriba un programa que calcule y despliegue los voltajes de salida de dos circuitos

eléctricos y la suma de los dos voltajes. El voltaje de salida para el primer circuito es-
ta dado por la ecuacion (150) V/ 0.38f y el voltaje de salida para el segundo circui-
to esta dado por la ecuacion

230V
562 +(0.98f)

donde V es el voltaje de entrada al circuito y f es la frecuencia en Hertz.

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cudntas entradas tiene este problema?

¢. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando la siguiente muestra de datos:
el primer circuito es operado con un voltaje de entrada de 1.2 voltios a una fre-
cuencia de 144 Hertz y el segundo circuito es operado con un voltaje de entrada
de 2.3 voltios a 100 Hertz.

. Considere el siguiente problema de programacion: la férmula para la desviacion nor-

mal estandar, z, usada en aplicaciones estadisticas es

_X-u
o

4

donde U se refiere a un valor medio y 6 a una desviacion estandar. Usando esta férmu-
la, escriba un programa que calcula y despliega el valor de la desviacion normal es-
tandar cuando X = 85.3,u =80y ¢ = 4.

www.FreelLibros.me

2.7 Aplicaciones 21

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cudntas entradas tiene este problema?

¢. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ usando los datos proporcionados en el
problema.

9. La ecuacion de la curva normal (en forma de campana) usada en aplicaciones esta-
disticas es

1 -
- o~ (1/2)[(x-w)/c]?

oV2n

Usando esta ecuacion, suponga que tiene que escribir un programa en C++ que calcu-

le el valor de y.

a. Para este problema de programacion, ¢cuantas salidas se requieren?

b. ¢Cuéntas entradas tiene este problema?

c. Determine un algoritmo para convertir los elementos de entrada en elementos de
salida.

d. Pruebe el algoritmo escrito para la parte ¢ suponiendo que ¢ = 90, ¢ = 4, x = 80
y Tt = 3.1416.

2.7 > APLICACIONES

En esta seccion, el procedimiento de desarrollo de software presentado en la seccion anterior
se aplica a dos problemas de programacion especificos. Aunque cada problema es diferente,
el procedimiento de desarrollo funciona para ambas situaciones. Este procedimiento puede
aplicarse a cualquier problema de programacion para producir un programa completo y for-
ma el fundamento para todos los programas desarrollados en este texto.

Aplicaciéon 1: Trampas de un radar de velocidad

Un radar comin de deteccion de velocidad de la policia de caminos emite un rayo de mi-
croondas a una frecuencia f,. El rayo es reflejado por un automévil que se aproxima y el ra-
yo reflejado es captado y analizado por la unidad de radar. La frecuencia del rayo reflejado
es cambiada ligeramente de f, a f; debido al movimiento del automévil. La relacién entre la
velocidad del automévil, v, en millas por hora, y las dos frecuencias de microondas es

v =(6.685 X 10°)(f, = fo) / (fy + fo)

donde las ondas emitidas tienen una frecuencia de f, = 2 X 10'° sec™'. Usando la férmula

dada, escriba un programa en C++ para calcular y desplegar la velocidad correspondiente a
una frecuencia recibida de 2.000004 X 10'° sec™.
Ahora aplicamos el procedimiento de desarrollo de software a este problema.

Paso 1 Analizar el problema

Para este problema el programa requiere una sola salida: la velocidad del automévil. Los ele-
mentos de entrada requeridos para solucionar la velocidad son la frecuencia emitida, f,, y la
frecuencia recibida, f;.

www.FreelLibros.me

92

Vivg

=

#include <iostream>
using namespace std;

int main()

{

CarituLo 2 Programacion orientada a procedimientos en C++

Paso 2 Desarrollar una solucion

El algoritmo proporcionado para transformar los tres elementos de entrada en el elemento
de salida deseado estd dado por la formula v = 6.685 X 10°(f, —)/ (f, + f,). Por tanto, el
algoritmo completo para el programa de solucion es

Asignar valores a f, y f,
Calcular la velocidad usando la férmula v = 6.685 % 10°(f, - f,)/ (f, + f,)
Desplegar la velocidad

Un célculo manual, usando los datos f, =2 x 10" sec™! y £, = 2.000004 x 10'° sec™! pro-
duce una velocidad de 66.85 millas por hora.

