
CCAPÍTULOAPÍTULO 3
Asignación, formateo y entrada

interactiva

TEMAS

3.1 OPERACIONES DE ASIGNACIÓN
COERCIÓN ACUMULACIÓN

VARIACIONES DE ASIGNACIÓN CONTEO

3.2 DAR FORMATO A NÚMEROS PARA LA SALIDA DEL PROGRAMA

3.3 EMPLEO DE LA BIBLIOTECA DE FUNCIONES MATEMÁTICAS
MOLDES

3.4 ENTRADA DE DATOS AL PROGRAMA USANDO EL OBJETO cin
UNA PRIMERA MIRADA A LA VALIDACIÓN DE ENTRADAS DEL USUARIO

3.5 CONSTANTES SIMBÓLICAS
COLOCACIÓN DE INSTRUCCIONES

3.6 APLICACIONES
APLICACIÓN 1: LLUVIA ÁCIDA

APLICACIÓN 2: APROXIMACIÓN A LA FUNCIÓN EXPONENCIAL

3.7 ERRORES COMUNES DE PROGRAMACIÓN

3.8 RESUMEN DEL CAPÍTULO

3.9 UN ACERCAMIENTO MÁS A FONDO:
ERRORES DE PROGRAMACIÓN
CONSIDERACIÓN DE LAS OPCIONES DE CARRERA: INGENIERÍA MECÁNICA

En el capítulo anterior se exploró cómo se despliegan los resultados usando el objeto
cout de C++ y cómo se almacenan y se procesan los datos numéricos usando variables
e instrucciones de asignación. En este capítulo se completará la introducción a C++ pre-
sentando capacidades de procesamiento y entrada adicionales.

Asignación, formateo y entrada
interactiva

3

105

www.FreeLibros.me

CAPÍTULO 3 Asignación, formateo y entrada interactiva106

3.1 OPERACIONES DE ASIGNACIÓN

Ya se han encontrado instrucciones de asignación simples en el capítulo 2. Dichas instruccio-
nes son las más básicas de C++ tanto para asignar valores a las variables como para llevar a
cabo cálculos. Esta instrucción tiene la sintaxis:

variable = expresión;

La expresión más simple en C++ es una sola constante. En cada una de las siguientes instruc-
ciones de asignación, el operando a la derecha del signo de igual es una constante:

largoƒ=ƒ25;

anchoƒ=ƒ17.5;

En cada una de estas instrucciones de asignación el valor de la constante a la derecha del sig-
no de igual se asigna a la variable a la izquierda del signo de igual. Es importante señalar que
el signo de igual en C++ no tiene el mismo significado que un signo de igual en álgebra. El sig-
no de igual en una instrucción de asignación le indica a la computadora que determine prime-
ro el valor del operando a la derecha del signo de igual y luego almacene (o asigne) ese valor
en las ubicaciones asociadas con la variable a la izquierda del signo de igual. En este sentido,
la instrucción de C++ largo = 25; se lee “a largo se le asignó el valor 25”. Los espacios en
blanco en la instrucción de asignación se insertan sólo para legibilidad.

Recuerde que una variable puede ser inicializada cuando se declara. Si no se hace una ini-
cialización dentro de la instrucción de declaración, a la variable debe asignársele un valor con
una instrucción de asignación u operación de entrada antes que se use en cualquier cálculo.
Pueden usarse, por supuesto, instrucciones de asignación subsiguientes para cambiar el valor
asignado a una variable. Por ejemplo, suponga que las siguientes instrucciones se ejecutan una
tras otra y que no se inicializó pendiente cuando fue declarada:

pendienteƒ=ƒ3.7;

pendienteƒ=ƒ6.28;

La primera instrucción de asignación le da el valor de 3.7 a la variable nombrada pendien-
te.1 La siguiente instrucción de asignación causa que la computadora asigne un valor de 6.28
a pendiente. El 3.7 que estaba en pendiente es sobrescrito con el nuevo valor de 6.28 de-
bido a que una variable sólo puede almacenar un valor a la vez. A veces es útil pensar en la
variable a la izquierda del signo de igual como un cajón de estacionamiento temporal en un
estacionamiento enorme. Del mismo modo en que un cajón de estacionamiento individual só-
lo puede ser usado por un automóvil a la vez, cada variable sólo puede almacenar un valor a
la vez. “Estacionar” un valor nuevo en una variable causa de manera automática que el pro-
grama elimine cualquier valor estacionado ahí con anterioridad.

1En vista que ésta es la primera vez que se asigna un valor de manera explícita a esta variable con frecuencia se le denomina ini-
cialización. Esto se deriva del uso histórico que expresa que una variable era inicializada la primera vez que se le asignaba un va-
lor. Bajo este uso es correcto decir qué “pendiente fue inicializada a 3.7”. Desde un punto de vista de la implementación, sin
embargo, este último planteamiento es incorrecto. Esto se debe a que la operación de asignación es manejada en forma diferen-
te por el compilador de C++ que una inicialización realizada cuando se crea una variable por una instrucción de declaración. Es-
ta diferencia sólo es importante cuando se usan características de clase de C++ y se explica con detalle en la sección 9.1.

www.FreeLibros.me

1073.1 Operaciones de asignación

Además de ser una constante, el operando a la derecha del signo de igual en una instruc-
ción de asignación puede ser una variable o cualquier otra expresión válida de C++. Una ex-
presión es cualquier combinación de constantes, variables y llamadas a funciones que pueden
evaluarse para producir un resultado. Por tanto, la expresión en una instrucción de asignación
puede usarse para realizar cálculos usando los operadores aritméticos introducidos en la sec-
ción 2.4. Son ejemplos de instrucciones de asignación que usan expresiones que contienen es-
tos operadores

sumaƒ=ƒ3ƒ+ƒ7;ƒƒ
difƒ=ƒ15ƒ–ƒ6;
productoƒ=ƒ.05ƒ*ƒ14.6;
conteo = contadorƒ+ƒ1;
totalnuevoƒ=ƒ18.3ƒ+ƒtotal;ƒƒƒƒ
impuestosƒ=ƒ.06ƒ*ƒcantidad;
pesoTotal = factor * peso;
promedio = suma / elementos;
pendienteƒ=ƒ(y2ƒ-ƒy1)ƒ/ƒ(x2ƒ-ƒx1);

Como siempre en una instrucción de asignación, el programa calcula primero el valor de la
expresión a la derecha del signo de igual y luego almacena este valor en la variable a la izquier-
da del signo de igual. Por ejemplo, en la instrucción de asignación pesoTotal = factor
* peso; la expresión factor * peso se evalúa primero para producir un resultado. Este
resultado, el cual es un número, se almacena luego en la variable pesoTotal.

Al escribir expresiones de asignación, debe tener en cuenta dos consideraciones importan-
tes. En vista que la expresión a la derecha del signo de igual se evalúa primero, a todas las va-
riables usadas en la expresión debe habérseles dado valores válidos para que el resultado tenga
sentido. Por ejemplo, la instrucción de asignación pesoTotal = factor * peso; causa
que un número válido sea almacenado en pesoTotal sólo si el programador tiene cuidado
primero de asignar números válidos a factor y peso. Por tanto la secuencia de instruccio-
nes

factorƒ=ƒ1.06;
pesoƒ=ƒ155.0;
pesoTotal = factor * peso;

nos indica los valores que se están usando para obtener el resultado que se almacenará en pe-
soTotal. La figura 3.1 ilustra los valores almacenados en las variables factor, peso y
pesoTotal.

Figura 3.1 Valores almacenados en las variables.

La segunda consideración a tener en cuenta es que en vista que el valor de una expresión es
almacenado en la variable a la izquierda del signo de igual, sólo una variable puede escribirse
en esta posición. Por ejemplo, la instrucción de asignación

cantidadƒ+ƒ1892ƒ=ƒ1000ƒ+ƒ10ƒ*ƒ5;ƒ

factor

1.06

peso

155.0

pesototal

164.30

www.FreeLibros.me

108 CAPÍTULO 3 Asignación, formateo y entrada interactiva

es inválida. La expresión del lado derecho da por resultado el número entero 1050, el cual só-
lo puede ser almacenado en una variable. Debido a que cantidad + 1892 no es un nom-
bre de variable válido, el compilador no sabe dónde almacenar el valor calculado.

El programa 3.1 ilustra el uso de instrucciones de asignación para calcular el volumen de
un cilindro. Como se ilustra en la figura 3.2, el volumen de un cilindro está determinado por
la fórmula volumen en = πr2h, donde r es el radio del cilindro, h es la altura y π es la constan-
te 3.1416 (con una precisión de cuatro cifras decimales).

Figura 3.2 Determinar el volumen de un cilindro.

Cuando el programa 3.1 es compilado y ejecutado, la salida es

El volumen del cilindro esƒ314.16

Considere el flujo de control que usa la computadora para ejecutar el programa 3.1. La eje-
cución del programa comienza con la primera instrucción dentro del cuerpo de la función
main() y continúa en forma secuencial, instrucción por instrucción, hasta que se encuentre

r = 2.5

=16h

Programa 3.1

//ƒƒƒeste programa calcula el volumen de un cilindro,
//ƒƒƒƒƒƒdados su radio y altura
#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒradio, altura, volumen;

ƒƒradioƒ=ƒ2.5;
ƒƒalturaƒ=ƒ16.0;
ƒƒvolumenƒ=ƒ3.1416ƒ*ƒradio * radio * altura;
ƒƒcoutƒ<<ƒ"El volumen del cilindro es “ << volumenƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

la llave de cierre de main. Este flujo de control se aplica a todos los programas. La compu-
tadora funciona con una instrucción a la vez, ejecutando esa instrucción sin saber cuál será la
siguiente instrucción. Esto explica por qué todos los operandos usados en una expresión de-
ben tener valores asignados a ellos antes que se evalúe la expresión. Cuando la computadora
ejecuta la instrucción

volumenƒ=ƒ3.1416ƒ*ƒradio * radio * altura;ƒ

en el programa 3.1, usa cualquier valor que esté almacenado en las variables radio y altu-
ra en el momento en que se ejecuta la instrucción de asignación.2 Si no se han asignado valo-
res de manera específica a estas variables antes que se usen en la instrucción de asignación, la
computadora usa los valores que tengan estas variables cuando se haga referencia a ellas. (En
algunos sistemas todas las variables son inicializadas de manera automática en cero.) La com-
putadora no “ve hacia delante” para verificar si se asignan valores a estas variables más ade-
lante en el programa.

Es importante percatarse que en C++ el signo de igual, =, usado en instrucciones de asig-
nación es en sí un operador, el cual difiere de la forma en que la mayor parte de otros lengua-
jes de alto nivel procesa este símbolo. En C++ (como en C), el símbolo = se llama operador de
asignación, y una expresión que usa este operador, como interés = principal * ta-
sa, es una expresión de asignación. En vista que el operador de asignación tiene una prece-
dencia menor que cualquier otro operador aritmético, el valor de cualquier expresión a la
derecha del signo de igual será evaluado primero, antes de la asignación.

Como todas las expresiones, las expresiones de asignación en sí mismas tienen un valor.
El valor de la expresión de asignación completa es el valor asignado a la variable en el lado iz-
quierdo del operador de asignación. Por ejemplo, la expresión a = 5 asigna un valor de 5 a
la variable a y produce que la expresión en sí tenga un valor de 5. El valor de la expresión
siempre puede verificarse usando una instrucción como

coutƒ<<ƒ"El valor de la expresión esƒ"ƒ<<ƒ(aƒ=ƒ5);

Aquí, el valor de la expresión en sí es desplegado y no el contenido de la variable a. Aunque
tanto el contenido de la variable como la expresión tienen el mismo valor, vale la pena obser-
var que se está tratando con dos entidades distintas.

Desde una perspectiva de programación, es la asignación real de un valor a una variable
la que es significativa en una expresión de asignación; el valor final de la expresión de asigna-
ción en sí es de poca consecuencia. Sin embargo, el hecho que las expresiones de asignación
tengan un valor tiene implicaciones que deben considerarse cuando se presenten los operado-
res relacionales en C++.

Cualquier expresión que se termine con un punto y coma se convierte en una instrucción
de C++. El ejemplo más común de esto es la instrucción de asignación, la cual tan sólo es una
expresión de asignación terminada con un punto y coma. Por ejemplo, terminar la expresión
de asignación a = 33 con un punto y coma produce la instrucción de asignación a = 33;
la cual puede usarse en un programa en una sola línea.

En vista que el signo de igual es un operador en C++, son posibles en la misma expresión
asignaciones múltiples o una instrucción equivalente. Por ejemplo, en la expresión a = b =
c = 25 todos los operadores de asignación tienen la misma precedencia. En vista que el ope-

3.1 Operaciones de asignación 109

2En vista que C++ no tiene un operador de exponenciación, el cuadrado del radio se obtiene por el término radio * radio. En la
sección 3.3 se introduce la función de potencia pow() de C++, la cual permite elevar un número a una potencia.

www.FreeLibros.me

110 CAPÍTULO 3 Asignación, formateo y entrada interactiva

rador de asignación tiene una asociatividad de derecha a izquierda, la evaluación final proce-
de en la secuencia

cƒ=ƒ25
bƒ=ƒc
aƒ=ƒb

En este caso, esto tiene el efecto de asignar el número 25 a cada una de las variables en forma
individual y puede representarse como

aƒ=ƒ(bƒ=ƒ(cƒ=ƒ25))

Añadir un punto y coma a la expresión original produce la instrucción de asignación múltiple

aƒ=ƒbƒ=ƒcƒ=ƒ25;

Esta última instrucción asigna el valor de 25 a las tres variables individuales equivalentes al si-
guiente orden:

cƒ=ƒ25;
bƒ=ƒ25;
aƒ=ƒ25;

Coerción

Algo que se debe tener en cuenta cuando se trabaje con instrucciones de asignación es el ti-
po de datos asignado a los valores en ambos lados de la expresión, porque ocurren conversio-
nes de tipos de datos a lo largo de los operadores de asignación. En otras palabras, el valor de
la expresión en el lado derecho del operador de asignación será convertido en el tipo de datos
de la variable a la izquierda del operador de asignación. Este tipo de conversión se conoce co-
mo coerción porque el valor asignado a la variable en el lado izquierdo del operador de asig-
nación es forzado al tipo de datos de la variable a la que es asignado. Un ejemplo de una
coerción ocurre cuando se asigna un valor de número entero a una variable de número real;
esto causa que el entero se convierta en un valor real. Por tanto, asignar un valor entero a una
variable real causa que el entero sea convertido en un valor real. Del mismo modo, asignar un
valor real a una variable entera fuerza la conversión de un valor real a un entero, lo cual pro-
duce la pérdida de la parte fraccionaria del número debido a truncamiento. Por ejemplo, si
temp es una variable entera, la asignación temp = 25.89 causa que el valor entero 25 se
almacene en la variable entera temp.3

Un ejemplo más completo de conversiones de tipos de datos, las cuales incluyen conver-
sión en modo mixto y conversión de asignación, es la evaluación de la expresión

aƒ=ƒbƒ*ƒdƒ

3Es evidente que la porción entera correcta sólo se conserva cuando está dentro del rango de enteros permitidos por el compilador.

www.FreeLibros.me

donde a y b son variables enteras y d es una variable de precisión simple. Cuando se evalúa
la expresión en modo mixto b * d,4 el valor de d usado en la expresión es convertido a un
número de precisión doble para propósitos de cálculo. (Es importante señalar que el valor al-
macenado en d se mantiene como un número de precisión simple.) En vista que uno de los
operandos es una variable de precisión doble, el valor de la variable entera b es convertido en
un número de precisión doble para el cálculo (una vez más, el valor almacenado en b sigue
siendo un entero) y el valor resultante de la expresión b * d es un número de precisión do-
ble. Por último, se aplica la conversión del tipo de datos por medio del operador de asigna-
ción. En vista que el lado izquierdo del operador de asignación es una variable entera, el valor
de precisión doble de la expresión (b * d) será truncado a un valor entero y almacenado en
la variable a.

Variaciones de asignación

Auque sólo se permite una variable inmediatamente a la izquierda del signo de igual en una
expresión de asignación, la variable a la izquierda del signo de igual también puede usarse a
la derecha del signo de igual. Por ejemplo, la expresión de asignación suma = suma + 10
es válida. Es claro que, como una expresión algebraica, suma nunca podría ser igual a sí mis-
ma más 10. Pero en C++, la expresión suma = suma + 10 no es una ecuación, es una ex-
presión que se evalúa en dos pasos importantes. El primer paso es calcular el valor de suma
+ 10. El segundo paso es almacenar el valor calculado en suma. Vea si puede determinar la
salida del programa 3.2.

3.1 Operaciones de asignación 111

4Si es necesario, repase las reglas en la sección 2.4 para la evaluación de expresiones de modo mixto.

lvalues y rvalues
Los términos lvalue y rvalue se utilizan con frecuencia en la tecnología de programación. Ambos
términos son independientes del lenguaje y significan lo siguiente: un lvalue puede tener un valor
asignado mientras que un rvalue no puede tenerlo.

Tanto en C como en C++ esto significa que un lvalue puede aparecer tanto en el lado izquier-
do como en el derecho de un operador de asignación mientras que un rvalue sólo puede aparecer
en el lado derecho de un operador de asignación. Por ejemplo, cada variable que hemos encontrado
puede ser un lvalue o un rvalue, mientras que un número sólo puede ser un rvalue. Sin em-
bargo, no todas las variables pueden ser lvalue y rvalue. Por ejemplo, un tipo de arreglo, el cual
se introduce en el capítulo 11, no puede ser un lvalue o un rvalue, mientras que los elementos
individuales del arreglo pueden ser ambos.

Punto de Información

www.FreeLibros.me

La instrucción de asignación sumaƒ=ƒ25; le indica a la computadora que almacene el nú-
mero 25 en suma, como se muestra en la figura 3.3.

Figura 3.3 El entero 25 es almacenado en suma.

La primera instrucción cout causa que el valor almacenado en suma sea desplegado por el
mensaje El número almacenado en suma es 25. La segunda instrucción de asigna-
ción en el programa 3.2, sumaƒ=ƒsumaƒ+ƒ10; causa que el programa recupere el 25 alma-
cenado en suma y agregue 10 a este número, produciendo el número 35. Entonces el número
35 se almacena en la variable en el lado izquierdo del signo de igual, la cual es la variable su-
ma. El 25 que estaba en suma tan sólo se sobrescribe con el nuevo valor de 35, como se mues-
tra en la figura 3.4.

Figura 3.4 sumaƒ=ƒsumaƒ+ƒ10; causa que se almacene un nuevo valor en suma.

25

Suma Se almacena
el valor

nuevo (35)

Se sobrescribe
el valor
antiguo

25

Suma

CAPÍTULO 3 Asignación, formateo y entrada interactiva112

Programa 3.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒsuma;

ƒƒsumaƒ=ƒ25;
ƒƒcoutƒ<<ƒ"El número almacenado en suma es “ << sumaƒ<<ƒendl;
ƒƒsumaƒ=ƒsumaƒ+ƒ10;
ƒƒcoutƒ<<ƒ"El número almacenado ahora en suma es “ << sumaƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Las expresiones de asignación como sumaƒ=ƒsumaƒ+ƒ25, que usan la misma variable en
ambos lados del operador de asignación, pueden escribirse usando los siguientes atajos de ope-
radores de asignación:

+= –= *= /= %=

Por ejemplo, la expresión sumaƒ=ƒsumaƒ+ƒ10 puede escribirse como sumaƒ+=ƒ10. Del
mismo modo, la expresión precio *= tasa es equivalente a la expresión precio =
precio * tasa.

Al utilizar estos operadores de asignación es importante observar que la variable de la
izquierda del operador de asignación se aplica a la expresión de la derecha completa. Por
ejemplo precio * = tasa + 1 es equivalente a la expresión precio = precio *
(tasa + 1), no precio = precio * tasaƒ+ƒ1.

Acumulación

Las expresiones de asignación como sumaƒ+=ƒ10 o su equivalente, sumaƒ=ƒsumaƒ+ƒ10,
son muy comunes en programación. Estas expresiones se requieren para acumular subtotales
cuando los datos se introducen un número a la vez. Por ejemplo, si se desea sumar los núme-
ros 96, 70, 85 y 60 en forma de calculadora, podrían usarse las siguientes instrucciones:

La primera instrucción inicializa suma en 0. Esto elimina cualquier número (“valor inservi-
ble”) almacenado en suma que pudiera invalidar el total final. Conforme se agrega cada nú-
mero, el valor almacenado en suma se incrementa en forma correspondiente. Después de
completar la última instrucción, suma contiene el total de todos los números agregados. El
programa 3.3 ilustra el efecto de estas instrucciones al desplegar el contenido de suma después
de hacer cada adición.

Instrucción Valor en suma

sumaƒ=ƒ0; 0

sumaƒ=ƒsumaƒ+ƒ96; 96

sumaƒ=ƒsumaƒ+ƒ70; 166

sumaƒ=ƒsumaƒ+ƒ85; 251

sumaƒ=ƒsumaƒ+ƒ60; 311

3.1 Operaciones de asignación 113

www.FreeLibros.me

La salida desplegada por el programa 3.3 es:

El valor de suma se estableció en forma inicial enƒ0
ƒƒsuma ahora esƒ96
ƒƒsuma ahora esƒ166
ƒƒsuma ahora esƒ251
ƒƒLa suma final esƒ311

Aunque el programa 3.3 no es un programa práctico (es más fácil sumar los números en
forma manual), ilustra el efecto subtotalizador del uso repetido de instrucciones que tienen
la forma

variable = variable + Valornuevo;

Se encontrarán muchos usos para este tipo de instrucción de acumulación cuando nos fami-
liaricemos más con las instrucciones de repetición introducidas en el capítulo 5.

