
CCAPÍTULOAPÍTULO 2
Solución de problemas mediante C++

TEMAS

2.1 INTRODUCCIÓN A C++
LA FUNCIÓN main()
EL OBJETO cout

2.2 ESTILO DE PROGRAMACIÓN
COMENTARIOS

2.3 TIPOS DE DATOS
TIPOS DE DATOS ENTEROS TIPOS DE PUNTO FLOTANTE

DETERMINACIÓN DEL TAMAÑO NOTACIÓN EXPONENCIAL

DE ALMACENAMIENTO

2.4 OPERACIONES ARITMÉTICAS
TIPOS DE EXPRESIÓN NEGACIÓN

DIVISIÓN DE ENTEROS PRECEDENCIA DEL OPERADOR Y ASOCIATIVIDAD

2.5 VARIABLES E INSTRUCCIONES DE DECLARACIÓN
INSTRUCCIONES DE DECLARACIÓN ASIGNACIÓN DE MEMORIA

DECLARACIONES MÚLTIPLES DESPLIEGUE DE LA DIRECCIÓN DE UNA VARIABLE

2.6 APLICACIÓN DEL PROCEDIMIENTO DE DESARROLLO

DE SOFTWARE
PASO 1: ANALIZAR EL PROBLEMA PASO 3: CODIFICAR LA SOLUCIÓN

PASO 2: DESARROLLAR UNA PASO 4: PRUEBA Y CORRECCIÓN DEL PROGRAMA

SOLUCIÓN

2.7 APLICACIONES
APLICACIÓN 1: TRAMPAS DE UN RADAR DE VELOCIDAD

APLICACIÓN 2: REDES DE CONMUTACIÓN TELEFÓNICA

2.8 ERRORES COMUNES DE PROGRAMACIÓN

2.9 RESUMEN DEL CAPÍTULO
CONSIDERACIÓN DE LAS OPCIONES DE CARRERA: INGENIERÍA ELÉCTRICA

Solución de problemas mediante C++

2

33

www.FreeLibros.me

CAPÍTULO 2 Programación orientada a procedimientos en C++34

2.1 INTRODUCCIÓN A C++

Un programa bien diseñado se construye utilizando una filosofía similar a la usada para
edificar un edificio bien diseñado: no sólo sucede; depende de una planeación y ejecución
cuidadosa si el diseño final ha de cumplir su propósito pretendido. Del mismo modo en que
una parte integral del diseño de un edificio es su estructura, lo mismo sucede con un pro-
grama.

Los programas cuyas estructuras consisten de segmentos interrelacionados, organizados
en un orden lógico y fácilmente comprensible para formar una unidad integrada y completa,
se conocen como programas modulares (figura 2.1). Los programas modulares son notoria-
mente más fáciles de desarrollar, corregir y modificar que los programas construidos de algu-
na otra manera. En terminología de programación, los segmentos más pequeños usados para
construir un programa modular se conocen como módulos.

Cada módulo está diseñado y desarrollado para realizar una tarea específica y en reali-
dad es un subprograma pequeño en sí mismo. Un programa C++ completo se construye com-
binando tantos módulos como sea necesario para producir el resultado deseado. La ventaja
de la construcción modular es que el diseño general del programa puede desarrollarse antes de
escribir cualquier módulo individual. Una vez que se finalizan los requerimientos para cada
módulo, los módulos pueden programarse e integrarse dentro del programa general confor-
me se completan.

Figura 2.1 Un programa bien diseñado se construye usando módulos.

En C++, los módulos pueden ser clases o funciones. Ayuda pensar en una función como
una máquina pequeña que transforma los datos que recibe en un producto terminado. Por
ejemplo, la figura 2.2 ilustra una función que acepta dos números como entradas y multi-
plica los dos números para producir una salida. Como se muestra, la interfaz para la fun-
ción son sus entradas y resultados. El proceso de convertir las entradas en resultados se
encapsula y oculta dentro de la función. A este respecto, la función puede considerarse co-
mo una sola unidad que proporciona una operación de propósito especial. Una analogía
similar es apropiada para una clase.

Módulo 1

Módulo 2

Módulo 4

Módulo 3

Módulo 5 Módulo 6

www.FreeLibros.me

Figura 2.2 Una función multiplicadora.

Una clase es una unidad más complicada que una función, debido a que contiene tanto da-
tos como funciones apropiadas para manipular los datos. Por tanto, a diferencia de una
función, la cual se usa para encapsular un conjunto de operaciones, una clase encapsula
tanto datos como uno o más conjuntos de operaciones. Por ello, cada clase contiene todos
los elementos requeridos para la entrada, salida y procesamiento de sus objetos y puede
considerarse como una pequeña fábrica que contiene materia prima (los datos) y máquinas
(las funciones). Al principio, nos interesaremos de manera predominante en el módulo de
función más básico.

Un requerimiento importante para diseñar una buena función o clase es darle un nom-
bre que le transmita al lector alguna idea de lo que hace la función o clase. Los nombres
admitidos para funciones y clases también se usan para nombrar otros elementos del len-
guaje C++ y se denominan de manera colectiva identificadores. Los identificadores pueden
formarse por cualquier combinación de letras, dígitos o subrayados (_) seleccionados de
acuerdo con las siguientes reglas:

1. El primer carácter del nombre debe ser una letra o subrayado (_).

2. Sólo pueden seguir a la letra inicial, letras, dígitos o subrayados. No se permiten
espacios en blanco; se usa el subrayado para separar palabras en un nombre
consistente de múltiples palabras o se usan mayúsculas para la primera letra de
una o más palabras.

3. El nombre de una función no puede ser una de las palabras clave enumeradas en
la tabla 2.1. (Una palabra clave es una palabra que es apartada por el lenguaje
para un propósito especial y sólo puede usarse en una manera especificada.)1

4. El número máximo de caracteres en una función es 1024.2

(a x b)

Resultado

Primer
número

Segundo
número

2.1 Introducción a C++ 35

1Las palabras clave en C también son palabras reservadas, lo cual significa que deben usarse sólo para el propósito especificado.
Intentar usarlas para cualquier otro propósito generará un mensaje de error.

2Éste es el mínimo requerido por el estándar ANSI.

www.FreeLibros.me

Tabla 2.1 Palabras clave

auto delete goto publicƒ this
break do if register template
case double inline return typedef
catch else int short unionƒ
char enum long signed unsigned
class extern new sizeof virtual
const float overload staticƒ void
continue for private struct volatile
default friend protected switch while

Son ejemplos de identificadores válidos de C++:

GradARad intersección sumarNum pendiente
bess mult_dos HallarMax densidad

Son ejemplos de identificadores inválidos:

1AB3 (empieza con un número, lo cual viola la regla 1)

E*6 (contiene un carácter especial, lo cual viola la regla 2)

while (ésta es una palabra clave, lo cual viola la regla 3)

Además de apegarse a las reglas de identificadores de C++, el nombre de la función siem-
pre debe ser seguido por paréntesis. (La razón para esto se explicará más adelante.) Ade-
más, un buen nombre de función deberá ser mnemónico, esto es, una palabra o nombre
designado como un auxiliar para la memoria. Por ejemplo, el nombre de función GradA-
Rad() (note que hemos incluido los paréntesis requeridos después del identificador, lo cual
lo señala con claridad como un nombre de función) es un mnemónico si es el nombre de
una función que convierte grados a radianes. Aquí, el nombre en sí ayuda a identificar lo
que hace la función.

Son ejemplos de nombres de función válidos que no son mnemónicos:

fácil() c3po() r2d2() la fuerza() miguel()

Los nombres de función que no son mnemónicos no deberán usarse porque no transmiten
información sobre lo que hace la función.

Además, los nombres de función se pueden escribir como una mezcla de letras mayúscu-
las y minúsculas. Esto se está volviendo cada vez más común en C++, aunque no es absolu-
tamente necesario. Los identificadores escritos por completo en mayúsculas por lo general
se reservan para constantes simbólicas, un tema que se cubre en la sección 3.5.

Por añadidura, C++ es un lenguaje sensible al uso de mayúsculas y minúsculas. Esto sig-
nifica que el compilador distingue entre letras mayúsculas y minúsculas. Por tanto, en C++,
los nombres TOTAL, total y TotaL, representan tres nombres distintos.

CAPÍTULO 2 Programación orientada a procedimientos en C++36

www.FreeLibros.me

La función main()
Una ventaja distintiva de usar funciones y clases en C++ es que la estructura total del pro-
grama en general, y de módulos individuales en particular, puede planearse con anticipa-
ción, incluyendo provisiones para probar y verificar la operación de cada módulo. Cada
función y clase puede escribirse entonces para cumplir con su objetivo pretendido.

Para facilitar la colocación y ejecución ordenada de los módulos, cada programa C++
debe tener una y sólo una función llamada main(). La función main() se conoce como
una función controladora, porque controla, o indica, a los otros módulos la secuencia en la
que tienen que ejecutarse (figura 2.3).3

Figura 2.3 La función main() dirige a todas las otras funciones.

La figura 2.4 ilustra una estructura para la función main(). La primera línea de la fun-
ción, en este caso int main(), se conoce como línea de encabezado de la función. Una lí-
nea de encabezado de la función, la cual siempre es la primera línea de una función,
contiene tres fragmentos de información:4

1. Qué tipo de dato, si hay alguno, es devuelto por la función.

2. El nombre de la función.

3. Qué tipo de dato, si hay alguno, es enviado a la función.

La palabra clave antes del nombre de la función define el tipo de valor que devuelve la fun-
ción cuando ha completado su operación. Cuando se coloca antes del nombre de la función,

main()

.

.

.

.

.

Tú vas primero

1er.
Módulo

Ya lo hice

Ya lo hice

Ya lo hice

Ya lo hice

Tú vas segundo
2o.

módulo

Tú vas tercero
3er.

módulo

Tú vas al último

Último
módulo

2.1 Introducción a C++ 37

3Los módulos ejecutados a partir de main() pueden, a su vez, ejecutar otros módulos. Cada módulo, sin embargo, siempre re-
gresa al módulo que inició su ejecución. Esto se aplica incluso a main(), la cual regresa el control al sistema operativo cuando
fue iniciado main().

4Un método de clase también debe empezar con una línea de encabezado que se apega a estas mismas reglas.

www.FreeLibros.me

la palabra clave int (véase la tabla 2.1) indica que la función devolverá el valor de un núme-
ro entero. Del mismo modo, cuando los paréntesis que siguen al nombre de la función están
vacíos, significa que no se transmitirán datos a la función cuando se esté ejecutando. (Los da-
tos transmitidos a una función al momento de ejecutarla se llaman argumentos de la función.)
Las llaves { y }, determinan el principio y el fin del cuerpo de la función y encierran las instruc-
ciones que la componen. Las instrucciones dentro de las llaves determinan lo que hace la fun-
ción. Cada instrucción dentro de la función debe terminar con un punto y coma (;).

Figura 2.4 La estructura de una función main().

Se pueden nombrar y escribir muchas de las funciones C++ personalizadas. De hecho, el
resto de este libro se ocupa de manera principal de las instrucciones requeridas para elabo-
rar funciones útiles y la forma de combinar funciones y datos en clases y programas útiles.
Cada programa, sin embargo, debe tener una y sólo una función main(). Hasta que
aprenda cómo pasar y regresar los datos de una función (los temas del capítulo 6), la línea
de encabezado ilustrada en la figura 2.4 servirá para todos los programas que sea necesa-
rio escribir. Para programas simples, hay que considerar que las primeras dos líneas (que
se explican con más detalle en el capítulo 6):

intƒmain()

{

tan sólo señalan que “el programa comienza aquí”, mientras las últimas dos líneas

ƒƒreturnƒ0;

}

señalan el final del programa. Por suerte, muchas funciones y clases útiles ya se presentan
escritas. Ahora se verá cómo usar un objeto creado a partir de una de estas clases para crear
nuestro primer programa funcional en C++.

El objeto cout
Uno de los objetos más versátiles y más usados en C++ se llama cout (pronunciado “si
out”). Este objeto, cuyo nombre se deriva de Console OUTput, es un objeto de salida que
envía datos introducidos en él al dispositivo estándar de salida.5 Para la mayoría de los sis-

CAPÍTULO 2 Programación orientada a procedimientos en C++38

5El objeto cout se crea de manera formal a partir de la clase ostream, la cual se describe con más detalle en el capítulo 7.

int main ()
{

las instrucciones del programa van aquí

return 0;
}

Cuerpo de la función

Tipo de valor devuelto

Nombre de la función Lista de argumentos vacía

www.FreeLibros.me

temas, este dispositivo de salida es una pantalla de video. El objeto cout muestra en el mo-
nitor cualquier cosa enviada a él. Por ejemplo, si se envían los datos ¡Hola mundo! a
cout, estos datos se imprimen (o despliegan) en la pantalla de la terminal. Los datos ¡Ho-
la mundo! se envían al objeto cout encerrando el texto entre comillas, “poner cade-
na aquí”, y colocando el símbolo de inserción << (“enviar a”), antes del mensaje y
después del nombre del objeto, como se muestra en la figura 2.5.

coutƒ<<ƒ“¡Hola mundo!”;

Figura 2.5 Envío de un mensaje a cout.

Ahora juntemos todo esto en un programa C++ funcional que pueda ejecutarse en su compu-
tadora. Considere el programa 2.1.

La primera línea del programa,

#includeƒ<iostream>

es un comando preprocesador que utiliza la palabra reservada include. Los comandos pre-
procesadores comienzan con un signo de número (#) y ejecutan alguna acción antes que el
compilador traduzca el programa fuente a código de máquina. De manera específica, el co-
mando preprocesador #include causa que el contenido del archivo invocado, en este caso
el archivo iostream, sea insertado en donde el comando #include aparezca en el progra-
ma. El iostream es una parte de la biblioteca estándar que contiene, entre otro código, dos
clases nombradas istream y ostream. Estas dos clases proporcionan las declaraciones
de datos y métodos utilizados para la entrada y salida de datos, respectivamente. El archi-
vo iostream se conoce como un archivo de encabezado debido a que siempre se coloca una
referencia a él en la parte superior, o cabeza, de un programa C++ usando el comando #in-
clude. Puede ser que se pregunte qué tiene que ver el archivo iostream con este programa
simple. La respuesta es que el objeto cout se crea a partir de la clase ostream. Por tanto,
el archivo de encabezado iostream debe incluirse en todos los programas que usen cout.
Como se indicó en el programa 2.1, los comandos preprocesadores no terminan con un pun-
to y coma.

2.1 Introducción a C++ 39

Programa 2.1

#includeƒ<iostream>ƒ
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"Hola mundo!";

ƒƒreturnƒ0;
}

www.FreeLibros.me

Después del comando preprocesador include hay una instrucción que contiene la pala-
bra reservada using. La instrucción,

using namespace std;

le dice al compilador dónde buscar para encontrar los archivos de encabezado en ausencia
de cualquier designación explícita adicional. Se puede pensar en un espacio de nombres co-
mo un archivo de código fuente al que tiene acceso el compilador cuando busca clases o fun-
ciones preescritas. Debido a que el archivo de encabezado iostream está contenido dentro
de un espacio de nombres llamado std, el compilador usará de manera automática el ob-
jeto cout de iostream a partir de este espacio de nombres siempre que se haga referen-
cia a cout. El uso de espacio de nombres le permite crear sus propias clases y funciones con
los mismos nombres provistos por la biblioteca estándar y colocarlos en espacios de nombres
invocados de manera diferente. Puede señalar al programa cuál clase o función usar al indi-
car el espacio de nombres donde desea que el compilador busque la clase o función.

La instrucción using es seguida por el inicio de la función main() del programa. Es-
ta función comienza con la línea de encabezado desarrollada al principio de esta sección. El
cuerpo de la función, entre llaves, consta de sólo dos instrucciones. La primera instrucción
en main() pasa un mensaje al objeto cout. El mensaje es la cadena “¡Hola mundo!”.

Debido a que cout es un objeto de una clase preescrita, no tenemos que escribirlo; está
disponible para su uso con sólo activarlo en forma correcta. Como todos los objetos de C++,
cout sólo puede ejecutar ciertas acciones bien definidas. Para cout, la acción es ensamblar
datos para mostrar la salida. Cuando se pasa una cadena de caracteres a cout, el objeto ase-
gura que la cadena se despliegue de manera correcta en su monitor, como se muestra en la fi-
gura 2.6.

¡Hola mundo!

Figura 2.6 La salida del programa 2.1.

CAPÍTULO 2 Programación orientada a procedimientos en C++40

¿Qué es la sintaxis?
La sintaxis de un lenguaje de programación es el conjunto de reglas para formular instrucciones
gramaticalmente correctas en un lenguaje. En la práctica esto significa que una instrucción en C++
con sintaxis correcta tiene la forma apropiada especificada para el compilador. Como tal, el com-
pilador aceptará la instrucción y no generará un mensaje de error.

Debe señalarse que una instrucción o programa individual puede ser correcto desde el pun-
to de vista sintáctico, pero incorrecto desde el punto de vista lógico. Una instrucción o programa
así estaría estructurado de manera correcta pero produciría un resultado incorrecto. Esto es simi-
lar a un enunciado en español que es correcto desde el punto de vista gramatical pero no tiene
sentido. Por ejemplo, aunque el enunciado “El árbol es un gato andrajoso” es gramaticalmente co-
rrecto, no tiene sentido.

Punto de Información

www.FreeLibros.me

Las cadenas en C++ son cualquier combinación de letras, números y caracteres especiales
encerrados entre comillas (“colocar cadena aquí”). Las comillas se usan para delimitar
(marcar) el comienzo y el final de la cadena y no se consideran parte de la cadena. Por tan-
to, la cadena de caracteres que forma el mensaje enviado a cout debe encerrarse entre co-
millas, como se ha hecho en el programa 2.1.

Escribiremos otro programa para ilustrar la versatilidad de cout. Lea el programa 2.2
para determinar qué hace.

Cuando se ejecuta el programa 2.2 se despliega lo siguiente:

Computadoras, computadoras por todos lados
ƒƒƒtan lejos como pueda llegarƒC

Tal vez se pregunte por qué no apareció \n en la salida. Los dos caracteres \ y n, cuando
se usan juntos, se llaman secuencia de escape para una línea nueva. Le indican a cout que
envíe instrucciones al dispositivo de salida para iniciar una línea nueva. En C++, el carác-
ter de diagonal inversa (\) proporciona un “escape” de la interpretación normal del carác-
ter que la sigue, alterando el significado del siguiente carácter. Si se omitiera la diagonal
inversa de la segunda instrucción cout en el programa 2.2, la n se imprimiría como la le-
tra n y el programa desplegaría:

Computadoras, computadoras por todos ladosƒƒƒtan lejos como pue-
da llegarƒC

Pueden colocarse secuencias de escape para una línea nueva en cualquier parte dentro del
mensaje que se transmite a cout. Vea si puede determinar el despliegue producido por el
programa 2.3.

2.1 Introducción a C++ 41

Programa 2.2

#includeƒ<iostream>ƒ
usingƒnamespaceƒstd;ƒ

intƒmain()
{
ƒƒcoutƒ<<ƒ"Computadoras, computadoras por todos lados";
ƒƒcoutƒ<<ƒ"\nƒƒƒtan lejos como pueda llegarƒC";ƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒreturnƒ0;
}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

www.FreeLibros.me

La salida para el programa 2.3 es:

Computadoras por todos lados tan lejos comoƒ
ƒpuede llegar C

puedo ver

Ejercicios 2.1

1. Indique si los siguientes son nombres de función válidos. Si son válidos, indique si
son nombres mnemónicos. (Recuerde que un nombre de función mnemónico trans-
mite alguna idea sobre el propósito de la función.) Si son nombres inválidos, indi-
que por qué.

poder densidad m1234$ ampnuevo 1234 abcd
total tangente valAbs computado b34a 34ab
voltios$ a2B3 while valMin seno $seno
coseno velocidad distancianeta suma return pila

2. Suponga que se han escrito las siguientes funciones:

obtenerLargo(),ƒƒobtenerAncho(),ƒƒcalcArea(),ƒƒmostrarArea()

a. A partir de los nombres de las funciones, ¿qué piensa que podría hacer cada
función?

b. ¿En qué orden piensa que una función main() podría ejecutar estas funciones
(con base en sus nombres)?

3. Suponga que se han escrito las siguientes funciones:

velocidad(),ƒƒdistancia(),ƒƒaceleración()

A partir de los nombres de las funciones, ¿qué piensa que podría hacer cada fun-
ción?

4. Determine nombres para funciones que hagan lo siguiente:
a. Encontrar el promedio de un conjunto de números.
b. Encontrar el área de un rectángulo.