Paso 3 Codificar la solucion

El programa 2.12 proporciona el c6digo necesario.

j/\ - ~ Programa 2.12

>
o

v

P

/

>

7
Vi

double velocidad, £f0, f1;

f0 = 2e-10;
f1 2.0000004e-10;

velocidad = 6.685e8 * (f1 - £0) / (f1 + £0);
cout << "La velocidad es " << velocidad << "millas/hora " <<endl;

return 0;

El programa 2.12 comienza con un comando preprocesador #include seguido por una
funcién main (). Esta funcion comienza con la palabra clave main y termina con la llave de
cierre, }. Ademas, el programa 2.12 contiene una instruccion de declaracion, tres instruccio-
nes de asignacion y una instruccion de salida. Las instrucciones de asignacion £0 = 2e-10
y £1 = 2.0000004e-10 se usan para inicializar las variables £0 y £1 respectivamente.
La instruccion de asignacion

velocidad = 6.685e8 * (f1 - f0) / (f1 + £0);

www.FreelLibros.me

2.7 Aplicaciones 93

calcula un valor para la variable denominada velocidad. Cuando el programa 2.12 es
compilado y ejecutado se produce la siguiente salida.

La velocidad es 66.85 millas/hora

Paso 4 Probar y corregir el programa

El dltimo paso en el procedimiento de desarrollo es probar la salida. Debido a que el calcu-
lo tnico y el valor desplegado concuerdan con el cdlculo manual anterior, se ha verificado la
operacion correcta del programa. Esto permite usar el programa para valores diferentes de
frecuencias recibidas. Hay que observar que si los paréntesis no estuvieran colocados en for-
ma correcta en la instruccion de asignacion que calculé un valor para la velocidad, el valor
desplegado no concordaria con nuestro calculo manual previo. Esto nos habria alertado del
hecho que hubo un error en el programa.

Aplicacion 2: Redes de conmutacion telefénica

Una red telefonica conectada en forma directa es aquella en la que todos los teléfonos en la
red estan conectados en forma directa y no requieren una estaciéon de conmutacion central
para establecer llamadas entre dos de ellos. Por ejemplo, las instituciones financieras en Wall
Street usan una red asi para mantener lineas telefonicas abiertas en forma directa y continua
entre las empresas.

El nimero de lineas directas necesarias para mantener una red conectada en forma di-
recta para n teléfonos esta dado por la formula:

lineas = n(n — 1)/2
Por ejemplo, conectar en forma directa cuatro teléfonos requiere 6 lineas individuales (véase

la figura 2.17). Agregar un quinto teléfono a la red ilustrada en la figura 2.17 requeriria 4 li-
neas adicionales para un total de 10 lineas.

Teléfono Teléfono
num. 4 num. 3
~ linea 3 ~
linea 4 p linea 2
b e,
A A
linea 1
Teléfono Teléfono
num. 1 num. 2

Figura 2.17 Conexion en forma directa de cuatro teléfonos.

www.FreelLibros.me

24

CarituLo 2 Programacion orientada a procedimientos en C++

Usando la férmula dada, escriba un programa en C++ que determine el niumero de lineas di-
rectas requeridas para 100 teléfonos, y las lineas adicionales requeridas si se fueran a agre-
gar 10 teléfonos nuevos a la red.

Paso 1 Analizar el problema

Para este programa se requieren dos salidas: el nimero de lineas directas para 100 teléfonos
y el numero de lineas adicionales necesarias cuando se agregan 10 teléfonos nuevos a la red
existente. El elemento de entrada requerido para este problema es el niimero de teléfonos, el
cual se denota como # en la férmula.

