>
>>
> >

>> /
3 ¢ ~CAPITULO 3
Asfgp cfén formateo y entrada

S > >mt)eract|va /
TEMAS >

3.1 OPERACIONES DE ASIGK%CION)
COERCION ACUMULACION
V/—\RIACIONES DE ASIGNACION CO TEO

3.2 DAR FORMATO A NUMEROS PARA LA SALIDA DEL PROGRAMA

3.3 EMPLEO DE LA BIBLIOTECA DE FUNCIONES MATEMATICAS
MoLDEs

3.4 [ENTRADA DE DATOS AL PROGRAMA USANDO EL OBJETO Cin
UNA PRIMERA MIRA/DA A LA VALIDACION DE ENTRADAS DEL USUARIO

3.5. CONSTANTES SIMBOLICAS
/ COLOCACION DE INSTRUCCIONES
3.6 APLICACIONES
/ APLICACION 1: LLuvIA ACIDA

APLICACION 2: APROXIMACION A LA FUNCION EXPONENCIAL
3.7 ERRORES COMUNES DE PROGRAMACION
3.8 RESUMEN DEL CAPITULO

3.9 UN ACERCAMIENTO MAS A FONDO:

ERRORES DE PROGRAMACION /
CONSIDERACION DE LAS OPCIONES DE CARRERA: INGENIERIA MECANICA

En el capitulo anterior se exploré cémo se despliegan los resultados usando el objeto
cout de C++ y como se almacenan y se procesan los datos numéricos usando variables
e instrucciones de asignacion. En este capitulo se completard la introduccion a C++ pre-
sentando capacidades de procesamiento y entrada adicionales.

105

www.FreelLibros.me

106

CarituLo 3 Asignacion, formateo y entrada interactiva

3.1 » OPERACIONES DE ASIGNACION

Ya se han encontrado instrucciones de asignacion simples en el capitulo 2. Dichas instruccio-
nes son las mas basicas de C++ tanto para asignar valores a las variables como para llevar a
cabo cilculos. Esta instruccion tiene la sintaxis:

variable = expresion;

La expresion mas simple en C++ es una sola constante. En cada una de las siguientes instruc-
ciones de asignacion, el operando a la derecha del signo de igual es una constante:

largo = 25;
17.5;

ancho

En cada una de estas instrucciones de asignacion el valor de la constante a la derecha del sig-
no de igual se asigna a la variable a la izquierda del signo de igual. Es importante sefialar que
el signo de igual en C++ no tiene el mismo significado que un signo de igual en algebra. El sig-
no de igual en una instruccion de asignacion le indica a la computadora que determine prime-
ro el valor del operando a la derecha del signo de igual y luego almacene (o asigne) ese valor
en las ubicaciones asociadas con la variable a la izquierda del signo de igual. En este sentido,
la instruccion de C++ largo = 25;se lee “a largo se le asigno el valor 25”. Los espacios en
blanco en la instruccién de asignacion se insertan s6lo para legibilidad.

Recuerde que una variable puede ser inicializada cuando se declara. Si no se hace una ini-
cializacion dentro de la instruccion de declaracion, a la variable debe asignarsele un valor con
una instruccion de asignacion u operacion de entrada antes que se use en cualquier cédlculo.
Pueden usarse, por supuesto, instrucciones de asignacion subsiguientes para cambiar el valor
asignado a una variable. Por ejemplo, suponga que las siguientes instrucciones se ejecutan una
tras otra y que no se inicializé pendiente cuando fue declarada:

pendiente 3.7;

6.28;

pendiente

La primera instruccion de asignacion le da el valor de 3.7 a la variable nombrada pendien-
te.! La siguiente instruccion de asignacion causa que la computadora asigne un valor de 6.28
a pendiente. El 3.7 que estaba en pendiente es sobrescrito con el nuevo valor de 6.28 de-
bido a que una variable s6lo puede almacenar un valor a la vez. A veces es util pensar en la
variable a la izquierda del signo de igual como un cajon de estacionamiento temporal en un
estacionamiento enorme. Del mismo modo en que un cajon de estacionamiento individual s6-
lo puede ser usado por un automévil a la vez, cada variable s6lo puede almacenar un valor a
la vez. “Estacionar” un valor nuevo en una variable causa de manera automatica que el pro-
grama elimine cualquier valor estacionado ahi con anterioridad.