CAPÍTULO 2 Programación orientada a procedimientos en C++42

Programa 2.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{ƒƒ
ƒƒcoutƒ<<ƒ"Computadoras por todos lados\n tan lejos como\n\npueda llegar C";

ƒƒreturnƒ0;
}

www.FreeLibros.me

c. Encontrar el valor mínimo en un conjunto de números.
d. Encontrar la densidad de una puerta de acero.
e. Clasificar un conjunto de números de menor a mayor.

5. Del mismo modo en que la palabra clave int se usa para indicar que una función
devolverá un número entero, las palabras clave void, char, float y double se
usan para indicar que una función no devolverá ningún valor o devolverá un carác-
ter, un número en punto flotante en precisión simple, y un número en precisión do-
ble, respectivamente. Usando esta información, escriba líneas de encabezado para
una función main() que no recibirá argumentos pero que devolverá:

a. ningún valor
b. un carácter
c. un número de punto flotante en precisión simple
d. un número en precisión doble

6. a. Usando cout, escriba un programa en C++ que despliegue su nombre en una
línea, su domicilio en una segunda línea, y su ciudad, estado y código postal en
una tercera línea.

b. Ejecute el programa que ha escrito para el ejercicio 6a en una computadora.
(NOTA: Debe entender los procedimientos para introducir y ejecutar un progra-
ma C++ en la computadora particular que esté usando.)

7. a. Escriba un programa en C++ para desplegar lo siguiente:

La cosecante de un ángulo
ƒƒƒes igual a uno dividido entre
ƒƒƒƒƒel seno del ángulo.

b. Compile y ejecute el programa que ha escrito para el ejercicio 7a en una compu-
tadora.

8. a. ¿Cuántas instrucciones cout usaría para desplegar lo siguiente:

Grados Radianes
0 0.0000
90 1.5708
180 3.1416
270 4.7124
360 6.2832

b. ¿Cuál es el número mínimo de instrucciones cout que podrían usarse para im-
primir la tabla en el ejercicio 8a?

c. Escriba un programa en C++ completo para producir la salida ilustrada en el
ejercicio 8a.

d. Ejecute el programa que ha escrito para el ejercicio 8c en una computadora.

9. En respuesta a una secuencia de escape de línea nueva, cout coloca el siguiente ca-
rácter desplegado al principio de una línea nueva. Esta colocación del siguiente ca-
rácter en realidad representa dos operaciones distintas. ¿Cuáles son?

2.1 Introducción a C++ 43

www.FreeLibros.me

10. a. Suponiendo un compilador que no es sensible al uso de mayúsculas y minúsculas,
determine cuáles de estos nombres de unidades de programa son equivalentes:

PROMEDIO promedio MODO BESSEL Modo
Total besseL TeMp Densidad TEMP
densiDAD MEDIA total media moDO

b. Vuelva a hacer el ejercicio 10a suponiendo que el compilador es sensible al uso
de mayúsculas y minúsculas.

Ejercicios para estructurar un proyecto

La mayor parte de los proyectos, tanto de programación como de otro tipo, por lo general
pueden estructurarse en subtareas o unidades de actividad más pequeñas. Estas subtareas
más pequeñas a menudo pueden delegarse a diferentes personas, de modo que cuando to-
das las tareas se terminan e integran, el proyecto o programa está completo. Para los ejerci-
cios 11 a 16, determine un conjunto de subtareas que, unidas, completen el proyecto. Tome
en cuenta que hay muchas soluciones posibles para cada ejercicio. El único requisito es que
el conjunto de subtareas seleccionadas, cuando se junten, completen la tarea requerida.

NOTA: El propósito de estos ejercicios es que considere las diferentes formas en que
pueden estructurarse tareas complejas. Aunque no hay una solución correcta para estos
ejercicios, hay soluciones incorrectas y soluciones que son mejores que otras. Una solución
incorrecta es aquella que no especifica por completo la tarea. Una solución es mejor que
otra si identifica con más claridad o más facilidad lo que debe hacerse.

11. Se le dio la tarea de cablear e instalar luces en el ático de su casa. Determine un con-
junto de subtareas que, unidas, harán que logre esto. (Sugerencia: La primera sub-
tarea debería determinar la colocación de las lámparas.)

12. Se le da el trabajo de preparar una comida completa para cinco personas el próxi-
mo fin de semana. Determine un conjunto de subtareas que, unidas, harán que pue-
dan lograr esto. (Sugerencia: Una subtarea, no necesariamente la primera, debería
ser comprar los alimentos.)

13. Usted es un estudiante de segundo año de bachillerato y está planeando ir a una es-
cuela superior para estudiar ingeniería eléctrica después de graduarse. Enumere un
conjunto de objetivos principales que debe cumplir para alcanzar esta meta. (Suge-
rencia: Una subtarea es “Determinar los cursos adecuados que deberá tomar”.)

14. Se le ha dado el trabajo de cultivar un huerto. Determine un conjunto de subtareas
para lograr esto. (Sugerencia: Una de las subtareas sería planear la disposición del
huerto.)

15. Usted es responsable de planificar y organizar un viaje de la familia a un campa-
mento este verano. Enumere un conjunto de subtareas que, unidas, lo lleven a al-
canzar este objetivo con éxito. (Sugerencia: Una subtarea sería seleccionar la
ubicación del campamento.)

16. a. Un laboratorio nacional de exámenes médicos desea un sistema de cómputo
nuevo para analizar los resultados de sus exámenes. El sistema debe ser capaz
de procesar los resultados diarios. Además, el laboratorio requiere recuperar y
obtener un informe impreso de todos los resultados que cumplen con ciertos cri-

CAPÍTULO 2 Programación orientada a procedimientos en C++44

www.FreeLibros.me

terios, por ejemplo, todos los resultados obtenidos por un medico particular o
todos los resultados obtenidos para los hospitales en un estado particular. De-
termine tres o cuatro unidades del programa en los que podría tratarse por se-
parado este sistema. (Sugerencia: Una unidad del programa posible es “Preparar
los resultados diarios” para crear los informes de cada día.)

b. Suponga que alguien introduce datos incorrectos para un resultado de examen
particular, lo cual se descubre después que los datos se han introducido y alma-
cenado en el sistema. ¿Qué unidad del programa es necesaria para corregir es-
te problema? Discuta por qué una unidad del programa como ésta podría
requerirse o no en la mayor parte de los sistemas.

c. Suponga que existe una unidad del programa que permite a un usuario alterar
o cambiar datos que se han introducido y almacenado en forma incorrecta. Dis-
cuta la necesidad de incluir un “rastreo de auditoría” que permitiría una recons-
trucción posterior de los cambios hechos, cuándo se hicieron y quién los hizo.

2.2 ESTILO DE PROGRAMACIÓN

Los programas en C++ empiezan la ejecución al principio de la función main(). Debido
a que un programa sólo puede tener un punto de inicio, todo programa en lenguaje C++
debe contener una y sólo una función main(). Como hemos visto, todas las instrucciones
que forman la función main() se incluyen luego dentro de las llaves que siguen al nom-
bre de la función. Aunque la función main() debe estar presente en todos los programas
C++, éste no requiere que la palabra main, los paréntesis () o las llaves {} se coloquen en
alguna forma particular. La forma usada en la sección anterior,

intƒmain()
{ƒƒƒƒƒƒ
ƒƒlas instrucciones del programa van aquí;

ƒƒreturnƒ0;
}

se eligió sólo por claridad y facilidad en la lectura del programa. Si una de las instruccio-
nes del programa usa el objeto cout, debe incluirse el archivo de encabezado iostream,
al igual que la instrucción using namespace std;. Por ejemplo, la siguiente forma ge-
neral de una función main() también funcionaría:

intƒmain
ƒ(
ƒ)ƒ{ƒprimera instrucción; segunda instrucción;
ƒƒƒƒƒƒƒƒƒƒtercera instrucción; cuarta
instrucción;ƒ
returnƒ0;}

Note que puede ponerse más de una instrucción en una línea, o una instrucción puede es-
cribirse en más de una línea. Con excepción de las cadenas, comillas, identificadores y pa-
labras clave, C++ ignora todo el espacio en blanco. (El espacio en blanco se refiere a
cualquier combinación de uno o más espacios en blanco, tabuladores o líneas nuevas.) Por

2.2 Estilo de programación 45

www.FreeLibros.me

ejemplo, cambiar el espacio en blanco en el programa 2.1 y asegurarse que no se divide la
cadena ¡Hola mundo! en dos líneas produce el siguiente programa válido:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain
(
){
coutƒ<<
"¡Hola mundo!";
ƒreturnƒ0;
}

Aunque esta versión de main() funciona, es un ejemplo de un estilo de programación po-
bre en extremo. Es difícil de leer y entender. Para legibilidad, la función main() siempre
deberá escribirse en forma estándar como:

intƒmain()ƒ
{
ƒƒlas instrucciones del programa van aquí;

ƒƒreturnƒ0;
}

En esta forma estándar el nombre de la función empieza en la columna 1 y se coloca con
los paréntesis requeridos en una sola línea. La llave de apertura del cuerpo de la función
sigue en la siguiente línea y se coloca bajo la primera letra de la línea que contiene el nom-
bre de la función. Del mismo modo, la llave que cierra la función se coloca sola en la co-
lumna 1 como la última línea de la función. Esta estructura sirve para resaltar la función
como una unidad independiente.

Dentro de la función en sí, todas las instrucciones del programa tienen una sangría de
por lo menos dos espacios. La sangría es otra buena práctica de programación, en especial
si se usa la misma sangría para grupos similares de instrucciones. Revise el programa 2.2
para ver que se usó la misma sangría para ambas llamadas al objeto cout.

Mientras progresa en su comprensión y dominio de C++, desarrollará sus propios es-
tándares para las sangrías. Sólo tenga en cuenta que la forma final de sus programas debe-
rán ser consistentes y servir siempre como un auxiliar para la lectura y comprensión de sus
programas.

Comentarios

Los comentarios son observaciones explicativas que se hacen dentro de un programa. Cuan-
do se usan con cuidado, los comentarios pueden ser muy útiles para aclarar de qué trata el
programa completo, qué pretende lograr un grupo específico de instrucciones o qué pretende
hacer una línea. C++ acepta dos tipos de comentarios: de línea y de bloque. Ambos tipos de
comentarios pueden colocarse en cualquier parte dentro de un programa y no tienen efecto

CAPÍTULO 2 Programación orientada a procedimientos en C++46

www.FreeLibros.me

en la ejecución del mismo. El compilador ignora todos los comentarios; están ahí estrictamen-
te para la conveniencia de cualquiera que lea el programa.

Un comentario de línea empieza con dos diagonales (//) y continúa hasta el final de la
línea. Por ejemplo, las siguientes líneas son comentarios de línea:

//ƒéste es un comentario
//ƒeste programa imprime un mensaje
//ƒeste programa calcula una raíz cuadradaƒ

Los símbolos //, sin espacio en blanco entre ellos, designan el inicio del comentario de línea.
El final de la línea en la que está escrito el comentario designa el final del comentario.

Un comentario de línea puede escribirse ya sea en una sola línea o al final de la misma
línea que contiene una instrucción del programa. El programa 2.4 ilustra el uso de comenta-
rios de línea dentro de un programa.

El primer comentario aparece en una línea aparte al principio del programa y describe lo que
hace el programa. Por lo general ésta es una buena ubicación para incluir un comentario bre-
ve que describa el propósito del programa. Si se requieren más comentarios, puede colocar-
se uno por línea. Por tanto, cuando un comentario es demasiado largo para que quepa en
una línea, puede separarse en dos o más comentarios de línea, con cada comentario separa-
do precedido por el símbolo de doble diagonal establecido //. El comentario

//ƒeste comentario es inválido porqueƒ
ƒƒƒse extiende en dos líneas

producirá un mensaje de error de C++ en su computadora. Este comentario es correcto cuan-
do se escribe así

//ƒeste comentario se usa para ilustrar un
//ƒcomentario que se extiende en dos líneas

2.2 Estilo de programación 47

Programa 2.4

//ƒeste programa despliega un mensaje
#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"¡Hola mundo!”; // esto produce el despliegue

ƒƒreturnƒ0;
}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

www.FreeLibros.me

Sin embargo, los comentarios que abarcan dos o más líneas se escriben de manera más con-
veniente como comentarios en bloque tipo C que como múltiples comentarios de línea. Los
comentarios en bloque comienzan con los símbolos /* y terminan con los símbolos */. Por
ejemplo,

/*ƒÉste es un comentario en bloque que
ƒƒƒƒabarca
ƒƒƒƒtres líneasƒ*/

En C++, la estructura del programa pretende que sea legible y comprensible, haciendo inne-
cesario el uso de comentarios extensos. Esto se refuerza si los nombres de función, clase y va-
riable, que se describen en el siguiente capítulo, son seleccionados con cuidado para transmitir
su significado a cualquiera que lea el programa. Sin embargo, si el propósito de una función,
clase o instrucción aún no está claro a partir de su estructura, nombre o contexto, incluya co-
mentarios donde se necesiten aclaraciones. El código oscuro, sin comentarios, es una señal
segura de mala programación y se hace presente cuando el programa debe ser sometido a
mantenimiento o ser leído por otros. Del mismo modo, los comentarios excesivos también
son una señal de mala programación, porque implican que hubo un razonamiento insuficien-
te para hacer que el código se explicara por sí solo. Por lo general, cualquier programa que
escriba deberá comenzar con una serie de comentarios iniciales al programa que incluyan una
descripción breve de éste, su nombre y la fecha de la última modificación. Por consideracio-
nes de espacio, y debido a que todos los programas en este texto fueron escritos por el autor,
sólo se usarán comentarios iniciales para descripciones breves de los programas cuando no se
proporcionen como parte del texto descriptivo acompañante.

Ejercicios 2.2

1. a. ¿Funcionará el siguiente programa?

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()ƒ{coutƒ<<ƒ"¡Hola mundo!";ƒreturnƒ0;}

b. ¿Por qué el programa dado en el ejercicio 1a no es un buen programa?

2. Vuelva a escribir los siguientes programas para que se ajusten a una buena práctica
de programación y una sintaxis correcta.
a. #includeƒ<iostream>

ƒƒintƒmain(
ƒƒ){
ƒƒcoutƒƒƒƒƒƒƒƒƒƒ<<
ƒƒ"El momento ha llegado"
ƒƒ;ƒreturnƒ0;}

b. #includeƒ<iostream>
usingƒnamespaceƒstd;
ƒƒintƒmain
ƒƒ(ƒƒƒƒ){coutƒ<<ƒ"Newarkƒes una ciudad\n";coutƒ<<
ƒƒ"EnƒNuevaƒJersey\n";ƒcoutƒ<<
ƒƒ"También es una ciudad\n"
ƒƒ;ƒcoutƒ<<ƒ"EnƒDelaware\n"
ƒƒ;ƒreturnƒ0;}

CAPÍTULO 2 Programación orientada a procedimientos en C++48

www.FreeLibros.me

c. #includeƒ<iostream>
usingƒnamespaceƒstd;
ƒintƒmain()ƒ{coutƒ<<ƒLeer un programa\n";coutƒ<<
ƒ"es mucho más fácil\n"
ƒ;ƒcoutƒ<<ƒ"si se usa una forma estándar para main\n")
ƒ;ƒcout
ƒ<<"y cada instrucción se escribe\n";cout
ƒ<<ƒƒƒƒƒƒƒƒƒƒƒ"en una línea separada\n")ƒ
ƒ;ƒreturnƒ0;}

d. #includeƒ<iostream.h>
usingƒnamespaceƒstd;
ƒintƒmain
ƒ(ƒƒƒƒ){ƒcoutƒ<<ƒ"Todo programa enƒC++"
ƒ;ƒcout
ƒ<<"\ndebe tener una y sólo una"
ƒ;
ƒcoutƒ<<ƒ"función main"
ƒ;
ƒcoutƒ<<
ƒ"\nƒla secuencia de escape de caracteres")
ƒ;ƒcoutƒ<<
ƒƒƒ"\npara una línea nueva puede colocarse en cualquier

parte"
ƒ;ƒcout
ƒ<<"\nƒdentro del mensaje transmitido aƒcout"
ƒ;ƒreturnƒ0;}

3. a. Cuando se usa en un mensaje, el carácter de diagonal inversa altera el significado
del carácter que le sigue inmediatamente. Si deseamos imprimir el carácter de dia-
gonal inversa, tendríamos que proporcionan a cout una secuencia de escape para
que interprete normalmente la diagonal inversa. ¿Qué carácter piensa que se usa
para alterar la forma en que se interpreta un solo carácter de diagonal inversa?

b. Usando su respuesta al ejercicio 3a, escriba la secuencia de escape para imprimir
una diagonal inversa.

4. a. Una señal (token en inglés) de un lenguaje de computadora es cualquier secuencia
de caracteres que, como una unidad, sin caracteres que intervengan o espacios en
blanco, tiene un significado único. Usando esta definición de token, determine si
las secuencias de escape, nombres de función y las palabras clave enumeradas en
la tabla 1.2 son tokens del lenguaje C++.

b. Analice si agregar un espacio en blanco a un mensaje lo altera. Analice si los men-
sajes pueden considerarse tokens de C++.

c. Utilizando la definición de token que se dio en el ejercicio 4a, determine si la si-
guiente instrucción es verdadera: “Excepto por las tokens del lenguaje, C++ igno-
ra todos los espacios en blanco.”

2.2 Estilo de programación 49

www.FreeLibros.me

2.3 TIPOS DE DATOS

El objetivo de todos los programas es procesar datos, sean numéricos, alfabéticos, de audio o
de video. Es fundamental para este objetivo la clasificación de los datos en tipos específicos.
Por ejemplo, calcular la trayectoria de un cohete requiere operaciones matemáticas con da-
tos numéricos, y alfabetizar una lista de nombres requiere operaciones de comparación con
datos basados en caracteres. Además, algunas operaciones no son aplicables a ciertos tipos
de datos. Por ejemplo, no tiene sentido sumar nombres. Para impedir que los programado-
res intenten ejecutar una operación inapropiada, C++ sólo permite que se ejecuten ciertas
operaciones con ciertos tipos de datos.

Los tipos de dato permitidos y las operaciones apropiadas definidas para cada tipo se co-
nocen como tipo de dato. De manera formal, un tipo de dato se define como un conjunto de
valores y un conjunto de operaciones que pueden aplicarse a estos valores. Por ejemplo, el
conjunto de todos los números enteros constituye un conjunto de valores, como lo es el con-
junto de todos los números reales (números que contienen un punto decimal). Estos dos
conjuntos de números, sin embargo, no constituyen un tipo de dato hasta que se incluye
un conjunto de operaciones. Estas operaciones, por supuesto, son las operaciones matemáti-
cas y de comparación. La combinación de un conjunto de valores más las operaciones se
vuelve un tipo de dato verdadero.

C++ clasifica los tipos de datos en uno de dos agrupamientos fundamentales: tipos de da-
to de clase y tipos de dato integrados. Un tipo de dato de clase, al cual se hace referencia co-
mo una clase, para abreviar, es un tipo de dato creado por el programador. Esto significa que
el conjunto de valores y operaciones admitidas es definido por un programador, usando có-
digo C++.

Un tipo de dato integrado es proporcionado como una parte integral del compilador C++
y no requiere código C++ externo. Por tanto, un tipo de dato integrado puede usarse sin re-
currir a adiciones de lenguaje complementarias, como las proporcionadas por el archivo de
encabezado iostream necesario para el objeto cout. Los tipos de dato integrados, los cua-
les también se conocen como tipos primitivos, consisten en los tipos numéricos básicos mos-
trados en la figura 2.7 y las operaciones enumeradas en la tabla 2.2. Como se puede observar
en esta tabla, la mayor parte de las operaciones para tipos integrados son proporcionadas co-
mo símbolos. Esto contrasta con los tipos de clases, donde la mayor parte de las operaciones
son proporcionadas como funciones.

Figura 2.7 Tipos de dato integrados.

Tipos de números
de punto flotante

Tipos de dato numéricos

Tipos de números
enteros

CAPÍTULO 2 Programación orientada a procedimientos en C++50

www.FreeLibros.me

Tabla 2.2 Operaciones con tipos de dato integrados

Al introducir tipos de dato integrados de C++, usaremos literales. Una literal es un valor acep-
table para un tipo de dato. El término literal refleja que dicho valor se identifica de manera
explícita a sí mismo. (Otro nombre para una literal es un valor literal o constante.) Por ejem-
plo, todos los números, como 2, 3.6 y –8.2, se denominan valores literales porque despliegan
sus valores de manera literal. El texto, como “¡Hola mundo!” también se denomina va-
lor literal porque el texto se despliega. Usted ha utilizado valores literales a través de su vida
y los ha conocido por lo común como números y palabras. En la sección 2.5, se puede ob-
servar algunos ejemplos de valores no literales, es decir, valores que no se despliegan a sí mis-
mos sino que son almacenados y se tiene acceso a ellos por medio de identificadores.