Paso 2 Desarrollar una solucion

La primera salida se obtiene con facilidad usando la formula:

lineas = n(n - 1)/2
Aunque no se proporciona una férmula para las lineas adicionales, puede usarse la férmula
dada para determinar el namero total de lineas necesarias para 110 suscriptores. Restar el
namero de lineas para 100 suscriptores del nimero de lineas necesarias para 110 suscripto-

res producird entonces el nimero de lineas adicionales requeridas. Por tanto, el algoritmo
completo para el programa, en seudocddigo, es

Calcular el nmitmero de lineas directas para 100 suscriptores

Calcular el niimero de lineas directas para 110 suscriptores

Calcular las lineas adicionales necesarias, que son la diferencia entre el sequndo y el
primer cdlculo.

Desplegar el nitmero de lineas para 100 suscriptores

Desplegar las lineas adicionales necesarias

Verificar este algoritmo en forma manual, usando los datos proporcionados, produce la res-
puesta:

lineas = 100(100 — 1)/2 = 100(99)/2 = 4950
para 100 teléfonos y
lineas = 5995

para 110 teléfonos. Por tanto, serian necesarias 1045 lineas adicionales para conectar en for-
ma directa los diez teléfonos adicionales en la red existente.

Paso 3 Codificar la solucion

El programa 2.13 proporciona el c6digo necesario.

www.FreelLibros.me

2.7 Aplicaciones

95

> j Programa 2.13

>

#include <iostream>
using namespace std;

int main()

{

int numinl, numin2, lineasl, lineas2;

numinl
numin?2
lineasl
lineas?2
cout <<
cout <<
<<

100;

110;
= numinl * (numinl - 1)/2;
= numin2 * (numin2 - 1)/2;

"El nGmero de lineas iniciales es " << lineasl <<
"Se necesitan " << lineas2 - lineasl
" lineas adicionales." << endl;

return 0;

"." << endl;

Como antes, el programa en C++ incluye el archivo de encabezado iostream y consiste en
una funcién main (). El cuerpo de esta funciéon comienza con la llave de apertura {, y termi-
na con la llave de cierre}. Debido a que el nimero de lineas entre suscriptores debe ser un
numero entero (no es posible una linea fraccionaria) las variables 1ineasl y lineas?2 se
especifican como variables enteras. Las primeras dos instrucciones de asignacion inicializan
las variables numinl y numin?2. La siguiente instruccion de asignacion calcula el numero de
lineas necesarias para 100 suscriptores y la dltima instrucciéon de asignacion calcula el ndme-
ro de lineas para 110 suscriptores. La primera instruccion cout se usa para desplegar un
mensaje y el resultado del primer calculo. La siguiente instrucciéon cout se usa para desple-
gar la diferencia entre los dos cdlculos. La siguiente salida se produce cuando se compila y
ejecuta el programa 2.13:

El nGmero de lineas iniciales es 4950.
Se necesitan 1045 lineas adicionales.

Paso 4 Probar y corregir el programa

Como los dos célculos y los valores desplegados concuerdan con el calculo manual previo,
se ha verificado la operacion correcta del programa.

Ejercicios 2.7

1. a. Modifique el programa 2.12 para calcular la velocidad de un automoévil cuya fre-

cuencia de retorno del radar es 2.00000035 X 10'° sec™!.

b. Compile y ejecute el programa escrito para el ejercicio 1a en una computadora.

www.FreelLibros.me

926 CarituLo 2 Programacion orientada a procedimientos en C++

2. a. Modifique el programa 2.12 para determinar la frecuencia que serd regresada por
un automoévil que viaja a 55 millas por hora. Su programa debera producir el si-
guiente despliegue:

La frecuencia regresada correspondiente a 55 millas por hora

es

donde el subrayado es reemplazado por el valor real calculado por su programa.
b. Compile y ejecute el programa escrito para el ejercicio 2a en una computadora.
Asegtrese de hacer un calculo manual de modo que pueda verificar los resultados
producidos por su programa.
¢. Después de haber verificado los resultados del programa escrito en ejercicio 2a,
modifique el programa para calcular la frecuencia de vuelta para un automovil
que viaja a 75 millas por hora.