CAPÍTULO 3 Asignación, formateo y entrada interactiva114

3.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒsuma;

ƒƒsumaƒ=ƒ0;
ƒƒcoutƒ<<ƒ"El valor de suma se estableció en forma inicial en “ << sumaƒ<<ƒendl;
ƒƒsumaƒ=ƒsumaƒ+ƒ96;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒ<<ƒendl;
ƒƒsumaƒ=ƒsumaƒ+ƒ70;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒ<<ƒendl;
ƒƒsumaƒ=ƒsumaƒ+ƒ85;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒƒ<<ƒendl;
ƒƒsumaƒ=ƒsumaƒ+ƒ60;
ƒƒcoutƒ<<ƒ"ƒƒLa suma final es “ << sumaƒ<<ƒendl;

ƒƒreturnƒ0;
}

Programa

www.FreeLibros.me

Conteo

Una instrucción de asignación que es muy similar a la instrucción de acumulación es la ins-
trucción de conteo. Las instrucciones de conteo tienen la forma

variable = variable + númeroFijo;

Son ejemplos de instrucciones de conteo

iƒ=ƒiƒ+ƒ1;
nƒ=ƒnƒ+ƒ1;
contador = contadorƒ+ƒ1;
jƒ=ƒjƒ+ƒ2;
mƒ=ƒmƒ+ƒ2;
kkƒ=ƒkkƒ+ƒ3;

En cada uno de estos ejemplos se usa la misma variable en ambos lados del signo de igual.
Después de ejecutar la instrucción, el valor de la variable respectiva se incrementa en una can-
tidad fija. En los primeros tres ejemplos las variables i, n y contador fueron incrementa-
das en uno. En los siguientes dos ejemplos las variables respectivas se han incrementado en
dos y en el ejemplo final la variable kk se ha incrementado en tres.

Para el caso especial en que una variable es incrementada o disminuida en uno, C++ pro-
porciona dos operadores unitario. Usando el operador de incremento,5 ++, la expresión va-
riable = variable + 1 puede ser reemplazada por la expresión variable++ o
++variable. Son ejemplos del operador de incremento

El programa 3.4 ilustra el uso del operador de incremento.

Expresión Alternativa

iƒ=ƒiƒ+ƒ1 i++ƒoƒ++i

nƒ=ƒnƒ+ƒ1ƒƒ n++ƒoƒ++n

contador = contadorƒ+ƒ1 contador++ o ++contador

3.1 Operaciones de asignación 115

5Como una nota histórica, el ++ en C++ se inspiró en el símbolo del operador de incremento. Se usó para indicar que C++ fue el
siguiente incremento en el lenguaje C.

www.FreeLibros.me

La salida desplegada por el programa 3.4 es:

El valor inicial de contador esƒ0
ƒƒƒcontador es ahoraƒ1
ƒƒƒcontador es ahoraƒ2
ƒƒƒcontador es ahoraƒ3
ƒƒƒcontador es ahoraƒ4

Cuando el operador ++ aparece antes de una variable se llama operador de prefijo para
incremento; cuando aparece después de una variable se llama operador de postfijo para in-
cremento. La distinción entre un operador de prefijo de incremento y uno de postfijo es im-
portante cuando la variable que es incrementada se usa en una expresión de asignación. Por
ejemplo, la expresión k = ++n hace dos cosas en una expresión. Al principio, el valor de
n es incrementado en uno y luego el valor nuevo de n es asignado a la variable k. Por tan-
to, la instrucción k = ++n; es equivalente a las dos instrucciones

nƒ=ƒnƒ+ƒ1;ƒƒƒ//ƒincrementa n primero
kƒ=ƒn;ƒƒƒƒƒƒƒ//ƒasigna el valor de n a

La expresión de asignación k = n++, la cual usa un operador de sufijo para incremento,
invierte este procedimiento. Un postfijo para incremento opera después que se ha comple-

CAPÍTULO 3 Asignación, formateo y entrada interactiva116

Programa 3.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒcontador;

ƒƒcontadorƒ=ƒ0;
ƒƒcoutƒ<<ƒ"El valor inicial de contador es “ << contadorƒ<<ƒendl;
ƒƒcontador++;
ƒƒcoutƒ<<ƒ"ƒƒƒcontador es ahora “ << contadorƒ<<ƒendl;
ƒƒcontador++;
ƒƒcoutƒ<<ƒ"ƒƒƒcontador es ahora “ << contadorƒ<<ƒendl;
ƒƒcontador++;
ƒƒcoutƒ<<ƒ"ƒƒƒcontador es ahora “ << contadorƒ<<ƒendl;
ƒƒcontador++;
ƒƒcoutƒ<<ƒ"ƒƒƒcontador es ahora “ << contadorƒ<<ƒendl;

ƒƒreturnƒ0;
}ƒ

www.FreeLibros.me

tado la asignación. Por tanto, la instrucción k = n++; asigna primero el valor actual de n
a k y luego incrementa el valor de n en uno. Esto es equivalente a las dos instrucciones

kƒ=ƒn;ƒƒƒƒƒƒƒƒ//ƒasigna el valor de n aƒk
nƒ=ƒnƒ+ƒ1;ƒƒƒƒ//ƒy luego incrementaƒn

Además del operador de incremento, C++ también proporciona un operador de decremento,
--. Como podría esperarse, las expresiones variable--ƒy --variableƒson equivalen-
tes a la expresión variableƒ=ƒvariableƒ-ƒ1.

Son ejemplos del operador de decremento:

Cuando el operador -- aparece antes de una variable se llama operador de prefijo para de-
cremento. Cuando el decremento aparece después de una variable se llama operador de post-
fijo para decremento. Por ejemplo, las expresiones n--ƒy --nƒreducen el valor de n en uno.
Estas expresiones son equivalentes a la expresión más larga nƒ=ƒnƒ-ƒ1. Sin embargo, como
con los operadores de incremento, los operadores de prefijo y postfijo para decremento pro-
ducen resultados diferentes cuando se usan en expresiones de asignación. Por ejemplo, la ex-
presión kƒ=ƒ--nƒdisminuye primero el valor de n en uno antes de asignar el valor de nƒa
k, mientras la expresión kƒ=ƒn--ƒsigna primero el valor actual de n a k y luego reduce el
valor de n en uno.

Ejercicios 3.1

1. Escriba una instrucción de asignación para calcular la circunferencia de un círculo que
tiene un radio de 3.3 pulgadas. La ecuación para determinar la circunferencia, c, de
un círculo es c = 2πr, donde r es el radio y π es igual a 3.1416.

2. Escriba una instrucción de asignación para calcular el área de un círculo. La ecuación
para determinar el área, a, de un círculo es a = πr2, donde r es el radio y π = 3.1416.

3. Escriba una instrucción de asignación para convertir temperatura en grados Fah-
renheit a grados Celsius. La ecuación para esta conversión es Celsius = 5/9 (Fah-
renheit – 32).

4. Escriba una instrucción de asignación para calcular la distancia de un viaje redondo,
d, en pies, de un viaje de s millas en un solo sentido.

5. Escriba una instrucción de asignación para calcular el tiempo transcurrido, en minu-
tos, necesario para hacer un viaje. La ecuación para calcular el tiempo transcurrido es
tiempo = distancia total / velocidad promedio. Suponga que la distancia debe ser en
millas y la velocidad promedio en millas/hora.

Expresión Alternativa

iƒ=ƒiƒ-ƒ1 i--ƒoƒ--i

nƒ=ƒnƒ-ƒ1ƒƒ n--ƒoƒ--n

contador = contadorƒ-ƒ1 contador--ƒoƒ--contador

3.1 Operaciones de asignación 117

www.FreeLibros.me

6. Escriba una instrucción de asignación para calcular el enésimo término en una secuen-
cia aritmética. La fórmula para calcular el valor, v, del enésimo término es v = a + (n
– 1)d , donde a = el primer número en la secuencia y d = la diferencia entre cuales-
quiera dos números en la secuencia.

7. Escriba una instrucción de asignación para calcular la expansión lineal en una viga de
acero como una función del aumento de temperatura. La fórmula para la expansión
lineal, l, es l = lo[1+∝(Tf –To)], donde lo es el largo de la viga a la temperatura To, ∝
es el coeficiente de expansión lineal y Tf es la temperatura final de la viga.

8. La ley de Coulomb establece que la fuerza F, actuando entre dos esferas cargadas eléc-
tricamente, está dada por la fórmula F = kq1q2/r2, donde q1 es la carga en la primera
esfera, q2 es la carga en la segunda esfera, r es la distancia entre los centros de las dos
esferas y k es una constante de proporcionalidad. Escriba una instrucción de asigna-
ción para calcular la fuerza, F.

9. Escriba una instrucción de asignación para determinar el momento de flexión máxi-
mo, M, de una viga. La fórmula para el momento de flexión máximo es, M = XW
(L – X) / L, donde X es la distancia desde el extremo de la viga donde se aplica un
peso, W, y L es el largo de la viga.

10. Determine la salida del siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()ƒ//ƒun programa que ilustra el truncamiento de enterosƒƒ
{
ƒƒƒintƒnum1,ƒnum2;
ƒ
ƒƒƒnum1ƒ=ƒ9/2;ƒƒƒ
ƒƒƒnum2ƒ=ƒ17/4;
ƒƒƒcoutƒ<<ƒ"el primer entero desplegado esƒ"ƒ<<ƒnum1ƒ<<ƒendl;
ƒƒƒcoutƒ<<ƒ"el segundo entero desplegado esƒ"ƒ<<ƒnum2ƒ<<ƒendl;
ƒ
ƒƒreturnƒ0;
}

11. Determine y corrija los errores en los siguientes programas.
a. #includeƒ<iostream>ƒƒƒ

usingƒnamespaceƒstd;
intƒmain()
{
ƒƒanchoƒ=ƒ15
ƒƒareaƒ=ƒlargo * ancho;
ƒƒcoutƒ<<ƒ"El area esƒ"ƒ<<ƒarea

}

CAPÍTULO 3 Asignación, formateo y entrada interactiva118

www.FreeLibros.me

b. #includeƒ<iostream>ƒƒƒƒ
usingƒnamespaceƒstd;
intƒmain()ƒƒ
{
ƒƒintƒlargo, ancho,ƒarea;
ƒƒareaƒ=ƒlargo * ancho;
ƒƒlargoƒ=ƒ20;
ƒƒanchoƒ=ƒ15;
ƒƒcoutƒ<<ƒ"El area esƒ"ƒ<<ƒarea;

ƒƒreturnƒ0;

c. #includeƒ<iostream.h>ƒƒƒƒ
ƒƒ

ƒintƒmain()ƒƒ
ƒ{
ƒƒƒintƒlargoƒ=ƒ20;ƒanchoƒ=ƒ15,ƒarea;
ƒƒƒlargoƒ*ƒanchoƒ=ƒarea;
ƒƒƒcoutƒ<<ƒ"El area esƒ"ƒ,ƒarea;

ƒ
ƒƒƒreturnƒ0;
ƒ}

12. Por error un estudiante reordenó las instrucciones en el programa 3.3 como sigue:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒsuma;
ƒƒsumaƒ=ƒ0;
ƒƒsumaƒ=ƒsumaƒ+ƒ96;
ƒƒsumaƒ=ƒsumaƒ+ƒ70;
ƒƒsumaƒ=ƒsumaƒ+ƒ85;
ƒƒsumaƒ=ƒsumaƒ+ƒ60;
ƒƒcoutƒ<<ƒ"El valor de suma se estableció en forma inicial en “

<< sumaƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"ƒƒsuma ahora es “ << sumaƒ<<ƒendl;
ƒƒcoutƒ<<ƒ"ƒƒLa suma final es “ << sumaƒ<<ƒendl;
ƒƒ
ƒƒreturnƒ0;
}

Determine la salida que produce este programa.

3.1 Operaciones de asignación 119

www.FreeLibros.me

13. Usando el programa 3.1, determine el volumen de cilindros que tienen los siguientes
radios y alturas.

14. El área de una elipse (véase la figura 3.5) está dada por la fórmula Área = πab.

Usando esta fórmula, escriba un programa C++ para calcular el área de una elipse que
tenga un eje menor, a, de 2.5 pulgadas y un eje mayor, b, de 6.4 pulgadas.

Figure 3.5 El eje menor a y el eje mayor b de una elipse.

15. Modifique el programa 3.1 para calcular el peso, en libras, del cilindro de acero cuyo
volumen fue encontrado por el programa. Para determinar el peso la fórmula es peso
= 0.28 (π)(r2)(h), donde r es el radio (en pulgadas) y h es la altura (en pulgadas) del
cilindro.

16. La circunferencia de una elipse (véase la figura 3.5) está dada por la fórmula:

Usando esta fórmula, escriba un programa en C++ para calcular la circunferencia de
una elipse que tiene un radio menor de 2.5 pulgadas y un radio mayor de 6.4 pulga-
das. (Sugerencia: la raíz cuadrada puede obtenerse elevando la cantidad 2[a2 + b2] a
la potencia 0.5.)

17. a. La resistencia combinada de tres resistores conectados en paralelo, como se mues-
tra en la figura 3.6, está dada por la ecuación

Resistencia combinada =

Escriba un programa en C++ para calcular y desplegar la resistencia combinada
cuando los tres resistores R1 = 1000, R2 = 1000, y R3 = 1000 están conectados en
paralelo. Su programa deberá producir el despliegue “La resistencia combinada, en
ohmios, es xxxxx”, donde las x son reemplazadas por el valor de la resistencia
combinada calculada por su programa.

1
1 1 1

1 2 3R R R
+ +

Circunferencia = +()π a b
2

a

b

Radio (pulg.) Altura (pulg.)

1.62 6.23

2.86 7.52

4.26 8.95

8.52 10.86

12.29 15.35

CAPÍTULO 3 Asignación, formateo y entrada interactiva120

www.FreeLibros.me

Figura 3.6 Tres resistores conectados en paralelo.

b. ¿Cómo sabe que el valor calculado por su programa es correcto?
c. Una vez que ha verificado la salida producida por su programa, modifíquela para

determinar la resistencia combinada cuando los resistores R1 = 1500, R2 = 1200,
y R3 = 2000 están conectados en paralelo.

18. a. Escriba un programa en C++ para calcular y desplegar el valor de la pendiente de
la línea que conecta dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use el he-
cho que la pendiente entre dos puntos que tienen coordenadas (x1, y1) y (x2, y2) es
pendiente = (y2 – y1) / (x2 – x1). Su programa deberá producir el despliegue “La pen-
diente es xxxx”, donde las x son reemplazadas por el valor calculado por su pro-
grama.

b. ¿Cómo sabe que el resultado producido por su programa es correcto?
c. Una vez que ha verificado la salida producida por su programa, modifíquela para

determinar la pendiente de la línea que conecta los puntos (2, 10) y (12, 6).

19. a. Escriba un programa en C++ para calcular y desplegar las coordenadas del punto
medio de la línea que conecta los dos puntos dados en el ejercicio 18a. Use el he-
cho que las coordenadas del punto medio entre dos puntos que tienen coordena-
das (x1,y1) y (x2,y2) son [(x1 + x2)]/2, [(y1 + y2)]/2). Su programa deberá producir el
siguiente despliegue:

La coordenada x del punto medio esƒxxx
La coordenada y del punto medio esƒxxx

donde las x son reemplazadas con los valores calculados por su programa.
b. ¿Cómo sabe que los valores del punto medio calculados por su programa son co-

rrectos?
c. Una vez que ha verificado la salida producida por su programa, modifíquelo para

determinar las coordenadas del punto medio de la línea que conecta los puntos (2,
10) y (12, 6).

20. a. Para el circuito eléctrico mostrado en la figura 3.7, las corrientes en los ramales,
i1, i2, e i3 pueden determinarse usando las fórmulas

i
E R E R R

R R R R R

i
E R E R R

R R R R R

i i i

1
2 3 1 1 3

1 3 2 3 3
2

2
1 3 2 1 3

1 3 2 3 3
2

3 2

=
+ +()

+() +() − ()

=
+ +()

+() +() − ()
= −

i

1

2

3

R

R

R

3.1 Operaciones de asignación 121

www.FreeLibros.me

Usando estas fórmulas escriba un programa en C++ para calcular las corrientes en
los ramales cuando R1 = 10 ohmios, R2 = 4 ohmios, R3 = 6 ohmios, E1 = 12
voltios y E2 = 9 voltios. El despliegue producido por su programa deberá ser

La corriente en el ramal 1 esƒxxxx
La corriente en el ramal 2 esƒxxxx
La corriente en el ramal 3 esƒxxxx

donde las x son reemplazadas por los valores determinados en su programa.
b. ¿Cómo sabe que las corrientes en circuito calculadas por su programa son co-

rrectas?
c. Una vez que ha verificado la salida producida por su programa, modifíquela para

determinar las corrientes en los ramales para los siguientes valores: R1 = 1500, R2

= 1200, R3 = 2000, E1 = 15 y E2 = 12.

Figura 3.7 Un circuito eléctrico.

3.2 DAR FORMATO A NÚMEROS PARA LA SALIDA DEL PROGRAMA

Además de desplegar resultados correctos, es importante en extremo que un programa presen-
te sus resultados en forma atractiva. La mayor parte de los programas son juzgados por la fa-
cilidad de introducción de datos percibida y el estilo y presentación de su salida. Por ejemplo,
desplegar un resultado monetario como 1.897 no cumple con las convenciones aceptadas
para los informes. El despliegue deberá ser $1.90 o $1.89, dependiendo si se usa redondeo o
truncamiento.

El formato de los números desplegados por cout puede controlarse por manipuladores
de ancho de campo incluidos en cada flujo de salida. La tabla 3.1 enumera los manipulado-
res disponibles que más se usan para este propósito.6

1

F2F1

R2

21

3

R

i

i

i

CAPÍTULO 3 Asignación, formateo y entrada interactiva122

6Como se señaló en el capítulo 2, el manipulador endl inserta una nueva línea y luego vacía el flujo.

www.FreeLibros.me

Tabla 3.1 Manipuladores de flujo más comunes

3.2 Dar formato a números para la salida del programa 123

Manipulador Acción

setw(n) Establece el ancho de campo en n.

setprecision(n) Establece la precisión del punto flotante en n lugares. Si se designa el
manipulador fixed, n especifica el número total de dígitos desplegados
después del punto decimal; de otra manera, n especifica el número total de
dígitos significativos desplegados (números enteros más dígitos fraccionarios).

setfill('x') Establece el carácter de relleno a la izquierda por omisión en x. (El carácter
de relleno principal por omisión es un espacio, el cual es la salida para
rellenar el frente de un campo de salida siempre que el ancho del campo es
mayor que el valor que se está desplegando.)

setiosflags(flags) Establece el formato de los indicadores (véase la tabla 3.3 para las
configuraciones de los indicadores).

scientific Establece la salida para desplegar números reales en notación científica.

showbase Despliega la base usada para los números. Se despliega un 0 a la izquierda
para los números octales y un 0x a la izquierda para números hexadecimales.

showpoint Siempre despliega seis dígitos en total (combinación de partes enteras y
fraccionarias). Rellena con ceros a la derecha si es necesario. Para valores
enteros mayores, revierte a notación científica.

showpos Despliega todos los números positivos con un signo de + a la izquierda.

boolalpha Despliega valores booleanos como verdadero y falso, en lugar de como 1 y 0.

dec Establece la salida para un despliegue decimal por omisión.

endl Da salida a un carácter de línea nueva y despliega todos los caracteres en el búfer.

fixed Siempre muestra un punto decimal y usa seis dígitos por omisión después
del punto decimal. Rellena con ceros a la derecha si es necesario.

flush Despliega todos los caracteres en el búfer.

left Justifica a la izquierda todos los números.

hex Establece la salida para un despliegue hexadecimal.

oct Establece la salida para un despliegue octal.

uppercase Despliega dígitos hexadecimales y el exponente en notación científica
en mayúsculas.

right Justifica a la derecha todos los números (éste es el valor por omisión).

noboolalpha Despliega valores booleanos como 1 y 0, en lugar de verdadero y falso.

noshowbase No despliega números octales con un 0 a la izquierda y los números
hexadecimales con un 0x a la izquierda.

noshowpoint No usa un punto decimal para números reales sin partes fraccionarias,
no despliega ceros a la derecha en la parte fraccionaria de un número y
despliega un máximo de sólo seis dígitos decimales.

noshowpos No despliega signos de + a la izquierda (éste es el valor por omisión).

nouppercase Despliega dígitos hexadecimales y el exponente en notación científica en minúsculas.

www.FreeLibros.me

Por ejemplo, la instrucción coutƒ<<ƒ"La suma de 6 y 5 es"ƒ<<ƒsetw(3) <<ƒ21;
crea esta impresión:

La suma de 6 y 5 esƒ21

El manipulador de ancho de campo setw(3) incluido en el flujo de datos pasado a cout se
usa para establecer el ancho del campo desplegado. El 3 en este manipulador establece el an-
cho de campo por omisión para el siguiente número en el flujo para que tenga un ancho de
tres espacios. Esta configuración del ancho de campo causa que 21 se imprima en un campo
de tres espacios, el cual incluye un espacio en blanco y el número 21. Como se ilustra, los en-
teros están justificados a la derecha dentro del campo especificado.

Los manipuladores de ancho de campo son útiles para imprimir columnas de números de
modo que los números en cada columna se alineen en forma correcta. Por ejemplo, el progra-
ma 3.5 ilustra cómo se alinearía una columna de números enteros en ausencia de manipula-
dores de ancho de campo.

La salida del programa 3.5 es la siguiente:

6ƒƒƒ
18ƒƒ
124ƒ

148ƒ

En vista que no se incluyeron manipuladores de ancho de campo en el programa 3.5, el obje-
to cout asigna suficiente espacio para cada número conforme lo recibe. Para forzar a los nú-
meros a alinearse con el dígito de las unidades se requiere un ancho de campo suficiente para
el número más grande desplegado. Para el programa 3.5, un ancho de tres bastaría. El uso de
este ancho de campo se ilustra en el programa 3.6.