'En vista que ésta es la primera vez que se asigna un valor de manera explicita a esta variable con frecuencia se le denomina ini-
cializacion. Esto se deriva del uso historico que expresa que una variable era inicializada la primera vez que se le asignaba un va-
lor. Bajo este uso es correcto decir qué “pendiente fue inicializada a 3.7”. Desde un punto de vista de la implementacién, sin
embargo, este tltimo planteamiento es incorrecto. Esto se debe a que la operacion de asignacion es manejada en forma diferen-
te por el compilador de C++ que una inicializacién realizada cuando se crea una variable por una instruccion de declaracion. Es-
ta diferencia s6lo es importante cuando se usan caracteristicas de clase de C++ y se explica con detalle en la seccién 9.1.

www.FreelLibros.me

3.1 Operaciones de asignacion 107

Ademas de ser una constante, el operando a la derecha del signo de igual en una instruc-
cion de asignacion puede ser una variable o cualquier otra expresion vilida de C++. Una ex-
presién es cualquier combinacion de constantes, variables y llamadas a funciones que pueden
evaluarse para producir un resultado. Por tanto, la expresion en una instruccion de asignacion
puede usarse para realizar cdlculos usando los operadores aritméticos introducidos en la sec-
cion 2.4. Son ejemplos de instrucciones de asignacion que usan expresiones que contienen es-
tos operadores

suma = 3 + 7
dif = 15 - 6
producto = .05 * 14.6;

conteo = contador + 1;

totalnuevo = 18.3 + total;
impuestos = .06 * cantidad;
pesoTotal = factor * peso;
promedio = suma / elementos;
pendiente = (y2 - yl) / (x2 - x1);

~e ~o

Como siempre en una instruccion de asignacion, el programa calcula primero el valor de la
expresion a la derecha del signo de igual y luego almacena este valor en la variable a la izquier-
da del signo de igual. Por ejemplo, en la instruccion de asignacion pesoTotal = factor
* peso; la expresion factor * peso se evalia primero para producir un resultado. Este
resultado, el cual es un nimero, se almacena luego en la variable pesoTotal.

Al escribir expresiones de asignacion, debe tener en cuenta dos consideraciones importan-
tes. En vista que la expresion a la derecha del signo de igual se evalia primero, a todas las va-
riables usadas en la expresion debe habérseles dado valores validos para que el resultado tenga
sentido. Por ejemplo, la instruccion de asignacion pesoTotal = factor * peso;causa
que un numero valido sea almacenado en pesoTotal sélo si el programador tiene cuidado
primero de asignar nimeros validos a factor y peso. Por tanto la secuencia de instruccio-
nes

factor = 1.06;
peso = 155.0;
pesoTotal = factor * peso;

nos indica los valores que se estan usando para obtener el resultado que se almacenarad en pe-
soTotal. La figura 3.1 ilustra los valores almacenados en las variables factor, pesoy
pesoTotal.

factor peso pesototal

1.06 ' 155.0 ' 164.30 '

Figura 3.1 Valores almacenados en las variables.

La segunda consideracion a tener en cuenta es que en vista que el valor de una expresion es
almacenado en la variable a la izquierda del signo de igual, s6lo una variable puede escribirse
en esta posicion. Por ejemplo, la instruccion de asignacion

cantidad + 1892 = 1000 + 10 * 5;

www.FreelLibros.me

108 Carituo 3 Asignacion, formateo y entrada interactiva

es invalida. La expresion del lado derecho da por resultado el nimero entero 1050, el cual s6-
lo puede ser almacenado en una variable. Debido a que cantidad + 1892 no es un nom-
bre de variable valido, el compilador no sabe donde almacenar el valor calculado.

El programa 3.1 ilustra el uso de instrucciones de asignacion para calcular el volumen de
un cilindro. Como se ilustra en la figura 3.2, el volumen de un cilindro esta determinado por
la férmula volumen en = mrh, donde 7 es el radio del cilindro, 4 es la altura y « es la constan-
te 3.1416 (con una precision de cuatro cifras decimales).

r=2.5

Figura 3.2 Determinar el volumen de un cilindro.