3. a. Modifique el programa 2.13 para calcular y desplegar el ntimero total de lineas
necesario para conectar 1000 teléfonos individuales en forma directa entre si.
b. Compile y ejecute el programa escrito para el ejercicio 3a en una computadora.

4. a. Modifique el programa 2.13 de modo que una nueva variable numf in, el niime-
ro adicional de suscriptores que va a ser conectados a la red existente, se iniciali-
ce en 10. Haga otros cambios en el programa de modo que produzca el mismo
despliegue que el programa 2.13.

b. Compile y ejecute el programa escrito para el ejercicio 4a en una computadora.
Verifique que el despliegue producido por su programa corresponde al despliegue
mostrado en el texto.

5. a. Disefe, escriba, compile y ejecute un programa en C++ para convertir temperatu-
ra en grados Fahrenheit en grados Celsius. La ecuacion para esta conversion es
Celsius = 5.0/9.0 (Fahrenbeit - 32.0).

Haga que su programa convierta y despliegue la temperatura Celsius correspon-
diente a 98.6 grados Fahrenheit. Su programa debera producir el siguiente des-

pliegue:
Para una temperatura Fahrenheit de___ grados,
la temperatura Celsius equivalente es___ grados.

donde su programa debe insertar los valores apropiados en lugar de los subraya-
dos.

b. Verifique en forma manual los valores calculados por su programa. Después que
haya comprobado que su programa funciona en forma correcta, modifiquelo pa-
ra convertir 86.5 grados Fahrenheit en su valor Celsius equivalente.

6. a. Escriba, compile y ejecute un programa en C++ para calcular la resistencia de un
circuito en serie consistente en 12 resistores de 56 ohmios, veinte de 39 ohmios,
32 de 27 ohmios y 27 de 15 ohmios. Use el hecho que la resistencia de un circui-
to en serie es la suma de todas las resistencias individuales. Su programa debera
producir el siguiente despliegue:

La resistencia total, en ohmios, es XXXX

donde xxxx es reemplazado por el valor de resistencia real calculado por su pro-
grama.

www.FreelLibros.me

2.7 Aplicaciones 97

b. Verifique en forma manual los valores calculados por su programa. Después que
haya comprobado que su programa funciona en forma correcta, modifiquelo pa-
ra calcular la resistencia de un circuito en serie consistente en ningun resistor de
56 ohmios, 17 de 39 ohmios, 19 de 27 ohmios y 42 de 15 ohmios.

7. a. Disene, escriba, compile y ejecute un programa en C++ para calcular el tiempo re-
querido para hacer un viaje de 183.67 millas. La ecuacion para calcular el tiem-
po transcurrido es

tiempo transcurrido = distancia total / velocidad promedio

Suponga que la velocidad promedio durante el viaje fue 58 millas por hora.

b. Verifique en forma manual los valores calculados por su programa. Después de
haber comprobado que su programa funciona en forma correcta, modifiquelo pa-
ra determinar el tiempo que toma hacer un viaje de 372 millas a una velocidad
promedio de 67 millas por hora.

8. a. Disefie, escriba, compile y ejecute un programa en C++ para calcular la suma de
los niimeros del 1 al 100. La férmula para calcular esta suma es

suma = (nf2) (2*%a + (n—1)d)

donde # = nimero de términos que se van a sumar, @ = el primer nimero y d =
la diferencia entre cada numero.

b. Verifique en forma manual los valores calculados por su programa. Después de
haber comprobado que su programa funciona en forma correcta, modifiquelo pa-
ra determinar la suma de los enteros de 100 a 1000.