CAPÍTULO 3 Asignación, formateo y entrada interactiva124

Programa 3.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ6ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ18ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ124ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“---\n”
ƒƒƒƒƒƒƒ<<ƒ(6+18+124)ƒ<<ƒendl;
ƒƒ
ƒƒreturnƒ0;
}

www.FreeLibros.me

La salida del programa 3.6 es

6
18
124

148

El manipulador de ancho de campo debe incluirse para cada ocurrencia de un número inser-
tado en el flujo de datos enviado a cout; este manipulador particular sólo se aplica a la si-
guiente inserción de datos inmediata. Los otros manipuladores permanecen en efecto hasta
que se cambian.

Cuando se usa un manipulador que requiere un argumento debe incluirse el archivo de
encabezado iomanip como parte del programa. Esto se logra con el comando preprocesador
#include <iomanip>, el cual se enlista como la segunda línea en el programa 3.6.

Dar formato completo a números de punto flotante requiere el uso de tres manipula-
dores de ancho de campo. El primer manipulador establece el ancho total del despliegue,
el segundo fuerza el despliegue de un punto decimal y el tercer manipulador determina
cuántos dígitos significativos se desplegarán a la derecha del punto decimal. Por ejemplo,
analice la siguiente instrucción:

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)ƒ<<ƒfixedƒ<<ƒsetprecision(3)ƒ<<ƒ25.67ƒ<<ƒ“|”;

3.2 Dar formato a números para la salida del programa 125

Programa 3.6

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒsetw(3)ƒ<<ƒ6ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒ18ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒ124ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“---\n”
ƒƒƒƒƒƒƒ<<ƒ(6+18+124)ƒ<<ƒendl;
ƒƒ
ƒƒreturnƒ0;
}

www.FreeLibros.me

Causa la siguiente impresión:

|ƒƒƒƒ25.670|

El símbolo de barra, |, en el ejemplo se usa para delimitar (marcar) el principio y el fin del cam-
po de despliegue. El manipulador setw le indica a cout que despliegue el número en un cam-
po total de 10, el manipulador fixed fuerza de manera explícita el despliegue de un punto
decimal y designa que el manipulador setprecision se usa para designar el número de dí-
gitos que se va a desplegar después del punto decimal. En este caso, setprecision especi-
fica un despliegue de tres dígitos después del punto decimal. Sin la designación explícita de un
punto decimal (el cual también puede designarse como setiosflags(ios::fixed)), el manipulador
setprecision especifica el número total de dígitos desplegados, el cual incluye las partes
enteras y fraccionarias del número.

Para todos los números (enteros, de precisión simple y de precisión doble), cout ignora
la especificación del manipulador setw si el campo especificado total es demasiado pequeño,
y asigna suficiente espacio para la parte entera del número que se va a imprimir. La parte frac-
cionaria de los números de precisión simple y de precisión doble es desplegada hasta la pre-
cisión establecida con el manipulador setprecision. (En ausencia de un manipulador
setprecision, la precisión por omisión se establece en seis lugares decimales.) Si la parte
fraccionaria del número que se va a desplegar contiene más dígitos de los indicados en el ma-
nipulador setprecision, el número se redondea al número indicado de lugares decimales;
si la parte fraccionaria contiene menos dígitos que los especificados, el número es desplegado
con menos dígitos. La tabla 3.2 ilustra el efecto de varias combinaciones de manipuladores de
formato. Una vez más, por claridad, se usa el símbolo de barra, |, para delinear el principio y
el fin de los campos de salida.

Tabla 3.2 Efecto de los manipuladores de formato

Manipuladores Número Despliegue Comentarios

setw(2) ƒƒ3 ƒƒƒƒƒƒ|ƒ3| El número cabe en el campo

setw(2) ƒ43 ƒƒƒƒƒƒ|43| El número cabe en el campo

setw(2) 143 ƒƒƒƒƒ|143| El ancho de campo se ignora

setw(2) ƒƒ2.3 ƒƒƒƒƒ|2.3| El ancho de campo se ignora

setw(5) ƒƒ2.366 ƒƒƒ|ƒ2.37| Ancho de campo de cinco con
dos dígitos decimales fixed

setprecision(2)

setw(5) ƒ42.3 ƒƒƒ|42.30| El número cabe en el campo
con precisión especificadafixed

setprecision(2)

setw(5) 142.364 |1.4e+002| El ancho de campo se ignora y
se usa notación científica con el
manipulador setprecision
especificando el número total de
dígitos significativos (enteros
más fraccionarios)

setprecision(2)

CAPÍTULO 3 Asignación, formateo y entrada interactiva126

www.FreeLibros.me

Tabla 3.2 Efecto de los manipuladores de formato (continuación)

Además de los manipuladores setw y setprecision, también está disponible un manipu-
lador de justificación de campo. Como se ha visto, los números enviados a cout se desplie-
gan por lo normal con justificación a la derecha en el campo de despliegue, mientras las
cadenas se despliegan justificadas a la izquierda. Para alterar la justificación por omisión pa-
ra un flujo de datos, puede usarse el manipulador setiosflags. Por ejemplo, analice la si-
guiente instrucción:

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::left)ƒ<<ƒ142ƒ<<ƒ“|”;

Manipuladores Número Despliegue Comentarios

setw(5) 142.364 ƒƒ|142.36| Se ignora el ancho de campo
pero se usa la especificación de
precisión. Aquí el manipulador
setprecision especifica el
número de dígitos fraccionarios

fixed
setprecision(2)

setw(5) 142.366 ƒƒ|142.37| Se ignora el ancho de campo
pero se usa la especificación de
precisión. Aquí el manipulador
setprecision especifica el
número de dígitos fraccionarios.
(Nótese el redondeo del último
dígito decimal)

fixed
setprecision(2)

setw(5) 142 ƒƒƒ|ƒƒ142| Se usa el ancho de campo, los
manipuladores fixed y
setprecision irrelevantes,
porque el número es un entero.

fixed
setprecision(2)

3.2 Dar formato a números para la salida del programa 127

¿Qué es un indicador o bandera?
En la programación actual, el término indicador o bandera se refiere a un elemento, como una va-
riable o argumento, que establece una condición por lo general considerada activa o inactiva. Aun-
que se desconoce el origen exacto de este término en programación, es probable que se haya
originado del uso de banderas reales para señalar una condición, como las banderas de alto, siga,
precaución y ganador que se usan por lo común en las carreras de automóviles.

De manera similar, cada argumento de indicador para la función del manipulador setios-
flags() activa una condición específica. Por ejemplo, el indicador ios::dec establece el forma-
to de despliegue decimal, y el indicador ios::oct activa el formato de despliegue octal. En vista
que estas condiciones son mutuamente excluyentes (sólo una condición puede estar activa a la
vez), activar uno de estos indicadores desactiva de manera automática los otros indicadores.

Los indicadores que no son mutuamente excluyentes, como ios::dec, ios::showpoint
e ios::fixed pueden establecerse como activas de manera simultánea. Esto puede hacerse
usando tres llamadas setiosflag() individuales o combinando todos los argumentos en una
llamada como sigue:

coutƒ<<ƒsetiosflags ios::decƒ|ƒios::fixedƒ|ƒios::showpoint);

Punto de Información

www.FreeLibros.me

Esto causa el siguiente despliegue justificado a la izquierda:

|142ƒƒƒƒƒƒƒ|

Como se ha visto, ya que los datos pasados a cout pueden continuarse a lo largo de múlti-
ples líneas, el despliegue anterior también sería producido por la instrucción:

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)ƒ
ƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::left)
ƒƒƒƒƒƒƒƒ<<ƒ142ƒ<<ƒ“|”;

Como siempre, el manipulador de ancho de campo sólo está para el siguiente conjunto senci-
llo de datos desplegado por cout. La justificación a la derecha para las cadenas en un flujo
se obtiene con el manipulador setiosflags(ios::right). El símbolo ios tanto en el
nombre de la función como en el argumento ios::right se deriva de las primeras letras de
las palabras “input output stream” (flujo de entrada y salida).

Además de los indicadores de izquierda y derecha que pueden usarse con el manipulador
setiosflags(), pueden usarse otros indicadores para afectar la salida. Los indicadores
más usados para este manipulador se enumeran en la tabla 3.3. Los indicadores en esta tabla
proporcionan de manera efectiva una forma alternativa para establecer los manipuladores
equivalentes enumerados en la tabla 3.1.

Tabla 3.3 Indicadores de formato para usar con setiosflags()

Indicador Significado

ios::fixed Siempre muestra el punto decimal con seis dígitos después del punto decimal.
Rellena con ceros a la derecha si es necesario. Este indicador tiene precedencia si
se establece con el indicador ios::showpoint.

ios::scientific Usa despliegue exponencial en la salida.

ios::showpoint Siempre despliega un punto decimal y seis dígitos significativos en total
(combinación de partes enteras y fraccionarias). Rellena con ceros a la derecha
después del punto decimal si es necesario. Para valores enteros más grandes, revierte
a notación científica a menos que esté establecido el indicador ios::fixed.

ios::showpos Despliega un signo + a la izquierda cuando el número es positivo.

ios::left Justifica a la izquierda la salida.

ios::right Justifica a la derecha la salida.

CAPÍTULO 3 Asignación, formateo y entrada interactiva128

www.FreeLibros.me

3.2 Dar formato a números para la salida del programa 129

Dar formato a los datos en el flujo de cout
Los datos de punto flotante en un flujo de salida cout pueden formatearse en formas precisas.
Uno de los requerimientos de formato más comunes es desplegar números en un formato mone-
tario con dos dígitos después del punto decimal, como 123.45. Esto puede hacerse con la siguien-
te instrucción:

cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(12);

El primer indicador en el manipulador, ios::fixed, hace que todos los números de punto flo-
tante colocados en el flujo cout se desplieguen en notación decimal. Este indicador también im-
pide el uso de notación científica. El siguiente indicador, ios::showpoint, le indica al flujo que
siempre despliegue un punto decimal. Por último, el manipulador setprecision le indica al flu-
jo que siempre despliegue dos valores decimales después del punto decimal. En lugar de usar ma-
nipuladores, también puede usar los métodos de flujo de cout setf() y precision(). Por
ejemplo, el formato anterior puede lograrse también usando el código:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Nótese la sintaxis aquí: el nombre del objeto, cout, se separa del método con un punto. Ésta es la
forma estándar de especificar un método y conectarlo con un objeto específico. El estilo que selec-
cione es cuestión de preferencia.

Además, los indicadores usados tanto en el método setf() como en el manipulador se-
tiosflags() pueden combinarse usando el operador a nivel de bit Or, | (que se explica en la
sección 15.2). Usando este operador, las siguientes dos instrucciones son equivalentes.

cout << setiosflags(ios::fixed | ios::showpoint);
cout.setf(ios::fixed | ios::showpoint);

El estilo que seleccione es cuestión de preferencia.

Punto de Información

www.FreeLibros.me

Debido a que los indicadores en la tabla 3.3 se usan como argumentos para el método del ma-
nipulador setiosflags() y debido a que los términos “argumento” y “parámetro” son si-
nónimos, otro nombre para un método manipulador que use argumentos es el de manipulador
parametrizado. El siguiente es un ejemplo de métodos de manipulador parametrizado:

coutƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒsetprecision(4);ƒ

Esto hace que todos los números de punto flotante subsiguientes sean enviados al flujo de sa-
lida para ser desplegados con un punto decimal y cuatro dígitos decimales. Si el número tiene
menos de cuatro dígitos decimales, se llenará con ceros a la derecha.

Además de dar salida a los enteros en notación decimal, los manipuladores oct y hex
permiten conversiones a formato octal y hexadecimal, respectivamente. El programa 3.7 ilus-
tra el uso de estos indicadores. Debido a que el formato decimal es el despliegue por omisión,
el manipulador dec no se requiere en el primer flujo de salida.

La salida producida por el programa 3.7 es la siguiente:

El valor decimal (base 10) de 15 esƒ15
El valor octal (base 8) de 15 esƒ017
El valor hexadecimal (base 16) de 15 esƒ0xf

El despliegue de valores enteros en uno de los tres sistemas numéricos posibles (decimal, octal
y hexadecimal) no afecta la manera en que se almacena el número dentro de una computado-
ra. Todos los números se almacenan usando los códigos internos propios de la computadora.
Los manipuladores enviados a cout le indican al objeto cómo convertir el código interno con
el propósito de desplegar la salida.

CAPÍTULO 3 Asignación, formateo y entrada interactiva130

Programa 3.7

//ƒun programa que ilustra conversiones de salida
#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“El valor decimal (base 10) de 15 esƒ“ƒ<<ƒ15ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“El valor octal (base 8) de 15 esƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒshowbaseƒ<<ƒoctƒ<<ƒ15ƒ<<endl;
ƒƒcoutƒ<<ƒ“El valor hexadecimal (base 16) de 15 esƒ“ƒ
ƒƒƒƒƒƒƒƒƒ<<ƒshowbaseƒ<<ƒhexƒ<<ƒ15ƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Además de desplegar enteros en forma octal o hexadecimal, pueden escribirse las cons-
tantes en números enteros en un programa en estos formatos. Para designar una constante en-
tera octal, el número debe tener un cero a la izquierda. El número 023, por ejemplo, es un
número octal en C++. Los números hexadecimales se denotan usando un 0x a la izquierda. El
uso de constantes enteras octales y hexadecimales se ilustra en el programa 3.8.

La salida producida por el programa 3.8 es la siguiente:

El valor decimal de 025 esƒ21
El valor decimal de 0x37 esƒ55

La relación entre la entrada, almacenamiento y despliegue de enteros se ilustra en la figura 3.8.
Por último, los manipuladores especificados en las tablas 3.1 y 3.2 pueden establecerse

usando los métodos de clase ostream enumerados en la tabla 3.4.

3.2 Dar formato a números para la salida del programa 131

Programa 3.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"El valor decimal de 025 esƒ"ƒ<<ƒ025ƒ<<ƒendl;
ƒƒƒƒƒƒƒ<<ƒ"El valor decimal de 0x37 esƒ"<<ƒ0x37ƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Figura 3.8 Entrada, almacenamiento y despliegue de números enteros.

cout << dec

cout << oct

cout << hex

El despliegue es en octal,
decimal o hexadecimal

Un número
entero con
un 0 a la
izquierda

convierte
un

número
en octal

Un número
entero sin 0
ni 0X a la
izquierda

convierte
un

número
en decimal

Un número
entero con
un 0X a la
izquierda

convierte
un

número en
hexadecimal

código
interno del

número convierte a una
representación

en octal

despliegue
en octal

convierte a una
representación

en decimal

despliegue
en decimal

convierte a una
representación
en hexadecimal

despliegue
en

hexadecimal

La entrada es en octal,
decimal o hexadecimal

El almacenamiento
siempre es en binario

CAPÍTULO 3 Asignación, formateo y entrada interactiva132

www.FreeLibros.me

Tabla 3.4 Métodos de clase ostream

En la columna de ejemplos de la tabla 3.4, el nombre del objeto, cout, se separa del método
con un punto. Ésta es la forma estándar de llamar a un método de clase y proporcionarle el
objeto sobre el que va a operar.

Ejercicios 3.2

1. Determine la salida del siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()ƒƒ//ƒun programa que ilustra el truncamiento de
números enteros

{
ƒƒcoutƒ<<ƒ"respuesta1 es el enteroƒ"ƒ<<ƒƒ9/4
ƒƒƒƒƒƒƒ<<ƒ"\nrespuesta2 es el enteroƒ"ƒ<<ƒƒ17/3ƒ<<ƒendl;

ƒƒreturnƒ0;
}

2. Determine la salida del siguiente programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()ƒƒ//ƒun programa que ilustra el operadorƒƒ
{
ƒƒcoutƒ<<ƒ"El residuo de 9 dividido entre 4 esƒ"ƒ<<ƒƒ9ƒ%ƒ4
ƒƒƒƒƒƒƒ<<ƒ"\nEl residuo de 17 dividido entre 3 es " << 17 % 3 << endl;

ƒƒreturnƒ0;
}

Método Comentario Ejemplo

precision(n) Equivalente a setprecision() cout.precision(2)

fill('x') Equivalente a setfill() cout.fill('*')

setf(ios::fixed) Equivalente a cout.setf(ios::fixed)
setiosflags(ios::fixed)

setf(ios::showpoint) Equivalente a cout.setf(ios::showpoint)
setiosflags(ios::showpoint)

setf(iof::left) Equivalente a left cout.setf(ios::left)

setf(ios::right) Equivalente a right cout.setf(ios::right)

setf(ios::flush) Equivalente a endl cout.setf(ios::flush)

3.2 Dar formato a números para la salida del programa 133

www.FreeLibros.me

3. Escriba un programa en C++ que despliegue los resultados de las expresiones 3.0 *
5.0, 7.1 * 8.3 – 2.2 y 3.2 / (6.1 * 5). Calcule el valor de estas expresiones en forma
manual para verificar que los valores desplegados son correctos.

4. Escriba un programa en C++ que despliegue los resultados de las expresiones 15 / 4,
15 % 4 y 5 * 3 – (6 * 4). Calcule el valor de estas expresiones en forma manual pa-
ra verificar que el despliegue producido por su programa es correcto.

5. Determine los errores en cada una de las siguientes instrucciones:
a. coutƒ<<ƒ"\nƒ<<ƒ"ƒ15)
b. coutƒ<<ƒ"setw(4)"ƒ<<ƒƒ33;
c. coutƒ<<ƒ"setprecision(5)"ƒ<<ƒƒ526.768;
d. "HelloƒWorld!"ƒ>>ƒcout;
e. coutƒ<<ƒ47ƒ<<ƒsetw(6);
f. coutƒ<<ƒset(10)ƒ<<ƒ526.768ƒ<<ƒsetprecision(2);

6. Determine y escriba el despliegue producido por las siguientes instrucciones:
a. coutƒ<<ƒ"|"ƒ<<ƒ5ƒ<<"|";
b. coutƒ<<ƒ"|"ƒ<<ƒsetw(4)ƒ<<ƒ5ƒ<<ƒ"|";
c. coutƒ<<ƒ"|"ƒ<<ƒsetw(4)ƒ<<ƒ56829ƒ<<ƒ"|";
d. coutƒ<<ƒ"|"ƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ5.26ƒ<<ƒ"|";
e. coutƒ<<ƒ"|"ƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ5.267ƒ<<ƒ"|";
f. coutƒ<<ƒ"|"ƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ53.264ƒ<<ƒ"|";
g. coutƒ<<ƒ"|"ƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ534.264ƒ<<ƒ"|";
h. coutƒ<<ƒ"|"ƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ534.ƒ<<ƒ"|";

7. Escriba el despliegue producido por las siguientes instrucciones.
a. coutƒ<<ƒ"El número esƒ"ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)

ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ26.27ƒ<<ƒendl;
coutƒ<<ƒ"El número esƒ"ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ682.3ƒ<<ƒendl;
coutƒ<<ƒ"El número esƒ"ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ1.968ƒ<<ƒendl;

b. coutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ26.27ƒ<<ƒendl;
coutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ682.3ƒ<<ƒendl;
coutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ1.968ƒ<<ƒendl;
coutƒ<<ƒ"------\n";
coutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒ<<ƒ26.27ƒ+ƒ682.3ƒ+ƒ1.968ƒ<<ƒendl;

CAPÍTULO 3 Asignación, formateo y entrada interactiva134

www.FreeLibros.me

c. coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ26.27ƒ<<ƒendl;
coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ682.3ƒ<<ƒendl;
coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ1.968ƒ<<ƒendl;
coutƒ<<ƒ"-----\n";
coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ
ƒƒƒƒƒ<<ƒ26.27ƒ+ƒ682.3ƒ+ƒ1.968ƒ<<ƒendl;

d. coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ36.164ƒ<<ƒendl;
coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)ƒ
ƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ10.003ƒ<<ƒendl;
coutƒ<<ƒ"-----"ƒ<<ƒendl;

8. La siguiente tabla enumera la correspondencia entre los números decimales 1 a 15 y
su representación octal y hexadecimal.

ƒƒƒƒDecimal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒƒ8ƒƒƒ9ƒƒ10ƒƒ11ƒƒ12ƒƒ13ƒƒ14ƒƒ15
ƒƒƒƒƒƒOctal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒ10ƒƒ11ƒƒ12ƒƒ13ƒƒ14ƒƒ15ƒƒ16ƒƒ17
Hexadecimal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒƒ8ƒƒƒ9ƒƒƒaƒƒƒbƒƒƒcƒƒƒdƒƒƒeƒƒƒf

Usando la tabla anterior, determine la salida del siguiente programa.
#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"\nEl valor de 14 en octal esƒ"ƒ<<ƒoctƒ<<ƒ14
ƒƒƒƒƒƒƒ<<ƒ"\nEl valor de 14 en hexadecimal esƒ"ƒ<<ƒhexƒ<<ƒ14
ƒƒƒƒƒƒƒ<<ƒ"\nEl valor de 0xA en decimal esƒ"ƒ<<ƒdecƒ<<ƒ0xA
ƒƒƒƒƒƒƒ<<ƒ"\nEl valor deƒ0xAƒenƒoctalƒesƒ"ƒ<<ƒoctƒ<<ƒ0xAƒ
ƒƒƒƒƒƒƒ<<ƒendl;

ƒƒreturnƒ0;
}

9. La resistencia combinada de tres resistores conectados en paralelo, como se muestra
en la figura 3.9, está dada por la ecuación

Resistencia combinada =

Usando esta fórmula, escriba un programa en C++ para calcular y desplegar la resis-
tencia combinada cuando los tres resistores R1 = 1000, R2 = 1000 y R3 = 1000 están
conectados en paralelo. La salida deberá producir el despliegue

La resistencia combinada esƒxxxx.xxƒohmios,

1
1 1 1

1 2 3R R R
+ +

3.2 Dar formato a números para la salida del programa 135

www.FreeLibros.me

donde xxxx.xx denota que el valor calculado deberá colocarse en un ancho de cam-
po de 7 columnas, con dos posiciones a la derecha del punto decimal.