- —

.~ ~ Programa 3.1

=

v

> >

=

i/

=<
S
>

!/ este programa calcula el volumen de un cilindro,
// dados su radio y altura

#include <iostream>

using namespace std;

int main()

{

double radio, altura, volumen;

radio = 2.5;

altura = 16.0;

volumen = 3.1416 * radio * radio * altura;

cout << "El volumen del cilindro es " << volumen << endl;

return 0;

Cuando el programa 3.1 es compilado y ejecutado, la salida es

El volumen del cilindro es 314.16

Considere el flujo de control que usa la computadora para ejecutar el programa 3.1. La eje-
cucion del programa comienza con la primera instruccion dentro del cuerpo de la funcion
main() y continia en forma secuencial, instruccion por instruccion, hasta que se encuentre

www.FreelLibros.me

3.1 Operaciones de asignacion 109

la llave de cierre de main. Este flujo de control se aplica a todos los programas. La compu-
tadora funciona con una instruccion a la vez, ejecutando esa instruccion sin saber cual serd la
siguiente instruccion. Esto explica por qué todos los operandos usados en una expresion de-
ben tener valores asignados a ellos antes que se evalie la expresion. Cuando la computadora
ejecuta la instruccion

volumen = 3.1416 * radio * radio * altura;

en el programa 3.1, usa cualquier valor que esté almacenado en las variables radioy altu-
ra en el momento en que se ejecuta la instruccién de asignacion.” Si no se han asignado valo-
res de manera especifica a estas variables antes que se usen en la instruccion de asignacion, la
computadora usa los valores que tengan estas variables cuando se haga referencia a ellas. (En
algunos sistemas todas las variables son inicializadas de manera automatica en cero.) La com-
putadora no “ve hacia delante” para verificar si se asignan valores a estas variables mds ade-
lante en el programa.

Es importante percatarse que en C++ el signo de igual, =, usado en instrucciones de asig-
nacion es en si un operador, el cual difiere de la forma en que la mayor parte de otros lengua-
jes de alto nivel procesa este simbolo. En C++ (como en C), el simbolo = se llama operador de
asignacion, y una expresion que usa este operador, como interés = principal * ta-
sa, es una expresion de asignaciéon. En vista que el operador de asignacion tiene una prece-
dencia menor que cualquier otro operador aritmético, el valor de cualquier expresion a la
derecha del signo de igual sera evaluado primero, antes de la asignacion.

Como todas las expresiones, las expresiones de asignacion en si mismas tienen un valor.
El valor de la expresion de asignacion completa es el valor asignado a la variable en el lado iz-
quierdo del operador de asignacion. Por ejemplo, la expresion a = 5 asigna un valor de § a
la variable a y produce que la expresion en si tenga un valor de 5. El valor de la expresion
siempre puede verificarse usando una instrucciéon como

cout << "El valor de la expresidén es " << (a = 5);

Aqui, el valor de la expresion en si es desplegado y no el contenido de la variable a. Aunque
tanto el contenido de la variable como la expresion tienen el mismo valor, vale la pena obser-
var que se esta tratando con dos entidades distintas.

Desde una perspectiva de programacion, es la asignacion real de un valor a una variable
la que es significativa en una expresion de asignacion; el valor final de la expresion de asigna-
cion en si es de poca consecuencia. Sin embargo, el hecho que las expresiones de asignacion
tengan un valor tiene implicaciones que deben considerarse cuando se presenten los operado-
res relacionales en C++.

Cualquier expresion que se termine con un punto y coma se convierte en una instruccion
de C++. El ejemplo mas comun de esto es la instruccion de asignacion, la cual tan sélo es una
expresion de asignacion terminada con un punto y coma. Por ejemplo, terminar la expresion
de asignacion a = 33 con un punto y coma produce la instruccion de asignacion a = 33;
la cual puede usarse en un programa en una sola linea.