Nota: Los ejercicios 9 a 13 requieren elevar un nitmero a una potencia. Esto puede lograr-
se usando la funcion de potencia de C++ pow(). Por ejemplo, la instruccion pow(2.0,5.0);
eleva el mimero 2.0 a la quinta potencia, y la instruccion pow (numl ,num?2); eleva la variable
numl a la potencia num2. Para usar la funcion de potencia se coloca un comando preprocesa-
dor #include <cmath> en una sola linea después del comando #include <iostream>
o se incluye la instruccion de declaracion double pow(); con las instrucciones de declaracion
de variables usadas en su programa. La funcion de potencia se explicard con mds detalle en la
seccion 3.3.

9. a. Laley de Newton del enfriamiento establece que cuando un objeto con una tem-
peratura inicial T se introduce en una sustancia de temperatura A, alcanzara una
temperatura TFIN en ¢ minutos de acuerdo con la

TFIN = (T-A)e™ + A

En esta férmula e es el numero irracional 2.71828 redondeado a cinco lugares de-
cimales, conocido por lo comin como el numero de Euler, y & es un coeficiente
térmico, el cual depende del material que se va a enfriar. Usando esta férmula es-
criba, compile y ejecute un programa en C++ que determine la temperatura alcan-
zada por un objeto después de 20 minutos cuando es colocado en un vaso con
agua cuya temperatura es de 60 grados. Suponga que el objeto tenia inicialmen-
te una temperatura de 150 grados y tiene una constante térmica de 0.0367.

b. Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifiquelo para de-
terminar la temperatura alcanzada después de 10 minutos cuando es colocado en
un vaso con agua cuya temperatura es de 50 grados.

www.FreelLibros.me

98

CariTuLO 2

10. a.

11. a.

12. a.

Programacion orientada a procedimientos en C++

La ganancia de voltaje de un amplificador esta dada por la férmula
ganancia de voltaje = [275 | (23* + (0.5f)*)2 s

donde f es la frecuencia, en Hertz, y 7 es el nimero de etapas en el amplificador.
Usando esta féormula escriba, compile y ejecute un programa en C++ que deter-
mine el valor de la ganancia de voltaje para un amplificador de cuatro etapas que
opera a una frecuencia de 120 Hertz. Su programa deberd producir el siguiente
despliegue:

A una frecuencia de xxxxx hertz, la ganancia de voltaje
es yyyyy

donde xxxxx es reemplazado por la frecuencia e yyyyy por la ganancia de voltaje.
Verifique en forma manual el valor calculado por su programa. Después que ha-
ya comprobado que su programa funciona en forma correcta, modifiquelo para
determinar la ganancia de voltaje de un amplificador de 12 etapas que opera a
una frecuencia de 9500 Hertz.

La corriente eléctrica, 7, en amperios, que fluye a través del circuito ilustrado en
la figura 2.18 esta dada por la

E(1-¢) (REX
R

1=

donde E es el voltaje de la bateria en voltios, R es el valor del resistor en ohmios,
L es el valor del inductor en henrios, ¢ es el tiempo en segundos después de cerrar
el interruptor y e es el numero de Euler, el cual es 2.718 con una precision de tres
cifras decimales. Usando esta férmula, escriba, compile y ejecute un programa en
C++ para determinar el flujo de corriente en el circuito ilustrado en la figura 2.18
cuando ¢ es 0.12 segundos.

R=56Q

E=15vV —/ L=12h

Figura 2.18 Un circuito RL en serie.

Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifiquelo para de-
terminar la corriente en 0.12 segundos si E es de 25 voltios, R es de 33 ohmios y
L es de 15 henrios.

La corriente eléctrica, 7, en amperios, que fluye a través del circuito ilustrado en
la figura 2.19 esta dado por la siguiente ecuacion:

(E)e—t/RC
R

1=

www.FreelLibros.me

13.