Figura 3.9 Tres resistores conectados en paralelo.

10. Escriba un programa en C++ para calcular y desplegar el valor de la pendiente de la
línea que conecta los dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use el hecho
que la pendiente entre dos puntos que tienen coordenadas (x1, y1) y (x2, y2) es pen-
diente = (y2 – y1) / (x2 – x1). El despliegue producido por su programa deberá ser:
El valor de la pendiente es xxx.xx, donde xxx.xx denota que el valor calculado de-
berá ser colocado en un ancho de campo suficiente para tres lugares a la izquierda del
punto decimal y dos lugares a la derecha de éste.

11. Escriba un programa en C++ para calcular y desplegar las coordenadas del punto me-
dio de la línea que conecta los dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use
el hecho que las coordenadas del punto medio entre dos puntos que tienen coordena-
das (x1, y1) y (x2, y2) son ((X1 + X2)/2, (Y1 + Y2)/2). El despliegue producido por
su programa deberá ser:

La coordenada x del punto medio esƒxxx.xx
La coordenada y del punto medio esƒxxx.xx

donde xxx.xx denota que el valor calculado deberá colocarse en un ancho de campo
suficiente para tres lugares a la izquierda del punto decimal y dos lugares a la derecha
de éste.

12. Escriba un programa en C++ para calcular y desplegar el momento de flexión máxi-
ma, M, de una viga, la cual está sostenida en ambos extremos (véase la figura 3.10).
La fórmula para el momento de flexión máximo es, M = XW (L – X) / L, donde X
es la distancia del extremo de la viga en que se coloca un peso, W y L es el largo de
la viga. El despliegue producido por su programa deberá ser

El momento de flexión máxima esƒxxxx.xxxx

donde xxxx.xxxx denota que el valor calculado deberá colocarse en un ancho de
campo suficiente para cuatro lugares a la derecha y a la izquierda del punto decimal.

Figura 3.10 Cálculo del momento de flexión máxima.

W
x

L

R1

R2

R3

CAPÍTULO 3 Asignación, formateo y entrada interactiva136

www.FreeLibros.me

13. Para el circuito eléctrico mostrado en la figura 3.11, las corrientes en los ramales, i1,
i2 e i3 pueden determinarse usando las fórmulas

Usando estas fórmulas, escriba un programa en C++ para calcular las corrientes en los
ramales cuando R1 = 10 ohmios, R2 = 4 ohmios, R3 = 6 ohmios, E1 = 12 voltios y
E2 = 9 voltios. El despliegue producido por su programa deberá ser

La corriente en el ramal 1 esƒxx.xxxxx
La corriente en el ramal 2 esƒxx.xxxxx
La corriente en el ramal 3 esƒxx.xxxxx

donde xx.xxxxx denota que el valor calculado deberá colocarse en un ancho de cam-
po suficiente para dos lugares a la izquierda del punto decimal y cinco lugares a la de-
recha de éste.

Figura 3.11 Cálculo de corrientes en circuito en un circuito eléctrico.

3.3 EMPLEO DE LA BIBLIOTECA DE FUNCIONES MATEMÁTICAS

Como se ha visto, las instrucciones de asignación pueden usarse para ejecutar cálculos aritmé-
ticos. Por ejemplo, la instrucción de asignación

voltios = resistencia * corriente;

multiplica el valor en corriente por el valor en resistencia y asigna el valor resultan-
te a voltios. Aunque la adición, sustracción, multiplicación y división se logran con facili-
dad usando operadores aritméticos de C++, no existen operadores para elevar un número a
una potencia, encontrar la raíz cuadrada de un número o determinar valores trigonométricos.

R1

E2
E1

R2

i 2

i 1

i 3

=10 = 4

R 3 =6

= 9=12

i
E R E R R

R R R R R

i
E R E R R

R R R R R

i i i

1
2 3 1 1 3

1 3 2 3 3
2

2
1 3 2 1 3

1 3 2 3 3
2

3 1 2

=
+ +()

+() +() − ()

=
+ +()

+() +() − ()
= −

3.3 Empleo de la biblioteca de funciones matemáticas 137

www.FreeLibros.me

Para facilitar estos cálculos, C++ proporciona funciones preprogramadas estándares que pue-
den incluirse en un programa.

Antes de usar una de las funciones matemáticas de C++, necesita saber

• El nombre de la función matemática deseada

• Qué hace la función matemática

• El tipo de datos requerido por la función matemática

• El tipo de datos del resultado devuelto por la función matemática

• Cómo incluir la biblioteca

Para ilustrar el uso de las funciones matemáticas de C++, considere la función matemática lla-
mada sqrt, la cual calcula la raíz cuadrada de un número. La raíz cuadrada de un número
se calcula usando la expresión

sqrt(número)

donde el nombre de la función, en este caso sqrt, es seguido por paréntesis que contienen el
número cuya raíz cuadrada se desea calcular. El propósito de los paréntesis que siguen al nom-
bre de la función es proporcionar un embudo por el que puedan pasar los datos a la función
(véase la figura 3.12). Los elementos que pasan a la función por medio de los paréntesis se lla-
man argumentos de la función y constituyen sus datos de entrada. Por ejemplo, las siguientes
expresiones se usan para calcular la raíz cuadrada de los argumentos 4., 17.0, 25., 1043.29
and 6.4516, respectivamente:

sqrt(4.)
sqrt(17.0)
sqrt(25.)
sqrt(1043.29)
sqrt(6.4516)

Figura 3.12 Transmisión de datos a la función sqrt().

Hay que observar que el argumento para la función sqrt() debe ser un valor real. Éste es
un ejemplo de las capacidades de sobrecarga de la función de C++. La sobrecarga de la fun-
ción permite que el mismo nombre de la función sea definido para argumentos con diferentes
tipos de datos. En este caso en realidad hay tres funciones de raíz cuadrada nombradas
sqrt(), una definida para argumentos en número de punto flotante, de doble precisión y de

Función sqrt

sqrt(a valor)

CAPÍTULO 3 Asignación, formateo y entrada interactiva138

www.FreeLibros.me

3.3 Empleo de la biblioteca de funciones matemáticas 139

doble precisión largos. La función sqrt correcta es invocada dependiendo del tipo de valor
que se le da. La función sqrt() determina la raíz cuadrada de su argumento y devuelve el
resultado como un número doble. Los valores devueltos por las expresiones anteriores son

Además de la función sqrt, la tabla 3.5 enumera las funciones matemáticas de C++ más usa-
das. Tener acceso a estas funciones en un programa requiere que se incluya con la función el
archivo de encabezado matemático llamado cmath, el cual contiene declaraciones apropiadas
para la función matemática. Esto se hace colocando la siguiente instrucción preprocesadora al
principio de cualquier programa que use una función matemática:

#includeƒ<cmath>

Aunque algunas de las funciones matemáticas enumeradas requieren más de un argumento,
todas las funciones, por definición, pueden devolver en forma directa como máximo un valor.
Además, todas las funciones enumeradas están sobrecargadas: esto significa que puede usarse
el mismo nombre de función con argumentos con números enteros y reales. La tabla 3.6 ilus-
tra el valor devuelto por funciones selectas usando argumentos de ejemplo.

Tabla 3.5 Funciones comunes de C++

Nombre de la función Descripción Valor devuelto

abs(a) valor absoluto mismo tipo de datos que el argumento

pow(a1,a2) a1 elevado a la potencia a2 tipo de datos del argumento a1

sqrt(a) raíz cuadrada de un número real precisión doble

sin(a) seno de a (a en radianes) doble

cos(a) coseno de a (d en radianes) doble

tan(a) tangente de a (d en radianes) doble

log(a) logaritmo natural de a doble

log10(a) logaritmo común (base 10) de a doble

exp(a) doblee elevado a la potencia a

sin punto y coma

Expresión Valor devuelto

sqrt(4.) 2

sqrt(17.0) 4.12311

sqrt(25.) 5

sqrt(1043.29) 32.3

sqrt(6.4516) 2.54

www.FreeLibros.me

Table 3.6 Ejemplos de funciones selectas

En cada caso que se usa una función matemática, ésta se activa al dar el nombre de la función
y transmitirle datos dentro del paréntesis que sigue al nombre de la función (véase la figura
3.13).

Figura 3.13 Uso y transmisión de datos a una función.

Los argumentos que se transmiten a una función no necesitan ser constantes simples. Las ex-
presiones también pueden ser argumentos, siempre que la expresión pueda calcularse para
producir un valor del tipo de datos requerido. Por ejemplo, los siguientes argumentos son vá-
lidos para las funciones dadas:

sqrt(4.0ƒ+ƒ5.3ƒ*ƒ4.0)ƒƒƒƒƒƒƒƒƒƒƒƒabs(2.3ƒ*ƒ4.6)
sqrt(16.0ƒ*ƒ2.0ƒ-ƒ6.7)ƒƒƒƒƒƒƒƒƒƒƒsin(thetaƒ-ƒphi)
sqrt(xƒ*ƒyƒ-ƒz/3.2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcos(2.0ƒ*ƒomega)

Las expresiones entre paréntesis se evalúan primero para producir un valor específico. Por tan-
to, tendrían que asignarse valores a las variables theta, phi, x, y, z y omega antes de usarse en
las expresiones anteriores. Después que se calcula el valor del argumento, éste se transmite a
la función.

Las funciones también pueden incluirse como parte de expresiones más grandes. Por
ejemplo,

ƒƒƒ4ƒ*ƒsqrt(4.5ƒ*ƒ10.0ƒ-ƒ9.0)ƒ-ƒ2.0ƒƒ
=ƒƒ4ƒ*ƒsqrt(36.0)ƒ-ƒ2.0
=ƒƒ4ƒ*ƒ6.0ƒ-ƒ2.0ƒ
=ƒƒ24.0ƒ-ƒ2.0
=ƒƒ22.0

nombre de la función (datos transmitidos a la función);

Esto identifica
a la función

llamada

Esto transmite
datos a la función

Ejemplo Valor devuelto

abs(-7.362)ƒ 7.362

abs(-3)ƒƒ 3

pow(2.0,5.0) 32

pow(10,3)ƒ 1000

log(18.697)ƒƒ 2.92836

log10(18.697) 1.27177

exp(-3.2)ƒ 0.040762

CAPÍTULO 3 Asignación, formateo y entrada interactiva140

www.FreeLibros.me

La evaluación paso por paso de una expresión como

3.0ƒ*ƒsqrt(5ƒ*ƒ33ƒ-ƒ13.71)ƒ/ƒ5

es

El programa 3.9 ilustra el uso de la función sqrt para determinar el tiempo que tarda una
pelota en golpear el suelo después de haber sido dejada caer desde una torre de 800 pies. La
fórmula matemática usada para calcular el tiempo, en segundos, que tarda en caer una distan-
cia determinada, en pies, es

tiempoƒ=ƒsqrt(2ƒ*ƒdistanciaƒ/ƒg)

donde g es la constante gravitacional igual a 32.2 pies/s2.

Paso Resultado

1. Realizar la multiplicación en el argumento 3.0ƒ*ƒsqrt(165ƒ-ƒ13.71)ƒ/ƒ5

2. Completar el cálculo del argumento 3.0ƒ*ƒsqrt(151.29)ƒ/ƒ5

3. Devolver un valor de la función 3.0ƒ*ƒ12.3ƒ/ƒ5

4. Realizar la multiplicación 36.9ƒ/ƒ5

5. Realizar la división 7.38

3.3 Empleo de la biblioteca de funciones matemáticas 141

Programa 3.9

#includeƒ<iostream>ƒƒ//ƒesta línea puede colocarse en segundo lugar en vez
 de en primero
#includeƒ<cmath>ƒƒƒƒƒ//ƒesta línea puede colocarse en primer lugar en vez
 de en segundo

usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒaltura;
ƒƒdoubleƒtiempo;

ƒƒalturaƒ=ƒ800;
ƒƒtiempoƒ=ƒsqrt(2ƒ*ƒalturaƒ/ƒ32.2);
ƒƒcoutƒ<<ƒ"Tardará “ << tiempo << “ segundos en caerƒ"
ƒƒƒƒƒƒƒ<<ƒaltura << “ pies.\n";

ƒƒreturnƒ0;
}

www.FreeLibros.me

La salida producida por el programa 3.9 es

Tardará 7.04907 segundos en caer 800 pies.

Como se usa en el programa 3.9, el valor devuelto por la función sqrt es asignado a la va-
riable tiempo. Además de asignar el valor devuelto de una función a una variable, el valor
devuelto puede incluirse dentro de una expresión más grande, o incluso usarse como un argu-
mento para otra función. Por ejemplo, la expresión

sqrt(ƒsin(ƒabs(theta)ƒ)ƒ)

es válida. En vista que están presentes paréntesis, el cálculo procede de los pares interiores ha-
cia los pares de paréntesis exteriores. Por tanto, el valor absoluto de theta se calcula prime-
ro y se usa como un argumento para la función sin. El valor devuelto por la función sin se
usa luego como un argumento para la función sqrt().

Hay que observar que los argumentos de todas las funciones trigonométricas (sin, cos,
etc.) deben expresarse en radianes. Por tanto, para obtener el seno de un ángulo que está da-
do en grados, primero debe convertirse el ángulo a una medida en radianes. Esto se logra con
facilidad al multiplicar el ángulo por el término (3.1416/180.). Por ejemplo, para obtener el
seno de 30 grados, puede usarse la expresión sinƒ(30ƒ*ƒ3.1416/180.)

Moldes

Ya se ha visto la conversión del tipo de datos de un operando dentro de expresiones aritméti-
cas en modo mixto (sección 2.4) y mediante operadores de asignación (sección 3.1). Además
de estas conversiones del tipo de datos implícitas, C++ también proporciona conversiones de
tipo explícitas especificadas por el usuario. El operador usado para forzar la conversión de un
valor a otro tipo es el operador de molde (cast). C++ proporciona operadores de molde en
tiempo de compilación y en tiempo de ejecución.

El molde en tiempo de compilación es un operador unitario que tiene la sintaxis tipo-
DeDatos(expresión), donde tipoDeDatos es el tipo de datos deseado al que se convier-
te la expresión entre paréntesis. Por ejemplo, la siguiente expresión

intƒ(aƒ*ƒb)

asegura que el valor de la expresión aƒ*ƒb es convertido en un valor de número entero.7

Con la introducción del estándar más reciente de C++, se incluyeron moldes en tiempo
de ejecución. En este tipo de molde, la conversión de tipo solicitada es verificada en tiem-
po de ejecución y se aplica si la conversión produce un valor válido. Aunque se dispone de
cuatro tipos de moldes en tiempo de ejecución, el molde más usado y que corresponde al mol-
de en tiempo de compilación tiene la sintaxis siguiente:

staticCast<tipo-de-datos> (expresión)

Por ejemplo, el molde en tiempo de ejecución staticCast<int>(aƒ*ƒb) es equivalente
al molde en tiempo de compilación intƒ(a*ƒb).

CAPÍTULO 3 Asignación, formateo y entrada interactiva142

7La sintaxis de tipo molde en C, en este caso (int)(a * b), también funciona en C++.

www.FreeLibros.me

Ejercicios 3.3

1. Escriba las llamadas de función para determinar:
a. La raíz cuadrada de 6.37.
b. La raíz cuadrada de x – y.
c. El seno de 30 grados.
d. El seno de 60 grados.
e. El valor absoluto de a2 – b2.
f. El valor de e elevado a la tercera potencia.

2. Para a = 10.6, b = 13.9, c = –3.42, determine los siguientes valores:
a. intƒ(a)
b. intƒ(b)
c. intƒ(c)
d. intƒ(aƒ+ƒb)
e. intƒ(a)ƒ+ƒbƒ+ƒc
f. intƒ(aƒ+ƒb)ƒ+ƒc
g. intƒ(aƒ+ƒbƒ+ƒc)
h. floatƒ(intƒ(a))ƒ+ƒb
i. floatƒ(intƒ(aƒ+ƒb))
j. abs(a)ƒ+ƒabs(b)
k. sqrt(abs(aƒ-ƒb))

3. Escriba instrucciones de C++ para lo siguiente:
a. b = seno x – cos x
b. b = seno2 x – cos2 x
c. área = (c * b * seno a)/2

d.

e.

f.

4. Escriba, compile y ejecute un programa en C++ que calcule y devuelva la raíz cuarta
del número 81.0, la cual es 3. Cuando haya verificado que su programa funciona en
forma correcta, úselo para determinar la raíz cuarta de 1,728.896400. Su programa
deberá usar la función sqrt().

5. Escriba, compile y ejecute un programa en C++ que calcule la distancia entre dos pun-
tos cuyas coordenadas son (7, 12) y (3, 9). Use el hecho que la distancia entre dos
puntos que tienen coordenadas (x1, y1) y (x2, y2) es distancia = sqrt([x1 – x2]

2 + [y1

– y2]
2). Cuando haya verificado que su programa funciona en forma correcta, calcu-

lando la distancia entre los dos puntos en forma manual, use su programa para deter-
minar la distancia entre los puntos (–12, –15) y (22, 5).

suma
a r

r

n

=
−()

−

1

1

p m n= −

c a b= +2 2

3.3 Empleo de la biblioteca de funciones matemáticas 143

www.FreeLibros.me

6. Si se coloca una escalera de 20 pies en un ángulo de 85 grados sobre un lado de un
edificio, como se ilustra en la figura 3.14, la altura a la que la escalera toca el edificio
puede calcularse como altura = 20 * seno 85°. Calcule esta altura en forma manual
y luego escriba, compile y ejecute un programa en C++ que determine y despliegue el
valor de la altura. Cuando haya verificado que su programa funciona en forma co-
rrecta, úselo para determinar la altura de una escalera de 25 pies colocada en un án-
gulo de 85 grados.

Figura 3.14 Calcular la altura de una escalera contra un edificio.

7. La altura máxima alcanzada por una pelota lanzada con una velocidad inicial v, en
metros/segundo, en un ángulo de θ está dada por la fórmula altura = (.5 * v2 *
seno2 θ) / 9.8. Usando esta fórmula, escriba, compile y ejecute un programa en C++
que determine y despliegue la altura máxima alcanzada cuando la pelota es lanza-
da a 5 millas/hora en un ángulo de 60 grados. (Sugerencia: Asegúrese de convertir la
velocidad inicial en las unidades correctas. Hay 1609 metros en una milla.) Calcule la
altura máxima en forma manual y verifique el resultado producido por su progra-
ma. Después de haber verificado que su programa funciona en forma correcta, úselo
para determinar la altura alcanzada por una pelota lanzada a 7 millas/hora en un án-
gulo de 45 grados.

8. Para valores pequeños de x, el valor de seno(x) puede aproximarse con la serie de po-
tencias:

Como con la función sin, el valor de x debe expresarse en radianes. Usando esta serie
de potencias, escriba, compile y ejecute un programa en C++ que aproxime el seno de
180/3.1416 grados, lo cual es igual a un radián. Además, haga que su programa use
la función sin para calcular el seno y desplegar tanto los valores calculados como la
diferencia absoluta de los dos resultados. Verifique la aproximación producida por su
programa en forma manual. Después que haya verificado que su programa funciona
en forma correcta, úselo para aproximar el valor del seno de 62.2 grados.

x
x x

120
− + − ⋅ ⋅ ⋅

3 5

6

2
0
'

85°

CAPÍTULO 3 Asignación, formateo y entrada interactiva144

www.FreeLibros.me

9. Las coordenadas polares de un punto consisten en la distancia, r, de un origen espe-
cificado y un ángulo, θ, con respecto al eje x. Las coordenadas (x y y) del punto se re-
lacionan con sus coordenadas polares por las fórmulas

xƒ=ƒrƒcosƒθ
yƒ=ƒrƒsenoƒθ

Usando estas fórmulas, escriba un programa en C++ que calcule las coordenadas
(x, y) del punto cuyas coordenadas polares son r = 10 y θ = 30 grados. Verifique los
resultados producidos por su programa calculando los resultados en forma manual.
Después de haber verificado que su programa funciona en forma correcta, úselo para
convertir las coordenadas polares r = 12.5 y θ = 67.8° en coordenadas rectangulares.

10. Un modelo del crecimiento de la población mundial, en miles de millones de personas,
desde 2000 está dado por la ecuación:

Poblaciónƒ=ƒ6.0ƒe0.02[añoƒ–ƒ2000]

Usando esta fórmula, escriba, compile y ejecute un programa en C++ para estimar la
población mundial en el año 2005. Verifique el resultado desplegado por su progra-
ma calculando la respuesta en forma manual. Después que haya verificado que su pro-
grama funciona en forma correcta, úselo para estimar la población mundial en el año
2012.

11. Un modelo para estimar el número de gramos de un cierto isótopo radiactivo que res-
tan después de N años está dado por la fórmula

Material remanenteƒ=ƒ(material original)ƒe–0.00012N

Usando esta fórmula, escriba, compile y ejecute un programa en C++ para determinar
la cantidad de material radiactivo remanente después de 1000 años, suponiendo una
cantidad inicial de 100 gramos. Verifique el despliegue producido por su programa
usando un cálculo manual. Después que haya verificado que su programa funciona en
forma correcta, úselo para determinar la cantidad de material radiactivo remanente
después de 275 años, suponiendo una cantidad inicial de 250 gramos.