En vista que el signo de igual es un operador en C++, son posibles en la misma expresion
asignaciones multiples o una instruccion equivalente. Por ejemplo, en la expresion a = b =
c = 25 todos los operadores de asignacion tienen la misma precedencia. En vista que el ope-

2En vista que C++ no tiene un operador de exponenciacion, el cuadrado del radio se obtiene por el término radio * radio. En la
seccion 3.3 se introduce la funcion de potencia pow () de C++, la cual permite elevar un niimero a una potencia.

www.FreelLibros.me

110

CarituLo 3 Asignacion, formateo y entrada interactiva

rador de asignacion tiene una asociatividad de derecha a izquierda, la evaluacion final proce-
de en la secuencia

c = 25
b =c
a=>,

En este caso, esto tiene el efecto de asignar el nimero 25 a cada una de las variables en forma
individual y puede representarse como

a = (b= (c = 25))
Afadir un punto y coma a la expresion original produce la instruccion de asignacién multiple
a=>b=c = 25;

Esta ultima instruccion asigna el valor de 25 a las tres variables individuales equivalentes al si-
guiente orden:

c = 25;

b = 25;

a = 25;
Coercion

Algo que se debe tener en cuenta cuando se trabaje con instrucciones de asignacion es el ti-
po de datos asignado a los valores en ambos lados de la expresion, porque ocurren conversio-
nes de tipos de datos a lo largo de los operadores de asignacion. En otras palabras, el valor de
la expresion en el lado derecho del operador de asignacion sera convertido en el tipo de datos
de la variable a la izquierda del operador de asignacion. Este tipo de conversion se conoce co-
mo coercion porque el valor asignado a la variable en el lado izquierdo del operador de asig-
nacion es forzado al tipo de datos de la variable a la que es asignado. Un ejemplo de una
coercion ocurre cuando se asigna un valor de nimero entero a una variable de niumero real;
esto causa que el entero se convierta en un valor real. Por tanto, asignar un valor entero a una
variable real causa que el entero sea convertido en un valor real. Del mismo modo, asignar un
valor real a una variable entera fuerza la conversién de un valor real a un entero, lo cual pro-
duce la pérdida de la parte fraccionaria del nimero debido a truncamiento. Por ejemplo, si
temp es una variable entera, la asignacion temp = 25.89 causa que el valor entero 25 se
almacene en la variable entera temp.’

Un ejemplo mas completo de conversiones de tipos de datos, las cuales incluyen conver-
sién en modo mixto y conversion de asignacion, es la evaluacion de la expresion

a=>b *d

3Es evidente que la porcién entera correcta s6lo se conserva cuando estd dentro del rango de enteros permitidos por el compilador.

www.FreelLibros.me

3.1 Operaciones de asignacion 111

. e B B bk |

|— Punto de Informacién |
~ okl A A AR h

lvalues y rvalues

Los términos 1value y rvalue se utilizan con frecuencia en la tecnologia de programacion. Ambos
términos son independientes del lenguaje y significan lo siguiente: un 1value puede tener un valor
asignado mientras que un rvalue no puede tenerlo.

Tanto en C como en C++ esto significa que un 1value puede aparecer tanto en el lado izquier-
do como en el derecho de un operador de asignacion mientras que un rvalue sélo puede aparecer
en el lado derecho de un operador de asignacion. Por ejemplo, cada variable que hemos encontrado
puede ser un 1value o un rvalue, mientras que un nimero solo puede ser un rvalue. Sin em-
bargo, no todas las variables pueden ser 1value y rvalue. Por ejemplo, un tipo de arreglo, el cual
se introduce en el capitulo 11, no puede ser un 1value o un rvalue, mientras que los elementos
individuales del arreglo pueden ser ambos.

donde a y b son variables enteras y d es una variable de precision simple. Cuando se evalaa
la expresion en modo mixto b * d,* el valor de d usado en la expresion es convertido a un
namero de precision doble para propositos de calculo. (Es importante sefialar que el valor al-
macenado en d se mantiene como un numero de precision simple.) En vista que uno de los
operandos es una variable de precision doble, el valor de la variable entera b es convertido en
un numero de precision doble para el calculo (una vez mas, el valor almacenado en b sigue
siendo un entero) y el valor resultante de la expresion b * d es un nimero de precision do-
ble. Por tltimo, se aplica la conversion del tipo de datos por medio del operador de asigna-
cion. En vista que el lado izquierdo del operador de asignacion es una variable entera, el valor
de precision doble de la expresion (b * d) serd truncado a un valor entero y almacenado en
la variable a.