Tipos de datos enteros

C++ proporciona nueve tipos de datos integrados, como se muestra en la figura 2.8. La dife-
rencia esencial entre los diversos tipos de datos enteros es la cantidad de almacenamiento usa-
do por cada tipo, el cual afecta al rango de valores que cada tipo es capaz de representar. Los
tres tipos más importantes usados en forma casi exclusiva en la mayor parte de las aplicacio-
nes son los tipos de datos int, char y bool. La razón para los tipos restantes es histórica,
ya que fueron implementados para acomodar situaciones especiales (un rango de números
pequeño o grande). Esto permitía al programador maximizar el uso de memoria al seleccio-
nar un tipo de datos que usara la cantidad más pequeña de memoria consistente con los re-
querimientos de una aplicación. Cuando las memorias de las computadoras eran pequeñas y
costosas en comparación con las actuales, ésta era una preocupación importante. Aunque ya
no es una preocupación para la mayor parte de los programas, estos tipos todavía le propor-
cionan al programador la capacidad para optimizar el uso de memoria cuando es necesario.
Por lo general, estas situaciones ocurren en aplicaciones de ingeniería, como en sistemas de
control usados en aparatos domésticos y automóviles.

Tipos de dato integrados Operaciones

Números enteros +, -, *, /,
%, =, ==, !=,
<=, >=vsizeof(),
y operaciones con bits
(véase el capítulo 15)

Números de punto
flotante

+, -, *, /,
=, ==, !=,
<=, >=, sizeof()

2.3 Tipos de datos 51

www.FreeLibros.me

Figura 2.8 Tipos de dato enteros en C++.

El tipo de dato int

El conjunto de valores admitidos por el tipo de dato int son números enteros. Un valor en-
tero consiste sólo de dígitos y de manera opcional puede estar precedido por un signo de más
(+) o menos (–). Por tanto, un valor entero puede ser el número cero o cualquier valor nu-
mérico positivo o negativo sin un punto decimal. Ejemplos de enteros válidos son:

0 5 –10 +25 1000 253 –26 351 +36

Como ilustran estos ejemplos, los enteros pueden contener un signo explícito. No se permi-
ten comas, puntos decimales ni símbolos especiales, cómo el signo de dólares. Son ejemplos
de enteros inválidos:

$255.62 2 523 3. 6 243 892 1 492.89 +6.0

Los diferentes compiladores tienen su propio límite interno para los valores enteros más
grande (más positivo) y más pequeño (más negativo) que pueden almacenarse en cada tipo
de dato.6 La asignación de almacenamiento más común es cuatro bytes para el tipo de dato
int, lo cual restringe el conjunto de valores permitido en este tipo de dato a representar en-
teros en el rango de -2,147,483,648 a 2,147,483,647.7

El tipo de dato char

El tipo de dato char se usa para almacenar caracteres individuales. Los caracteres incluyen
las letras del alfabeto (mayúsculas y minúsculas), los diez dígitos 0 a 9 y símbolos especiales
como los siguientes: + $. , – y ! Un valor de carácter individual es cualquier letra, dígito o
símbolo especial encerrado entre comillas sencillas. Los siguientes son ejemplos de valores de
carácter válidos:

'A'ƒƒƒ'$'ƒƒƒ'b'ƒƒƒ'7'ƒƒƒ'y'ƒƒƒ'!'ƒƒƒ'M'ƒƒƒ'q'

bool

char

short int

int

long int

unsigned char

unsigned short int

unsigned int

unsigned long int

Tipos de dato enteros

CAPÍTULO 2 Programación orientada a procedimientos en C++52

6Los límites impuestos por el compilador pueden encontrarse en el archivo de encabezado limits y se definen como las cons-
tantes hexadecimales int_max e int_min.

7En todos los casos, la magnitud del número entero más negativo siempre es un número mayor que la magnitud del entero más
positivo. Esto se debe al método de almacenamiento de enteros de complemento a dos, el cual se describió en la sección 1.6.

www.FreeLibros.me

Los valores de carácter se almacenan por lo general en una computadora usando los códigos
ASCII o Unicode. ASCII (se pronuncia as-ki) son las siglas de código estándar americano pa-
ra intercambio de informacion (American Standard Code for Information Interchange). El
código ASCII proporciona códigos para un conjunto de caracteres basado en el idioma in-
glés, más códigos para control de impresión y de despliegue, como códigos de nueva línea y
de expulsión del papel de la impresora. Cada código de carácter está contenido dentro de un
solo byte, lo cual proporciona 256 códigos distintos. La tabla 2.3 enumera los códigos en by-
te ASCII para las letras mayúsculas.

Además, C++ proporciona el código Unicode más nuevo que usa dos bytes por carácter
y puede representar 65 536 caracteres. Este código se usa para aplicaciones internacionales
al proporcionar conjuntos de caracteres en otros idiomas además del inglés. Como los pri-
meros 256 códigos de Unicode tienen el mismo valor numérico que los 256 códigos ASCII
(el byte adicional se codifica con ceros), no es necesario preocuparse por cuál código de al-
macenamiento se usa cuando se utilizan caracteres en inglés.

Tabla 2.3 Los códigos ASCII para las letras mayúsculas

Usando la tabla 2.3, podemos determinar cómo se almacenan dentro de una computadora
los caracteres ‘B’, ‘A’, ‘R’, ‘T’, ‘E’ y ‘R’, por ejemplo, usando el código de caracteres ASCII.
Esta secuencia de seis caracteres requiere seis bytes de almacenamiento (un byte por cada le-
tra) y se almacenaría como se ilustra en la figura 2.9.

Letra Código ASCII Letra Código ASCII

A 01000001 N 01001110
B 01000010 O 01001111
C 01000011 P 01010000
D 01000100 Q 01010001
E 01000101 R 01010010
F 01000110 S 01010011
G 01000111 T 01010100
H 01001000 U 01010101
I 01001001 V 01010110
J 01001010 W 01010111
K 01001011 X 01011000
L 01001100 Y 01011001
M 01001101 Z 01011010

2.3 Tipos de datos 53

Datos atómicos
Un valor de dato atómico es un valor considerado una entidad completa en sí misma y que no
puede descomponerse en un tipo de dato más pequeño. Por ejemplo, aunque un entero puede
descomponerse en dígitos individuales, C++ no posee un tipo de dígito numérico. Más bien, cada
entero es considerado como un valor completo por sí mismo y, como tal, se considera un dato
atómico. Del mismo modo, debido a que el tipo de dato entero sólo admite valores de datos ató-
micos, se dice que es un tipo de dato atómico. Como se podría esperar, todos los tipos de datos
integrados son tipos de datos atómicos.

Punto de Información

www.FreeLibros.me

Figura 2.9 Las letras BARTER almacenadas dentro de una computadora.

El carácter escape

Un carácter que tiene un significado especial en C++ es la diagonal inversa, \, que se conoce
como carácter de escape. Cuando se coloca este carácter directamente frente a un grupo se-
lecto de caracteres, esto indica al compilador que escape de la forma en que estos caracteres
se interpretarían en forma normal. La combinación de una diagonal inversa y estos caracte-
res específicos se llama secuencia de escape. Se ha mostrado un ejemplo de ésta en la secuen-
cia de escape de línea nueva, ‘\n’, en el capítulo 1. La tabla 2.4 enumera las secuencias de
escape más comunes en C++.

Tabla 2.4 Secuencias de escape

Secuencia Carácter
Significado

Código
ASCII de escape representado

\n Línea nueva Se mueve a una línea nueva 00001010

\t Tabulador horizontal Se mueve a la siguiente posición del tabulador
horizontal

00001001

\v Tabulador vertical Se mueve a la siguiente posición del tabulador
vertical

00001011

\b Retroceso Retrocede un espacio 00001000

\r Retorno de carro Mueve el cursor al inicio de la línea actual;
se escribe para sobrescribir

00001101

\f Alimentación
de forma

Expulsa una hoja para iniciar otra 00001100

\a Alerta Emite una alerta
(por lo general un sonido de campana)

00000111

\\ Diagonal inversa Inserta un carácter de diagonal inversa (ésta se usa
para colocar un carácter de diagonal inversa real
dentro de una cadena)

01011100

\? Signo de interrogación Inserta un carácter de signo de interrogación 00111111

\' Comilla sencilla Inserta un carácter de comilla sencilla (ésta se usa
para colocar una comilla sencilla interior dentro
de un conjunto de comillas sencillas exteriores)

00100111

\” Comillas dobles Inserta un carácter de comilla doble (ésta se usa
para colocar una comilla doble interior dentro
de un conjunto de comillas dobles exteriores)

00100010

\nnn Número octal El número nnn (n es un dígito) se considerará
un número octal

—

\xhhhh Número
hexadecimal

El número hhhh (h es un dígito) se considerará
un número hexadecimal

—

\0 Carácter nulo Inserta el carácter Null, el cual se define
con un valor de 0

00000000

01000010 01000001 01010010 01010100 01000101 01010010

B A R T E R

6 bytes de almacenamiento

CAPÍTULO 2 Programación orientada a procedimientos en C++54

www.FreeLibros.me

Aunque cada secuencia de escape enumerada en la tabla 2.4 está formada por dos caracteres
distintos, la combinación de ambos, sin un espacio en blanco entre ellos, causa que el com-
pilador cree el código individual enumerado en la columna de código ASCII de la tabla 2.4.

El tipo de datos bool

En C++, el tipo de datos bool se usa para representar datos booleanos (lógicos). Por ello, es-
te tipo de datos está restringido a uno de dos valores: verdadero o falso. Este tipo de datos
es más útil cuando un programa debe examinar una condición específica y, debido a la con-
dición de ser verdadera o falsa, tomar un curso de acción prescrito. Por ejemplo, en una apli-
cación de ventas, la condición que se está examinando podría ser “la compra total es por
$100 o más”. Sólo cuando esta condición es verdadera se aplica un descuento. Sin embargo,
debido a que un tipo de datos booleano usa un código de almacenamiento de enteros, tiene
implicaciones útiles explotadas por casi todos los programadores profesionales en C++. Los
usos prácticos de las condiciones booleanas se consideran en el capítulo 4, así que pospon-
dremos la exposición de los datos booleanos hasta entonces.

Determinación del tamaño de almacenamiento

Una característica única de C++ es que le permite al programador ver dónde y cómo se al-
macenan los valores. Por ejemplo, C++ proporciona un operador denominado sizeof()
que proporciona el número de bytes usados para almacenar valores para cualquier nombre
de tipo de datos incluidos dentro de los paréntesis del operador. (Repase la sección 1.6 si no
está familiarizado con el concepto de byte.) Éste es un operador integrado que no usa un sím-
bolo aritmético para ejecutar su operación. El programa 2.5 usa este operador para determi-
nar la cantidad de almacenamiento reservado para los tipos de datos, int, char y bool.

2.3 Tipos de datos 55

Programa 2.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“\nTipo de datosƒƒBytes”
ƒƒƒƒƒƒƒ<<ƒ“\n---------ƒƒ-----”
ƒƒƒƒƒƒƒ<< “\nintƒƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(int)
ƒƒƒƒƒƒƒ<< “\ncharƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(char)
ƒƒƒƒƒƒƒ<< “\nboolƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(bool)
ƒƒƒƒƒƒƒ<< '\n';

ƒƒƒƒreturnƒ0;
}

www.FreeLibros.me

CAPÍTULO 2 Programación orientada a procedimientos en C++56

Al revisar el programa 2.5, notará que se inserta un solo valor de carácter en cout al ence-
rrarlo dentro de comillas sencillas, como en la inserción de la secuencia de escape ‘\n’ al fi-
nal de la instrucción cout. Dentro de las primeras cinco líneas desplegadas, este carácter se
incluye dentro de cada cadena de salida. Cada vez que el compilador encuentra la secuencia
de escape de línea nueva, como un carácter individual o como parte de una cadena, la tradu-
ce como un solo carácter que fuerza que el despliegue empiece en una línea nueva. Aunque
pueden usarse comillas dobles para la inserción de línea nueva final, como “\n”, esto desig-
naría una cadena. Debido a que sólo se transmite un carácter, y para enfatizar que los carac-
teres únicos se designan usando comillas sencillas, se ha usado ‘\n’ en lugar de “\n”.
Desde un punto de vista práctico, sin embargo, ambas notaciones forzarán una línea nueva
en la pantalla.

La salida del programa 2.5 depende del compilador. Es decir, cada compilador reporta-
rá en forma correcta la cantidad de almacenamiento que proporciona para el tipo de datos
con el que está trabajando. Cuando se ejecutó en la computadora del autor, la cual usa el
compilador actual Visual C++.net de Microsoft, se produjo la siguiente salida:

Tipos de datos Bytes
-------------- -----
infƒƒƒƒƒƒƒƒƒƒ 4
charƒƒƒƒƒƒƒƒƒ 1
boolƒƒƒƒƒƒƒƒƒ 1

Para esta salida, la cual es el almacenamiento típico proporcionado por casi todos los com-
piladores C++ actuales, podemos determinar el rango de valores que pueden almacenarse en
cada uno de estos tipos de datos int. Hacerlo, sin embargo, requiere comprender la diferen-
cia entre un tipo de datos con signo y uno sin signo.

El carácter ‘\n’ y la cadena “\n”
El compilador reconoce tanto ‘\n’ como “\n” como el carácter línea nueva. La diferencia está
en el tipo de datos que se usa. De manera formal, ‘\n’ es un carácter literal, mientras “\n” es
una cadena literal. Desde un punto de vista práctico, ambos hacen que suceda lo mismo: Una lí-
nea nueva es forzada en el despliegue de salida. Sin embargo, al encontrar el valor de carácter
‘\n’, el compilador lo traduce usando el código de byte único 00001010 (véase la tabla 2.4). Al
encontrar el valor de cadena “\n”, el compilador traduce esta cadena usando el código de carác-
ter correcto pero también agrega un carácter extra de fin de cadena, el cual es ‘\0’.

La buena práctica de programación requiere que se termine el último despliegue de salida con
una secuencia de escape de línea nueva. Esto asegura que la primera línea de salida de un progra-
ma no termina en la última línea desplegada por el programa ejecutado con anterioridad.

Punto de Información

www.FreeLibros.me

Tipos de datos con signo y sin signo

Un tipo de datos con signo se define como uno que permite almacenar valores negativos ade-
más del cero y valores positivos. Por ello, el tipo de datos int es un tipo de datos con signo.
Un tipo de datos sin signo es uno que prevé sólo valores no negativos (es decir, cero y posi-
tivos).

Hay casos, sin embargo, donde una aplicación podría requerir sólo valores numéricos sin
signo. Por ejemplo, muchas aplicaciones de fecha las almacenan en la forma numérica año-
mesdía (por tanto, la fecha 25/12/2007 se almacenaría como 20071225) y sólo procesan fe-
chas después de 0. Para tales aplicaciones, las cuales nunca requerirán un valor negativo,
puede usarse un tipo de datos sin signo.

Todos los tipos enteros sin signo, como unsigned int, proporcionan un rango de va-
lores positivos que es, para todos los propósitos prácticos, el doble del rango provisto por su
contraparte los enteros con signo. Este rango positivo extra queda disponible al usar el ran-
go negativo de su versión con signo para números positivos adicionales.

Mediante la comprensión de la diferencia entre un tipo de datos con signo y sin signo, la
tabla 2.5 puede utilizarse para determinar el rango de valores enteros admitido por los com-
piladores actuales de C++.

En la tabla 2.5, un long int usa la misma cantidad de almacenamiento (cuatro bytes)
que un int. El único requerimiento del estándar ANSI de C++ es que un int debe pro-
porcionar al menos tanto almacenamiento como un short int, y un long int debe pro-
porcionar al menos tanto almacenamiento como un int. En los primeros sistemas de
computadora de escritorio (década de los años 80), las cuales estaban limitadas en su capa-
cidad de memoria a miles de bytes, un short int usaba de manera típica un byte de alma-
cenamiento, un int dos bytes y un long int cuatro bytes. Este almacenamiento limitaba
el rango de valores int de –32 768 a +32 767, mientras el uso de un unsigned int pro-
porcionaba un rango de valores de 0 a 65 535, duplicando por tanto el número de valores
positivos posibles, lo cual era considerable. Con el rango actual de valores int que abarca
de –2 a +2 mil millones, la duplicación de valores positivos rara vez es algo que hay que to-
mar en cuenta. Además, usar un long int se vuelve innecesario porque usa la misma capa-
cidad de almacenamiento que un int.

2.3 Tipos de datos 57

Programas orientados a objetos y orientados a procedimientos
Con excepción del tipo booleano, todos los tipos de datos integrados de C++ son trasladados di-
recto del lenguaje de procedimientos de C. No es sorprendente que los programas que sólo usen
tipos integrados individuales no serán programas orientados a objetos. Más bien, como en el pro-
grama 2.5, se vuelven programas por procedimientos, es decir, un programa basado primordial-
mente en procedimientos, como main().

Sólo cuando los tipos integrados se unen para formar un paquete de datos, el cual se con-
vierte en un objeto, puede existir un programa orientado a objetos.

Punto de Información

www.FreeLibros.me

Tabla 2.5 Almacenamiento de tipo de datos enteros

Tipos de punto flotante

Un número de punto flotante, al cual se le llama número real, puede ser el número cero o
cualquier número positivo o negativo que contenga un punto decimal. Los siguientes son
ejemplos de números de punto flotante:

+10.625ƒƒƒ5.ƒƒƒ-6.2ƒƒƒ3251.92ƒƒƒ0.0ƒƒƒ0.33ƒƒƒ-6.67ƒƒƒ+2.

Los números 5., 0.0 y +2. se clasifican como valores de punto flotante, pero los mismos nú-
meros escritos sin un punto decimal (5, 0, +2) serían valores enteros. Como con los valores
enteros, en éstos no se permiten símbolos especiales como el signo de dólar y la coma en los
números reales. Los siguientes son ejemplos de números reales inválidos:

5,326.25ƒƒƒ24ƒƒƒ6,459ƒƒƒ$10.29ƒƒƒ7.007.645

C++ acepta tres tipos de datos de punto flotante: float, double y long double. La di-
ferencia entre estos tipos de datos es la cantidad de almacenamiento que usa un compilador
para cada tipo. La mayor parte de los compiladores usan el doble de cantidad de almacena-
miento para dobles que para flotantes, lo cual permite que un double tenga aproximada-
mente el doble de precisión de un float. Por esta razón, a veces se hace referencia a un valor
float como un número de precisión simple y a un valor double como un número de pre-
cisión doble. La asignación de almacenamiento real para cada tipo de datos, sin embargo, de-
pende del compilador particular. El estándar ANSI C++ sólo requiere que un double tenga
al menos la misma cantidad de precisión que un float y un long double tenga al menos
la misma cantidad de almacenamiento que un double. En la actualidad, la mayor parte
de los compiladores C++ asignan cuatro bytes para el tipo de datos float y ocho bytes para
los tipos de datos double y long double. Esto produce el rango de números mostrado en
la tabla 2.6.

Nombre del almacenamiento Rango de valores
tipo de datos (en bytes)

char 1 256 caracteres

bool 1

shortƒint 2

2

–32,768 a +32,767

unsignedƒshortƒint 0 a 65,535

int 4

4

–2,147,483,648 a +2,147,483,647

unsignedƒint 0 a 4,294,967,295

longƒint 4

4

–2,147,483,648 a +2,147,483,647

unsignedƒlongƒintƒ 0 a 4,294,967,295

Tamaño del
almacenamiento

verdadero (lo cual es considerado
como cualquier valor positivo)
y falso (lo cual es un cero)

CAPÍTULO 2 Programación orientada a procedimientos en C++58

www.FreeLibros.me

Tabla 2.6 Tipos de datos de punto flotante

En compiladores que usan la misma cantidad de almacenamiento para números double y
long double, estos dos tipos de datos se vuelven idénticos. (El operador sizeof() que se usó en
el programa 2.5 siempre puede usarse para determinar la cantidad de almacenamiento reser-
vada por su compilador para estos tipos de datos.) Una literal tipo float se indica al aña-
dir una f o F después del número y se crea un long double al añadir una l o L al número.
En ausencia de estos sufijos, un número de punto flotante por defecto se establece como
double. Por ejemplo, observe lo siguiente:

9.234 indica una doble literal
9.234F indica una literal flotante
9.234L indica una literal de doble largo

La única diferencia en estos números es la cantidad de almacenamiento que puede usar una
computadora para almacenarlos. El apéndice C describe el formato de almacenamiento bi-
nario usado para números de punto flotante y su impacto en la precisión de los números.