12. El número de años que se requiere para que se descomponga un cierto isótopo de ura-
nio a la mitad de una cantidad original está dado por la

Vida mediaƒ=ƒln(2)/k

donde k es igual a 0.00012. Usando esta fórmula, escriba, compile y ejecute un pro-
grama en C++ que calcule y despliegue la vida media de este isótopo de uranio. Veri-
fique el resultado producido por su programa usando un cálculo manual. Después que
haya verificado que su programa funciona en forma correcta, úselo para determinar
la vida media de un isótopo de uranio que tenga k = 0.00026.

13. La amplificación de circuitos electrónicos se mide en unidades de decibeles, las cuales
se calculan como

10ƒLOGƒ(Po/Pi)

donde Po es la potencia de la señal de salida y Pi es la potencia de la señal de entra-
da. Usando esta fórmula, escriba, compile y ejecute un programa en C++ que calcule
y despliegue la amplificación en decibeles en la que la potencia de salida es 50 veces

3.3 Empleo de la biblioteca de funciones matemáticas 145

www.FreeLibros.me

la potencia de entrada. Verifique el resultado desplegado por su programa usando un
cálculo manual. Después de haber verificado que su programa funciona en forma co-
rrecta, úselo para determinar la amplificación de un circuito cuya potencia de salida
es 4.639 vatios y la potencia de entrada es 1 vatio.

14. La intensidad de un sonido se mide en unidades de decibeles, las cuales se calculan
como

10ƒLOGƒ(SL/RL)

donde SL es la intensidad del sonido que se está midiendo y RL es un sonido de refe-
rencia del nivel de intensidad. Usando esta fórmula, escriba un programa en C++ que
calcule y despliegue el ruido en decibeles de una calle transitada que tiene una intensi-
dad de sonido de 10 000 000 RL. Verifique el resultado producido por su programa
usando un cálculo manual. Después que haya verificado que su programa funciona en
forma correcta, úselo para determinar el nivel de sonido, en decibeles, de los siguientes
sonidos:
a. Un susurro con una intensidad de sonido de 200 RL
b. Una banda de rock tocando con una intensidad de sonido de 1 000 000 000 000

RL
c. Un avión despegando con una intensidad de sonido de 100 000 000 000 000 RL

15. Cuando una pelota de hule especial se deja caer desde una altura dada (en metros)
su velocidad de impacto (en metros/segundo) cuando golpea el suelo está dada por
la fórmula velocidad = sqrt(2 * g * altura). La pelota rebota entonces a 2/3 de la al-
tura desde la cual cayó la última vez. Usando esta información, escriba, pruebe y eje-
cute un programa en C++ que calcule y despliegue la velocidad de impacto de los
primeros tres rebotes y la altura alcanzada en cada rebote. Pruebe su programa usan-
do una altura inicial de 2.0 metros. Ejecute el programa dos veces y compare los re-
sultados de soltar la pelota en la Tierra (g = 9.81 m/s2) y en la Luna (g = 1.67 m/s2).

16. a. Una balanza tiene pesas de los siguientes tamaños: 100 lb., 50 lb., 10 lb., 5 lb. y
1 lb. El número de pesas de 100 lb. y 50 lb. requeridas para pesar un objeto cuyo
peso es de PESO libras puede calcularse usando las siguientes instrucciones de C++:

ƒƒ//ƒDetermine la cantidad de pesas deƒ100ƒlb.
ƒƒƒƒƒƒƒƒw100ƒ=ƒint(WEIGHT/100)
ƒƒ//ƒDetermine la cantidad de pesas deƒ50ƒlb.ƒ
ƒƒƒƒƒƒƒƒw50ƒ=ƒint((WEIGHTƒ-ƒw100ƒ*ƒ100)/50)

Usando estas instrucciones como punto de partida, escriba un programa en C++
que calcule la cantidad de cada tipo de pesas necesarias para pesar un objeto de
789 lb.

b. Sin compilar ni ejecutar su programa, compruebe el efecto, en forma manual, de
cada instrucción en el programa y determine qué está almacenado en cada varia-
ble conforme se encuentra cada instrucción.

c. Cuando haya verificado que su algoritmo funciona en forma correcta, compile y
ejecute su programa. Verifique que los resultados producidos por su programa son
correctos. Después que haya verificado que su programa funciona en forma correc-
ta, úselo para determinar las pesas requeridas para pesar un objeto de 626 lb.

CAPÍTULO 3 Asignación, formateo y entrada interactiva146

www.FreeLibros.me

3.4 ENTRADA DE DATOS AL PROGRAMA USANDO EL OBJETO cin

Los datos para programas que sólo se van a ejecutar una vez pueden incluirse en forma direc-
ta en el programa. Por ejemplo, si se desea multiplicar los números 30.0 y 0.05, podría usar-
se el programa 3.10.

La salida desplegada por el programa 3.10 es

30.0ƒporƒ0.05ƒesƒ1.5

El programa 3.10 puede acortarse, como se ilustra en el programa 3.11. Ambos programas,
sin embargo, tienen el mismo problema básico de que deben rescribirse a fin de multiplicar di-
ferentes números. Ambos programas carecen de la facilidad para introducir números diferen-
tes con los cuales operar.

3.4 Entrada de datos al programa usando el objeto cin 147

Programa 3.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒnum1,ƒnum2,ƒproducto;

ƒƒnum1ƒ=ƒ30.0;
ƒƒnum2ƒ=ƒ0.05;
ƒƒproductoƒ=ƒnum1ƒ*ƒnum2;
ƒƒcoutƒ<<ƒ"30.0ƒporƒ0.05ƒesƒ"ƒ<<ƒproductoƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Con excepción de la práctica proporcionada al programador por escribir, introducir y ejecu-
tar el programa, es evidente que los programas que hacen el mismo cálculo sólo una vez, con
el mismo conjunto de números, no son muy útiles. Después de todo, es más simple usar una
calculadora para multiplicar dos números que introducir y ejecutar el programa 3.10 o 3.11.

Esta sección presenta el objeto cin, el cual se usa para introducir datos en un programa
mientras se está ejecutando. Del mismo modo que el objeto cout despliega una copia del va-
lor almacenado dentro de una variable, el objeto cin permite al usuario introducir un valor
en la terminal (véase la figura 3.15). El valor se almacena entonces en forma directa en una
variable.

Figura 3.15 cin se usa para introducir datos; cout se usa para desplegar datos.

Cuando se encuentra una instrucción como cinƒ>>ƒnum1; la computadora detiene la eje-
cución del programa y acepta datos del teclado. Cuando se escribe un elemento de datos, el
objeto cin almacena el elemento en la variable mostrada después del operador de extracción
(“obtener de”), >>. El programa continúa luego su ejecución con la siguiente instrucción des-
pués de la llamada a cin. Para ver esto, considere el programa 3.12.

int main()
{
 cin >>
 cout <<
}Teclado

Pantalla

CAPÍTULO 3 Asignación, formateo y entrada interactiva148

Programa 3.11

#include <iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"30.0ƒporƒ0.05ƒesƒ"ƒ<<ƒ30.0ƒ*ƒ0.05ƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

La primera instrucción cout en el programa 3.12 imprime una cadena que le indica a la per-
sona en la terminal qué deberá introducir. Cuando se usa una cadena de salida de esta ma-
nera se llama indicador de comandos. En este caso el indicador de comandos le indica al
usuario que introduzca un número. La computadora entonces ejecuta la siguiente instruc-
ción, la cual usa un objeto cin. El objeto cin pone a la computadora en un estado de pau-
sa temporal (o espera) tanto tiempo como le tome al usuario introducir un valor. Luego el
usuario le señala al objeto cin que se terminó la entrada de datos al oprimir la tecla de re-
torno después que se ha introducido el valor. El valor introducido se almacena en la variable
a la derecha del símbolo de extracción, y la computadora sale de su estado de pausa. Luego
procede la ejecución del programa con la siguiente instrucción, la cual en el programa 3.12
es otra instrucción que usa cout. Esta instrucción causa que se despliegue el siguiente men-
saje. La siguiente instrucción usa entonces cin para poner de nuevo a la computadora en un
estado de espera temporal mientras el usuario introduce un segundo valor. Este segundo nú-
mero se almacena en la variable num2.

La siguiente ejecución se hizo usando el programa 3.12.

Por favor introduzca un número:ƒ30
Por favor introduzca otro número:ƒ0.05
30ƒporƒ0.05ƒesƒ1.5

3.4 Entrada de datos al programa usando el objeto cin 149

Programa 3.12

#include <iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒnum1,ƒnum2,ƒproducto;

ƒƒcoutƒ<<ƒ"Por favor introduzca un número:ƒ";
ƒƒcinƒƒ>>ƒnum1;
ƒƒcoutƒ<<ƒ"Por favor introduzca otro número:ƒ";
ƒƒcinƒƒ>>ƒnum2;
ƒƒproductoƒ=ƒnum1ƒ*ƒnum2;
ƒƒcoutƒ<<ƒnum1ƒ<<ƒ"ƒporƒ"ƒ<<ƒnum2ƒ<<ƒ"ƒesƒ"ƒ<<ƒproductoƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

En el programa 3.12, cada vez que se invoca cin se usa para almacenar un valor en una va-
riable. Sin embargo, el objeto cin puede usarse para introducir y almacenar tantos valores co-
mo símbolos de extracción, >>, y variables haya para contener los datos introducidos. Por
ejemplo, la instrucción

cinƒ>>ƒnum1ƒ>>ƒnum2;ƒ

produce dos valores que se leen de la terminal y se asignan a las variables num1 y num2. Si
los datos introducidos en la terminal fueran

0.052 245.79

las variables num1 y num2 contendrían los valores 0.052 y 245.79, respectivamente. Hay que
observar que cuando se introducen cifras como 0.052 y 245.79 debe haber al menos un espa-
cio entre ellas. El espacio entre las cifras introducidas indica con claridad dónde termina una
cifra y comienza la siguiente. Insertar más de un espacio entre cifras no tiene efecto en cin.

El mismo espaciado también es aplicable al introducir datos de caracteres; es decir, el ope-
rador de extracción, >>, se saltará los espacios en blanco y almacenará el siguiente carácter
que no sea un espacio en blanco en una variable de carácter. Por ejemplo, en respuesta a las
instrucciones

charƒch1,ƒch2,ƒch3;ƒƒ//ƒdeclara tres variables de carácter
cinƒ>>ƒch1ƒ>>ƒch2ƒ>>ƒch3;ƒƒ//ƒacepta tres caracteres

La entrada

aƒƒbƒƒc

causa que la letra a sea almacenada en la variable ch1, sea almacenada en la variable ch2,
y la letra c sea almacenada en la variable ch3. En vista que una variable de carácter sólo pue-
de usarse para almacenar un carácter,

abc

también puede usarse la entrada.
Puede utilizarse cualquier cantidad de instrucciones que usen el objeto cin e introducir-

se cualquier cantidad de valores usando una sola instrucción cin. El programa 3.13 ilustra el
uso del objeto cin para introducir tres números desde el teclado. El programa calcula lue-
go y despliega el promedio de los números introducidos.

CAPÍTULO 3 Asignación, formateo y entrada interactiva150

www.FreeLibros.me

La siguiente muestra de ejecución se hizo usando el programa 3.13:

Introduzca tres números enteros:ƒ22ƒ56ƒ73
El promedio de los números esƒ50.3333

Hay que observar que los datos introducidos en el teclado para esta muestra de ejecución con-
sisten en la entrada

22ƒ56ƒ73

En respuesta a este flujo de entrada, el programa 3.13 almacena el valor 22 en la variable
num1, el valor 56 en la variable num2, y el valor 73 en la variable num3 (véase la figura 3.16).
En vista que el promedio de tres números enteros puede ser un número de punto flotante, la
variable promedio, la cual se usa para almacenar el promedio, es declarada como una va-
riable de punto flotante. Hay que observar también que los paréntesis son necesarios en la
instrucción de asignación promedioƒ=ƒ(num1ƒ+ƒnum2ƒ+ƒnum3)ƒ/ƒ3.0;. Sin estos
paréntesis, el único valor que se dividiría entre tres sería el entero en num3 (porque la división
tiene una precedencia mayor que la adición).

3.4 Entrada de datos al programa usando el objeto cin 151

Programa 3.13

#include <iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum1,ƒnum2,ƒnum3;
ƒƒdoubleƒpromedio;

ƒƒcoutƒ<<ƒ"Introduzca tres números enteros:ƒ";
ƒƒcinƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒnum3;
ƒƒpromedioƒ=ƒƒ(num1ƒ+ƒnum2ƒ+ƒnum3)ƒ/ƒ3.0;
ƒƒcoutƒ<<ƒ"El promedio de los números es “ << promedioƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Figura 3.16 Introducción de datos en las variables num1, num2, and num3.

La operación de extracción cin como la operación de inserción cout es lo bastante “lista”
para hacer unas cuantas conversiones de tipo de datos. Por ejemplo, si se introduce un núme-
ro entero en lugar de un número de precisión doble, el entero será convertido al tipo de datos
correcto.8 Del mismo modo, si se introduce un número de precisión doble cuando se espera
un entero, sólo se usará la parte entera del número. Por ejemplo, suponga que se introducen
los siguientes números en respuesta a la instrucción cinƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒnum3;,
donde num1 y num3 han sido declarados como variables de precisión doble y num2 es una
variable entera:

56ƒƒ22.879ƒƒ33.923

El 56 será convertido en 56.0 y almacenado en la variable num1. La operación de extracción
continúa extrayendo datos del flujo de entrada que se le envía, esperando un valor entero. Por
lo que respecta a cin el punto decimal después de 22 en el número 22.879 indica el final de
un entero y el inicio de un número decimal. Por tanto, el número 22 es asignado a num2. Al
continuar procesando su flujo de entrada, cin toma .879 como el siguiente número de pun-
to flotante y lo asigna num3. Por lo que respecta a cin es entrada extra y es ignorado. Sin
embargo, si al principio no se introducen suficientes datos, el objeto cin continuará hacien-
do que la computadora esté en pausa hasta que se hayan introducido suficientes datos.

Una primera mirada a la validación de entradas del usuario

Un programa bien construido debería validar las entradas del usuario y asegurar que no se cai-
ga el programa o produzca una salida sin sentido debido a una entrada inesperada. El térmi-
no validar significa verificar que el valor introducido corresponde al tipo de datos de la
variable a la que es asignado el valor dentro de una instrucción cin y también que el valor
está dentro de un rango aceptable de valores apropiados para la aplicación. Los programas
que detectan y responden en forma efectiva a una entrada inesperada del usuario se conocen
de manera formal como programas robustos y de manera informal como programas “a prue-
ba de balas”. Una de sus labores como programador es producir tales programas. Tal como
están escritos, los programas 3.12 y 3.13 no son programas robustos. Veamos por qué.

cin >> num1 >> num2 >> num3;

22 56 73

22

56

73

num1

num2

num3

CAPÍTULO 3 Asignación, formateo y entrada interactiva152

8En sentido estricto, lo que viene del teclado no es ningún tipo de datos, como un int o double, sino es tan sólo una secuencia
de caracteres. La operación de extracción maneja la conversión desde secuencia de caracteres hacia un tipo de datos definido.

www.FreeLibros.me

El primer problema con estos programas se hace evidente cuando un usuario introduce
un valor no numérico. Por ejemplo, considere la siguiente muestra de ejecución usando el pro-
grama 3.13:

Introduzca tres números enteros:ƒ10ƒ20.68ƒ20
El promedio de los números esƒ-2.86331e+008

Esta salida ocurre debido a que la conversión del segundo número introducido produce que
el valor entero 20 sea asignado a num2 y el valor –858993460 sea asignado a num3.9 Este úl-
timo valor corresponde a un carácter inválido, el punto decimal, al que se le asigna un valor
entero esperado. El promedio de los números 10, 20 y –858993460 es calculado en forma co-
rrecta como –286331143.3, el cual es desplegado en notación científica con seis dígitos signi-
ficativos como –2.86331e+08. Por lo que respecta al usuario de promedio, esto se reportará
como un error del programa. Este mismo problema ocurre siempre que se introduce un valor
no entero en cualquiera de las primeras dos entradas. (No ocurre para cualquier valor numé-
rico introducido como la tercera entrada porque la parte entera de la última entrada es acep-
tada y se ignora la entrada restante.) Como programador, su respuesta inicial puede ser “El
programa pide en forma clara que se introduzcan valores enteros”. Ésta, sin embargo, es la
respuesta de un programador inexperto. Los programadores profesionales entienden que es su
responsabilidad asegurar que un programa anticipe y maneje en forma apropiada todas las en-
tradas que introducirá un usuario. Esto se logra pensando qué puede salir mal con su progra-
ma mientras lo desarrolla y luego haciendo que otra persona o grupo lo pruebe.

En enfoque básico para manejar la introducción de datos inválidos se conoce como va-
lidación de entradas del usuario, lo cual significa validar los datos introducidos durante la
introducción o inmediatamente después que los datos han sido introducidos y luego propor-
cionarle al usuario una forma de reintroducir cualesquiera datos inválidos. La validación de
entradas del usuario es una parte esencial de cualquier programa viable desde el punto de vis-
ta comercial; si se hace en forma correcta, protege al programa de intentar procesar datos
que pueden causar problemas de cálculo. Se verá cómo proporcionar este tipo de valida-
ción después de presentar las instrucciones de selección y repetición de C++ en los capítulos 4
y 5, respectivamente.

Ejercicios 3.4

1. Para las siguientes instrucciones de declaración, escriba una instrucción con el objeto
cin que cause que la computadora entre en pausa mientras el usuario introduce los
datos apropiados.
a. intƒprimernum;
b. doubleƒcalificacion;
c. doubleƒsegundonum;
d. charƒvalorclave;
e. intƒmes, anios;

doubleƒpromedio;
f. charƒch;

intƒnum1,num2;
doubleƒcalificacion1, calificacion2;

g. doubleƒinterés, principal, capital;
doubleƒprecio, rédito;

3.4 Entrada de datos al programa usando el objeto cin 153

9Algunos sistemas aceptarán el .68 como la tercera entrada. En todos los casos el último valor 20 es ignorado.

www.FreeLibros.me

h. charƒch,ƒletra1,ƒletra2;
intƒnum1,num2,num3;

i. doubleƒtemp1,temp2,temp3;
doubleƒvoltios1, voltios2;

2. a. Escriba un programa en C++ que despliegue primero el siguiente indicador:

Introduzca la temperatura en gradosƒCelsius:
Haga que su programa acepte un valor introducido desde el teclado y convierta la
temperatura introducida a grados Fahrenheit, usando la fórmula Fahrenheit = (9.0
/ 5.0) * Celsius + 32.0. Su programa deberá desplegar entonces la temperatura en
grados Fahrenheit, usando un mensaje de salida apropiado.

b. Compile y ejecute el programa escrito para el ejercicio 2a. Verifique su programa
calculando, en forma manual y luego usando su programa, el equivalente en Fah-
renheit de los siguientes datos de prueba:

Conjunto de datos de prueba 1: 0 grados Celsius
Conjunto de datos de prueba 2: 50 grados Celsius
Conjunto de datos de prueba 3: 100 grados Celsius

Cuando esté seguro que su programa funciona en forma correcta, úselo para com-
pletar la siguiente tabla:

3. Escriba, compile y ejecute un programa en C++ que despliegue el siguiente indicador:

Introduzca el radio de un círculo:

Después de aceptar un valor para el radio, su programa deberá calcular y desplegar el
área del círculo. (Sugerencia: área = 3.1416 * radio2) Con propósitos de prueba, ve-
rifique su programa usando una entrada de prueba de un radio de 3 pulgadas. Des-

Celsius Fahrenheit

45

50

55

60

65

70

CAPÍTULO 3 Asignación, formateo y entrada interactiva154

www.FreeLibros.me

pués de determinar en forma manual que el resultado producido por su programa es
correcto, use su programa para completar la siguiente tabla:

4. a. Escriba, compile y ejecute un programa en C++ que despliegue los siguientes indi-
cadores:

Introduzca las millas recorridas:
Introduzca los galones de gasolina consumidos:

Después que se despliegue cada indicador, su programa deberá usar una instruc-
ción cin para aceptar datos desde el teclado para el indicador desplegado. Des-
pués que se haya introducido el número de galones de gasolina consumidos, su
programa deberá calcular y desplegar las millas por galón obtenidas. Este valor de-
berá ser incluido en un mensaje apropiado y calculado usando a ecuación millas
por galón = millas/galones consumidos. Verifique su programa usando los siguien-
tes datos de prueba:

Conjunto de datos de prueba 1: Millas = 276, Gasolina = 10 galones
Conjunto de datos de prueba 2: Millas = 200, Gasolina = 15.5 galones

Cuando haya completado su verificación, use su programa para completar la si-
guiente tabla:

b. Para el programa escrito para el ejercicio 4a, determine cuántas ejecuciones de ve-
rificación se requieren para asegurar que el programa funciona en forma correcta
y dé una razón que apoye su respuesta.

Millas recorridas Galones consumidos MPG

250 16.00

275 18.00

312 19.54

296 17.39

Radio Área
(pulg.) (pulg.2)

1.0

1.5

2.0

2.5

3.0

3.5

3.4 Entrada de datos al programa usando el objeto cin 155

www.FreeLibros.me

5. a. Escriba, compile y ejecute un programa en C++ que despliegue los siguientes indi-
cadores:

Introduzca un número:
Introduzca un segundo número:
Introduzca un tercer número:
Introduzca un cuarto número:

Después que se despliega cada indicador, su programa deberá usar una instrucción
cin para aceptar un número desde el teclado para el indicador desplegado. Después
que se ha introducido el cuarto número, su programa deberá calcular y desplegar
el promedio de los números. El promedio deberá incluirse en un mensaje apropia-
do. Verifique el promedio desplegado por su programa usando los siguientes datos
de prueba:

Conjunto de datos de prueba 1: 100, 100, 100, 100
Conjunto de datos de prueba 2: 100, 0, 100, 0

Cuando haya completado su verificación, use su programa para completar la si-
guiente tabla:

b. Repita el ejercicio 5a, asegurándose que usa el mismo nombre de variable, nume-
ro, para cada entrada de número. También use la variable suma para la suma de
los números. (Sugerencia: para hacer esto, puede usar la instrucción suma = su-
ma + numero después que se ha aceptado cada número. Repase el material so-
bre acumulación presentado en la sección 2.3.)