Variaciones de asignacion

Auque soélo se permite una variable inmediatamente a la izquierda del signo de igual en una
expresion de asignacion, la variable a la izquierda del signo de igual también puede usarse a
la derecha del signo de igual. Por ejemplo, la expresion de asignacion suma = suma + 10
es valida. Es claro que, como una expresion algebraica, suma nunca podria ser igual a si mis-
ma mas 10. Pero en C++, la expresion suma = suma + 10 no es una ecuacion, es una ex-
presion que se evalia en dos pasos importantes. El primer paso es calcular el valor de suma
+ 10. El segundo paso es almacenar el valor calculado en suma. Vea si puede determinar la
salida del programa 3.2.

“Si es necesario, repase las reglas en la seccion 2.4 para la evaluacién de expresiones de modo mixto.

www.FreelLibros.me

1

12

VV

#include <iostream>
using namespace std;

int main()

{

&
-

CarituLo 3 Asignacion, formateo y entrada interactiva

\\ Programa 3.2

(AN

.

=

%

= S

NV
K¢

int suma;

suma = 25;

cout << "El nGmero almacenado en suma es " << suma << endl;

suma = suma + 10;

cout << "El nUmero almacenado ahora en suma es " << suma << endl;

return 0;

La instruccion de asignacion suma = 25; le indica a la computadora que almacene el nu-
mero 25 en suma, como se muestra en la figura 3.3.

Suma

25 ’

Figura 3.3 El entero 25 es almacenado en suma.

La primera instruccion cout causa que el valor almacenado en suma sea desplegado por el
mensaje E1 nimero almacenado en suma es 25.La segunda instruccion de asigna-
cion en el programa 3.2, suma = suma + 10;causa que el programa recupere el 25 alma-
cenado en suma y agregue 10 a este niimero, produciendo el nimero 35. Entonces el nimero
35 se almacena en la variable en el lado izquierdo del signo de igual, la cual es la variable su-
ma. El 25 que estaba en suma tan sélo se sobrescribe con el nuevo valor de 35, como se mues-
tra en la figura 3.4.

Se sobrescribe Suma Se almacena
el valor el valor
antiguo I 4 nuevo (35)

Figura 3.4 suma = suma + 10; causa que se almacene un nuevo valor en suma.

www.FreelLibros.me

3.1 Operaciones de asignacién 113

Las expresiones de asignacion como suma = suma + 25, que usan la misma variable en
ambos lados del operador de asignacion, pueden escribirse usando los siguientes atajos de ope-
radores de asignacion:

+= —= F*= [= %=

Por ejemplo, la expresion suma = suma + 10 puede escribirse como suma += 10. Del
mismo modo, la expresion precio *= tasa es equivalente a la expresion precio =
precio * tasa.

Al utilizar estos operadores de asignacion es importante observar que la variable de la
izquierda del operador de asignacion se aplica a la expresion de la derecha completa. Por
ejemplo precio * = tasa + 1 esequivalente a la expresiéon precio = precio *
(tasa + 1), no precio = precio * tasa + 1.

Acumulacion

Las expresiones de asignacion como suma += 10 o su equivalente, suma = suma + 10,
son muy comunes en programacion. Estas expresiones se requieren para acumular subtotales
cuando los datos se introducen un nimero a la vez. Por ejemplo, si se desea sumar los niime-
ros 96, 70, 85 y 60 en forma de calculadora, podrian usarse las siguientes instrucciones:

Instruccion Valor en suma
suma = 0; 0

suma = suma + 96; 96

suma = suma + 70; 166

suma = suma + 85; 251

suma = suma + 60; 311

La primera instruccion inicializa suma en 0. Esto elimina cualquier numero (“valor inservi-
ble”) almacenado en suma que pudiera invalidar el total final. Conforme se agrega cada nu-
mero, el valor almacenado en suma se incrementa en forma correspondiente. Después de
completar la tltima instruccién, suma contiene el total de todos los numeros agregados. El
programa 3.3 ilustra el efecto de estas instrucciones al desplegar el contenido de suma después
de hacer cada adicion.

www.FreelLibros.me

11

4

#include <iostream>
using namespace std;

int main()

{

CarituLo 3 Asignacion, formateo y entrada interactiva

~Programa 3.3

-

int suma;

suma = 0;
cout << "El valor de suma se establecidé en forma inicial en " << suma << endl;
suma = suma + 96;

cout << " suma ahora es " << suma << endl;
suma = suma + 70;
cout << " suma ahora es " << suma << endl;

suma = suma + 85;

cout << " suma ahora es " << suma << endl;
suma = suma + 60;

cout << " La suma final es " << suma << endl;

return 0;

La salida desplegada por el programa 3.3 es:

El valor de suma se establecidé en forma inicial en 0
suma ahora es 96
suma ahora es 166
suma ahora es 251
La suma final es 311

Aunque el programa 3.3 no es un programa practico (es mas facil sumar los numeros en
forma manual), ilustra el efecto subtotalizador del uso repetido de instrucciones que tienen
la forma

variable = variable + Valornuevo;

Se encontraran muchos usos para este tipo de instruccién de acumulacién cuando nos fami-
liaricemos mds con las instrucciones de repeticion introducidas en el capitulo 5.

www.FreelLibros.me

3.1 Operaciones de asignacién 115

Conteo

Una instruccion de asignacion que es muy similar a la instruccion de acumulacion es la ins-
truccion de conteo. Las instrucciones de conteo tienen la forma

variable = variable + niimeroFijo;

Son ejemplos de instrucciones de conteo

i=1+1;
n=mn+1;
contador = contador + 1;
J =3+ 2;
m=m + 2;

kk = kk + 3;

En cada uno de estos ejemplos se usa la misma variable en ambos lados del signo de igual.
Después de ejecutar la instruccion, el valor de la variable respectiva se incrementa en una can-
tidad fija. En los primeros tres ejemplos las variables i, ny contador fueron incrementa-
das en uno. En los siguientes dos ejemplos las variables respectivas se han incrementado en
dos y en el ejemplo final la variable kk se ha incrementado en tres.

Para el caso especial en que una variable es incrementada o disminuida en uno, C++ pro-
porciona dos operadores unitario. Usando el operador de incremento,’ ++, la expresion va-
riable = variable + 1 puede ser reemplazada por la expresion variable++ o
++variable. Son ejemplos del operador de incremento

Expresion Alternativa
i=1i+1 i++ o ++i
n=mn+1 n++ o ++n
contador = contador + 1 contador++ o ++contador

El programa 3.4 ilustra el uso del operador de incremento.

*Como una nota histérica, el ++ en C++ se inspir6 en el simbolo del operador de incremento. Se usé para indicar que C++ fue el
siguiente incremento en el lenguaje C.

www.FreelLibros.me

116 Carituto 3 Asignacion, formateo y entrada interactiva

Programa 3.4

-8 A - g
=> >

#include <iostream>
using namespace std;

int main()

{

int contador;

contador = 0;

cout << "El valor inicial de contador es " << contador << endl;
contador++;

cout << " contador es ahora " << contador << endl;
contador++;

cout << " contador es ahora " << contador << endl;
contador++;

cout << " contador es ahora " << contador << endl;
contador++;

cout << " contador es ahora " << contador << endl;

return 0;

La salida desplegada por el programa 3.4 es:

El valor inicial de contador es 0
contador es ahora 1
contador es ahora 2
contador es ahora 3
contador es ahora 4