Notación exponencial

Los números de punto flotante pueden escribirse en notación exponencial, la cual es seme-
jante a la notación científica y se usa por lo común para expresar valores grandes y peque-
ños en forma compacta. Los siguientes ejemplos ilustran cómo pueden expresarse números
con decimales en notación exponencial y científica:

Notación decimal ƒNotación exponencialƒƒNotación científica
1625. 1.625e3 1.625ƒxƒ103ƒ
63421. 6.3421e4 6.3421ƒxƒ104

.00731 7.31e-3 7.31ƒxƒ10-3

.000625 6.25e-4 6.25ƒxƒ10-4

En notación exponencial, la letra e representa exponente. El número que sigue a la e repre-
senta una potencia de 10 e indica el número de lugares que debería moverse el punto deci-
mal para obtener el valor decimal estándar. El punto decimal se mueve a la derecha si el
número después de la e es positivo o se mueve a la izquierda si el número después de la e es
negativo. Por ejemplo, el e3 en 1.625e3 significa mover el punto decimal tres lugares a la de-
recha, de modo que el número se vuelve 1625. El e–3 en 7.31e–3 significa mover el punto
decimal tres lugares a la izquierda de modo que 7.31e–3 se convierte en .00731.

Tipo Almacenamiento Rango absoluto de valores (+ y –)

float 4ƒbytes 1.40129846432481707e-45
a
3.40282346638528860e+38

doubleƒy 8ƒbytes 4.94065645841246544e-324
longƒdouble a

1.79769313486231570e+308

2.3 Tipos de datos 59

www.FreeLibros.me

Ejercicios 2.3

1. Determine los tipos de datos apropiados para los siguientes datos:
a. el promedio de cuatro calificaciones
b. el número de días en un mes
c. la longitud del puente Golden Gate
d. los números en una lotería estatal
e. la distancia de Brooklyn, N.Y., a Newark, N.J.
f. el prefijo de carácter único que especifica un tipo de componente

2. Convierta los siguientes números en forma decimal estándar:

6.34e5 1.95162e2 8.395e1 2.95e–3 4.623e–4

3. Escriba los siguientes números decimales usando notación exponencial:

126. 656.23 3426.95 4893.2 .321 .0123 .006789

4. Compile y ejecute el programa 2.5 en su computadora.

5. Modifique el programa 2.5 para determinar el almacenamiento usado por su compi-
lador para todos los tipos de datos enteros de C++.

6. Usando los manuales de referencia del sistema para su computadora, determine el có-
digo de caracteres usado por su computadora.

CAPÍTULO 2 Programación orientada a procedimientos en C++60

¿Qué es precisión?
En teoría numérica, el término precisión por lo general se refiere a exactitud numérica. En este
contexto, se usa una declaración como “este cálculo es exacto, o preciso, hasta el quinto lugar de-
cimal”. Esto significa que el quinto dígito después del punto decimal ha sido redondeado y el nú-
mero es exacto dentro de ±0.00005.

En programación de computadoras, la precisión puede referirse a la exactitud de un número o
a la cantidad de dígitos significativos en el número, donde los dígitos significativos se definen como
el número de dígitos claramente correctos más 1. Por ejemplo, si el número 12.6874 se ha redondea-
do hasta el cuarto lugar decimal, es correcto decir que este número es preciso (es decir, exacto) has-
ta el cuarto lugar decimal. En otras palabras, todos los dígitos en el número son exactos excepto el
cuarto dígito decimal, el cual ha sido redondeado. Del mismo modo, este mismo número tiene una
precisión de seis dígitos, lo cual significa que los primeros cinco dígitos son correctos y el sexto dí-
gito ha sido redondeado. Otra forma de decir esto es que el número 12.6874 tiene seis dígitos signi-
ficativos.

Los dígitos significativos en un número no necesitan tener alguna relación con el número de
dígitos desplegado. Por ejemplo, si el número 687.45678921 tiene cinco dígitos significativos, sólo
es exacto hasta el valor 687.46, donde se supone que el último dígito está redondeado. De una ma-
nera similar, los valores en dólares en muchas aplicaciones financieras grandes con frecuencia son
redondeados al centenar de miles de dólares más cercano. En tales aplicaciones, un valor en dóla-
res desplegado de $12 400 000, por ejemplo, no es preciso hasta el dólar más cercano. Si este va-
lor se especifica con tres dígitos significativos, sólo es exacto hasta el dígito de cientos de miles.

Punto de Información

www.FreeLibros.me

7. Muestre cómo se almacenaría el nombre KINGSLEY dentro de una computadora
que usa el código ASCII. Es decir, trace un dibujo similar a la figura 2.9 para el nom-
bre KINGSLEY.

8. Repita el ejercicio 7 usando las letras de su propio apellido.

9. Modifique el programa 2.5 para determinar cuántos bytes asigna su compilador a los
tipos de datos float, double y long double.

10. Debido a que las computadoras usan diferentes representaciones para almacenar va-
lores enteros, de punto flotante, de precisión doble y de carácter, analice cómo un
programa podría alertar a la computadora de los tipos de datos de los diversos valo-
res que usará.

11. Aunque nos hemos concentrado en operaciones que implican números enteros y de
punto flotante, C++ permite que se sumen o resten caracteres y enteros. Esto puede
hacerse porque un carácter se almacena usando un código de enteros (es un tipo de
datos entero). Por tanto, los caracteres y enteros pueden mezclarse con libertad en ex-
presiones aritméticas. Por ejemplo, si su computadora usa el código ASCII, la expre-
sión ‘a’ + 1 es igual a ‘b’, y ‘z’ – 1 es igual a ‘y’. Del mismo modo, ‘A’ + 1 es ‘B’ y ‘Z’
– 1 es ‘Y’. Con esto como antecedente, determine el carácter que resulta de las si-
guientes expresiones. (Asuma que todos los caracteres se almacenan usando el códi-
go ASCII.)
a. ‘m’ – 5
b. ‘m’ + 5
c. ‘G’ + 6
d. ‘G’ – 6
e. ‘b’ – ‘a’
f. ‘g’ – ‘a’ + 1
g. ‘G’ – ‘A’ + 1

NOTA: Para completar el siguiente ejercicio, necesita comprender los conceptos básicos
del almacenamiento en las computadoras. De manera específica, si no está familiarizado
con el concepto de byte, refiérase a la sección 1.6 antes de realizar el siguiente ejercicio.

12. Aunque el número total de bytes varía de una computadora a otra, son comunes los
tamaños de memoria de 65 536 a más de varios millones de bytes. En lenguaje de
computadora, la letra K representa el número 1 024, el cual es 2 elevado a la décima
potencia, y M representa el número 1 048 576, el cual es 2 elevado a la vigésima po-
tencia. Por tanto, un tamaño de memoria de 640K en realidad es 640 por 1024, o
655 360 bytes, y un tamaño de memoria de 4M en realidad es 4 por 1 048 576, lo
cual es 4 194 304 bytes. Usando esta información, calcule el número total de bytes
en lo siguiente:
a. una memoria que contiene 128M bytes
b. una memoria que contiene 256M bytes
c. una memoria que contiene 512M bytes
d. una memoria que consta de 256M palabras, donde cada palabra es de 2 bytes
e. una memoria que consta de 256M palabras, donde cada palabra es de 4 bytes
f. un disco que especifica 1.44M bytes
g. un disco que especifica 250MB

2.3 Tipos de datos 61

www.FreeLibros.me

CAPÍTULO 2 Programación orientada a procedimientos en C++62

2.4 OPERACIONES ARITMÉTICAS

En la sección anterior se presentaron los valores de datos correspondientes para cada tipo de
datos integrado de C++. En esta sección, se proporciona el conjunto de operaciones aritmé-
ticas que pueden aplicarse a estos valores.

Los números enteros y reales pueden sumarse, restarse, multiplicarse y dividirse. Aunque
por lo general es mejor no mezclar números enteros y reales cuando se realizan operaciones
aritméticas, se obtienen resultados predecibles cuando se usan diferentes tipos de datos en la
misma expresión aritmética. Es sorprendente que se puedan sumar, o restar, datos de carác-
ter a datos de carácter y enteros para producir resultados útiles. (Por ejemplo, ‘A’ + 1 produ-
ce el carácter ‘B’.) Esto es posible debido a que los caracteres se almacenan usando códigos
de almacenamiento de números enteros.

Los operadores usados en operaciones aritméticas se llaman operadores aritméticos y
son los siguientes:

Operación Operador
Adición +
Sustracción –
Multiplicación *
División /
División de módulo %

No hay que preocuparse en esta etapa si no entiende el término “división de módulo”.
Aprenderá más sobre este operador más adelante en esta sección.

Estos operadores se conocen como operadores binarios. Este término refleja el hecho que
el operador requiere dos operandos para producir un resultado. Un operando puede ser un
valor literal o un identificador que tiene un valor asociado con él. Una expresión aritmética
binaria simple consta de un operador aritmético binario que conecta dos valores literales en
la forma:

valorLiteral operador valorLiteral

Los siguientes son ejemplos de expresiones aritméticas binarias simples:

3ƒ+ƒ7
18ƒ-ƒ3
12.62ƒ+ƒ9.8
.08ƒ*ƒ12.2
12.6ƒ/ƒ2.

Los espacios alrededor de los operadores aritméticos en estos ejemplos se insertan estricta-
mente para ganar en claridad y pueden omitirse sin afectar el valor de la expresión. Una ex-
presión en C++ debe ser introducida en forma de una línea recta. Por tanto, por ejemplo, la
expresión de C++ equivalente a 12.6 dividido entre 2 debe introducirse como 12.6 / 2 y no
como la expresión algebraica

12.6
ƒƒ2

www.FreeLibros.me

Puede usar cout para desplegar el valor de cualquier expresión aritmética en la pantalla de
la computadora. Para hacer esto, el valor deseado debe transladarse al objeto. Por ejemplo,
esta instrucción produce el despliegue 21:

coutƒ<<ƒ(6ƒ+ƒ15);

En sentido estricto, los paréntesis que rodean a la expresión 6 + 15 no se requieren para in-
dicar que el valor de la expresión (es decir, 21) se está desplegando.8 Además de desplegar un
valor numérico, cout puede desplegar una cadena identificando la salida, como se hizo en
la sección 1.3. Por ejemplo, esta instrucción causa que dos piezas de datos, una cadena y un
valor, se envíen a cout:

coutƒ<<ƒ“La suma de 6 y 15 esƒ“ƒ<<ƒƒ(6ƒ+ƒ15);

De manera individual, cada conjunto de datos enviados a cout debe ir precedido por su pro-
pio símbolo de inserción de operador (<<). Aquí, los primeros datos enviados para desplie-
gue es la cadena “La suma de 6 y 15 es “, y el segundo elemento enviado es el valor
de la expresión 6 + 15. El despliegue producido por esta instrucción es el siguiente:

La suma de 6 y 15 esƒ21

El espacio entre la palabra “es” y el número 21 se da por el espacio colocado dentro de la
cadena pasada a cout. En lo que respecta a cout, su entrada es un conjunto de caracteres
que son enviados para ser desplegados en el orden en que son recibidos. Los caracteres de la
entrada hacen cola, uno detrás de otro, y son enviados a la consola para su despliegue. Co-
locar un espacio en la entrada provoca que este espacio sea parte del flujo de caracteres que
se despliega. Por ejemplo, examine la siguiente instrucción:

coutƒ<<ƒ“La suma de 12.2 y 15.754 esƒ“ƒ<<ƒƒ(12.2ƒ+ƒ15.754);

Que produce el siguiente despliegue:

La suma de 12.2 y 15.754 esƒ27.954

Cuando se hacen múltiples inserciones a cout, el código puede extenderse a lo largo de múl-
tiples líneas. Sin embargo, sólo debe usarse un punto y coma, el cual se coloca después de la
última inserción y termina la instrucción completa. Por tanto, el despliegue anterior es pro-
ducido por la siguiente instrucción:

coutƒ<<ƒ“La suma deƒ12.2ƒyƒ15.754ƒesƒ“ƒ
ƒƒƒƒƒ<<ƒƒ(12.2ƒ+ƒ15.754);

Sin embargo, cuando permite que una instrucción así ocupe múltiples líneas, deben seguirse
dos reglas: una cadena contenida entre comillas no puede extenderse más de una línea, y el
punto y coma final sólo deberá aparecer en la última línea. Siempre pueden colocarse múlti-
ples símbolos de inserción dentro de una línea.

Los números de punto flotante se despliegan con suficientes lugares decimales a la dere-
cha del punto decimal para acomodar la parte fraccionaria del número. Esto es cierto si el
número tiene seis o menos dígitos decimales. Si el número tiene más de seis dígitos decima-

2.4 Operaciones aritméticas 63

8Esto se debe a que el operador + tiene una precedencia mayor que el operador <<; por tanto, la adición se ejecuta antes de la
inserción.

www.FreeLibros.me

les, la parte fraccionaria se redondea a seis dígitos decimales, y si el número no tiene dígitos
decimales, no se desplegarán ni un punto decimal ni algún dígito decimal.9

El programa 2.6 ilustra el uso de cout para desplegar los resultados de expresiones arit-
méticas dentro de las instrucciones de un programa completo.

La salida del programa 2.6 es la siguiente:

15.0ƒmás 2.0 es igual aƒ17
15.0ƒmenos 2.0 es igual aƒ13
15.0ƒpor 2.0 es igual aƒ30
15.0ƒdividido entre 2.0 es igual aƒ7.5

El único elemento nuevo presentado en el programa 2.6 es el término endl, el cual es un
ejemplo de un manipulador C++. Un manipulador es un elemento usado para manipular có-
mo se despliega el flujo de salida de caracteres. En particular, el manipulador endl provoca
que primero se inserte un carácter de línea nueva (‘\n’) en el despliegue y obliga a que to-
das las inserciones actuales se desplieguen de inmediato, en lugar de esperar por más datos.
(La sección 3.2 contiene una lista de los manipuladores más comunes.)

Tipos de expresión

Una expresión es cualquier combinación de operadores y operandos que pueden ser evalua-
dos para producir un valor. Una expresión que contiene sólo valores enteros como operandos
se llama expresión entera, y el resultado de la expresión es un valor entero. Del mismo mo-
do, una expresión que sólo contiene valores de punto flotante (de precisión simple y precisión

CAPÍTULO 2 Programación orientada a procedimientos en C++64

9No se define ninguna de estas salidas como parte del lenguaje C++. Más bien es definida por un sistema de clases y de rutinas
proporcionadas de cada recopilador de C++.

Programa 2.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“15.0ƒmásƒ2.0ƒes igual aƒ“ƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ(15.0ƒ+ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒmenosƒ2.0ƒes igual aƒ“ƒƒƒƒƒƒƒƒƒƒ<<ƒ(15.0ƒ-ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒporƒ2.0ƒes igual aƒ“ƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ(15.0ƒ*ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒdividido entreƒ2.0ƒes igual aƒ“ƒ<<ƒ(15.0ƒ/ƒ2.0)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

doble) como operandos se llama expresión de punto flotante, y el resultado de una expresión
así es un valor de punto flotante (también se usa el término expresión real). Una expresión que
contiene valores enteros y de punto flotante se llama expresión en modo mixto. Aunque por
lo general es mejor no mezclar valores enteros y de punto flotante en una operación aritméti-
ca, el tipo de datos de cada operación se determina por las siguientes reglas:

1. Si ambos operandos son enteros, el resultado de la operación es un entero.

2. Si un operando es un valor real, el resultado de la operación es un valor de
precisión doble.

El resultado de una expresión aritmética nunca es un número de precisión simple (float).
Esto se debe a que, durante la ejecución, un programa C++ convierte de manera temporal to-
dos los números de precisión simple a números de precisión doble cuando se está evaluando
una expresión aritmética.

División de enteros

La división de dos valores enteros puede producir resultados bastante extraños para los in-
cautos. Por ejemplo, la expresión 15/2 produce el resultado entero 7. Debido a que los ente-
ros no pueden contener una parte fraccionaria, no puede obtenerse un valor de 7.5. La parte
fraccionaria obtenida cuando se dividen dos enteros, es decir, el residuo, siempre se elimina
(se trunca). Por tanto, el valor de 9/4 es 2, y 20/3 es 6.

Sin embargo, con frecuencia puede ser necesario conservar el residuo de una división de
enteros. Para hacer esto, C++ proporciona un operador aritmético que tiene el símbolo %.
Este operador, llamado módulo (y también conocido como operador de residuo), captura el
residuo cuando un número entero es dividido entre un entero (usar un valor no entero con
el operador de módulo produce un error en el compilador):

ƒ9ƒ%ƒ4ƒesƒ1ƒƒ(es decir, el residuo cuando 9 se divide entre 4 esƒ1)
17ƒ%ƒ3ƒesƒ2ƒƒ(es decir, el residuo cuando 17 se divide entre 3 esƒ2)
15ƒ%ƒ4ƒesƒ3ƒƒ(es decir, el residuo cuando 15 se divide entre 4 esƒ3)
14ƒ%ƒ2ƒesƒ0ƒƒ(es decir, el residuo cuando 14 se divide entre 2 esƒ0)

Con más precisión, el operador de módulo determina primero el número entero de veces que
el dividendo, el cual es el número que sigue al operador %, puede dividirse entre el divisor, el
cual es el número anterior al operador %. Entonces devuelve el residuo.

Negación

Además de los operadores aritméticos binarios, C++ proporciona operadores unitarios. Un
operador unitario opera sobre un operando individual. Uno de estos operadores unitario usa
el mismo símbolo que la sustracción binaria (–). El signo de menos frente a un valor numé-
rico individual niega el número (invierte su signo).

La tabla 2.7 resume las seis operaciones aritméticas que se han descrito hasta ahora y
enumera el tipo de datos para el resultado producido por cada operador, basado en el tipo
de datos de los operandos involucrados.

2.4 Operaciones aritméticas 65

www.FreeLibros.me

Tabla 2.7 Resumen de operadores aritméticos

Precedencia del operador y asociatividad

Además de expresiones simples como 5 + 12 y .08 * 26.2, pueden crearse expresiones arit-
méticas más complejas. C++, como la mayor parte de otros lenguajes de programación, re-

Operación Operador Tipo Operando Resultado

Adición + Binario Ambos son enterosƒ Enteroƒ

Un operando noƒ Precisión
es un entero doble

Sustracción – Binario Ambos son enterosƒ Enteroƒ

Un operando noƒ Precisión
es un entero doble

Multiplicación * Binario Ambos son enterosƒ Entero

Un operando noƒ Precisión
es un entero doble

División / Binario Ambos son enterosƒ Enteroƒ

Un operando noƒ Precisión
es un entero doble

Módulo % Binario Ambos son enterosƒ Enteroƒ

Un operando noƒ Precisión
es un entero doble

Negación – Unitario Entero o doble Igual que el
operando

CAPÍTULO 2 Programación orientada a procedimientos en C++66

El manipulador endl
En muchos sistemas, el manipulador endl y la secuencia de escape \n se procesan en la misma
forma y producen el mismo efecto. La única excepción se da en aquellos sistemas donde la salida
se acumula en forma interna hasta que se colectan suficientes caracteres para que sea ventajoso
desplegarlos a todos en una ráfaga en la pantalla. En tales sistemas, los cuales se conocen como
sistemas con memoria intermedia o “buffer”, el manipulador endl fuerza a la salida acumulada a
ser desplegada de inmediato, sin esperar que ningún carácter adicional llene el área de buffer an-
tes de imprimirse. Prácticamente, no notará una diferencia en el despliegue final. Por tanto, como
regla general, deberá usar la secuencia de escape \n siempre que pueda ser incluida dentro de una
cadena existente y usar el manipulador endl siempre que aparezca \n por sí mismo o para de-
terminar de manera formal el final de un grupo específico de despliegue de salida.

Punto de Información

www.FreeLibros.me

quiere que se sigan ciertas reglas cuando se escriben expresiones que contengan más de un
operador aritmético. Estas reglas son las siguientes:

1. Nunca deben colocarse dos símbolos de operadores aritméticos binarios uno al
lado del otro. Por ejemplo, 5 * % 6 es inválido porque los dos operadores,
* y %, están colocados uno junto al otro.

2. Pueden usarse paréntesis para formar agrupamientos, y todas las expresiones
encerradas dentro de paréntesis son evaluadas primero. Esto permite a los
paréntesis alterar la evaluación en cualquier orden deseado. Por ejemplo, en la
expresión (6 + 4) / (2 + 3), 6 + 4 y 2 + 3 se evalúan primero para producir
10 / 5. Luego se evalúa 10 / 5 para producir 2.

3. Conjuntos de paréntesis pueden ser encerrados por otros paréntesis. Por ejemplo, la
expresión (2 * (3 + 7)) / 5 es válida y evalúa para 4. Cuando se incluyen paréntesis
dentro de paréntesis, las expresiones en los paréntesis interiores siempre se evalúan
primero. La evaluación continúa desde los paréntesis más interiores hasta los más
exteriores hasta que se han evaluado las expresiones en todos los paréntesis.
El número de paréntesis de cierre,), siempre debe ser igual al número de paréntesis
de apertura, (, de modo que no existan conjuntos sin par.