6. a. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el valor de
polinomio de segundo orden ax2 + bx + c para valores introducidos por el usuario
de los coeficientes a, b, c y la variable x. Haga que su programa despliegue prime-
ro un mensaje informando al usuario que realizará el programa, y luego desplie-
gue indicadores apropiados para avisar al usuario que introduzca los datos
deseados. (Sugerencia: use un indicador como Introduzca el coeficiente
del término x al cuadrado:)

b. Verifique el resultado producido por su programa para el ejercicio 6a usando los
siguientes datos de prueba:

Conjunto de datos de prueba 1: a = 0, b = 0, c = 22, x = 56
Conjunto de datos de prueba 2: a = 0, b = 22, c = 0, x = 2
Conjunto de datos de prueba 3: a = 22, b = 0, c = 0, x = 2
Conjunto de datos de prueba 4: a = 2, b = 4, c = 5, x = 2
Conjunto de datos de prueba 5: a = 5, b = –3, c = 2, x = 1

Números Promedio

92, 98, 79, 85

86, 84, 75, 86

63, 85, 74, 82

CAPÍTULO 3 Asignación, formateo y entrada interactiva156

www.FreeLibros.me

Cuando haya completado su verificación, use su programa para completar la si-
guiente tabla:

7. El número de bacterias, B, en un cierto cultivo que es sometido a refrigeración puede
aproximarse por la ecuación B = 300000 e–0.032t, donde e es el número irracional
2.71828 (redondeado a cinco lugares decimales), conocido como número de Euler, y t
es el tiempo, en horas, que se ha refrigerado el cultivo. Usando esta ecuación, escriba,
compile y ejecute un programa simple en C++ que indique al usuario que introduzca
un valor de tiempo, calcule el número de bacterias en el cultivo y despliegue el resulta-
do. Con propósitos de prueba, verifique su programa usando una entrada de prueba
de 10 horas. Cuando haya verificado la operación de su programa, úselo para deter-
minar el número de bacterias en el cultivo después de 12, 18, 24, 36, 48 y 72 horas.

8. Escriba, compile y ejecute un programa que calcule y despliegue el valor de la raíz cua-
drada de un número real introducido por el usuario. Verifique su programa calculan-
do las raíces cuadradas de los siguientes datos: 25, 16, 0 y 2. Cuando complete su
verificación, use su programa para determinar la raíz cuadrada de 32.25, 42, 48, 55,
63 y 79.

9. Escriba, compile y ejecute un programa que calcule y despliegue la raíz cuarta de un
número introducido por el usuario. Recuerde del álgebra elemental que la raíz cuarta
de un número puede encontrarse elevando el número a la potencia 1⁄4. (Sugerencia: no
utilice la división de números enteros; ¿puede ver por qué?) Verifique su programa
calculando la raíz cuarta de los siguientes datos: 81, 16, 1 y 0. Cuando haya comple-
tado su verificación, use su programa para determinar la raíz cuarta de 42, 121, 256,
587, 1240 y 16 256.

10. Para el circuito en serie mostrado en la figura 3.17, la baja del voltaje, V2, a través del
resistor, R2, y de la potencia, P2, enviada al resistor está dada por las ecuaciones V2 =
I R2 y P2 = I V2, donde I = E /(R1 + R2). Usando estas ecuaciones, escriba, compile y
ejecute un programa en C++ que indique al usuario que introduzca los valores de E,

a b c x valor del polinomio

2.0 17.0 –12.0 1.3

3.2 2.0 15.0 2.5

3.2 2.0 15.0 –2.5

–2.0 10.0 0.0 2.0

–2.0 10.0 0.0 4.0

–2.0 10.0 0.0 5.0

–2.0 10.0 0.0 6.0

5.0 22.0 18.0 8.3

4.2 –16 –20 –5.2

3.4 Entrada de datos al programa usando el objeto cin 157

www.FreeLibros.me

R1 y R2, calcule la baja de voltaje y la potencia enviadas a R2, y despliegue los resul-
tados. Verifique su programa usando los datos de prueba: E = 10 voltios, R1 = 100
ohmios y R2 = 200 ohmios. Cuando haya completado su verificación, use su progra-
ma para completar la siguiente tabla:

Figura 3.17 Cálculo de la baja de voltaje.

11. Escriba, compile y ejecute un programa en C++ que calcule la resistencia combinada
de tres resistores paralelos. Los valores de cada resistor deberían ser aceptados usan-
do una instrucción cin (use la fórmula para la resistencia combinada dada en el ejer-
cicio 9 de la sección 3.2). Verifique la operación de su programa usando los siguientes
datos de prueba:

Conjunto de datos de prueba 1: R1 = 1000, R2 = 1000 y R3 = 1000.
Conjunto de datos de prueba 2: R1 = 1000, R2 = 1500 y R3 = 500.

R1

E R2

I

E R1 R2 Baja de voltaje Potencia enviada
(voltios) (ohmios) (ohmios) (voltios) (vatios)

10 100 100

10 100 200

10 200 200

20 100 100

20 100 200

20 200 200

CAPÍTULO 3 Asignación, formateo y entrada interactiva158

www.FreeLibros.me

Cuando haya completado su verificación, use su programa para completar la siguien-
te tabla:

12. Usando instrucciones input, escriba, compile y ejecute un programa en C++ que
acepte las coordenadas (x y y) de dos puntos. Haga que su programa determine y des-
pliegue los puntos medios de los dos puntos (use la fórmula dada en el ejercicio 11 de
la sección 3.2). Verifique su programa usando los siguientes datos de prueba:

Conjunto de datos de prueba 1: Punto 1 = (0, 0) y Punto 2 = (16, 0)
Conjunto de datos de prueba 2: Punto 1 = (0, 0) y Punto 2 = (0, 16)
Conjunto de datos de prueba 3: Punto 1 = (0, 0) y Punto 2 = (–16, 0)
Conjunto de datos de prueba 4: Punto 1 = (0, 0) y Punto 2 = (0, –16)
Conjunto de datos de prueba 5: Punto 1 = (–5, –5) y Punto 2 = (5, 5)

Cuando haya completado su verificación, use su programa para completar la siguien-
te tabla.

13. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el valor del
flujo de corriente a través de un circuito RC. El circuito consiste en una batería que
está conectada en serie a un interruptor, un resistor y un capacitor. Cuando el inte-
rruptor se cierra, la corriente, i, que fluye a través del circuito está dada por la ecua-
ción:

i = (E/R) e–t/τ

Punto 1 Punto 2 Punto medio

(4, 6) (16, 18)

(22, 3) (8, 12)

(–10, 8) (14, 4)

(–12, 2) (14, 3.1)

(3.1, –6) (20, 16)

(3.1, –6) (–16, –18)

R1 R2 R3 Resistencia
combinada(voltios) (ohmios) (ohmios)
(ohmios)

3000 3000 3000

6000 6000 6000

2000 3000 1000

2000 4000 5000

4000 2000 1000

10000 100 100

3.4 Entrada de datos al programa usando el objeto cin 159

www.FreeLibros.me

donde E es el voltaje de la batería (en voltios), R es la resistencia (en ohmios), τ es
la constante de tiempo y t es el tiempo (en segundos) desde que el interruptor fue
cerrado.

El programa deberá indicar al usuario que introduzca valores apropiados y use instruc-
ciones de entrada para aceptar los datos. Al construir los indicadores, use instruccio-
nes como Introduzca el voltaje de la batería. Verifique la operación de su
programa calculando, en forma manual, la corriente para los siguientes datos de prue-
ba:

Conjunto de datos de prueba 1: Voltaje = 20 voltios, R = 10 ohmios, τ = 0.044, t =
0.023 segundos.

Conjunto de datos de prueba 2: Voltaje = 35 voltios = 35, R = 10 ohmios, τ = 0.16, t =
0.067 segundos.

Cuando haya completado su verificación, use su programa para determinar el valor
de la corriente para los siguientes casos:
a. Voltaje = 35 voltios, R = 10 ohmios, τ = 0.16, t = 0.11 segundos.
b. Voltaje = 35 voltios, R = 10 ohmios, τ = 0.16, t = 0.44 segundos.
c. Voltaje = 35 voltios, R = 10 ohmios, τ = 0.16, t = 0.83 segundos.
d. Voltaje = 15 voltios, R = 10 ohmios, τ = 0.55, t = 0.11 segundos.
e. Voltaje = 15 voltios, R = 10 ohmios, τ = 0.55, t = 0.44 segundos.
f. Voltaje = 15 voltios, R = 10 ohmios, τ = 0.55, t = 0.067 segundos.
g. Voltaje = 6 voltios, R = 1000 ohmios, τ = 2.6, t = 12.4 segundos.

14. El programa 3.12 indica al usuario que introduzca dos números, donde el primer va-
lor introducido es almacenado en num1 y el segundo valor es almacenado en num2.
Usando este programa como punto de partida, escriba un programa que intercambie
los valores almacenados en las dos variables.

15. Escriba un programa en C++ que indique al usuario que introduzca un número. Ha-
ga que su programa acepte el número como un entero y lo despliegue de inmediato
usando una llamada al objeto cout. Ejecute su programa tres veces. La primera vez
que ejecute el programa introduzca un número entero válido, la segunda vez introduz-
ca un número de precisión doble y la tercera vez introduzca un carácter. Usando el
despliegue de salida, vea qué número aceptó en realidad su programa de los datos que
introdujo.

16. Repita el ejercicio 15 pero haga que su programa declare la variable usada para alma-
cenar el número como una variable de precisión doble. Ejecute el programa tres ve-
ces. La primera vez introduzca un entero, la segunda vez introduzca un número de
precisión doble y la tercera vez introduzca un carácter. Usando el despliegue de sali-
da, siga la pista de cuál número aceptó en realidad su programa de los datos que in-
trodujo. ¿Qué sucedió, y por qué?

17. a. ¿Por qué cree que los programas de aplicaciones exitosos contienen verificacio-
nes de validez extensas de los datos de entrada? (Sugerencia: revise los ejercicios
16 y 17.)

b. ¿Cuál piensa que es la diferencia entre una verificación del tipo de datos y una ve-
rificación de lo razonable que son esos datos?

c. Suponga que un programa requiere que el usuario introduzca un día, mes y año.
¿Cuáles son algunas verificaciones que podría hacer en los datos introducidos?

CAPÍTULO 3 Asignación, formateo y entrada interactiva160

www.FreeLibros.me

3.5 CONSTANTES SIMBÓLICAS

Ciertas constantes usadas dentro de un programa tienen un significado más general que es re-
conocido fuera del contexto del programa. Los ejemplos de estos tipos de constantes incluyen
el número 3.1416, el cual es π con una precisión de cuatro lugares decimales; 32.2 pies/sec2,
lo cual es la constante gravitacional; y el número 2.71828, el cual es el número de Euler con
una precisión de cinco lugares decimales.

El significado de otras constantes que aparecen en un programa se define estrictamente
dentro del contexto de la aplicación que se está programando. Por ejemplo, al determinar el
peso de objetos de varios tamaños, la densidad del material que se está usando adquiere un
significado especial. Por sí mismos los números de densidad son bastante ordinarios, pero en
el contexto de una aplicación particular tienen un significado especial. Números como éstos
son conocidos a veces por los programadores como números mágicos. Cuando el mismo nú-
mero mágico aparece de manera repetida dentro del mismo programa se vuelve una fuente po-
tencial de error, por lo que se tendrá que cambiar la constante. Sin embargo, múltiples cambios
están sujetos a error, con un solo valor que se pase por alto y no sea cambiado, el resultado
obtenido cuando se ejecuta el programa será incorrecto y la fuente de error difícil de localizar.

Para evitar el problema de tener un número mágico diseminado en un programa en mu-
chos lugares y permitir la identificación clara de constantes universales, como π, C++ permite
al programador darle a estas constantes su propio nombre simbólico. Entonces, en lugar de
usar el número en todo el programa, se usa en cambio un nombre simbólico. Si alguna vez se
tiene que cambiar el número, el cambio sólo necesita hacerse una vez en el punto donde el
nombre simbólico es equiparado con el valor numérico real. Equiparar números con nombres
simbólicos se logra usando el calificador de declaración const. El calificador const especi-
fica que el identificador declarado sólo puede leerse después que es inicializado; no puede cam-
biarse. Tres ejemplos que usan este calificador son

constƒdoubleƒPIƒ=ƒ3.1416;
constƒdoubleƒDENSIDADƒ=ƒ0.238;
constƒintƒMAXNUMƒ=ƒ100;

La primera instrucción de declaración crea una constante de doble precisión llamada PI y la
inicializa con el valor 3.1416, mientras la segunda instrucción de declaración crea la constan-
te de precisión doble llamada DENSIDAD y la inicializa con 0.238. Por último, la tercera de-
claración crea una constante entera llamada MAXNUM y la inicializa con el valor 100.

Una vez que se crea e inicializa un identificador const, el valor almacenado en él no pue-
de cambiarse. Por tanto, para propósitos prácticos, el nombre de la constante y su valor se
vinculan por la duración del programa que los declara.

Aunque hemos escrito los identificadores const en letras mayúsculas, podrían haberse
usado letras minúsculas. Sin embargo, es común en C++, usar letras mayúsculas para los iden-
tificadores const a fin de identificarlos con facilidad. Luego, siempre que un programador vea
letras mayúsculas en un programa, sabrá que el valor de la constante no puede cambiarse.

3.5 Constantes simbólicas 161

www.FreeLibros.me

Una vez declarado, puede usarse un identificador const en cualquier instrucción C++ en
lugar del número que representa. Por ejemplo, las instrucciones de asignación

circumƒ=ƒ2ƒ*ƒPIƒ*ƒradio;
pesoƒ=ƒDENSIDADƒ*ƒvolumen;

son válidas. Por supuesto que estas instrucciones deben aparecer después de las declaraciones
para todas sus variables. En vista que una declaración const equipara de manera efectiva un
valor constante con un identificador, y el identificador puede ser usado como un reemplazo
directo para su constante inicializada, estos identificadores se conocen por lo general como
constantes simbólicas o constantes nombradas. Se usarán estos términos en forma intercam-
biable.

Colocación de instrucciones

En esta etapa se han introducido una variedad de tipos de instrucciones. La regla general en
C++ para la colocación de las instrucciones es tan sólo que una variable o constante simbóli-
ca debe declararse antes que pueda ser usada. Aunque esta regla permite que tanto las direc-
tivas del preprocesador como las instrucciones de declaración sean colocadas a lo largo de un
programa, hacerlo así resultará en una estructura de programa muy pobre. Como una buena
forma de programación, deberá usarse el siguiente orden en las instrucciones:

directivas del preprocesador

intƒmain()
{
ƒƒconstantes simbólicas
ƒƒdeclaraciones de la función principal

ƒƒotras instrucciones ejecutables

ƒƒreturnƒvalor
}

Conforme se introduzcan nuevos tipos de instrucción se expandirá esta estructura de coloca-
ción para acomodarlos. Hay que observar que las instrucciones de comentario pueden entre-
mezclarse con libertad en cualquier parte dentro de esta estructura básica.

El programa 3.14 ilustra esta estructura básica y usa una constante simbólica para calcu-
lar el peso de un cilindro de acero. La densidad del acero es 0.284 lb/pulg3.

CAPÍTULO 3 Asignación, formateo y entrada interactiva162

www.FreeLibros.me

Se puede observar en el programa 3.14 que se han definido dos constantes simbólicas: PI y
DENSIDAD. La siguiente ejecución se hizo para determinar el peso de un cilindro con un ra-
dio de 3 pulgadas y una altura de 12 pulgadas.

Introduzca el radio del cilindro (en pulgadas):ƒ3
Introduzca la altura del cilindro (en pulgadas):ƒ12
El cilindro pesa 96.3592 libras

3.5 Constantes simbólicas 163

Programa 3.14

//ƒEste programa determina el peso de un cilindro de acero

//ƒƒƒal multiplicar el volumen del cilindro por su densidad

//ƒ El volumen del cilindro está dado por la fórmula PI * pow(radio,2) * altura.

#includeƒ<iostream>

#includeƒ<iomanip>

#includeƒ<cmath>

usingƒnamespaceƒstd;

intƒmain()

{

ƒƒconstƒdoubleƒPIƒ=ƒ3.1416;

ƒƒconstƒdoubleƒDENSIDADƒ=ƒ0.284;

ƒƒdoubleƒradio, altura, peso;

ƒƒcoutƒ<<ƒ"Introduzca el radio del cilindro (en pulgadas):ƒ";

ƒƒcinƒƒ>>ƒradio;

ƒƒcoutƒ<<ƒ"Introduzca la altura del cilindro (en pulgadas):ƒ";

ƒƒcinƒƒ>>ƒaltura;

ƒƒweightƒ=ƒDENSIDAD * PI * pow(radio,2) * altura;

ƒƒcoutƒ<<ƒsetiosflags(ios::ƒfixed)

ƒƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)

ƒƒƒƒƒƒƒƒƒ<<ƒsetprecision(4)

ƒƒƒƒƒƒƒƒƒ<<ƒ"El cilindro pesa “ << peso << “ libras"ƒ<<ƒendl;

ƒƒreturnƒ0;

}

www.FreeLibros.me

La ventaja de usar la constante nombrada PI en el programa 3.14 es que identifica con clari-
dad el valor de 3.1416 en términos reconocibles por la mayoría de las personas. La ventaja de
usar la constante nombrada DENSIDAD es que permite que el programador cambie el valor
de la densidad por otro material sin tener que buscar por todo el programa para ver dónde se
usa la densidad. Por supuesto, si van a ser considerados muchos materiales diferentes, la den-
sidad deberá cambiarse de una constante simbólica a una variable. Surge una interrogante na-
tural, entonces, sobre la diferencia entre constantes simbólicas y variables.

El valor de una variable puede alterarse en cualquier parte dentro de un programa. Por
su naturaleza, una constante nombrada es un valor constante que no debe alterarse des-
pués que se ha definido. Nombrar una constante en lugar de asignar el valor a una variable
asegura que el valor en la constante no pueda ser alterada en lo subsiguiente. Siempre que
aparece una constante nombrada en una instrucción tiene el mismo efecto que la constan-
te que representa. Por tanto, DENSIDAD en el programa 3.14 tan sólo es otra forma de
representar el número 0.284. En vista que DENSIDAD y el número 0.284 son equivalen-
tes, el valor de DENSIDAD no puede cambiarse después dentro del programa. Una vez que
se ha definido DENSIDAD como una constante, una instrucción de asignación como

DENSIDADƒ=ƒ0.156;

carece de significado y producirá un mensaje de error, porque DENSIDAD no es una varia-
ble. En vista que DENSIDAD es sólo un sustituto para el valor 0.284, esta instrucción es equi-
valente a escribir la expresión inválida 0.284 = 0.156. Además de usar una instrucción const
para nombrar constantes, como en el programa 3.14, esta instrucción también puede utilizar-
se para equiparar el valor de una expresión constante con un nombre simbólico. Una expre-
sión constante es una expresión que consta sólo de operadores y constantes. Por ejemplo, la
instrucción

constƒdoubleƒGRAD_A_RADƒ=ƒ3.1416/180.0;

equipara el valor de la expresión constante 3.1416/180.0 con el nombre simbólico GRAD_
A_RAD. El nombre simbólico, como siempre, puede ser usado en cualquier instrucción des-
pués de su definición. Por ejemplo, en vista que la expresión 3.1416/180.0 se requiere para
convertir grados a radianes, el nombre simbólico seleccionado para este factor de conversión
puede usarse en forma conveniente siempre que se requiera una conversión de este tipo. Por
tanto, en la instrucción de asignación

altura = distancia * sin(angulo * GRAD_A_RAD);

la constante simbólica GRAD_A_RAD se usa para convertir el valor de la medida de un ángu-
lo en radianes.

Una constante nombrada definida con anterioridad también puede usarse en una instruc-
ción const subsiguiente. Por ejemplo, la siguiente secuencia de instrucciones es válida:

constƒdoubleƒPIƒ=ƒ3.1416;
constƒdoubleƒƒGRAD_A_RADƒ=ƒPIƒ/ƒ180.0;

En vista que la constante 3.1416 había sido equiparada con el nombre simbólico PI, puede
usarse de manera legítima en cualquier definición subsiguiente, aun dentro de otra instrucción
const. El programa 3.15 usa la constante nombrada GRAD_A_RAD para convertir un ángu-
lo introducido por un usuario, en grados, en su medida equivalente en radianes para que la
use la función sin.

CAPÍTULO 3 Asignación, formateo y entrada interactiva164

www.FreeLibros.me

La siguiente muestra de ejecución se hizo usando el programa 3.15.

Introduzca el ángulo (en grados):ƒ30
El seno del ángulo esƒ0.5000

Aunque se ha usado el calificador const para construir constantes simbólicas, este tipo de
datos se encontrará una vez más en el capítulo 6, donde se mostrará que son útiles como ar-
gumentos de función al asegurar que el argumento no es modificado dentro de la función.

Ejercicios 3.5

1. Modifique el programa 3.9 para usar la constante nombrada GRAV en lugar del va-
lor 32.2 usado en el programa. Compile y ejecute su programa para verificar que pro-
duce el mismo resultado mostrado en el texto.

2. Vuelva a escribir el siguiente programa para usar la constante nombrada FACTOR en
lugar de la expresión (5.0/9.0) contenida dentro del programa.