Cuando el operador ++ aparece antes de una variable se llama operador de prefijo para
incremento; cuando aparece después de una variable se llama operador de postfijo para in-
cremento. La distincion entre un operador de prefijo de incremento y uno de postfijo es im-
portante cuando la variable que es incrementada se usa en una expresion de asignacion. Por
ejemplo, la expresion k = ++n hace dos cosas en una expresion. Al principio, el valor de
n es incrementado en uno y luego el valor nuevo de n es asignado a la variable k. Por tan-
to, la instruccion k = ++n; es equivalente a las dos instrucciones

n=n+1; // incrementa n primero
k = n; // asigna el valor de n a

La expresion de asignacion k = n++, la cual usa un operador de sufijo para incremento,
invierte este procedimiento. Un postfijo para incremento opera después que se ha comple-

www.FreelLibros.me

3.1 Operaciones de asignacion 117

tado la asignacion. Por tanto, la instruccion k = n++; asigna primero el valor actual de n
a k y luego incrementa el valor de n en uno. Esto es equivalente a las dos instrucciones

k = n; // asigna el valor de n a k
n=n+1; // y luego incrementa n

Ademas del operador de incremento, C++ también proporciona un operador de decremento,
—-. Como podria esperarse, las expresiones variable-- y —-variable son equivalen-
tes a la expresion variable = variable - 1.

Son ejemplos del operador de decremento:

Expresion Alternativa
i=1i-1 i-- o --i
n=n-1 n-- o --n
contador = contador - 1 contador-- o --contador

Cuando el operador —- aparece antes de una variable se llama operador de prefijo para de-
cremento. Cuando el decremento aparece después de una variable se llama operador de post-
fijo para decremento. Por ejemplo, las expresiones n—-- y ——n reducen el valor de n en uno.
Estas expresiones son equivalentes a la expresion mas largan = n - 1. Sin embargo, como
con los operadores de incremento, los operadores de prefijo y postfijo para decremento pro-
ducen resultados diferentes cuando se usan en expresiones de asignacion. Por ejemplo, la ex-
presion k = --n disminuye primero el valor de n en uno antes de asignar el valor de n a
k, mientras la expresion k = n-- signa primero el valor actual de n a k y luego reduce el
valor de n en uno.

Ejercicios 3.1

1. Escriba una instruccion de asignacion para calcular la circunferencia de un circulo que
tiene un radio de 3.3 pulgadas. La ecuacion para determinar la circunferencia, ¢, de
un circulo es ¢ = 21, donde 7 es el radio y & es igual a 3.1416.

2. Escriba una instruccion de asignacion para calcular el area de un circulo. La ecuacion
para determinar el drea, a, de un circulo es a = 72, donde 7 es el radio y @ = 3.1416.

3. Escriba una instruccion de asignacion para convertir temperatura en grados Fah-
renheit a grados Celsius. La ecuacion para esta conversion es Celsius = 5/9 (Fah-
renheit —32).

4. Escriba una instruccion de asignacion para calcular la distancia de un viaje redondo,
d, en pies, de un viaje de s millas en un solo sentido.

5. Escriba una instruccion de asignacion para calcular el tiempo transcurrido, en minu-
tos, necesario para hacer un viaje. La ecuacion para calcular el tiempo transcurrido es
tiempo = distancia total / velocidad promedio. Suponga que la distancia debe ser en
millas y la velocidad promedio en millas/hora.

www.FreelLibros.me

118

CarituLo 3 Asignacion, formateo y entrada interactiva

10.

. Escriba una instruccion de asignacion para calcular el enésimo término en una secuen-

cia aritmética. La férmula para calcular el valor, v, del enésimo término es v = a + (n
- 1)d , donde a = el primer nimero en la secuencia y d = la diferencia entre cuales-
quiera dos numeros en la secuencia.

. Escriba una instruccion de asignacion para calcular la expansion lineal en una viga de

acero como una funcion del aumento de temperatura. La férmula para la expansion
lineal, I, es [= [[1+<(T.-T.)], donde [, es el largo de la viga a la temperatura T, o<
es el coeficiente de expansion lineal y T, es la temperatura final de la viga.

. Laley de Coulomb establece que la fuerza F, actuando entre dos esferas cargadas eléc-

tricamente, esta dada por la formula F = kq.q./r*, donde ¢, es la carga en la primera
esfera, g, es la carga en la segunda esfera, r es la distancia entre los centros de las dos
esferas y k es una constante de proporcionalidad. Escriba una instruccion de asigna-
cion para calcular la fuerza, F.