2.7 Aplicaciones 29

donde E es el voltaje de la bateria en voltios, R es el valor del resistor en ohmios,
C es el valor del capacitor en faradios, ¢ es el tiempo en segundos después de ce-
rrar el interruptor y e es el numero de Euler, el cual es 2.718 con una precision de
tres cifras decimales. Usando esta férmula, escriba, compile y ejecute un progra-
ma en C++ para determinar el voltaje a través del capacitor ilustrado en la figura
2.19 cuando ¢ es 0.31 segundos.

R=8100L2

— AW

E=20V — = C=18x10°f

Figura 2.19 Un circuito RC en serie.

. Verifique en forma manual el valor calculado por su programa. Después de haber

comprobado que su programa funciona en forma correcta, modifiquelo para de-
terminar la corriente en 0.85 segundos si E es de 25 voltios, R es de 220 ohmios
y C es de 0.00039 faradios.

. El voltaje eléctrico, V, en voltios, a través del capacitor, C, ilustrado en la figura

2.20 esta dado por la ecuacion
E[l _ e—t/RC]

R

V:

donde E es el voltaje de la bateria en voltios, R es el valor del resistor en ohmios,
C es el valor del capacitor en faradios, ¢ es el tiempo en segundos después de ce-
rrar el interruptor y e es el nimero de Euler, el cual es 2.718 con una precision de
tres cifras decimales. Usando esta férmula, escriba, compile y ejecute un progra-
ma en C++ para determinar el voltaje a través del capacitor ilustrado en la figura
2.20 cuando ¢ es 0.42 segundos.

R=470Q

— MM

E=35V —/ == C=220x10"°f

Figura 2.20 Un circuito RC en serie.

. Verifique en forma manual el valor calculado por su programa. Después de haber

comprobado que su programa funciona en forma correcta, modifiquelo para de-
terminar la corriente en 0.85 segundos si E es de 25 voltios, R es de 220 ohmios
y C es de 0.00039 faradios.

www.FreelLibros.me

100

CariTuLo 2 Programacion orientada a procedimientos en C++

14. a. El conjunto de ecuaciones lineales

ap Xy +apX, =¢

ay Xy + a»X,

%)

puede resolverse usando la regla de Cramer:

X, = 1422 ~ €412
a11422 — 412421

X, = €2d11 ~— G141
a11933 — 412921

Usando estas ecuaciones, escriba, compile y ejecute un programa en C++ para en-
contrar los valores X; y X, que satisfagan las siguientes ecuaciones:

3X, + 4X, = 40
5X1 + 2X2 = 34
b. Verifique en forma manual los valores calculados por su programa. Después de

haber comprobado que su programa funciona en forma correcta, modifiquelo pa-
ra resolver el siguiente conjunto de ecuaciones:

3X, + 12.5X, = 22.5
42X, - 6.3X, = 30

z.y ERRORES COMUNES DE PROGRAMACION

Parte de aprender cualquier lenguaje de programacion es cometer los errores elementales que
se encuentran por lo comun cuando se empieza a usar el lenguaje. Estos errores tienden a ser
bastante frustrantes debido a que cada lenguaje tiene su propio conjunto de errores de pro-
gramacion comunes esperando a los incautos. Los errores mas comunes cometidos cuando
se empieza a programar en C++ incluyen los siguientes.

1.
2.

Omitir los paréntesis después de main.

Omitir o escribir de manera incorrecta la llave de apertura { que indica el inicio de
un cuerpo de funcion.

Omitir o escribir de manera incorrecta la llave de cierre } que indica el final de una
funcion.

Escribir mal el nombre de un objeto o funcién; por ejemplo, escribir cot en lugar
de cout.

Olvidar cerrar una cadena enviada a cout con un simbolo de comillas.

Olvidar separar flujos de datos individuales pasados a cout con un simbolo de in-
sercion (“enviar a”), <<.