#includeƒ<iostream>ƒƒƒƒ
usingƒnamespaceƒstd;

intƒmain()

3.5 Constantes simbólicas 165

Programa 3.15

#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cmath>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒdoubleƒPIƒ=ƒ3.1416;
ƒƒconstƒdoubleƒGRAD_A_RADƒ=ƒPI/180.0;
ƒƒdoubleƒangulo;

ƒƒcoutƒ<<ƒ"Introduzca el ángulo (en grados):ƒ";
ƒƒcinƒ>>ƒangulo;
ƒƒcoutƒ<<ƒsetiosflags(ios::ƒfixed)
ƒƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒƒ<<ƒsetprecision(4)
ƒƒƒƒƒƒƒƒƒ<<ƒ"El seno del ángulo es “ << sin(angulo * GRAD_A_RAD)ƒ<<ƒendl;

ƒƒreturnƒ0;
}ƒ

www.FreeLibros.me

{
ƒƒdoubleƒfahren,ƒcelsius;
ƒƒcout << "Introduzca una temperatura en grados Fahrenheit: ";
ƒƒcinƒƒ>>ƒfahren;
ƒƒcelsiusƒ=ƒ(5.0/9.0)ƒ*ƒ(fahrenƒ-ƒ32.0);
ƒƒcoutƒ<<ƒ"LaƒtemperaturaƒCelsiusƒequivalenteƒesƒ"
ƒƒƒƒƒƒƒ<<ƒcelsiusƒ<<ƒendl;
ƒƒƒƒ
ƒƒreturnƒ0;
}

3. Vuelva a escribir el siguiente programa para usar la constante simbólica PRIMA en
lugar del valor 0.04 contenido dentro del programa.

#includeƒ<iostream>ƒƒƒƒ
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒfloatƒprima, cantidad, interés;
ƒƒprimeƒ=ƒ0.04;ƒƒƒƒƒƒ//ƒtasa de interés de la primaƒƒ
ƒƒcoutƒ<<ƒ<Introduzca la cantidad:ƒ";
ƒƒcinƒƒ>>ƒcantidad;
ƒƒinterés = prima * cantidad;
ƒƒcoutƒ<<ƒ"El interés ganado es"ƒ
ƒƒƒƒƒƒƒ<<ƒinterés << “ dólares"ƒ<<ƒendl;
ƒ
ƒƒreturnƒ0;
}

4. Vuelva a escribir el siguiente programa de modo que la variable voltios sea cam-
biada a una constante simbólica.

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒcorriente, resistencia, voltios;

ƒƒvoltiosƒ=ƒ12;ƒƒ
ƒƒcoutƒ<<ƒ"ƒIntroduzca la resistencia:ƒ";ƒ
ƒƒcinƒ>>ƒresistencia;
ƒƒcorriente = voltios / resistencia;
ƒƒcoutƒ<<ƒ"La corriente es “ << corrienteƒ<<ƒendl;

ƒƒreturnƒ0;
}

CAPÍTULO 3 Asignación, formateo y entrada interactiva166

www.FreeLibros.me

3.6 APLICACIONES

En esta sección se presentan dos aplicaciones para ilustrar más a fondo tanto el uso de la ins-
trucción cin para aceptar datos introducidos por el usuario como el uso de la biblioteca de
funciones para realizar cálculos.

Aplicación 1: Lluvia ácida

El uso de carbón como la fuente principal de energía por vapor comenzó con la Revolución
Industrial. En la actualidad el carbón es una de las fuentes principales de generación de ener-
gía eléctrica en muchos países industrializados.

Desde mediados del siglo XIX se ha sabido que el oxígeno usado en el proceso de combus-
tión se combina con el carbono y el azufre en el carbón para producir dióxido de carbono y
dióxido de azufre. Cuando estos gases se liberan en la atmósfera el dióxido de azufre se com-
bina con el agua y el oxígeno en el aire para formar ácido sulfúrico, el cual es transformado
en iones hidronio y sulfatos separados (véase la figura 3.18). Son los iones hidronio en la at-
mósfera que caen a la tierra, como componentes de la lluvia, los que cambian los niveles de
acidez de lagos y bosques.

El nivel de ácido de la lluvia y lagos se mide en una escala de pH usando la fórmula

pH = – log10 (concentración de iones hidronio)

donde la concentración de iones hidronio se mide en unidades de moles/litro. Un valor de pH
de 7 indica un valor neutral (ni ácido ni alcalino), mientras niveles por debajo de 7 indican la
presencia de un ácido, y niveles por encima de 7 indican la presencia de una sustancia alcali-
na. Por ejemplo, el ácido sulfúrico tiene un valor de pH de aproximadamente 1, la lejía tiene
un valor de pH de aproximadamente 13, y el agua de manera típica tiene un valor de pH de
7. La vida marina por lo general no puede sobrevivir en agua con un nivel de pH por debajo
de 4.

Usando la fórmula para el pH, se escribirá un programa en C++ que calcula el nivel de
pH de una sustancia con base en un valor introducido por un usuario para la concentración
de iones hidronio. Usando el procedimiento de desarrollo descrito en la sección 2.6 tenemos
los siguientes pasos.

Paso 1 Analizar el problema

Aunque el planteamiento del problema proporciona información técnica sobre la composi-
ción de la lluvia ácida, desde un punto de vista de programación éste es un problema bastan-
te simple. Aquí sólo se requiere una salida (un nivel de pH) y una entrada (la concentración
de iones hidronio).

3.6 Aplicaciones 167

www.FreeLibros.me

Figura 3.18 La formación de lluvia ácida.

Paso 2 Desarrollar una solución

El algoritmo requerido para transformar la entrada en la salida requerida es un uso bastante
sencillo de la fórmula del pH que se proporciona. La representación en seudocódigo del algo-
ritmo completo para introducir los datos de entrada, procesar los datos para producir la sali-
da deseada y desplegar la salida es:

Desplegar un indicador para introducir un nivel de concentración de iones.
Leer un valor para el nivel de concentración.
Calcular un nivel de pH usando la fórmula dada.
Desplegar el valor calculado.

Para asegurar que entendemos la fórmula usada en el algoritmo, haremos un cálculo manual.
El resultado de este cálculo puede usarse luego para verificar el resultado producido por el pro-
grama. Suponiendo una concentración de hidronio de 0.0001 (cualquier valor es útil), el nivel
de pH se calcula como –log10 10–4. Ya sea que sepa que el logaritmo de 10 elevado a una po-

carbón

chimenea

azufre y dióxido de carbono + agua
y

oxígeno
en el airer

=
ácido

sulfúrico
sulfatos

hidronio
iones

lluvia
ácida

CAPÍTULO 3 Asignación, formateo y entrada interactiva168

www.FreeLibros.me

tencia es la potencia misma, o usando una tabla de logaritmos, el valor de esta expresión es
–(– 4) = 4.

Paso 3 Codificar la solución

El programa 3.16 describe el algoritmo seleccionado en C++. La elección de los nombres de
las variables es arbitrario.

El programa 3.16 comienza con dos instrucciones de preprocesador #include, seguidos por
la función main(). Dentro de main(), una instrucción de declaración declara dos variables
de punto flotante, hidronio y nivelpH. El programa despliega entonces un indicador so-
licitando datos de entrada del usuario. Después que se despliega el indicador, se usa una ins-
trucción cin para almacenar los datos introducidos en la variable hidronio. Por último, se
calcula un valor para nivelpH, usando la función logarítmica de biblioteca, y se despliega.
Como siempre, el programa es terminado con una llave de cierre.

Paso 4 Probar y corregir el programa

Una ejecución de prueba del programa 3.16 produjo lo siguiente:

Introduzca el nivel de concentración de iones hidronio: 0.0001
El nivel de pH esƒ4

Debido a que el programa realiza un cálculo sencillo, y el resultado de esta ejecución de prue-
ba concuerda con nuestro cálculo manual previo, el programa se ha probado por completo.
Ahora puede usarse para calcular el nivel de pH de otras concentraciones de hidronio con con-
fianza en que los resultados producidos son precisos.

3.6 Aplicaciones 169

Programa 3.16

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒhidronio, nivelpH;

ƒƒcoutƒ<<ƒ"Introduzca la concentración de iones hidronio:ƒ";
ƒƒcinƒƒ>>ƒhidronio;
ƒƒnivelpH = -log10(hidronio);
ƒƒcoutƒ<<ƒ"El nivel de pH es “ << nivelpHƒ<<ƒendl;

ƒƒreturnƒ0;
}

www.FreeLibros.me

Aplicación 2: Aproximación a la función exponencial

La función exponencial ex, donde e se conoce como el número de Euler (y tiene el valor
2.718281828459045. . .) aparece muchas veces en descripciones de fenómenos naturales. Por
ejemplo, la descomposición radiactiva, el crecimiento de la población y la curva normal (en
forma de campana) usada en aplicaciones estadísticas pueden describirse usando esta función.

El valor de ex puede aproximarse usando la serie10

Usando este polinomio como base, escriba un programa que aproxime e elevado a un valor
de x introducido por un usuario utilizando los primeros cuatro términos de esta serie. Para ca-
da aproximación despliegue el valor calculado por la función exponencial de C++, exp(), el
valor aproximado y la diferencia absoluta entre los dos. Asegúrese de verificar su programa
usando un cálculo manual. Una vez que esté completa la verificación, use el programa para
aproximar e4. Usando el procedimiento de desarrollo descrito en la sección 2.6 se llevan a ca-
bo los siguientes pasos.

Paso 1 Analizar el problema

El planteamiento del problema especifica que se van a hacer cuatro aproximaciones, usando
uno, dos, tres y cuatro términos del polinomio de aproximación, respectivamente. Para cada
aproximación se requieren tres valores de salida: el valor de ex producido por la función ex-
ponencial, el valor aproximado y la diferencia absoluta entre los dos valores. La figura 3.19
ilustra, en forma simbólica, la estructura del despliegue de salida requerido.

ex Aproximación Diferencia
valor de la función en biblioteca 1er valor aproximado 1a diferencia
valor de la función en biblioteca 2o valor aproximado 2a diferencia
valor de la función en biblioteca 3er valor aproximado 3a diferencia
valor de la función en biblioteca 4o valor aproximado 4a diferencia

Figura 3.19 Despliegue de salida requerido.

La salida indicada en la figura 3.19 puede usarse para darse una “idea” de cómo se verá el
programa. Al presentarse que cada línea en el despliegue sólo puede ser producida al ejecutar
una instrucción cout, deberá quedar claro que deben ejecutarse cuatro de estas instrucciones.
Además, en vista que cada línea de salida contiene tres valores calculados, cada instrucción
cout tendrá tres elementos en su lista de expresión.

La única entrada al programa consiste en el valor de x. Por supuesto, esto requerirá un
solo indicador y una instrucción cin para introducir el valor necesario.

1
1 2 6 24 120 720

2 3 4 5 6
+ + + + + + ⋅ ⋅ ⋅

x x x x x x

CAPÍTULO 3 Asignación, formateo y entrada interactiva170

10La fórmula de la que se deriva ésta es

e
x x x x x

n
x

n
= + + + + ⋅ ⋅ ⋅ +

0 1 2 3

0 1 2 3! ! ! ! !

www.FreeLibros.me

Paso 2 Desarrollar una solución

Antes que puedan calcularse los elementos de salida, será necesario hacer que el programa le
indique al usuario que introduzca un valor de x y luego haga que el programa acepte el valor
introducido. El despliegue de salida real consiste de dos líneas seguidas por cuatro líneas de
datos calculados. Las líneas de título pueden producirse usando dos instrucciones cout. Aho-
ra veamos cómo se producen los datos reales que se están desplegando.

El primer elemento en la primera línea de salida de datos ilustrada en la figura 3.19 pue-
de obtenerse usando la función de biblioteca exp(). El segundo elemento en esta línea, la
aproximación a ex, puede obtenerse usando el primer término en el polinomio que se dio en
la especificación del programa. Por último, el tercer elemento en la línea puede calcularse
usando la función de biblioteca abs() en la diferencia entre los primeros dos elementos.
Cuando se calculan todos estos elementos, puede usarse una sola instrucción cout para des-
plegar los tres resultados en la misma línea.

La segunda línea de salida ilustrada en la figura 3.19 despliega el mismo tipo de elemen-
tos que la primera línea, excepto que la aproximación a ex requiere el uso de dos términos del
polinomio de aproximación. Hay que observar que además que el primer elemento en la se-
gunda línea, el valor obtenido por la función exp(), es el mismo que el primer elemento en
la primera línea. Esto significa que este elemento no tiene que recalcularse y tan sólo puede
desplegarse una segunda vez el valor calculado para la primera línea. Una vez que se han
calculado los datos para la segunda línea, puede usarse una sola instrucción cout para des-
plegar los valores requeridos.

Por último, sólo el segundo y tercer elementos en las últimas dos líneas de salida mostra-
das en la figura 3.19 necesitan recalcularse, en vista que el primer elemento en estas líneas es
el mismo que se calculó antes para la primera línea.

Por tanto, para este problema, el algoritmo completo descrito en seudocódigo es

Desplegar un indicador para el valor de entrada de x
Leer el valor de entrada
Desplegar las líneas de encabezado
Calcular el valor exponencial de x usando la función exp()
Calcular la primera aproximación
Calcular la primera diferencia
Imprimir la primera línea de salida
Calcular la segunda aproximación
Calcular la segunda diferencia
Imprimir la segunda línea de salida
Calcular la tercera aproximación
Calcular la tercera diferencia
Imprimir la tercera línea de salida
Calcular la cuarta aproximación
Calcular la cuarta diferencia
Imprimir la cuarta línea de salida

Para asegurar que entendemos el procesamiento usado en el algoritmo se hará un cálculo ma-
nual. El resultado de este cálculo puede utilizarse luego para verificar el resultado producido
por el programa que escribimos. Para propósitos de prueba se usará un valor de 2 para x, el
cual produce las siguientes aproximaciones.

Usando el primer término del polinomio la aproximación es

e2 = 1

3.6 Aplicaciones 171

www.FreeLibros.me

Usando los primeros dos términos del polinomio la aproximación es

e2 = 1 + = 3

Usando los primeros tres términos del polinomio la aproximación es

e2 = 3 + = 5

Usando los primeros cuatro términos del polinomio la aproximación es

e2 = 5 + = 6.3333

Hay que observar que al usar cuatro términos del polinomio no fue necesario recalcular el va-
lor de los primeros tres términos; en cambio, se usó el valor calculado antes.

Paso 3 Codificar la solución

El programa 3.17 representa una descripción del algoritmo seleccionado en C++.

2
6

3

2
2

2

2
1

CAPÍTULO 3 Asignación, formateo y entrada interactiva172

Programa 3.17

//ƒeste programa aproxima la funcion e elevada a la potencia x
//ƒusando uno, dos, tres y cuatro terminos de un polinomio de aproximacion
#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cmath>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒx,ƒval_func, aprox, diferencia;

ƒƒcoutƒ<<ƒ"\nIntroduzca un valor deƒx:ƒ";
ƒƒcinƒƒ>>ƒx;

ƒƒƒƒ//ƒimprimir las dos lineas del titulo
ƒƒcoutƒ<<ƒ"ƒeƒa la x Aproximacion Diferencia\n";
ƒƒcoutƒ<<ƒ"-------------ƒƒƒƒƒ-------------ƒƒƒƒƒƒ-------------\n";

ƒƒval_funcƒ=ƒexp(x);ƒƒƒƒƒƒ//ƒutilizar la funcion de biblioteca

ƒƒƒƒ//ƒcalcular la primera aproximacion

(continúa)

www.FreeLibros.me

Al revisar el programa 3.17 se puede observar que el valor de entrada de x se obtiene pri-
mero. Luego se imprimen las dos líneas del título antes que se haga cualquier cálculo. Lue-
go se calcula el valor de ex usando la función de biblioteca exp() y se asigna a la variable
val_func. Esta asignación permite que este valor sea usado en los cuatro cálculos de dife-
rencias y se despliegue cuatro veces sin necesidad de recalcularse.

En vista que la aproximación a ex se “acumula” usando cada vez más términos del poli-
nomio de aproximación, sólo se calcula el término nuevo para cada aproximación y se agre-
ga a la aproximación previa. Por último, para permitir que las mismas variables se usen de
nuevo, los valores en ellas se imprimen de inmediato antes que se haga la siguiente aproxima-
ción. La siguiente es una muestra de ejecución producida por el programa 3.17.

3.6 Aplicaciones 173

ƒƒaproxƒ=ƒ1;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la segunda aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒx;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la tercera aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒpow(x,2)/2.0;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la cuarta aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒpow(x,3)/6.0;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒreturnƒ0;
}

(Continuación)

www.FreeLibros.me

Introduzca un valor deƒx:ƒ2ƒ
ƒeƒa laƒxƒƒƒƒƒƒƒ Aproximaciónƒƒ ƒƒƒƒDiferencia
-------------ƒƒƒƒƒ-------------ƒƒƒƒƒ-------------
ƒƒ7.38906ƒƒƒƒƒƒƒƒƒƒƒƒ1.00000ƒƒƒƒƒƒƒƒƒƒƒ6.38906
ƒƒ7.38906ƒƒƒƒƒƒƒƒƒƒƒƒ3.00000ƒƒƒƒƒƒƒƒƒƒƒ4.38906
ƒƒ7.38906ƒƒƒƒƒƒƒƒƒƒƒƒ5.00000ƒƒƒƒƒƒƒƒƒƒƒ2.38906
ƒƒ7.38906ƒƒƒƒƒƒƒƒƒƒƒƒ6.33333ƒƒƒƒƒƒƒƒƒƒƒ1.05572

Paso 4 Probar y corregir el programa

Las primeras dos columnas de datos de salida producidos por la muestra de ejecución con-
cuerdan con nuestro cálculo manual. Una comprobación manual de la última columna veri-
fica que también contiene en forma correcta la diferencia en valores entre las primeras dos
columnas.

Debido a que el programa sólo ejecuta nueve cálculos, y el resultado de la ejecución de
prueba concuerda con nuestros cálculos manuales, parece que el programa se ha probado por
completo. Sin embargo, es importante entender que esto se debe a nuestra elección de los da-
tos de prueba. Seleccionar un valor de 2 para x nos obligó a verificar que el programa estaba,
de hecho, calculando 2 elevado a las potencias requeridas. Una elección de 0 o 1 para nuestro
cálculo manual no nos habría proporcionado la verificación que necesitamos. ¿Puede ver por
qué sucede así?

Usar estos últimos dos valores no probaría de manera adecuada si el programa usó la fun-
ción pow() en forma adecuada, ¡o ni siquiera si la usó en absoluto! Es decir, podría haberse
construido un programa incorrecto que no usara la función pow() para producir valores co-
rrectos para = 0 y x = 1, pero no para otros valores de x. Sin embargo, en vista que los datos
de prueba que usamos verifican de manera adecuada el programa, podemos usarlo con con-
fianza en los resultados producidos. Es claro, sin embargo, que la salida demuestra que para
lograr cualquier nivel de precisión con el programa se requerirían más de cuatro términos.

Ejercicios 3.6

1. Introduzca, compile y ejecute el programa 3.16 en su computadora.

2. a. Introduzca, compile y ejecute el programa 3.17 en su computadora.
b. Determine cuántos términos del polinomio de aproximación deberían usarse para

lograr un error de menos de 0.0001 entre la aproximación y el valor de e2 deter-
minado por la función exp().

3. Por error un estudiante escribió el programa 3.17 como sigue:

//ƒeste programa aproxima la funcion e elevada a la potenciaƒx
//ƒusando uno, dos, tres y cuatro terminos de un polinomio de aproximacion
#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cmath>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒx,ƒVal_func, aprox, diferencia;

CAPÍTULO 3 Asignación, formateo y entrada interactiva174

www.FreeLibros.me

ƒƒƒƒ//ƒimprimir las dos lineas del titulo
ƒƒcoutƒ<<ƒ"ƒe a laƒxƒƒƒƒƒƒƒAproximacionƒƒƒ ƒƒƒDiferencia\n";
ƒƒcoutƒ<<ƒ"-------------ƒƒƒƒƒ-------------ƒƒƒƒƒƒ-------------\n";

ƒƒcoutƒ<<ƒ"\nIntroduzca un valor deƒx:ƒ";
ƒƒcinƒ>>ƒx;
ƒƒval_func = exp(x);ƒƒƒƒƒƒ//ƒusar la funcion de biblioteca

ƒƒƒƒ//ƒcalcular la primera aproximacion
ƒƒaproxƒ=ƒ1;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la segunda aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒx;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la tercera aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒpow(x,2)/2.0;
ƒƒdiferencia = abs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒƒƒ//ƒcalcular la cuarta aproximacion
ƒƒaproxƒ=ƒaproxƒ+ƒpow(x,3)/6.0;
ƒƒdiferenciaƒ=ƒabs(val_func - aprox);
ƒƒcoutƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒval_func
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒaprox
ƒƒƒƒƒƒƒ<<ƒsetw(18)ƒ<<ƒdiferenciaƒ<<ƒendl;

ƒƒreturnƒ0;
}

Determine la salida que producirá este programa.

4. El valor de π puede aproximarse con la serie

Usando esta fórmula, escriba un programa que calcule y despliegue el valor de π usan-
do 2, 3 y 4 términos de la serie.

4 1
1

3

1

5

1

7
– – + + ⋅ ⋅ ⋅

⎛

⎝⎜
⎞

⎠⎟

3.6 Aplicaciones 175

www.FreeLibros.me

5. a. La fórmula para la desviación normal estándar, z, usada en aplicaciones estadísti-
cas es

donde μ se refiere a un valor medio y σ a una desviación estándar. Usando esta
fórmula, escriba un programa que calcule y despliegue el valor de la desviación
normal estándar cuando x = 85.3, μ = 80 y σ = 4.

b. Vuelva a escribir el programa elaborado en el ejercicio 5a para aceptar los valores
de x, μ y σ como entradas del usuario mientras se está ejecutando el programa.