4. No pueden usarse paréntesis para indicar multiplicación; en su lugar, debe usarse el
operador de multiplicación, *. Por ejemplo, la expresión (3 + 4) (5 + 1) es inválida.
La expresión correcta es (3 + 4) * (5 + 1).

Los paréntesis deberían especificar agrupamientos lógicos de operandos e indicarle con cla-
ridad, al compilador y a los programadores, el orden previsto de las operaciones aritméticas.
Aunque las expresiones dentro de paréntesis siempre se evalúan primero, las expresiones que
contienen múltiples operadores, con y sin paréntesis, se evalúan por la prioridad, o preceden-
cia, de los operadores. Hay tres niveles de precedencia:

• P1: todas las negaciones se realizan primero.

• P2: a continuación se calculan las operaciones de multiplicación, división y módulo.
Las expresiones que contienen más de un operador de multiplicación, división o
módulo se evalúan de izquierda a derecha conforme se encuentra cada operador.
Por ejemplo, en la expresión 35 / 7 % 3 * 4, todas las operaciones son de la misma
prioridad, así que las operaciones se ejecutarán de izquierda a derecha conforme se
encuentre cada operador. Por tanto, la división se hace primero, produciendo la ex-
presión 5 % 3 * 4. La operación de módulo se ejecuta a continuación, produciendo
un resultado de 2. Por último, se calcula el valor de 2 * 4 para producir 8.

• P3: la adición y la sustracción se calculan al último. Las expresiones que contienen
más de una adición o sustracción se evalúan de izquierda a derecha conforme se
encuentre cada operador.

Además de la precedencia, los operadores tienen una asociatividad, la cual es el orden en que
se evalúan los operadores de la misma precedencia, como se describió en la regla P2. Por
ejemplo, ¿la expresión 6.0 * 6/4 produce 9.0, lo cual es (6.0 * 6)/4: o 6.0, lo cual es 6.0 *
(6/4)? La respuesta es 9.0, porque los operadores de C++ usan la misma asociatividad que en

2.4 Operaciones aritméticas 67

www.FreeLibros.me

las matemáticas generales, las cuales evalúan la multiplicación de izquierda a derecha, como
lo indica la regla P2. La tabla 2.8 enumera la precedencia y asociatividad de los operadores
considerados en esta sección. Como se ha visto, la precedencia de un operador establece su
prioridad en relación con todos los demás operadores. Los operadores en la parte superior
de la tabla 2.8 tienen una prioridad mayor que los operadores en la parte inferior de la ta-
bla. En expresiones que contienen múltiples operadores de diferente precedencia, el operador
con la mayor precedencia se usa antes que un operador con menor precedencia. Por ejemplo,
en la expresión 6 + 4 / 2 + 3, debido a que el operador de división tiene una precedencia ma-
yor (P2) que la adición, la división se hace primero, produciendo un resultado intermedio de
6 + 2 + 3. Entonces se ejecutan las adiciones, de izquierda a derecha, para producir un resul-
tado final de 11.

Tabla 2.8 Precedencia y asociatividad de operadores

Por último, usaremos la tabla 2.8 o las reglas de precedencia para evaluar una expresión que
contiene operadores de diferente precedencia, como 8 + 5 * 7 % 2 * 4. Debido a que los ope-
radores de multiplicación y módulo tienen una mayor precedencia que el operador de adi-
ción, estas dos operaciones se evalúan primero (P2), usando su asociatividad de izquierda a
derecha, antes que se evalúe la adición (P3). Por tanto, la expresión completa se evalúa co-
mo sigue:

8ƒ+ƒ5ƒ*ƒ7ƒ%ƒ2ƒ*ƒ4ƒ=ƒƒƒƒƒƒ
ƒƒƒ8ƒ+ƒ35ƒ%ƒ2ƒ*ƒ4ƒ=ƒƒƒ
ƒƒƒƒƒƒƒƒ8ƒ+ƒ1ƒ*ƒ4ƒ=ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒ8ƒ+ƒ4ƒ=ƒ12

Ejercicios 2.4

1. A continuación se enumeran expresiones algebraicas correctas y expresiones C++ in-
correctas correspondientes a ellas. Encuentre los errores y escriba las expresiones C++
corregidas.

Álgebra Expresión C++

a.ƒ(2)(3)ƒ+ƒ(4)(5) (2)(3)ƒ+ƒ(4)(5)

b.ƒ6ƒ+ƒ18 6ƒ+ƒ18ƒ/ƒ2

ƒƒƒƒƒ2

c. ƒƒ4.5 4.5ƒ/ƒ12.2ƒ-ƒ3.1

12.2ƒ-ƒ3.1

Operador Asociatividad

unitario – derecha a izquierda

* / % izquierda a derecha

+ – izquierda a derecha

CAPÍTULO 2 Programación orientada a procedimientos en C++68

www.FreeLibros.me

d.ƒƒ4.6(3.0ƒ+ƒ14.9)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ4.6(3.0ƒ+ƒ14.9)

e.ƒƒ(12.1ƒ+ƒ18.9)(15.3ƒ-ƒ3.8)ƒƒƒƒ(12.1ƒ+ƒ18.9)(15.3ƒ-ƒ3.8)

2. Determine el valor de las siguientes expresiones enteras:

a. 3 + 4 * 6 f. 20 – 2 / (6 + 3)
b. 3 * 4 / 6 + 6 g. (20 – 2) / 6 + 3
c. 2 * 3 / 12 * 8 / 4 h. (20 – 2) / (6 + 3)
d. 10 * (1 + 7 * 3) i. 50 % 20
e. 20 – 2 / 6 + 3 j. (10 + 3) % 4

3. Determine el valor de las siguientes expresiones de punto flotante:

a. 3.0 + 4.0 * 6.0
b. 3.0 * 4.0 / 6.0 + 6.0
c. 2.0 * 3.0 / 12.0 * 8.0 / 4.0
d. 10.0 * (1.0 + 7.0 * 3.0)
e. 20.0 – 2.0 / 6.0 + 3.0
f. 20.0 – 2.0 / (6.0 + 3.0)
g. (20.0 – 2.0) / 6.0 + 3.0
h. (20.0 – 2.0) / (6.0 + 3.0)

4. Evalúe las siguientes expresiones en modo mixto y enumere el tipo de datos del re-
sultado. Al evaluar las expresiones, esté consciente de los tipos de datos de todos los
cálculos intermedios.

a. 10.0 + 15 / 2 + 4.3
b. 10.0 + 15.0 / 2 + 4.3
c. 3.0 * 4 / 6 + 6
d. 3 * 4.0 / 6 + 6
e. 20.0 – 2 / 6 + 3
f. 10 + 17 * 3 + 4
g. 10 + 17 / 3. + 4
h. 3.0 * 4 % 6 + 6
i. 10 + 17 % 3 + 4.

5. Suponga que amount almacena el valor entero 1, m almacena el valor entero 50, n
almacena el valor entero 10 y p almacena el valor entero 5. Evalúe las siguientes ex-
presiones:

a. nƒ/ƒpƒ+ƒ3
b. mƒ/ƒpƒ+ƒnƒ-ƒ10ƒ*ƒamount
c. mƒ-ƒ3ƒ*ƒnƒ+ƒ4ƒ*ƒamountƒ
d. amountƒ/ƒ5
e. 18ƒ/ƒp
f. -pƒ*ƒn
g. -mƒ/ƒ20
h. (mƒ+ƒn)ƒ/ƒ(pƒ+ƒamount)
i. mƒ+ƒnƒ/ƒpƒ+ƒamount

2.4 Operaciones aritméticas 69

www.FreeLibros.me

6. Repita el ejercicio 5, suponiendo que amount almacena el valor 1.0, m almacena el
valor 50.0, n almacena el valor 10.0 y p almacena el valor 5.0.

7. Introduzca, compile y ejecute el programa 2.2 en su sistema de cómputo.

8. Determine la salida del siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()ƒƒ//ƒun programa que ilustra el truncamiento de
enteros

{
ƒƒcoutƒ<<ƒ“respuesta1 es el enteroƒ“ƒ<<ƒ9/4;
ƒƒcoutƒ<<ƒ“\nrespuesta2 es el enteroƒ“ƒ<<ƒ17/3;

ƒƒreturnƒ0;
}

9. Determine la salida del siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()ƒƒ//ƒun programa que ilustra el operadorƒ%
{
ƒƒcoutƒ<<ƒ“El residuo de 9 dividido entre 4 esƒ“ƒ<<ƒ9ƒ%ƒ4;
ƒƒcoutƒ<<ƒ“\nEl residuo de 17 dividido entre 3 esƒ“ƒ<<ƒ17ƒ%ƒ3;

ƒƒreturnƒ0;
}

10. Escriba un programa C++ que despliegue los resultados de las expresiones 3.0 * 5.0,
7.1 * 8.3 - 2.2 y 3.2 / (6.1 * 5). Calcule el valor de estas expresiones en forma ma-
nual para verificar que los valores desplegados son correctos.

11. Escriba un programa C++ que despliegue los resultados de las expresiones 15 / 4, 15
% 4 y 5 * 3 - (6 * 4). Calcule el valor de estas expresiones en forma manual para ve-
rificar que los valores desplegados son correctos.

2.5 VARIABLES E INSTRUCCIONES DE DECLARACIÓN

Todos los valores enteros, de punto flotante y otros usados en un programa de computado-
ra se almacenan en la unidad de memoria de la computadora y se recuperan de ella. Desde
el punto de vista conceptual, las ubicaciones individuales de memoria en la unidad de memo-
ria están ordenadas como las habitaciones en un gran hotel. Como en un hotel, cada ubica-
ción de memoria tiene una dirección única (“número de habitación”). Antes que existieran
lenguajes de alto nivel como C++, se hacía referencia a las ubicaciones de memoria por sus
direcciones. Por ejemplo, almacenar los valores enteros 45 y 12 en las ubicaciones de memo-
ria 1652 y 2548 (véase la figura 2.10), respectivamente, requería instrucciones equivalentes a

CAPÍTULO 2 Programación orientada a procedimientos en C++70

www.FreeLibros.me

Coloque un 45 en la ubicación 1652
Coloque un 12 en la ubicación 2548

Para sumar los dos números que se acaban de almacenar y guardar el resultado en otra ubi-
cación de memoria, por ejemplo en la ubicación 3000, se necesita una instrucción compara-
ble a

Sume el contenido de la ubicación 1652
al contenido de la ubicación 2548
y almacene el resultado en la ubicación 3000

Figura 2.10 Almacenamiento suficiente para dos enteros.

Es evidente que este método de almacenamiento y recuperación es un proceso engorroso.
En lenguajes de alto nivel como C++, se usan nombres simbólicos en lugar de direcciones de
memoria reales. Estos nombres simbólicos se llaman variables. Una variable es tan sólo un
nombre dado por el programador para referirse a ubicaciones de almacenamiento de la com-
putadora. Se usa el término variable porque el valor almacenado en la variable puede cam-
biar, o variar. Para cada nombre que usa el programador, la computadora se mantiene al
tanto de la dirección de memoria real correspondiente a ese nombre. En nuestra analogía de
la habitación de hotel, esto es equivalente a poner un nombre en la puerta de una habitación
y referirse a la habitación con ese nombre, como la habitación AZUL, en lugar de usar el nú-
mero real de la habitación.

En C++, la selección de nombres de variables se deja al programador siempre que obser-
ve las reglas para seleccionar nombres de identificadores. Éstos se presentaron en la página
35 y se resumen a continuación.

1. El nombre de la variable debe comenzar con una letra o subrayado (_) y sólo puede
contener letras, subrayados o dígitos. No puede contener ningún espacio en blanco,
comas ni símbolos especiales, como () & , $ # . ! \ ?

2. Un nombre de variable no puede ser una palabra clave (véase la tabla 2.1).

3. El nombre de la variable no puede consistir en más de 1024 caracteres.

Además, los nombres de variables deben ser mnemónicos que den algún indicio del uso de la
variable. Por ejemplo, un buen nombre para una variable usada para almacenar un valor que
es el total de algunos otros valores sería suma o total. No deberán seleccionarse nombres
de variables que no dan ningún indicio del valor almacenado, como r2d2, linda, beto y
getum. Como con los nombres de función, los nombres de variables pueden escribirse con
letras mayúsculas y minúsculas.

Almacenamiento para un entero Almacenamiento para un entero

1652 2548

1245

Direcciones de memoria

2.5 Variables e instrucciones de declaración 71

www.FreeLibros.me

Ahora suponga que a la primera ubicación de memoria ilustrada en la figura 2.11, la cual
tiene la dirección 1652, se le da el nombre num1. También suponga que a la ubicación de
memoria 2548 se le da el nombre de variable num2, y a la ubicación de memoria 3000 se le
da el nombre de variable total, como se ilustra en la figura 2.11.

Figura 2.11 Denominación de las ubicaciones de almacenamiento.

Usando estos nombres de variable, la operación de almacenar 45 en la ubicación 1652, al-
macenar 12 en la ubicación 2548 y sumar los contenidos de estas dos ubicaciones se logra
con las instrucciones de C++

num1ƒ=ƒ45;
num2ƒ=ƒ12;
totalƒ=ƒnum1ƒ+ƒnum2;

Cada una de estas tres instrucciones se llama instrucción de asignación porque le indica a la
computadora que asigne (almacene) un valor en una variable. Las instrucciones de asigna-
ción siempre tienen un signo de igual (=) y un nombre de variable inmediatamente a la iz-
quierda de este signo. El valor a la derecha del signo de igual se determina primero, y este
valor se asigna a la variable a la izquierda del signo de igual. Los espacios en blanco en las
instrucciones de asignación se insertan para una mayor legibilidad. En el siguiente capítulo
se hablará más sobre las instrucciones de asignación, pero por ahora pueden usarse para al-
macenar valores en variables.

Un nombre de variable es de utilidad porque libera al programador en lo que concierne
a dónde se almacenan los datos en forma física dentro de la computadora. Tan sólo se usa el
nombre de variable y se deja que el compilador se preocupe por el lugar de la memoria en
que se almacenan los datos. Sin embargo, antes de almacenar un valor en una variable, C++
requiere que se declare con claridad el tipo de datos que se van a almacenar en ella. Debe in-
dicarse al compilador, con anticipación, los nombres de las variables que se usarán para ca-
racteres, los nombres que se usarán para enteros y los nombres que se usarán para almacenar
los otros tipos de datos de C++.

Instrucciones de declaración

Nombrar una variable y especificar el tipo de datos que pueden almacenarse en ella se logra
usando instrucciones de declaración. Una instrucción de declaración tiene la forma general

tipo-de-datos nombreDeVariable;

num 1

1652 2548

1245 57
45

num 2 total

Direcciones de memoria

Nombres de variable

CAPÍTULO 2 Programación orientada a procedimientos en C++72

www.FreeLibros.me

donde tipo-de-datos designa un tipo de datos válidos en C++ y nombreDeVariable es un
nombre de variable seleccionado por el usuario. Por ejemplo, las variables usadas para con-
tener valores enteros se declaran usando la palabra clave int para especificar el tipo de da-
tos y tiene la forma:

int nombreDeVariable;

Por tanto, la instrucción de declaración
intƒsum;

declara suma como el nombre de una variable capaz de almacenar un valor entero.
Además de la palabra reservada int usada para especificar un entero, la palabra reser-

vada long se usa para especificar un entero largo.10 Por ejemplo, la instrucción

longƒfechanum;

declara fechanum como una variable que se usará para almacenar un entero largo. Cuan-
do se usa el calificador long puede incluirse la palabra clave int. Por tanto, la declaración
anterior también puede escribirse como

longƒintƒfechanum;

Las variables usadas para contener valores de precisión simple se declaran usando la palabra
clave float, mientras las variables que se usarán para contener valores de precisión doble
se declaran usando la palabra clave double. Por ejemplo, la instrucción

floatƒprimernum;

declara primernum como una variable que se usará para almacenar un número de precisión
simple. Del mismo modo, la instrucción

doubleƒsegundonum;ƒ

declara que la variable segundonum se usará para almacenar un número de precisión doble.
Aunque las instrucciones de declaración pueden colocarse en cualquier parte dentro de

una función, por lo general las declaraciones se agrupan y se colocan inmediatamente des-
pués de la llave de apertura de la función. En todos los casos, sin embargo, una variable de-

2.5 Variables e instrucciones de declaración 73

10Además, las palabras reservadas unsigned int se usan para especificar un entero que sólo puede almacenar números no ne-
gativos y la palabra reservada short se usa para especificar un entero corto.

Datos atómicos
Las variables que declaramos aquí se han usado para almacenar valores de datos atómicos. Un
valor de datos atómicos es aquel que se considera una entidad completa por sí misma y que no
puede descomponerse en un tipo de datos más pequeño respaldado por el lenguaje. Por ejemplo,
aunque un entero puede descomponerse en dígitos individuales, C++ posee un tipo de dígitos nu-
méricos. Más bien, cada entero es considerado como un valor completo por sí mismo y, como tal,
se considera dato atómico. Del mismo modo, en vista que el tipo de datos enteros sólo respalda
valores de datos atómicos, se dice que es un tipo de datos atómicos. Como podría esperarse, dou-
ble, char y bool también son tipos de datos atómicos.

Punto de Información

www.FreeLibros.me

be declararse antes que pueda usarse y, como todas las instrucciones de C++, las instruccio-
nes de declaración deben terminar con un punto y coma. Si las instrucciones de declaración
se colocan después de la llave de apertura de la función, una función main() simple que con-
tenga instrucciones de declaración tendría la forma general

#includeƒ<iostream>
using namespace std;

intƒmain()
{
ƒƒinstrucciones de declaración;

ƒƒotras instrucciones;

ƒƒreturnƒ0;
}

El programa 2.7 ilustra esta forma al declarar y usar cuatro variables de precisión doble,
usando el objeto cout para desplegar el contenido de una de las variables.

La colocación de las instrucciones de declaración en el programa 2.7 es simple, aunque pron-
to se verá que las cuatro declaraciones individuales pueden combinarse en una sola declara-
ción. Cuando se ejecuta el programa 2.7, se despliega la siguiente salida:

El promedio de las calificaciones esƒ91.25

CAPÍTULO 2 Programación orientada a procedimientos en C++74

Programa 2.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒcalif1; // declara calif1 como una variable de precisión doble
ƒƒdoubleƒcalif2; // declara calif2 como una variable de precisión doble
ƒƒdoubleƒtotal;ƒƒƒ//ƒdeclara total como una variable de precisión doble
ƒƒdoubleƒpromedio; // declara promedio como una variable de precisión doble
ƒƒ
ƒƒcalif1ƒ=ƒ85.5;
ƒƒcalif2ƒ=ƒ97.0;
ƒƒtotalƒ=ƒcalif1ƒ+ƒcalif2;
ƒƒpromedioƒ=ƒtotal/2.0;ƒƒ//ƒdivideƒel total entreƒ2.0
ƒƒcoutƒ<<ƒ"El promedio de las calificaciones es “ << promedioƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Hay que observar que cuando se inserta un nombre de variable en un objeto cout, el valor
almacenado en la variable se coloca en el flujo de salida y se despliega.

Del mismo modo en que las variables de números enteros y reales (de precisión simple,
de precisión doble y de doble largo) deben declararse antes que puedan utilizarse, también
debe declararse una variable usada para almacenar un carácter individual. Las variables de
carácter se declaran usando la palabra reservada char. Por ejemplo, la declaración

charƒch;

declara que ch es una variable de carácter. El programa 2.8 ilustra esta declaración y el uso
de cout para desplegar el valor almacenado en una variable de carácter.

Cuando se ejecuta el programa 2.8, la salida producida es:

El carácter almacenado en ch es a
El carácter almacenado ahora en ch esƒm

Hay que observar en el programa 2.8 que la primera letra almacenada en la variable ch es a
y la segunda letra almacenada es m. En vista que una variable sólo puede usarse para alma-
cenar un valor a la vez, la asignación de m a la variable causa de manera automática que a
se sobrescriba.