Omitir el punto y coma al final de cada instruccion de C++.

www.FreelLibros.me

2.8 Errores comunes de programacién 101

8. Agregar un punto y coma al final del comando preprocesador #include.

9. Olvidar \n para indicar una linea nueva.

10

11.

12.

13.

14.

15.

Escribir en forma incorrecta la letra O en lugar del niimero cero (0), o viceversa.
Escribir de forma incorrecta la letra 1, por el numero 1, o viceversa.

Olvidar declarar todas las variables usadas en el programa. Este error es detectado
por el compilador y se genera un mensaje de error para todas las variables no
declaradas.

Almacenar un tipo de datos inapropiado en una variable declarada. Este error es
detectado por el compilador y el valor asignado es convertido al tipo de datos de
la variable a la que fue asignado.

Usar una variable en una expresion antes que se haya asignado un valor a la
variable. Aqui, cualquier valor que resulte estar en la variable se usara cuando se
evalia la expresion, y el resultado carecera de significado.

Dividir valores enteros en forma incorrecta. Este error se disfraza por lo general
dentro de una expresion mas grande y puede ser un error muy problematico de
detectar. Por ejemplo, la expresion

3425 +2/3+7.9

produce el mismo resultado que la expresion
3.425+7.9

debido a que la divisién de nameros enteros de 2/3 es 0.

Mezclar tipos de datos en la misma expresion sin entender con claridad el efecto
producido. En vista que C++ permite expresiones con tipos de datos “mixtos”, es
importante entender el orden de evaluacion y el tipo de datos de todos los calculos
intermedios. Como una regla general, es mejor no mezclar nunca tipos de datos en
una expresion a menos que se desee un efecto especifico.

El tercero, quinto, séptimo, octavo y noveno errores en esta lista son los mas
comunes al inicio, mientras incluso programadores experimentados en ocasiones
cometen el décimo error. Vale la pena que escriba un programa e introduzca de
manera especifica cada uno de estos errores, uno a la vez, para ver qué mensajes
de error son producidos por el compilador, si es que se genera alguno. Entonces
cuando aparezcan estos mensajes de error debido a errores inadvertidos, tendra
experiencia para comprender los mensajes y corregir los errores.

En un nivel mas fundamental, un error de programacion importante cometido
por los programadores principiantes es la prisa por codificar y ejecutar un progra-
ma antes que el programador haya entendido por completo lo que se requiere y los
algoritmos y procedimientos que se usaran para producir el resultado deseado. Un
sintoma de este apresuramiento por introducir un programa en la computadora es
la carencia de un esbozo del programa propuesto o de un programa escrito en si.
Pueden evitarse muchos problemas con sé6lo revisar una copia del programa, ya
sea manuscrita o enlistada por la computadora, antes que sea compilado.

www.FreelLibros.me

102 CarituLo 2 Programacion orientada a procedimientos en C++

/
/

9

RESUMEN DEL CAPITULO

Un programa en C++ consiste de uno o mas modulos llamados funciones. Una de
estas funciones debe llamarse main (). La funcién main () identifica el punto
de inicio de un programa C++.

El programa C++ mads simple consiste en una sola funciéon main().

3. Después del nombre de la funcion, el cuerpo de una funcion tiene la siguiente

forma general:

{

Todas las instrucciones de C++ van aqui;

}

Todas las instrucciones de C++ deben terminar con un punto y coma.

5. En este capitulo se introdujeron tres tipos de datos: enteros, de punto flotante y

booleanos. C++ reconoce cada uno de estos tipos de datos, ademas de otros que
aun falta por presentar.

El objeto cout puede usarse para desplegar todos los tipos de datos de C++.

7. Cuando se usa el objeto cout dentro de un programa, debe colocarse el comando

preprocesador #include <iostream> en la parte superior del programa. Los
comandos preprocesadores no terminan con punto y coma.