6. a. La ecuación de la curva normal (en forma de campana) utilizada en aplicaciones
estadísticas es

Usando esta ecuación, y suponiendo que μ = 90 y σ = 4, escriba un programa que
determine y despliegue el valor de y cuando x = 80.

b. Vuelva a escribir el programa elaborado en el ejercicio 6a para aceptar los valores
de x, μ y σ como entradas del usuario mientras se está ejecutando el programa.

7. a. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el aumen-
to de voltaje de un amplificador de tres etapas a una frecuencia de 1000 Hertz. Los
aumentos de voltaje de las etapas son:

Aumento de la etapa 1: 23/[2.32 + (0.044f)2]1/2

Aumento de la etapa 2: 12/[6.72 + (0.34f)2]1/2

Aumento de la etapa 3: 17/[1.92 + (0.45f)2]1/2

donde f es la frecuencia en Hertz. El aumento de voltaje del amplificador es el pro-
ducto de los aumentos de las etapas individuales.

b. Vuelva a hacer el ejercicio 7a suponiendo que la frecuencia se introducirá cuando
el programe esté en ejecución.

8. El volumen de petróleo almacenado en un tanque cilíndrico enterrado en el subsuelo
a 200 pies de profundidad está determinado por la medición de la distancia de la par-
te superior del tanque a la superficie del petróleo. Conociendo esta distancia y el ra-
dio del tanque, el volumen de petróleo en el tanque puede determinarse usando la
fórmula volumen = π radio2 (200 – distancia). Usando esta información, escriba,
compile y ejecute un programa en C++ que acepte las mediciones del radio y la dis-
tancia, calcule el volumen de petróleo en el tanque y despliegue los dos valores de en-
trada y el volumen calculado. Verifique los resultados de su programa haciendo un
cálculo manual usando los siguientes datos de prueba: radio igual a 10 pies y distan-
cia igual a 12 pies.

9. El perímetro, el área de superficie aproximada y el volumen aproximado de una al-
berca están dados por las siguientes fórmulas:

perímetro = 2(largo + ancho)
volumen = largo * ancho * profundidad promedio
área de superficie subterránea = 2(largo + ancho)profundidad promedio + largo *

ancho

y e
x

=
−() −()[]1

2

1
2

2

σ π

μ σ/

z
x= − μ

σ

CAPÍTULO 3 Asignación, formateo y entrada interactiva176

www.FreeLibros.me

Usando estas fórmulas como base, escriba un programa en C++ que acepte las medi-
das de largo, ancho y profundidad promedio, y luego calcule el perímetro, el volumen
y el área de superficie subterránea de la alberca. Al escribir su programa haga los si-
guientes dos cálculos inmediatamente después que se han introducido los datos de en-
trada: largo * ancho y largo + ancho. Los resultados de estos dos cálculos deberán
usarse luego, según sea apropiado, en las instrucciones de asignación para determinar
el perímetro, volumen y área de superficie subterránea sin recalcularlas para cada
ecuación. Verifique los resultados de su programa haciendo un cálculo manual
usando los siguientes datos de prueba: largo igual a 25 pies, ancho igual a 15 pies
y profundidad promedio igual a 5.5 pies. Cuando haya verificado que su progra-
ma funciona, úselo para completar la siguiente tabla.

3.7 ERRORES COMUNES DE PROGRAMACIÓN

Al usar el material presentado en este capítulo, esté consciente de los siguientes errores
posibles:

1. Olvidar asignar o inicializar valores para todas las variables antes que éstas se
usen en una expresión. Tales valores pueden ser asignados por instrucciones de
asignación, ser inicializados dentro de una instrucción de declaración o asignados
en forma interactiva introduciendo los valores usando el objeto cin.

2. Utilizar una función matemática de biblioteca sin incluir la declaración de
preprocesador #includeƒ<cmath> (y en un sistema basado en UNIX olvidar
incluir el argumento -lm en la línea de comandos cc).

3. Utilizar una función de biblioteca sin proporcionar el número correcto de
argumentos que tengan el tipo de datos apropiado.

4. Aplicar el operador de incremento o decremento a una expresión. Por ejemplo, la
expresión

(countƒ+ƒn)++

Largo Ancho Profundidad Perímetro Volumen Área de superficie subterránea

25 10 5.0

25 10 5.5

25 10 6.0

25 10 6.5

30 12 5.0

30 12 5.5

30 12 6.0

30 12 6.5

3.7 Errores comunes de programación 177

www.FreeLibros.me

es incorrecta. Los operadores de incremento y decremento sólo pueden aplicarse a
variables individuales.

5. Olvidar separar todas las variables transmitidas a cin con un símbolo de
extracción, >>.

6. No estar dispuesto a probar un programa a fondo. Después de todo, en vista que
usted escribió el programa, supone que es correcto o lo habría cambiado antes de
compilarlo. Es difícil en extremo retroceder y probar con honestidad su propio
software. Como programador deberá recordar en forma constante que un
programa no es correcto por el solo hecho que usted piense que lo es. Encontrar
errores en su propio programa es una experiencia seria, pero le ayudará a
convertirse en un programador maestro.

7. Un error más exótico y menos común ocurre cuando se usan los operadores de
incremento y decremento con variables que aparecen más de una vez en la misma
expresión. Este error ocurre debido a que C++ no especifica el orden en el que se
tiene acceso a los operandos dentro de una expresión. Por ejemplo, el valor
asignado a resultado en la instrucción

resultadoƒ=ƒiƒ+ƒi++;

es dependiente del compilador. Si su compilador tiene acceso primero al primer
operando, i, la instrucción anterior es equivalente a

resultƒ=ƒ2ƒ*ƒi;
i++;

Sin embargo, si su compilador tiene acceso primero al segundo operando, i++, el
valor del primer operando será alterado antes que se use la segunda vez y el valor
2i + 1 es asignado al resultado. Por consiguiente, como regla general, no use el
operador de incremento o decremento en una expresión cuando la variable sobre la
que opera aparece más de una vez en la expresión.

3.8 RESUMEN DEL CAPÍTULO

1. Una expresión es una secuencia de uno o más operandos separados por operadores.
Un operando es una constante, una variable u otra expresión. Un valor se asocia
con una expresión.

2. Las expresiones se evalúan de acuerdo con la precedencia y asociatividad de los
operadores usados en la expresión.

3. El símbolo de asignación, =, es un operador. Las expresiones que usa este operador
asignan un valor a una variable; además, la expresión en sí adquiere un valor. En
vista que la asignación es una operación en C++, son posibles múltiples usos del
operador de asignación en la misma expresión.

CAPÍTULO 3 Asignación, formateo y entrada interactiva178

www.FreeLibros.me

4. El operador de incremento, ++, agrega uno a una variable, mientras el operador de
decremento, --, resta uno de una variable. Ambos operadores pueden ser usados
como prefijos o posfijos. En la operación de prefijo la variable es aumentada
(o disminuida) antes que su valor sea usado. En la operación de posfijo la variable
es aumentada (o disminuida) después que se usa su valor.

5. C++ proporciona funciones de biblioteca para calcular raíz cuadrada, logaritmos y
otros cálculos matemáticos. Cada programa que utilice una de estas funciones
matemáticas debe incluir la instrucción #includeƒ<cmath> o tener una
declaración de función para la función matemática antes de llamarla.

6. Todas las funciones matemáticas de biblioteca operan sobre sus argumentos para
calcular un solo valor. Para usar una función de biblioteca de manera efectiva, debe
saber lo que hace la función, el nombre de la función, el número y tipos de datos
de los argumentos esperados por la función y el tipo de datos del valor devuelto.

7. Los datos transmitidos a una función se llaman argumentos de la función. Los
argumentos son transmitidos a una función de biblioteca al incluir cada argumento,
separado por comas, dentro de los paréntesis que siguen al nombre de la función.
Cada función tiene sus propios requisitos para el número y tipos de datos de los
argumentos que deben proporcionarse.

8. Las funciones pueden incluirse dentro de expresiones más grandes.

9. El objeto cin se usa para introducir datos. Este objeto acepta un flujo de datos del
teclado y asigna los datos a variables. La forma general de una instrucción que
utiliza cin es:

cinƒ>>ƒvar1ƒ>>ƒvar2ƒ.ƒ.ƒ.ƒ>>ƒvarn;

El símbolo de extracción, >>, debe usarse para separar los nombres de las variables.

10. Cuando encuentra una instrucción cin la computadora suspende de manera
temporal la ejecución de más instrucciones hasta que se hayan introducido
suficientes datos para el número de variables contenidas en la instrucción cin.

11. Es una buena práctica de programación desplegar un mensaje, antes de una
instrucción cin, que alerte al usuario sobre el tipo y número de elementos de datos
que deben introducirse. Dicho mensaje se llama indicador.

12. Los valores pueden equipararse a una sola constante, usando la palabra clave
const. Esto crea una constante nombrada que es de sólo lectura después que es
inicializada dentro de la instrucción de declaración. Esta declaración tiene la sintaxis

const Tipodedatos NombreSimbólico = valorInicial;

y permite que se use la constante en lugar del valor inicial en cualquier parte del
programa después de la declaración.

3.8 Resumen del capítulo 179

www.FreeLibros.me

3.9 UN ACERCAMIENTO MÁS A FONDO:
ERRORES DE PROGRAMACIÓN

El ideal en la programación es producir programas legibles libres de errores que funcionen en
forma correcta y puedan modificarse o cambiarse con un mínimo de pruebas. Puede trabajar
hacia este ideal teniendo en cuenta los diferentes tipos de errores que pueden ocurrir, cuándo
se detectan de manera típica y cómo corregirlos.

Puede detectar un error en cuatro formas:

1. Antes que un programa sea compilado

2. Mientras el programa se compila

3. Mientras el programa se ejecuta

4. Después que el programa se ha ejecutado y se ha examinado la salida

Y, por extraño que parezca, en algunos casos, un error puede no detectarse en absoluto.
El método para detectar errores antes que se compile un programa se llama verificación de

escritorio. La verificación de escritorio, la cual por lo general se lleva a cabo mientras se encuen-
tra sentado ante un escritorio con el código enfrente de usted, se refiere al proceso de verificar
el código fuente en busca de errores inmediatamente después que ha sido mecanografiado.

Los errores detectados por el compilador se conocen de manera formal como errores en
tiempo de compilación, y los errores que ocurren mientras el programa se ejecuta se conocen
de manera formal como errores en tiempo de ejecución. Otros nombres para los errores en
tiempo de compilación son errores de sintaxis y errores de análisis gramatical, términos que
enfatizan el tipo de error que es detectado por el compilador.

En este momento, es probable que haya encontrado numerosos errores en tiempo de com-
pilación. Aunque los programadores principiantes tienden a frustrarse por ellos, los progra-
madores experimentados entienden que el compilador está realizando una verificación valiosa,
y que corregir los errores que detecte el compilador por lo general es fácil. Debido a que estos
errores ocurren mientras se está desarrollando el programa y no mientras un usuario intenta
realizar una tarea importante, nadie excepto el programador sabe que ocurrieron; los arregla
y se van.

Los errores en tiempo de ejecución son más problemáticos debido a que ocurren mientras
un usuario ejecuta el programa; en la mayor parte de los sistemas comerciales, el usuario no
es el programador. Aunque muchos tipos de errores pueden causar un error en tiempo de eje-
cución, como una falla en el hardware, desde un punto de vista de programación la mayor
parte de los errores en tiempo de ejecución se conocen como errores de lógica o lógica defec-
tuosa, lo cual abarca no haber pensado lo que el programa debería hacer o no anticipar có-
mo un usuario puede hacer que falle el programa. Por ejemplo, si un usuario introduce datos
que producen un intento de dividir un número entre cero, ocurre un error en tiempo de ejecu-
ción. Como programador, la única forma de protegerse contra errores en tiempo de ejecución
es anticipar todo lo que podría hacer una persona para causar errores y someter su programa
a una prueba rigurosa. Aunque los programadores principiantes tienden a culpar al usuario
por un error causado al introducir datos incorrectos, los profesionales no lo hacen. Entienden
que un error en tiempo de ejecución es un defecto en el producto final que puede causar da-
ños a la reputación del programa y el programador.

Para prevenir errores en tiempo de compilación y en tiempo de ejecución, es más fructífe-
ro distinguir entre ellos basándose en lo que los causa. Como se ha señalado, los errores de

CAPÍTULO 3 Asignación, formateo y entrada interactiva180

www.FreeLibros.me

compilación también se llaman errores de sintaxis, lo cual se refiere a errores en la estructura
u ortografía de una instrucción. Por ejemplo, examine las siguientes instrucciones:

coutƒ<<ƒ“Hay cuatro errores de sintaxis aqui\n
cotƒ“ƒPuede encontralos”;

Contienen cuatro errores de sintaxis. Estos errores son los siguientes:

1. Faltan las comillas que cierran en la línea 1.

2. Falta un punto y coma para terminar en la línea 1.

3. La palabra clave cout está mal escrita en la línea 2.

4. Falta el símbolo de inserción, <<, en la línea 2.

Todos estos errores serán detectados por el compilador cuando el programa es compilado. Es-
to sucede con todos los errores de sintaxis porque violan las reglas básicas de C++; si no son
descubiertos por la verificación de escritorio, el compilador los detecta y despliega un mensa-
je de error.11 En algunos casos, el mensaje de error es claro y el error es obvio; en otros casos,
se requiere un poco de trabajo detectivesco para entender el mensaje de error desplegado por
el compilador. Debido a que los errores de sintaxis son el único tipo de error que puede detec-
tarse en el momento de la compilación, los términos errores en tiempo de compilación y erro-
res de sintaxis se usan de manera indistinta. En sentido estricto, sin embargo, tiempo de
compilación se refiere al momento en que se detecta el error y sintaxis se refiere al tipo de error
detectado.

El error en la palabra “encontralos” en la segunda instrucción no es un error de sintaxis.
Aunque este error de ortografía producirá que se despliegue una línea de salida indeseable, no
es una violación de las reglas sintácticas de C++. Es un error tipográfico, conocido por lo co-
mún como “error de dedo”.

Un error lógico puede causar un error en tiempo de ejecución o producir resultados in-
correctos. Estos errores se caracterizan por una salida errónea, inesperada o involuntaria que
es un resultado directo de algún defecto en la lógica del programa. Estos errores, los cuales
nunca son detectados por el compilador, pueden detectarse en la verificación de escritorio, al
probar el programa, por accidente cuando un usuario obtiene una salida errónea mientras el
programa se está ejecutando, o no detectarse en absoluto. Si el error es detectado mientras
el programa está en ejecución, puede ocurrir un error en tiempo de ejecución que produce
que se genere un mensaje de error, la terminación prematura del programa, o ambos.

El error de lógica más grave es causado por una comprensión incorrecta de los requeri-
mientos totales del programa, debido a que la lógica dentro de un programa se refleja en la
lógica con la que es codificado. Por ejemplo, si el propósito de un programa es calcular
la fuerza de soporte de carga de una viga de acero y el programador no entiende por com-
pleto cómo se va a hacer el cálculo, qué entradas son necesarias para realizar el cálculo o
qué condiciones especiales existen (como la forma en que la temperatura afecta a la viga),
ocurrirá un error de lógica. Debido a que estos errores no son detectados por el compilador
y con frecuencia pueden pasarse por alto en el tiempo de ejecución, siempre son más difíci-
les de detectar que los errores de sintaxis. Si son detectados, un error de lógica de manera
típica aparece en una de dos formas predominantes. En un caso, el programa se ejecuta has-

3.9 Un acercamiento más a fondo: Errores de programación 181

11Sin embargo, puede ser que no se detecten todos al mismo tiempo. Con frecuencia, un error de sintaxis enmascara a otro error,
y el segundo error es detectado después que se corrige el primer error.

www.FreeLibros.me

ta completarse pero produce resultados incorrectos. Por lo general, los errores de lógica de
este tipo son revelados por lo siguiente:

• No hay salida. Esto es causado por una omisión en una instrucción de salida o una
secuencia de instrucciones que elude de manera inadvertida una instrucción de
salida.

• Salida poco atractiva o mal alineada. Esto es causado por un error en una instruc-
ción de salida.

• Resultados numéricos incorrectos. Esto es causado por valores incorrectos asignados
a las variables usadas en una expresión, el uso de una expresión aritmética
incorrecta, una omisión de una instrucción, un error de redondeo o el uso de una
secuencia de instrucciones inapropiada.

Una segunda forma en que se revelan los errores de lógica es causando un error en tiempo de
ejecución. Son ejemplos de este tipo de error de lógica son los intentos de dividir entre cero u
obtener la raíz cuadrada de un número negativo.

Deberá planear la prueba de su programa cuidadosamente para maximizar la posibilidad
de localizar errores. Siempre tenga en cuenta que aunque una sola prueba puede revelar la pre-
sencia de un error, no verifica la ausencia de otro error. Es decir, el hecho que un error sea re-
velado por la prueba, no indica que otro error no esté al acecho en alguna otra parte en el
programa; además, el hecho que una prueba no revele errores no significa que no haya errores.

Sin embargo, una vez que descubre un error debe localizar dónde ocurre y arreglarlo. En
jerga de computación, un error de programa se conoce como bug, y el proceso de aislar, co-
rregir y verificar la corrección se llama depuración.12

Aunque no existen reglas inflexibles para aislar la causa de un error, pueden aplicarse al-
gunas técnicas útiles. La primera de éstas es una técnica preventiva. Con frecuencia, muchos
errores son introducidos por el programador por la premura de codificar y ejecutar un pro-
grama antes de entender qué se requiere y cómo se va a lograr el resultado. Un síntoma de
esta prisa por introducir un programa en la computadora es la falta de un esbozo del progra-
ma propuesto o la falta de una comprensión detallada de lo que se requiere en realidad. Mu-
chos errores pueden eliminarse al verificar en el escritorio una copia del programa antes de
introducirlo o compilarlo.

Una segunda técnica útil es imitar a la computadora y ejecutar cada instrucción en forma
manual, como lo haría la computadora. Esto significa escribir cada variable, tal como se en-
cuentra en el programa, y enumerar el valor que debería almacenarse en la variable conforme
se encuentre cada entrada e instrucción de asignación. Hacer esto agudiza sus habilidades de
programación porque requiere que entienda lo que causa que suceda cada instrucción en su
programa. Esta verificación se llama rastreo del programa.

Una tercera técnica de depuración poderosa es incluir algún código temporal en su pro-
grama que despliegue los valores de variables selectas. Si los valores desplegados son incorrec-
tos, puede determinar qué parte de su programa los generó y hacer las correcciones necesarias.

CAPÍTULO 3 Asignación, formateo y entrada interactiva182

12La derivación de este término es interesante. Cuando un programa dejó de ejecutarse en la computadora MARK I, en la Uni-
versidad de Harvard, en septiembre de 1945, el mal funcionamiento fue rastreado hasta un insecto muerto que había entrado en
los circuitos eléctricos. La programadora, Grace Hopper, registró el incidente en su bitácora como “Primer caso real de bug (in-
secto) encontrado”.

www.FreeLibros.me

En la misma manera, podría agregar código temporal que despliegue los valores de todos
los datos de entrada. Esta técnica se conoce como impresión en eco y es útil para establecer
que el programa está recibiendo en forma correcta e interpretando en forma correcta los da-
tos de entrada.

La más poderosa de todas las técnicas de depuración y rastreo es usar un programa es-
pecial llamado depurador. Un programa depurador puede controlar la ejecución de un pro-
grama en C++, puede interrumpir el programa C++ en cualquier punto de su ejecución y
desplegar los valores de todas las variables en el punto de interrupción.

Por último, ninguna exposición de la depuración está completa sin mencionar el ingre-
diente primario necesario para el aislamiento y corrección exitosa de los errores. Es la actitud
y espíritu con que se emprende la tarea. Después de escribir un programa, es natural que su-
ponga que es correcto. Es difícil retroceder y probar honestamente y encontrar errores en su
propio software. Como programador, debe recordar en forma constante que un programa no
es correcto sólo porque usted piensa que lo es. Encontrar errores en su propio programa es
una experiencia seria, pero le ayudará a que se convierta en un programador maestro. El pro-
ceso puede ser emocionante y divertido si lo enfoca como una detección de problemas con us-
ted como el detective maestro.

3.9 Un acercamiento más a fondo: Errores de programación 183

Ingeniería mecánica
En general, los ingenieros mecánicos trabajan con máquinas o sistemas que producen o aplican ener-
gía. El rango de actividades tecnológicas que se consideran parte de la ingeniería mecánica quizás es
más amplio que en cualquier otro campo de la ingeniería. El campo puede subdividirse más o menos
en cuatro categorías.

1. Energía. Diseño de máquinas y sistemas generadores de energía como quemadores y turbinas
para generar electricidad, energía solar, sistemas de calefacción e intercambio de calor.

2. Diseño. Diseño innovador de partes o componentes de máquinas desde los más intrincados y
pequeños hasta los gigantescos. Por ejemplo, los ingenieros mecánicos trabajan al lado de los in-
genieros eléctricos para diseñar sistemas de control automático como los robots.

3. Automotriz. Diseño y prueba de vehículos de transporte y las máquinas usadas para fabricarlos.

4. Calefacción, ventilación, aire acondicionado y refrigeración. Diseño de sistemas para controlar
nuestro ambiente tanto en interiores como en exteriores y para controlar la contaminación.

Los ingenieros mecánicos por lo general tienen estudios sólidos en materias como termodinámica,
transferencia de calor, estática y dinámica y mecánica de fluidos.

Consideración de opciones de carrera

www.FreeLibros.me

www.FreeLibros.me