Declaraciones múltiples

Las variables que tienen el mismo tipo de datos siempre pueden agruparse y declararse usan-
do una sola instrucción de declaración. La forma común de dicha declaración es

tipo de datos listaDeVariables;

2.5 Variables e instrucciones de declaración 75

Programa 2.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒch;ƒƒƒƒƒ//ƒesto declara una variable de carácter
ƒƒ
ƒƒchƒ=ƒ'a';ƒƒƒƒ//ƒalmacena la letra a enƒch
ƒƒcoutƒ<<ƒ"El carácter almacenado en ch esƒ"ƒ<<ƒchƒ<<ƒendl;
ƒƒchƒ=ƒ'm';ƒƒƒƒ//ƒahora almacena la letra m enƒch
ƒƒcoutƒ<<ƒ"El carácter almacenado ahora en ch esƒ"<<ƒchƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Por ejemplo, las cuatro declaraciones separadas usadas en el programa 2.7,

doubleƒcalif1;
doubleƒcalif2;
doubleƒtotal;
doubleƒpromedio;

pueden reemplazarse por la instrucción de declaración sencilla

doubleƒcalif1, calif2, total, promedio;

Del mismo modo, las dos declaraciones de carácter,

charƒch;
charƒclave;

pueden reemplazarse con la instrucción de declaración sencilla

charƒch,ƒclave;

Hay que observar que declarar múltiples variables en una sola declaración requiere que el ti-
po de datos de las variables sólo se dé una vez, que todos los nombres de las variables se se-
paren con comas y que sólo se use un punto y coma para terminar la declaración. El espacio
después de cada coma se inserta por legibilidad y no es indipensable.

Las instrucciones de declaración también pueden usarse para almacenar un valor en va-
riables declaradas. Por ejemplo, la instrucción de declaración

intƒnum1ƒ=ƒ15;

declara al mismo tiempo la variable num1 como una variable entera y establece el valor de
15 en la variable. Cuando se usa una instrucción de declaración para almacenar un valor en
una variable, se dice que la variable fue inicializada. Por tanto, en este ejemplo es correcto de-
cir que la variable num1 fue inicializada en 15. Del mismo modo, las instrucciones de decla-
ración

doubleƒcalif1ƒ=ƒ87.0;
doubleƒcalif2ƒ=ƒ93.5;
doubleƒtotal;

declaran tres variables de precisión doble e inicializan dos de ellas. Cuando se usan iniciali-
zaciones, la buena práctica de programación dicta que cada variable inicializada sea declara-
da en una línea individual. Pueden usarse como inicializadores dentro de una función las
constantes, las expresiones que usan sólo constantes (como 87.0 + 12 – 2) y expresiones que
usan constantes y variables inicializadas con anterioridad. Por ejemplo, el programa 2.7 con
una inicialización de declaración se convierte en el programa 2.7a.

CAPÍTULO 2 Programación orientada a procedimientos en C++76

www.FreeLibros.me

Observe la línea en blanco después de la última instrucción de declaración. Insertar una línea
en blanco después de las declaraciones de variables colocadas en la parte superior del cuer-
po de una función es una buena práctica de programación. Mejora tanto la apariencia de un
programa como su legibilidad.

Una característica interesante de C++ es que las declaraciones de variables pueden entre-
mezclarse libremente e incluso estar contenidas con otras instrucciones; el único requisito es
que una variable debe declararse antes de usarla. Por ejemplo, la variable total en el pro-
grama 2.7a podría haberse declarado cuando se usó por primera vez empleando la instruc-
ción double total = calif1 + calif2. En situaciones muy restringidas (como en la
depuración, como se describe en la sección 3.9, o en una iteración tipo for, descrita en la sec-
ción 5.4), puede ser útil declarar una variable en el punto de su primer uso. En general, sin
embargo, es preferible no dispersar las declaraciones sino más bien agruparlas en la manera
más concisa y clara posible, al principio de cada función.

Asignación de memoria

Las instrucciones de declaración que se han introducido ejecutan tareas tanto de software co-
mo de hardware. Desde una perspectiva del software, las instrucciones de declaración siem-
pre proporcionan una lista de todas las variables y sus tipos de datos. En esta función de
software, las declaraciones de variable también ayudan a controlar un error común y proble-
mático causado por la escritura equivocada del nombre de una variable dentro de un progra-
ma. Por ejemplo, suponga que una variable nombrada distancia se declara e inicializa
usando la instrucción

intƒdistanciaƒ=ƒ26;

Ahora suponga que esta variable se escribe mal en forma inadvertida en la instrucción
mpgƒ=ƒdistnciaƒ/ƒgalones;

2.5 Variables e instrucciones de declaración 77

Programa 2.7a

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒcalif1ƒ=ƒ85.5;
ƒƒdoubleƒcalif2ƒ=ƒ97.0;
ƒƒdoubleƒtotal,ƒpromedio;

ƒƒtotalƒ=ƒcalif1 + calif2;
ƒƒpromedio = total/2.0; // divide el total entreƒ2.0
ƒƒcoutƒ<<ƒ"El promedio de las calificaciones es “ << promedioƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

En lenguajes que no requieren declaraciones de variable, el programa trataría distancia
como una variable nueva y le asignaría un valor inicial de cero a la variable o usaría cual-
quier valor que resultara estar en el área de almacenamiento de la variable. En cualquier ca-
so se calcularía un valor y se asignaría a mpg, y encontrar el error o siquiera saber que ocurrió
podría ser en extremo problemático. Tales errores son imposibles en C++ porque el compila-
dor señalará distancia como una variable no declarada. El compilador no puede, por su-
puesto, detectar cuándo una variable declarada se escribe en lugar de otra variable declarada.

Además de su función en el software, las instrucciones de declaración también pueden
realizar una tarea de hardware distinta. Debido a que cada tipo de datos tiene sus propios re-
querimientos de almacenamiento, la computadora puede asignar suficiente almacenamiento
para una variable sólo después de conocer el tipo de datos de ésta. Debido a que las declara-
ciones de variable proporcionan esta información, pueden usarse para forzar al compilador
a reservar almacenamiento suficiente en la memoria física para cada variable. Las instruccio-
nes de declaración usadas con este propósito de hardware se llaman también instrucciones
de definición porque definen o le indican al compilador cuánta memoria es necesaria para el
almacenamiento de datos.

Todas las instrucciones de declaración que hemos encontrado hasta ahora han sido ins-
trucciones de definición. Más adelante, se verán casos de instrucciones de declaración que no
causan que se asigne ningún almacenamiento nuevo y se usan tan sólo para declarar o aler-
tar al programa de los tipos de datos de variables que se crean en otras partes del programa.

Figura 2.12a Definición de una variable de entero llamada total.

Figura 2.12b Definición de la variable de punto flotante llamada pendiente.

Indica a la
computadora que

Indica a la computadora que

float pendiente;

“Etiquete” el primer byte de

4 bytes

almacenamiento reservado
con el nombre pendiente

Reserve suficiente espacio para
un número de precisión simple

Indica a la computadora que

int total;

“Etiquete” al primer byte deIndica a la
computadora que

4 bytes

almacenamiento reservado
con el nombre total

Reserve suficiente espacio
para un número entero

CAPÍTULO 2 Programación orientada a procedimientos en C++78

www.FreeLibros.me

Figura 2.12c Definición de la variable de precisión doble llamada empuje.

Figura 2.12d Definición de la variable de carácter llamada clave.

La figura 2.12 (partes a-d) ilustra la serie de operaciones puestas en movimiento por instruc-
ciones de declaración que también desempeñan un papel de definición. La figura muestra que
las instrucciones de definición (o, si lo prefiere, instrucciones de declaración que también cau-
san que se asigne memoria) “etiquetan” el primer byte de cada conjunto de bytes reservados
con un nombre. Este nombre es, por supuesto, el nombre de la variable y es usado por la
computadora para ubicar en forma correcta el punto de inicio del área de memoria reserva-
da de cada variable.

Dentro de un programa, después que se ha declarado una variable, por lo general ésta es
usada por el programador para referirse al contenido de la variable (es decir, el valor de la
variable). En qué parte de la memoria se almacena este valor comúnmente es de poco interés
para el programador. El compilador, sin embargo, debe estar al tanto de dónde se almacena
cada valor y ubicar en forma correcta cada variable. En esta tarea la computadora usa el
nombre de la variable para ubicar el primer byte de almacenamiento asignado con anteriori-
dad a la variable. Conocer el tipo de datos de la variable le permite luego al compilador al-
macenar o recuperar el número correcto de bytes.

Despliegue de la dirección de una variable11

Cada variable tiene tres elementos importantes asociados a ella: su tipo de datos, el valor real
almacenado en la variable y la dirección de la variable. El valor almacenado en la variable se
conoce como el contenido de la variable, mientras la dirección de la primera ubicación de

Indica a la computadora que

Indica a la
computadora que

char clave;

“Etiquete” el primer byte de

1 byte

almacenamiento reservado
con el nombre clave

Reserve suficiente espacio
para un carácter

Indica a la computadora que

Indica a la
computadora que

double empuje;

“Etiquete” el primer byte de

8 bytes

almacenamiento reservado
con el nombre empuje

Reserve suficiente espacio para
un número de precisión doble

2.5 Variables e instrucciones de declaración 79

11Este tema puede omitirse en la primera lectura sin perder la continuidad.

www.FreeLibros.me

memoria usada para la variable constituye su dirección. Cuántas ubicaciones se usan en rea-
lidad para la variable, como acabamos de ver, depende del tipo de datos de ésta. La relación
entre estos tres elementos (tipo, contenido, ubicación) se ilustra en la figura 2.13.

Figura 2.13 Una variable típica.

Los programadores por lo general sólo se interesan en el valor asignado a la variable (su con-
tenido) y ponen poca atención al lugar donde está almacenado el valor (su dirección). Por
ejemplo, considere el programa 2.9.

La salida desplegada cuando se ejecuta el programa 2.9 es

El valor almacenado en num esƒ22ƒ

El programa 2.9 tan sólo imprime el valor 22, el cual es el contenido de la variable num. Po-
demos ir más allá, sin embargo, y preguntar “¿Dónde está almacenado en realidad el núme-
ro 22?” Aunque la respuesta es “en num”, ésta es sólo la mitad de la respuesta. El nombre
de la variable num tan sólo es un símbolo conveniente para ubicaciones físicas reales en la
memoria, como se ilustra en la figura 2.14.

Uno o más bytes en la memoria

Dirección de la variable

contenido de
la variable

CAPÍTULO 2 Programación orientada a procedimientos en C++80

ograma 2.9

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum;

ƒƒnumƒ=ƒ22;
ƒƒcoutƒ<<ƒ"El valor almacenado en num esƒ"ƒ<<ƒnumƒ<<ƒendl;

ƒƒreturnƒ0;
}

Pr

www.FreeLibros.me

Figura 2.14 Algún lugar en la memoria.

Para determinar la dirección de num, podemos usar el operador de dirección de C++, &, el
cual significa “la dirección de”. Excepto cuando se usa en una expresión, el operador de di-
rección colocado enfrente del nombre de una variable se refiere a la dirección de la variable.12

Por ejemplo, &num significa la dirección de num, &total significa la dirección de total y
&precio significa la dirección de precio. El programa 2.10 usa el operador de dirección
para mostrar la dirección de la variable num.

La salida del programa 2.10 es

El valor almacenado en num esƒ22ƒƒ
La dirección deƒnumƒ=ƒ0012FED4

4 bytes de memoria

x x x x

22

Dirección del primer
byte usado por num Contenido de num

2.5 Variables e instrucciones de declaración 81

12Cuando se usa para declarar variables y argumentos de referencia, los cuales se presentan en el capítulo 7, el signo & se refie-
re al tipo de datos que lo preceden. Por tanto, la declaración double &num se lee como “num es la dirección de un double”
o, de manera más común, como “num es una referencia a un double”

Programa 2.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum;

ƒƒnumƒ=ƒ22;
ƒƒcoutƒ<<ƒ"El valor almacenado en num esƒ"ƒ<<ƒnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"La dirección deƒnumƒ=ƒ"ƒ<<ƒ&numƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

La figura 2.15 ilustra la información de dirección adicional proporcionada por la salida del
programa 2.10.

Figura 2.15 Un panorama más completo de la variable num.

Es evidente que la salida de dirección del programa 2.10 depende de la computadora usada
para ejecutar el programa. Sin embargo, cada vez que se ejecuta el programa 2.10 muestra
la dirección de la primera ubicación de memoria usada para almacenar la variable num. Co-
mo lo ilustra la salida del programa 2.10, el despliegue de la dirección está en notación he-
xadecimal. Este despliegue no tiene efecto en la manera en que se usan las direcciones en
forma interna en el programa; tan sólo nos proporciona un medio de desplegar direcciones
que es útil para comprenderlas. Como se verá en los capítulos 6 y 12, usar direcciones, en
oposición a sólo desplegarlas, es una herramienta de programación importante y poderosa
en extremo.

Ejercicios 2.5

1. Establezca si los siguientes nombres de variables son válidos o no. Si son inválidos,
explique por qué.

prod_a c1234 abcd _c3 12345
ampnuevo vatios $total $alnuevo a1b2c3d4
9ab6 suma.de promedio voltios1 finvoltios

2. Establezca si los siguientes nombres de variable son válidos o no. Si son inválidos, ex-
plique por qué. También indique cuál de los nombres de variable válidos no deberían
usarse debido a que no transmiten información sobre la variable.

actual a243 r2d2 primer_num cc_a1
hector susana c3p0 total suma
maximo okay a increible veporel
3suma for tot.a1 c$cinco potencianeta

3. a. Escriba una instrucción de declaración para declarar que se usará la variable
cuenta para almacenar un entero.

b. Escriba una instrucción de declaración para declarar que se usará la variable
voltio para almacenar un número de punto flotante.

c. Escriba una instrucción de declaración para declarar que se usará la variable po-
tencia para almacenar un número de precisión doble.

4 bytes de memoria

0012FED4

22

 Dirección del primer
byte usado por num Contenido de num

CAPÍTULO 2 Programación orientada a procedimientos en C++82

www.FreeLibros.me

d. Escriba una instrucción de declaración para declarar que se usará la variable de
carácter clave para almacenar un carácter.

4. Escriba instrucciones de declaración para las siguientes variables:
a. num1, num2 y num3 usados para almacenar números enteros
b. amps1, amps2, amps3 y amps4 usados para almacenar números de precisión

doble
c. voltios1, voltios2 y voltios3 usados para almacenar números de preci-

sión doble
d. codigoA, codigoB, codigoC, codigoD y codigoE usados para almacenar ti-

pos de carácter

5. Escriba instrucciones de declaración para las siguientes variables:
a. primernum y segundonum usados para almacenar enteros
b. velocidad, aceleración y distancia usados para almacenar números de

precisión doble
c. empuje usado para almacenar un número de precisión doble

6. Vuelva a escribir cada una de estas instrucciones de declaración como tres declara-
ciones individuales.
a. intƒmes, díaƒ=ƒ30,ƒanio;
b. doubleƒhoras,ƒvoltios,ƒpotenciaƒ=ƒ15.62;
c. doubleƒprecio,ƒcantidad,ƒimpuestos;
d. charƒteclaEntrada,ƒch,ƒopciónƒ=ƒ'f';

7. a. Determine el efecto de cada instrucción en el siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum1,ƒnum2,ƒtotal;
ƒƒnum1ƒ=ƒ25;
ƒƒnum2ƒ=ƒ30;
ƒƒtotalƒ=ƒnum1ƒ+ƒnum2;
ƒƒcoutƒ<<ƒ"El total de"ƒ<<ƒnum1ƒ<<ƒ"ƒyƒ"ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒ<<ƒnum2ƒ<<ƒ" es "ƒ<<ƒtotalƒ<<ƒendl;
ƒƒ
ƒƒreturnƒ0;
}

b. ¿Cuál es la salida que se imprimirá cuando se ejecute el programa mostrado en el
ejercicio 7a?

8. Toda variable tiene tres elementos asociados. ¿Cuáles son estos tres elementos?

NOTA PARA LOS EJERCICIOS 9 A 11: Suponga que un carácter requiere un byte de almace-
namiento, un entero cuatro bytes, un número de precisión simple cuatro bytes, un número
de precisión doble ocho bytes y que a las variables se les asigna almacenamiento en el or-
den en que son declaradas. (Repase la sección 1.6 si no está familiarizado con el concepto
de byte.)

2.5 Variables e instrucciones de declaración 83

www.FreeLibros.me

Figura 2.16 Bytes de memoria para los ejercicios 9, 10 y 11.

9. a. Usando la figura 2.16 y suponiendo que el nombre de la variable tasa se asigna
al byte que tiene dirección de memoria 159, determine la dirección correspon-
diente a cada variable declarada en las siguientes instrucciones. También llene los
bytes apropiados con los datos de inicialización incluidos en las instrucciones de
declaración. (Use letras para los caracteres, no los códigos de computadora que
se almacenarían en realidad.)

floatƒtasa;
charƒch1ƒ=ƒ'M',ƒch2ƒ=ƒ'E',ƒch3ƒ=ƒ'L',ƒch4ƒ=ƒ'T';
doubleƒimpuestos;
intƒnum,ƒcountƒ=ƒ0;

b. Repita el ejercicio 9a, pero sustituya los patrones de byte reales que usaría una
computadora que utilice el código ASCII para almacenar los caracteres en las va-
riables ch1, ch2, ch3 y ch4. (Sugerencia: Use el apéndice B.)

10. a. Usando la figura 2.16 y suponiendo que a la variable nombrada cn1 se le asigna
al byte en la dirección de memoria 159, determine las direcciones correspondien-
tes a cada variable declarada en las siguientes instrucciones. Además, llene los by-
tes apropiados con los datos de inicialización incluidos en las instrucciones de
declaración. (Use letras para los caracteres y no los códigos de computadora que
se almacenarían en realidad.)

charƒcn1ƒ=ƒ'P',ƒcn2ƒ=ƒ'E',ƒcn3ƒ=ƒ'R',ƒcn4ƒ=ƒ'F',ƒcn5ƒ=ƒ'E';
charƒcn6ƒ=ƒ'C',ƒcn7ƒ=ƒ'T',ƒkeyƒ=ƒ'\\',ƒschƒ=ƒ'\'',ƒincƒ=ƒ'A';
charƒinc1ƒ=ƒ'T';

b. Repita el ejercicio 10a, pero sustituya los patrones de byte reales que usaría una
computadora que utilice el código ASCII para almacenar los caracteres en cada
una de las variables declaradas. (Sugerencia: Use la tabla 2.3.)

11. Usando la figura 2.16 y suponiendo que el nombre de variable millas se asigna al
byte en la dirección de memoria 159, determine las direcciones correspondientes a ca-
da variable declarada en las siguientes instrucciones.

floatƒmillas;
intƒcuenta,ƒnum;
doubleƒdist,ƒtemp;

159 160 161 162 163 164 165 166

167 168 169 170 171 172 173 174

175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190

Direcciones

CAPÍTULO 2 Programación orientada a procedimientos en C++84

www.FreeLibros.me

2.6 APLICACIÓN DEL PROCEDIMIENTO DE DESARROLLO
DE SOFTWARE

Recordará de la sección 1.2 que escribir un programa en C++ es en esencia el tercer paso en
el proceso de programación. Los primeros dos pasos en el proceso son determinar lo que se
requiere y seleccionar el algoritmo que se va a codificar en C++. En esta sección se muestra
cómo los pasos presentados en la sección 1.2 se aplican en la práctica cuando se convierten
problemas de programación de trabajo en programas C++. Para repasar, una vez que se es-
tablece el requerimiento o problema de un programa, el procedimiento de desarrollo de soft-
ware consiste de los siguientes pasos:

◆ Paso 1: Analizar el problema

El análisis de un problema puede consistir hasta de dos partes. La primera parte es un análi-
sis básico que debe realizarse en todos los problemas y consiste en extraer la información
completa de entrada y salida proporcionada por los problemas. Es decir, debe:

1. Determinar y entender los elementos de salida deseados que debe producir el pro-
grama

2. Determinar los elementos de entrada

Juntos, estos dos elementos se conocen como la entrada/salida del problema, I/O (por sus si-
glas en inglés), para abreviar. Sólo después que se ha determinado la I/O de un problema es
posible seleccionar un algoritmo para transformar las entradas en las salidas deseadas. En es-
te punto, en ocasiones es necesario o útil, o ambas cosas, realizar un cálculo manual para ve-
rificar que en efecto puede obtenerse la salida a partir de las entradas. Es claro que si se ha
proporcionado una fórmula que relaciona las entradas con las salidas, este paso puede omi-
tirse en esta etapa. Si las entradas requeridas están disponibles y la salida o salidas deseadas
pueden producirse, se dice que el problema está definido con claridad y puede resolverse.

Por una variedad de razones puede no ser posible completar un análisis básico. Si esto es
así, puede ser necesario un análisis extendido. Un análisis extendido tan sólo significa que
debe obtener información adicional sobre el problema, de modo que pueda entender a fon-
do lo que se está pidiendo y cómo lograr el resultado. En este texto cualquier información
adicional requerida para una comprensión del problema se suministrará junto con el plan-
teamiento de éste.