Toda variable en un programa C++ debe declararse como el tipo de valor que
puede almacenar. Las declaraciones dentro de una funcién pueden colocarse en
cualquier parte dentro de la funcion, aunque una variable s6lo puede ser usada
después de ser declarada. Las variables también pueden inicializarse cuando son
declaradas. Ademas, las variables del mismo tipo pueden declararse usando una
sola instruccion de declaracion. Las instrucciones de declaracion de variables tienen
la forma general:

tipo-de-datos nombre(s)DeVariables;

Un programa C++ simple que contiene instrucciones de declaracion tiene la forma
tipica

#include <iostream>

using namespace std;

int main()
{
instrucciones de declaracidn;

otras instrucciones;

return 0;

www.FreelLibros.me

2.9 Resumen del capitulo 103

Aunque las instrucciones de declaracion pueden colocarse en cualquier parte
dentro del cuerpo de la funcion, s6lo puede utilizarse una variable después que se
ha declarado.

10. Las instrucciones de declaracion siempre efectiian una tarea de software que
consiste en informar al compilador los nombres validos de las variables de una
funcién. Cuando una declaracion de variable también causa que la computadora
asigne ubicaciones de memoria para la variable, la instruccion de declaracion
también se llama instruccion de definicion. (Todas las declaraciones que se han
usado en este capitulo han sido también instrucciones de definicion.)

11. El operador sizeof () puede utilizarse para determinar la cantidad de
almacenamiento reservado para las variables.

| || h [N
Consideracion de opciones de carrera

- |
Ingenieria electrica

La ingenieria eléctrica tiene que ver con la aplicacion de los principios de la electricidad y el
electromagnetismo para la fabricaciéon de toda clase de maquinas y dispositivos que utilicen
electricidad o produzcan energia eléctrica. Este campo es el mds grande de todos los campos de la
ingenieria. En sus inicios, a mediados del siglo xix, s6lo se interesaba por la generacion de energia
eléctrica. Ha evolucionado para convertirse en un campo con horizontes mas amplios, abarcando
las comunicaciones, las computadoras, la robética, los dispositivos de estado solido y el disefio de
circuitos integrados.

1. Potencia. Esta drea implica la generacion de energia eléctrica en grandes plantas de combusti-
bles fosiles, nucleares, solares o hidroeléctricas, o la utilizacion eficiente de la energia eléctrica
por medio de motores o dispositivos de iluminacion. También son importantes la transmision
y distribucién de energia eléctrica por medio de lineas eléctricas aéreas, microondas, ductos y
lineas de superconductores.

2. Electronica de estado solido. A través de la fisica moderna y la ciencia de los materiales, se han
desarrollado materiales semiconductores exdticos que se usan para construir microcircuitos pa-
ra la vigilancia y control de las operaciones de toda clase de dispositivos, desde juegos de video
hasta robots en lineas de montaje. La mejora en la confiabilidad, la rapida reduccion en el
tamafio y la reduccion en los requerimientos de potencia de los componentes eléctricos minia-
turizados modernos han creado oportunidades ilimitadas para sus aplicaciones.

3. Comunicaciones. Las comunicaciones implican el disefio y construccioén de equipo usado en la
transmision de informacion por medio de electricidad u ondas electromagnéticas (radio, luz,
microondas, etc.). El uso del laser para la comunicacion es un tema de interés contemporaneo,
mientras que las caracteristicas de las antenas y el radar son un poco mas antiguas.

4. Computadoras y robodtica. Aunque la electrénica tiene que ver con los principios asociados con
las funciones de los componentes, los ingenieros en computacion estan interesados en disefiar
los circuitos complejos que entrelazan los componentes en una computadora. Los microproce-
sadores, o computadoras pequenas, estan disefiados para vigilar y controlar de manera cons-
tante las operaciones de una pieza de equipo particular como un torno o un piloto automatico.

www.FreelLibros.me

www.FreelLibros.me