◆ Paso 2: Desarrollar una solución

Este paso con frecuencia se conoce como paso de diseño, y usaremos los términos diseño y
desarrollo de forma indistinta. En este paso debe elegir un algoritmo para transformar los ele-
mentos de entrada en las salidas deseadas y refinarlo según sea necesario para definir de ma-
nera adecuada todas las características que desea que tenga el programa. Si no ha realizado un
cálculo manual usando el algoritmo en el paso de análisis, debería hacerlo ahora, usando va-
lores de entrada específicos.

Al diseñar una solución, el enfoque específico que adoptaremos se conoce a menudo co-
mo enfoque descendente. Este enfoque consiste en comenzar con la solución más general y
refinarla de tal manera que la solución final consista en tareas definidas con claridad que pue-
dan ser completadas por funciones individuales del programa.

2.6 Aplicación del procedimiento de desarrollo de software 85

www.FreeLibros.me

◆ Paso 3: Codificar la solución

En este punto se escribe en realidad el programa de C++ que corresponde a la solución desa-
rrollada en el paso 2.

◆ Paso 4: Prueba y corrección del programa

Esto se realiza por medio de datos de prueba seleccionados y se utliza para hacer correccio-
nes al programa cuando se encuentran errores. Un conjunto de datos de prueba que siempre
debería usarse son los datos utilizados en su cálculo manual previo.

Para ver cómo pueden aplicarse cada uno de estos pasos en la práctica, ahora los em-
pleamos en el siguiente problema de programación simple.

La resistencia eléctrica, r, de un alambre metálico, en ohmios, está dada por la fórmula
r = (ml)/a, donde m es la resistividad del metal; l es el largo del alambre, en pies; y a es el área
de corte transversal del alambre, en circular mils. Usando esta información, escriba un pro-
grama en C++ para calcular la resistencia de un alambre que mide 125 pies de largo, tiene
un área de corte transversal de 500 mils circulares y es de cobre. La resistividad del cobre,
m, es 10.4.

Paso 1 Analizar el problema

El primer paso para desarrollar un programa para este problema planteado es realizar un
análisis básico. Comenzaremos por determinar las salidas requeridas. Con frecuencia, en el
planteamiento del problema usarán palabras como calcular, imprimir, determinar, encontrar
o comparar, las cuales pueden emplearse para determinar las salidas deseadas.

Para el planteamiento del problema de muestra, el enunciado clave es “calcular la resis-
tencia de un alambre”. Esto identifica con claridad un elemento de salida. Debido a que no
hay otros enunciados así en el problema, sólo se requiere una salida.

Después que se ha identificado con claridad la salida deseada, el paso de análisis básico
continúa con la identificación de todos los elementos de entrada. Es esencial en esta etapa
distinguir entre elementos de entrada y valores de entrada. Un elemento de entrada es el
nombre de una cantidad de entrada, mientras un valor de entrada es un número o cantidad
específica que puede ser el elemento de entrada. Por ejemplo, en el planteamiento del proble-
ma de muestra, los elementos de entrada son la resistividad, m, el largo del alambre, l, y el
área de corte transversal del alambre, a. Aunque estos elementos de entrada tienen valores
numéricos específicos, estos valores de los elementos de entrada por lo general no son de im-
portancia en esta etapa.

La razón por la que los valores de entrada no son necesarios en este punto es que la se-
lección de un algoritmo por lo general es independiente de valores de entrada específicos. El
algoritmo depende de saber cuáles son los elementos de salida y entrada y si hay algunos lími-
tes especiales. Veamos por qué esto es así.

Del planteamiento del problema es claro que el algoritmo para transformar los elemen-
tos de entrada en la salida deseada está dado por la fórmula r = (ml)/a. Hay que observar que
esta fórmula puede usarse sin tener en cuenta los valores específicos asignados a m, l o a.
Aunque no se puede producir un valor numérico real para el elemento de salida (resistencia)
a menos que se tengan valores numéricos reales para el elemento de entrada, la relación
correcta entre entradas y salidas está expresada por la fórmula. Recuerde que esto es pre-
cisamente lo que proporciona un algoritmo: una descripción de cómo las entradas se trans-
forman en salidas que funcione para todas las entradas.

CAPÍTULO 2 Programación orientada a procedimientos en C++86

www.FreeLibros.me

Paso 2 Desarrollar una solución

El algoritmo básico para transformar las entradas en la salida deseada es proporcionado por
la fórmula dada. Ahora debe refinarse enumerando, con detalle, cómo se han de combinar
las entradas, las salidas y el algoritmo para producir una solución. Este listado indica los pa-
sos que seguirá el programa para resolver el problema. Como tal constituye un esbozo de la
forma final que seguirá el código del programa. Usando seudocódigo, el algoritmo completo
para resolver este problema es

Asignar valores a m, l y a
Calcular la resistencia usando la fórmula r = (ml)/a
Mostrar la resistencia

Hay que observar que la estructura de este algoritmo se ajusta a la estructura de control se-
cuencial presentada en la sección 1.2.

Habiendo seleccionado y depurado el algoritmo, el siguiente paso en el diseño (si no se
hizo ya en el paso de análisis) es comprobar el algoritmo en forma manual usando datos es-
pecíficos. Realizar un cálculo manual, ya sea con papel y lápiz o por medio de una calcula-
dora, ayuda a verificar que en realidad ha entendido el problema. Una ventaja adicional de
hacer un cálculo manual es que los resultados pueden usarse después para compararlos con
la operación del programa en la fase de prueba. Entonces, cuando el programa final se use
con otros datos, habrá establecido un grado de confianza en que se está calculando un resul-
tado correcto.

Hacer un cálculo manual requiere que se tengan valores de entrada específicos que pue-
dan ser asignados y usados por el algoritmo para producir la salida deseada. Para este pro-
blema se dan tres valores de entrada: una resistividad de 10.4, un área de corte transversal
de 500 circular mils y un largo de 125 pies. Al sustituir estos valores en la fórmula, se obtie-
ne una resistencia = (10.4)(125)/500 = 2.60 ohmios para el alambre de cobre.

Paso 3 Codificar la solución

Debido a que se ha desarrollado en forma minuciosa una solución de programa, todo lo que
resta es codificar el algoritmo de solución en C++. Esto significa declarar variables de entra-
da y salida apropiadas, inicializar las variables de entrada en forma correcta, calcular la re-
sistencia e imprimir el valor de resistencia calculado. El programa 2.11 ejecuta estos pasos.

2.6 Aplicación del procedimiento de desarrollo de software 87

www.FreeLibros.me

Cuando se ejecuta el programa 2.11, se produce la siguiente salida:

La resistencia del alambre (en ohmios) esƒ2.6

Ahora que se tiene un programa funcional que produce un resultado, puede comenzar el pa-
so final en el proceso de desarrollo, probar el programa.

Paso 4 Prueba y corrección del programa

El propósito de probar un programa es verificar que funciona en forma correcta y en realidad
satisface los requerimientos. Una vez que se ha completado la prueba, el programa puede usar-
se para calcular salidas para diferentes datos de entrada sin necesidad de volver a probarlo.
Éste es, por supuesto, uno de los valores reales de escribir un programa; el mismo programa
puede usarse una y otra vez con datos de entrada nuevos.

El método de prueba más simple es verificar la operación del programa con conjuntos de
datos de entrada seleccionados cuidadosamente. Un conjunto de datos de entrada que siem-
pre debería usarse son los datos que se seleccionaron para el cálculo manual realizado con
anterioridad en el paso 2 del procedimiento de desarrollo. En este caso el programa es rela-
tivamente simple y sólo ejecuta un cálculo. Debido a que la salida producida por la ejecución
de prueba coincide con el cálculo manual se tiene un buen grado de confianza de que puede
ser usado para calcular correctamente la resistencia de otros valores de entrada.

Ejercicios 2.6

NOTA: En cada uno de estos ejercicios se expone un problema de programación. Lea
el planteamiento del problema primero y luego responda las preguntas relacionadas con él.

CAPÍTULO 2 Programación orientada a procedimientos en C++88

Programa 2.11

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒdoubleƒresistividad, area, longitud, resistencia;
ƒƒ
ƒƒresistividadƒ=ƒ10.4;
ƒƒareaƒ=ƒ500;
ƒƒlongitudƒ=ƒ125;
ƒƒresistencia = (resistividad * longitud)ƒ/ƒarea;
ƒƒ
ƒƒcoutƒ<<ƒ"La resistencia del alambre (en ohmios) esƒ"ƒ
ƒƒƒƒƒƒƒƒƒƒ<<ƒresistenciaƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

No escriba un programa para resolver los problemas, sino tan sólo responda las preguntas
que siguen a la especificación del programa.

1. Suponga que tiene que escribir un programa en C++ para calcular la resistencia total
de un circuito en serie. En dicho circuito la resistencia total es la suma de todos los
valores de resistencia individuales. Suponga que el circuito consiste en una cantidad
de resistores de 56 ohmios, 33 ohmios y 15 ohmios.
a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida. Suponga que la cantidad de resistores de 56 ohmios es m, la cantidad de re-
sistores de 33 ohmios es n, la cantidad de resistores de 15 ohmios es p.

d. Pruebe el algoritmo escrito para la parte c usando la siguiente muestra de datos:
m = 17, n = 24 y p = 12.

2. Suponga que tiene que escribir un programa para calcular el valor de la distancia, en
millas, dada la relación:

distancia = velocidad * tiempo transcurrido

a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando la siguiente muestra de datos:

velocidad es 55 millas por hora y tiempo transcurrido es 2.5 horas.
e. ¿Cómo debe modificarse el algoritmo que determinó en la parte c si el tiempo

transcurrido se diera en minutos en lugar de horas?

3. Suponga que tiene que escribir un programa para determinar el valor de ergios, da-
das las relaciones:

Ergios = fergios *

Lergios = 2 * π * eμ

a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando la siguiente muestra de datos:

fergios = 14.65, π = 3.1416, μ = 1.672 y e = 2.7818.

4. Suponga que tiene que escribir un programa para mostrar las siguientes especifica-
ciones:

Amplificación de voltaje: 35
Potencia de salida: 2.5 vatios
Ancho de banda: 15KHz

a. Para este problema de programación, ¿cuántas líneas de salida se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.

lergios

2.6 Aplicación del procedimiento de desarrollo de software 89

www.FreeLibros.me

5. Escriba un programa en C++ para determinar la distancia recorrida por un automó-
vil después de 10 segundos, suponiendo que el automóvil viaja inicialmente a 60 mi-
llas por hora y el conductor aplica los frenos para desacelerar de manera uniforme a
una velocidad de 12 millas/s2. Use el hecho que distancia = s – (1/2)dt2, donde s es la
velocidad inicial del automóvil, d es la desaceleración y t es el tiempo transcurrido.
a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando los datos proporcionados en el

problema.

6. Considere el siguiente problema de programación: en 1627, la isla de Manhattan fue
vendida a los colonizadores holandeses por aproximadamente 24 dólares. Si las ga-
nancias de esa venta se hubieran depositado en un banco holandés que pagara 5%
de interés anual compuesto, ¿cuál sería el saldo principal al final de 2002? Se requie-
re un despliegue como sigue: El saldo al 31 de diciembre de 2002 es: xxxxxx, donde
xxxxxx es la cantidad calculada por su programa.
a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando los datos proporcionados en el

planteamiento del problema.

7. Escriba un programa que calcule y despliegue los voltajes de salida de dos circuitos
eléctricos y la suma de los dos voltajes. El voltaje de salida para el primer circuito es-
tá dado por la ecuación (150) V / 0.38f y el voltaje de salida para el segundo circui-
to está dado por la ecuación

donde V es el voltaje de entrada al circuito y f es la frecuencia en Hertz.
a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando la siguiente muestra de datos:

el primer circuito es operado con un voltaje de entrada de 1.2 voltios a una fre-
cuencia de 144 Hertz y el segundo circuito es operado con un voltaje de entrada
de 2.3 voltios a 100 Hertz.

8. Considere el siguiente problema de programación: la fórmula para la desviación nor-
mal estándar, z, usada en aplicaciones estadísticas es

donde μ se refiere a un valor medio y σ a una desviación estándar. Usando esta fórmu-
la, escriba un programa que calcula y despliega el valor de la desviación normal es-
tándar cuando X = 85.3, μ = 80 y σ = 4.

z

X= − μ
σ

230

56 0 982 2

V

f+ (.)

CAPÍTULO 2 Programación orientada a procedimientos en C++90

www.FreeLibros.me

a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c usando los datos proporcionados en el

problema.

9. La ecuación de la curva normal (en forma de campana) usada en aplicaciones esta-
dísticas es

Usando esta ecuación, suponga que tiene que escribir un programa en C++ que calcu-
le el valor de y.
a. Para este problema de programación, ¿cuántas salidas se requieren?
b. ¿Cuántas entradas tiene este problema?
c. Determine un algoritmo para convertir los elementos de entrada en elementos de

salida.
d. Pruebe el algoritmo escrito para la parte c suponiendo que m = 90, σ = 4, x = 80

y π = 3.1416.

2.7 APLICACIONES

En esta sección, el procedimiento de desarrollo de software presentado en la sección anterior
se aplica a dos problemas de programación específicos. Aunque cada problema es diferente,
el procedimiento de desarrollo funciona para ambas situaciones. Este procedimiento puede
aplicarse a cualquier problema de programación para producir un programa completo y for-
ma el fundamento para todos los programas desarrollados en este texto.

Aplicación 1: Trampas de un radar de velocidad

Un radar común de detección de velocidad de la policía de caminos emite un rayo de mi-
croondas a una frecuencia f0. El rayo es reflejado por un automóvil que se aproxima y el ra-
yo reflejado es captado y analizado por la unidad de radar. La frecuencia del rayo reflejado
es cambiada ligeramente de f0 a f1 debido al movimiento del automóvil. La relación entre la
velocidad del automóvil, v, en millas por hora, y las dos frecuencias de microondas es

v = (6.685 � 108)(f1 – f0) / (f1 + f0)

donde las ondas emitidas tienen una frecuencia de f0 = 2 � 1010 sec –1. Usando la fórmula
dada, escriba un programa en C++ para calcular y desplegar la velocidad correspondiente a
una frecuencia recibida de 2.000004 � 1010 sec–1.

Ahora aplicamos el procedimiento de desarrollo de software a este problema.

Paso 1 Analizar el problema

Para este problema el programa requiere una sola salida: la velocidad del automóvil. Los ele-
mentos de entrada requeridos para solucionar la velocidad son la frecuencia emitida, f0, y la
frecuencia recibida, f1.

y e x= − −1

2
1 2 2

σ π
μ σ(/)[() /]

2.7 Aplicaciones 91

www.FreeLibros.me

Paso 2 Desarrollar una solución

El algoritmo proporcionado para transformar los tres elementos de entrada en el elemento
de salida deseado está dado por la fórmula v = 6.685 � 108(f1 – f0)/ (f1 + f0). Por tanto, el
algoritmo completo para el programa de solución es

Asignar valores a f1 y f0

Calcular la velocidad usando la fórmula v = 6.685 � 108(f1 – f0)/ (f1 + f0)
Desplegar la velocidad

Un cálculo manual, usando los datos f0 = 2 � 1010 sec–1 y f1 = 2.000004 � 1010 sec –1 pro-
duce una velocidad de 66.85 millas por hora.

Paso 3 Codificar la solución

El programa 2.12 proporciona el código necesario.

El programa 2.12 comienza con un comando preprocesador #include seguido por una
función main(). Esta función comienza con la palabra clave main y termina con la llave de
cierre, }. Además, el programa 2.12 contiene una instrucción de declaración, tres instruccio-
nes de asignación y una instrucción de salida. Las instrucciones de asignación f0ƒ=ƒ2e-10
y f1ƒ=ƒ2.0000004e-10 se usan para inicializar las variables f0 y f1 respectivamente.
La instrucción de asignación

velocidadƒ=ƒ6.685e8ƒ*ƒ(f1ƒ-ƒf0)ƒ/ƒ(f1ƒ+ƒf0);

CAPÍTULO 2 Programación orientada a procedimientos en C++92

Programa 2.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒvelocidad,ƒf0,ƒf1;

ƒƒf0ƒ=ƒ2e-10;
ƒƒf1ƒ=ƒ2.0000004e-10;

ƒƒvelocidadƒ=ƒ6.685e8ƒ*ƒ(f1ƒ-ƒf0)ƒ/ƒ(f1ƒ+ƒf0);
ƒƒcoutƒ<<ƒ"La velocidad es “ << velocidad << “millas/horaƒ"ƒ<<endl;
ƒƒƒƒƒƒ
ƒƒreturnƒ0;
}

www.FreeLibros.me

calcula un valor para la variable denominada velocidad. Cuando el programa 2.12 es
compilado y ejecutado se produce la siguiente salida.

La velocidad es 66.85 millas/hora

Paso 4 Probar y corregir el programa

El último paso en el procedimiento de desarrollo es probar la salida. Debido a que el cálcu-
lo único y el valor desplegado concuerdan con el cálculo manual anterior, se ha verificado la
operación correcta del programa. Esto permite usar el programa para valores diferentes de
frecuencias recibidas. Hay que observar que si los paréntesis no estuvieran colocados en for-
ma correcta en la instrucción de asignación que calculó un valor para la velocidad, el valor
desplegado no concordaría con nuestro cálculo manual previo. Esto nos habría alertado del
hecho que hubo un error en el programa.

Aplicación 2: Redes de conmutación telefónica

Una red telefónica conectada en forma directa es aquella en la que todos los teléfonos en la
red están conectados en forma directa y no requieren una estación de conmutación central
para establecer llamadas entre dos de ellos. Por ejemplo, las instituciones financieras en Wall
Street usan una red así para mantener líneas telefónicas abiertas en forma directa y continua
entre las empresas.

El número de líneas directas necesarias para mantener una red conectada en forma di-
recta para n teléfonos está dado por la fórmula:

líneas = n(n – 1)/2

Por ejemplo, conectar en forma directa cuatro teléfonos requiere 6 líneas individuales (véase
la figura 2.17). Agregar un quinto teléfono a la red ilustrada en la figura 2.17 requeriría 4 lí-
neas adicionales para un total de 10 líneas.

Figura 2.17 Conexión en forma directa de cuatro teléfonos.

línea 6
línea 5

Teléfono
núm. 4

Teléfono
núm. 3

Teléfono
núm. 2

Teléfono
núm. 1

línea 3

línea 1

línea 2línea 4

2.7 Aplicaciones 93

www.FreeLibros.me

Usando la fórmula dada, escriba un programa en C++ que determine el número de líneas di-
rectas requeridas para 100 teléfonos, y las líneas adicionales requeridas si se fueran a agre-
gar 10 teléfonos nuevos a la red.

Paso 1 Analizar el problema

Para este programa se requieren dos salidas: el número de líneas directas para 100 teléfonos
y el número de líneas adicionales necesarias cuando se agregan 10 teléfonos nuevos a la red
existente. El elemento de entrada requerido para este problema es el número de teléfonos, el
cual se denota como n en la fórmula.

Paso 2 Desarrollar una solución

La primera salida se obtiene con facilidad usando la fórmula:

líneas = n(n – 1)/2

Aunque no se proporciona una fórmula para las líneas adicionales, puede usarse la fórmula
dada para determinar el número total de líneas necesarias para 110 suscriptores. Restar el
número de líneas para 100 suscriptores del número de líneas necesarias para 110 suscripto-
res producirá entonces el número de líneas adicionales requeridas. Por tanto, el algoritmo
completo para el programa, en seudocódigo, es

Calcular el número de líneas directas para 100 suscriptores
Calcular el número de líneas directas para 110 suscriptores
Calcular las líneas adicionales necesarias, que son la diferencia entre el segundo y el
primer cálculo.
Desplegar el número de líneas para 100 suscriptores
Desplegar las líneas adicionales necesarias

Verificar este algoritmo en forma manual, usando los datos proporcionados, produce la res-
puesta:

líneas = 100(100 – 1)/2 = 100(99)/2 = 4950

para 100 teléfonos y

líneas = 5995

para 110 teléfonos. Por tanto, serían necesarias 1045 líneas adicionales para conectar en for-
ma directa los diez teléfonos adicionales en la red existente.

Paso 3 Codificar la solución

El programa 2.13 proporciona el código necesario.

CAPÍTULO 2 Programación orientada a procedimientos en C++94

www.FreeLibros.me

Como antes, el programa en C++ incluye el archivo de encabezado iostream y consiste en
una función main(). El cuerpo de esta función comienza con la llave de apertura {, y termi-
na con la llave de cierre}. Debido a que el número de líneas entre suscriptores debe ser un
número entero (no es posible una línea fraccionaria) las variables lineas1 y lineas2 se
especifican como variables enteras. Las primeras dos instrucciones de asignación inicializan
las variables numin1 y numin2. La siguiente instrucción de asignación calcula el número de
líneas necesarias para 100 suscriptores y la última instrucción de asignación calcula el núme-
ro de líneas para 110 suscriptores. La primera instrucción cout se usa para desplegar un
mensaje y el resultado del primer cálculo. La siguiente instrucción cout se usa para desple-
gar la diferencia entre los dos cálculos. La siguiente salida se produce cuando se compila y
ejecuta el programa 2.13:

El número de líneas iniciales esƒ4950.
Se necesitan 1045 líneas adicionales.

Paso 4 Probar y corregir el programa

Como los dos cálculos y los valores desplegados concuerdan con el cálculo manual previo,
se ha verificado la operación correcta del programa.

Ejercicios 2.7

1. a. Modifique el programa 2.12 para calcular la velocidad de un automóvil cuya fre-
cuencia de retorno del radar es 2.00000035 � 1010 sec–1.

b. Compile y ejecute el programa escrito para el ejercicio 1a en una computadora.

2.7 Aplicaciones 95

Programa 2.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnumin1,ƒnumin2,ƒlineas1,ƒlineas2;
ƒ
ƒƒnumin1ƒ=ƒ100;
ƒƒnumin2ƒ=ƒ110;
ƒƒlineas1ƒ=ƒnumin1ƒ*ƒ(numin1ƒ-ƒ1)/2;
ƒƒlineas2ƒ=ƒnumin2ƒ*ƒ(numin2ƒ-ƒ1)/2;
ƒƒcoutƒ<<ƒ"El número de líneas iniciales es “ << lineas1ƒ<<ƒ"."ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"Se necesitan “ << lineas2 - lineas1ƒ
ƒƒƒƒƒƒƒ<<ƒ"ƒlíneas adicionales."ƒ<<ƒendl;ƒ
ƒ
ƒƒreturnƒ0;
}

www.FreeLibros.me

2. a. Modifique el programa 2.12 para determinar la frecuencia que será regresada por
un automóvil que viaja a 55 millas por hora. Su programa deberá producir el si-
guiente despliegue:

La frecuencia regresada correspondiente a 55 millas por hora
es

donde el subrayado es reemplazado por el valor real calculado por su programa.
b. Compile y ejecute el programa escrito para el ejercicio 2a en una computadora.

Asegúrese de hacer un cálculo manual de modo que pueda verificar los resultados
producidos por su programa.

c. Después de haber verificado los resultados del programa escrito en ejercicio 2a,
modifique el programa para calcular la frecuencia de vuelta para un automóvil
que viaja a 75 millas por hora.

3. a. Modifique el programa 2.13 para calcular y desplegar el número total de líneas
necesario para conectar 1000 teléfonos individuales en forma directa entre sí.

b. Compile y ejecute el programa escrito para el ejercicio 3a en una computadora.

4. a. Modifique el programa 2.13 de modo que una nueva variable numfin, el núme-
ro adicional de suscriptores que va a ser conectados a la red existente, se iniciali-
ce en 10. Haga otros cambios en el programa de modo que produzca el mismo
despliegue que el programa 2.13.

b. Compile y ejecute el programa escrito para el ejercicio 4a en una computadora.
Verifique que el despliegue producido por su programa corresponde al despliegue
mostrado en el texto.

5. a. Diseñe, escriba, compile y ejecute un programa en C++ para convertir temperatu-
ra en grados Fahrenheit en grados Celsius. La ecuación para esta conversión es

Celsius = 5.0/9.0 (Fahrenheit - 32.0).

Haga que su programa convierta y despliegue la temperatura Celsius correspon-
diente a 98.6 grados Fahrenheit. Su programa deberá producir el siguiente des-
pliegue:
Para una temperatura Fahrenheit de ƒgrados,ƒ
ƒƒla temperatura Celsius equivalente es ƒgrados.

donde su programa debe insertar los valores apropiados en lugar de los subraya-
dos.

b. Verifique en forma manual los valores calculados por su programa. Después que
haya comprobado que su programa funciona en forma correcta, modifíquelo pa-
ra convertir 86.5 grados Fahrenheit en su valor Celsius equivalente.

6. a. Escriba, compile y ejecute un programa en C++ para calcular la resistencia de un
circuito en serie consistente en 12 resistores de 56 ohmios, veinte de 39 ohmios,
32 de 27 ohmios y 27 de 15 ohmios. Use el hecho que la resistencia de un circui-
to en serie es la suma de todas las resistencias individuales. Su programa deberá
producir el siguiente despliegue:
La resistencia total, en ohmios, esƒxxxx

donde xxxx es reemplazado por el valor de resistencia real calculado por su pro-
grama.

CAPÍTULO 2 Programación orientada a procedimientos en C++96

www.FreeLibros.me

b. Verifique en forma manual los valores calculados por su programa. Después que
haya comprobado que su programa funciona en forma correcta, modifíquelo pa-
ra calcular la resistencia de un circuito en serie consistente en ningún resistor de
56 ohmios, 17 de 39 ohmios, 19 de 27 ohmios y 42 de 15 ohmios.

7. a. Diseñe, escriba, compile y ejecute un programa en C++ para calcular el tiempo re-
querido para hacer un viaje de 183.67 millas. La ecuación para calcular el tiem-
po transcurrido es

tiempo transcurrido = distancia total / velocidad promedio

Suponga que la velocidad promedio durante el viaje fue 58 millas por hora.
b. Verifique en forma manual los valores calculados por su programa. Después de

haber comprobado que su programa funciona en forma correcta, modifíquelo pa-
ra determinar el tiempo que toma hacer un viaje de 372 millas a una velocidad
promedio de 67 millas por hora.

8. a. Diseñe, escriba, compile y ejecute un programa en C++ para calcular la suma de
los números del 1 al 100. La fórmula para calcular esta suma es

suma = (n/2) (2*a + (n – 1)d)

donde n = número de términos que se van a sumar, a = el primer número y d =
la diferencia entre cada número.

b. Verifique en forma manual los valores calculados por su programa. Después de
haber comprobado que su programa funciona en forma correcta, modifíquelo pa-
ra determinar la suma de los enteros de 100 a 1000.

NOTA: Los ejercicios 9 a 13 requieren elevar un número a una potencia. Esto puede lograr-
se usando la función de potencia de C++ pow(). Por ejemplo, la instrucción pow(2.0,5.0);
eleva el número 2.0 a la quinta potencia, y la instrucción pow(num1,num2); eleva la variable
num1 a la potencia num2. Para usar la función de potencia se coloca un comando preprocesa-
dor #include <cmath> en una sola línea después del comando #include <iostream>
o se incluye la instrucción de declaración double pow(); con las instrucciones de declaración
de variables usadas en su programa. La función de potencia se explicará con más detalle en la
sección 3.3.

9. a. La ley de Newton del enfriamiento establece que cuando un objeto con una tem-
peratura inicial T se introduce en una sustancia de temperatura A, alcanzará una
temperatura TFIN en t minutos de acuerdo con la

TFIN = (T – A) e–kt + A
En esta fórmula e es el número irracional 2.71828 redondeado a cinco lugares de-
cimales, conocido por lo común como el número de Euler, y k es un coeficiente
térmico, el cual depende del material que se va a enfriar. Usando esta fórmula es-
criba, compile y ejecute un programa en C++ que determine la temperatura alcan-
zada por un objeto después de 20 minutos cuando es colocado en un vaso con
agua cuya temperatura es de 60 grados. Suponga que el objeto tenía inicialmen-
te una temperatura de 150 grados y tiene una constante térmica de 0.0367.

b. Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifíquelo para de-
terminar la temperatura alcanzada después de 10 minutos cuando es colocado en
un vaso con agua cuya temperatura es de 50 grados.

2.7 Aplicaciones 97

www.FreeLibros.me

10. a. La ganancia de voltaje de un amplificador está dada por la fórmula

ganancia de voltaje = [275 / (232 + (0.5f)2)1/2]
n

donde f es la frecuencia, en Hertz, y n es el número de etapas en el amplificador.
Usando esta fórmula escriba, compile y ejecute un programa en C++ que deter-
mine el valor de la ganancia de voltaje para un amplificador de cuatro etapas que
opera a una frecuencia de 120 Hertz. Su programa deberá producir el siguiente
despliegue:
A una frecuencia deƒxxxxxƒhertz,ƒla ganancia de voltaje
esƒyyyyy

donde xxxxx es reemplazado por la frecuencia e yyyyy por la ganancia de voltaje.
b. Verifique en forma manual el valor calculado por su programa. Después que ha-

ya comprobado que su programa funciona en forma correcta, modifíquelo para
determinar la ganancia de voltaje de un amplificador de 12 etapas que opera a
una frecuencia de 9500 Hertz.

11. a. La corriente eléctrica, i, en amperios, que fluye a través del circuito ilustrado en
la figura 2.18 está dada por la

donde E es el voltaje de la batería en voltios, R es el valor del resistor en ohmios,
L es el valor del inductor en henrios, t es el tiempo en segundos después de cerrar
el interruptor y e es el número de Euler, el cual es 2.718 con una precisión de tres
cifras decimales. Usando esta fórmula, escriba, compile y ejecute un programa en
C++ para determinar el flujo de corriente en el circuito ilustrado en la figura 2.18
cuando t es 0.12 segundos.

Figura 2.18 Un circuito RL en serie.

b. Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifíquelo para de-
terminar la corriente en 0.12 segundos si E es de 25 voltios, R es de 33 ohmios y
L es de 15 henrios.

12. a. La corriente eléctrica, i, en amperios, que fluye a través del circuito ilustrado en
la figura 2.19 está dado por la siguiente ecuación:

i

E e

R

t RC

=
() − /

=56Ω

=15V =12h

R

E L

i

E e

R

– R L t

=
−() ()1

CAPÍTULO 2 Programación orientada a procedimientos en C++98

www.FreeLibros.me

donde E es el voltaje de la batería en voltios, R es el valor del resistor en ohmios,
C es el valor del capacitor en faradios, t es el tiempo en segundos después de ce-
rrar el interruptor y e es el número de Euler, el cual es 2.718 con una precisión de
tres cifras decimales. Usando esta fórmula, escriba, compile y ejecute un progra-
ma en C++ para determinar el voltaje a través del capacitor ilustrado en la figura
2.19 cuando t es 0.31 segundos.

Figura 2.19 Un circuito RC en serie.

b. Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifíquelo para de-
terminar la corriente en 0.85 segundos si E es de 25 voltios, R es de 220 ohmios
y C es de 0.00039 faradios.

13. a. El voltaje eléctrico, V, en voltios, a través del capacitor, C, ilustrado en la figura
2.20 está dado por la ecuación

donde E es el voltaje de la batería en voltios, R es el valor del resistor en ohmios,
C es el valor del capacitor en faradios, t es el tiempo en segundos después de ce-
rrar el interruptor y e es el número de Euler, el cual es 2.718 con una precisión de
tres cifras decimales. Usando esta fórmula, escriba, compile y ejecute un progra-
ma en C++ para determinar el voltaje a través del capacitor ilustrado en la figura
2.20 cuando t es 0.42 segundos.

Figura 2.20 Un circuito RC en serie.

b. Verifique en forma manual el valor calculado por su programa. Después de haber
comprobado que su programa funciona en forma correcta, modifíquelo para de-
terminar la corriente en 0.85 segundos si E es de 25 voltios, R es de 220 ohmios
y C es de 0.00039 faradios.

=470Ω

=35V

R

E C =220 ×10
−6

f

V

E e

R

t RC

=
−[]−1 /

=8100Ω

=20V

R

E C= 18 × 10
−6

f

i

2.7 Aplicaciones 99

www.FreeLibros.me

14. a. El conjunto de ecuaciones lineales

a11X1 + a12X2 = c1

a21X1 + a22X2 = c2

puede resolverse usando la regla de Cramer:

Usando estas ecuaciones, escriba, compile y ejecute un programa en C++ para en-
contrar los valores X1 y X2 que satisfagan las siguientes ecuaciones:

3X1 + 4X2 = 40

5X1 + 2X2 = 34

b. Verifique en forma manual los valores calculados por su programa. Después de
haber comprobado que su programa funciona en forma correcta, modifíquelo pa-
ra resolver el siguiente conjunto de ecuaciones:

3X1 + 12.5X2 = 22.5

4.2X1 – 6.3X2 = 30

2.8 ERRORES COMUNES DE PROGRAMACIÓN

Parte de aprender cualquier lenguaje de programación es cometer los errores elementales que
se encuentran por lo común cuando se empieza a usar el lenguaje. Estos errores tienden a ser
bastante frustrantes debido a que cada lenguaje tiene su propio conjunto de errores de pro-
gramación comunes esperando a los incautos. Los errores más comunes cometidos cuando
se empieza a programar en C++ incluyen los siguientes.

1. Omitir los paréntesis después de main.

2. Omitir o escribir de manera incorrecta la llave de apertura { que indica el inicio de
un cuerpo de función.

3. Omitir o escribir de manera incorrecta la llave de cierre } que indica el final de una
función.

4. Escribir mal el nombre de un objeto o función; por ejemplo, escribir cot en lugar
de cout.

5. Olvidar cerrar una cadena enviada a cout con un símbolo de comillas.

6. Olvidar separar flujos de datos individuales pasados a cout con un símbolo de in-
serción (“enviar a”), <<.

7. Omitir el punto y coma al final de cada instrucción de C++.

X

c a c a

a a a a11
2

2 11 1 21

22 12 21
=

−
−

X
c a c a

a a a a1
1 22 2 12

11 22 12 21
=

−
−

CAPÍTULO 2 Programación orientada a procedimientos en C++100

www.FreeLibros.me

8. Agregar un punto y coma al final del comando preprocesador #include.

9. Olvidar \n para indicar una línea nueva.

10. Escribir en forma incorrecta la letra O en lugar del número cero (0), o viceversa.
Escribir de forma incorrecta la letra l, por el número 1, o viceversa.

11. Olvidar declarar todas las variables usadas en el programa. Este error es detectado
por el compilador y se genera un mensaje de error para todas las variables no
declaradas.

12. Almacenar un tipo de datos inapropiado en una variable declarada. Este error es
detectado por el compilador y el valor asignado es convertido al tipo de datos de
la variable a la que fue asignado.

13. Usar una variable en una expresión antes que se haya asignado un valor a la
variable. Aquí, cualquier valor que resulte estar en la variable se usará cuando se
evalúa la expresión, y el resultado carecerá de significado.

14. Dividir valores enteros en forma incorrecta. Este error se disfraza por lo general
dentro de una expresión más grande y puede ser un error muy problemático de
detectar. Por ejemplo, la expresión

3.425 + 2/3 + 7.9

produce el mismo resultado que la expresión

3.425 + 7.9

debido a que la división de números enteros de 2/3 es 0.

15. Mezclar tipos de datos en la misma expresión sin entender con claridad el efecto
producido. En vista que C++ permite expresiones con tipos de datos “mixtos”, es
importante entender el orden de evaluación y el tipo de datos de todos los cálculos
intermedios. Como una regla general, es mejor no mezclar nunca tipos de datos en
una expresión a menos que se desee un efecto específico.

El tercero, quinto, séptimo, octavo y noveno errores en esta lista son los más
comunes al inicio, mientras incluso programadores experimentados en ocasiones
cometen el décimo error. Vale la pena que escriba un programa e introduzca de
manera específica cada uno de estos errores, uno a la vez, para ver qué mensajes
de error son producidos por el compilador, si es que se genera alguno. Entonces
cuando aparezcan estos mensajes de error debido a errores inadvertidos, tendrá
experiencia para comprender los mensajes y corregir los errores.

En un nivel más fundamental, un error de programación importante cometido
por los programadores principiantes es la prisa por codificar y ejecutar un progra-
ma antes que el programador haya entendido por completo lo que se requiere y los
algoritmos y procedimientos que se usarán para producir el resultado deseado. Un
síntoma de este apresuramiento por introducir un programa en la computadora es
la carencia de un esbozo del programa propuesto o de un programa escrito en sí.
Pueden evitarse muchos problemas con sólo revisar una copia del programa, ya
sea manuscrita o enlistada por la computadora, antes que sea compilado.

2.8 Errores comunes de programación 101

www.FreeLibros.me

2.9 RESUMEN DEL CAPÍTULO

1. Un programa en C++ consiste de uno o más módulos llamados funciones. Una de
estas funciones debe llamarse main(). La función main() identifica el punto
de inicio de un programa C++.

2. El programa C++ más simple consiste en una sola función main().

3. Después del nombre de la función, el cuerpo de una función tiene la siguiente
forma general:

{
ƒƒƒTodas las instrucciones de C++ van aquí;
}

4. Todas las instrucciones de C++ deben terminar con un punto y coma.

5. En este capítulo se introdujeron tres tipos de datos: enteros, de punto flotante y
booleanos. C++ reconoce cada uno de estos tipos de datos, además de otros que
aún falta por presentar.

6. El objeto cout puede usarse para desplegar todos los tipos de datos de C++.

7. Cuando se usa el objeto cout dentro de un programa, debe colocarse el comando
preprocesador #includeƒ<iostream> en la parte superior del programa. Los
comandos preprocesadores no terminan con punto y coma.

8. Toda variable en un programa C++ debe declararse como el tipo de valor que
puede almacenar. Las declaraciones dentro de una función pueden colocarse en
cualquier parte dentro de la función, aunque una variable sólo puede ser usada
después de ser declarada. Las variables también pueden inicializarse cuando son
declaradas. Además, las variables del mismo tipo pueden declararse usando una
sola instrucción de declaración. Las instrucciones de declaración de variables tienen
la forma general:

tipo-de-datos nombre(s)DeVariables;

9. Un programa C++ simple que contiene instrucciones de declaración tiene la forma
típica

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒinstrucciones de declaración;

ƒƒotras instrucciones;
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒreturnƒ0;
}

CAPÍTULO 2 Programación orientada a procedimientos en C++102

www.FreeLibros.me

Ingeniería eléctrica
La ingeniería eléctrica tiene que ver con la aplicación de los principios de la electricidad y el
electromagnetismo para la fabricación de toda clase de máquinas y dispositivos que utilicen
electricidad o produzcan energía eléctrica. Este campo es el más grande de todos los campos de la
ingeniería. En sus inicios, a mediados del siglo XIX, sólo se interesaba por la generación de energía
eléctrica. Ha evolucionado para convertirse en un campo con horizontes más amplios, abarcando
las comunicaciones, las computadoras, la robótica, los dispositivos de estado sólido y el diseño de
circuitos integrados.

1. Potencia. Esta área implica la generación de energía eléctrica en grandes plantas de combusti-
bles fósiles, nucleares, solares o hidroeléctricas, o la utilización eficiente de la energía eléctrica
por medio de motores o dispositivos de iluminación. También son importantes la transmisión
y distribución de energía eléctrica por medio de líneas eléctricas aéreas, microondas, ductos y
líneas de superconductores.

2. Electrónica de estado sólido. A través de la física moderna y la ciencia de los materiales, se han
desarrollado materiales semiconductores exóticos que se usan para construir microcircuitos pa-
ra la vigilancia y control de las operaciones de toda clase de dispositivos, desde juegos de video
hasta robots en líneas de montaje. La mejora en la confiabilidad, la rápida reducción en el
tamaño y la reducción en los requerimientos de potencia de los componentes eléctricos minia-
turizados modernos han creado oportunidades ilimitadas para sus aplicaciones.

3. Comunicaciones. Las comunicaciones implican el diseño y construcción de equipo usado en la
transmisión de información por medio de electricidad u ondas electromagnéticas (radio, luz,
microondas, etc.). El uso del láser para la comunicación es un tema de interés contemporáneo,
mientras que las características de las antenas y el radar son un poco más antiguas.

4. Computadoras y robótica. Aunque la electrónica tiene que ver con los principios asociados con
las funciones de los componentes, los ingenieros en computación están interesados en diseñar
los circuitos complejos que entrelazan los componentes en una computadora. Los microproce-
sadores, o computadoras pequeñas, están diseñados para vigilar y controlar de manera cons-
tante las operaciones de una pieza de equipo particular como un torno o un piloto automático.

Aunque las instrucciones de declaración pueden colocarse en cualquier parte
dentro del cuerpo de la función, sólo puede utilizarse una variable después que se
ha declarado.

10. Las instrucciones de declaración siempre efectúan una tarea de software que
consiste en informar al compilador los nombres válidos de las variables de una
función. Cuando una declaración de variable también causa que la computadora
asigne ubicaciones de memoria para la variable, la instrucción de declaración
también se llama instrucción de definición. (Todas las declaraciones que se han
usado en este capítulo han sido también instrucciones de definición.)

11. El operador sizeof() puede utilizarse para determinar la cantidad de
almacenamiento reservado para las variables.

2.9 Resumen del capítulo 103

Consideración de opciones de carrera

www.FreeLibros.me

www.FreeLibros.me