. Escriba una instruccion de asignacion para determinar el momento de flexion maxi-

mo, M, de una viga. La formula para el momento de flexion maximo es, M = XW
(L-X) /L, donde X es la distancia desde el extremo de la viga donde se aplica un
peso, W, y L es el largo de la viga.

Determine la salida del siguiente programa:

#include <iostream>
using namespace std;

int main() // un programa que ilustra el truncamiento de enteros

{

int numl, num2;

numl = 9/2;

num2

17/4;

cout << "el primer entero desplegado es " << numl << endl;
cout << "el segundo entero desplegado es " << num2 << endl;

return 0;

11. Determine y corrija los errores en los siguientes programas.

a. #include <iostream>
using namespace std;
int main()
{
ancho = 15
area = largo * ancho;
cout << "El area es " << area

www.FreelLibros.me

b. #include <iostream>
using namespace std;

3.1 Operaciones de asignaciéon

int main()
{
int largo, ancho, area;
area = largo * ancho;
largo 20;
ancho = 15;
cout << "El area es " << area;
return 0;
C. #include <iostream.h>
int main()
{
int largo = 20; ancho = 15, area;
largo * ancho = area;
cout << "El area es " , area;
return 0;

}

119

12. Por error un estudiante reordend las instrucciones en el programa 3.3 como sigue:

#include <iostream>
using namespace std;

int main()

{

int suma;

suma =
suma
suma =
suma =
suma =
cout <<

<<
<<
<<
<<

cout
cout
cout
cout

return

0;
suma
suma
suma
suma
"E1l
<<

0;

+
+ 70;
+
+

valor de suma se establecié en forma

<< endl;
ahora es
suma ahora es
suma ahora es
La suma final

suma
suma

"<
"<
"<
es "

suma <<
suma <<
suma <<
<< suma

endl;
endl;
endl;
<< endl;

Determine la salida que produce este programa.

www.FreelLibros.me

inicial en

120

CarituLo 3 Asignacion, formateo y entrada interactiva

13. Usando el programa 3.1, determine el volumen de cilindros que tienen los siguientes
radios y alturas.

Radio (pulg.) Altura (pulg.)
1.62 6.23
2.86 7.52
4.26 8.95
8.52 10.86
12.29 15.35

14. El 4rea de una elipse (véase la figura 3.5) estd dada por la férmula Area = nab.

Usando esta formula, escriba un programa C++ para calcular el area de una elipse que
tenga un eje menor, a, de 2.5 pulgadas y un eje mayor, b, de 6.4 pulgadas.

_

) B

b

Figure 3.5 El eje menor ay el eje mayor b de una elipse.

15. Modifique el programa 3.1 para calcular el peso, en libras, del cilindro de acero cuyo
volumen fue encontrado por el programa. Para determinar el peso la férmula es peso
= 0.28 (m)(r*)(h), donde 7 es el radio (en pulgadas) y 4 es la altura (en pulgadas) del
cilindro.

16. La circunferencia de una elipse (véase la figura 3.5) esta dada por la férmula:

. . 2
Circunferencia = 7 (a + b)

Usando esta formula, escriba un programa en C++ para calcular la circunferencia de
una elipse que tiene un radio menor de 2.5 pulgadas y un radio mayor de 6.4 pulga-
das. (Sugerencia: la raiz cuadrada puede obtenerse elevando la cantidad 2[a2 + b2] a
la potencia 0.5.)

17. a. La resistencia combinada de tres resistores conectados en paralelo, como se mues-
tra en la figura 3.6, estd dada por la ecuacion

Resistencia combinada = ﬁ
A
Ry Ry R;

Escriba un programa en C++ para calcular y desplegar la resistencia combinada
cuando los tres resistores R, = 1000, R, = 1000, y R, = 1000 estan conectados en
paralelo. Su programa debera producir el despliegue “La resistencia combinada, en
ohmios, es xxxxx”, donde las x son reemplazadas por el valor de la resistencia
combinada calculada por su programa.

www.FreelLibros.me

18.

19.

20.

3.1 Operaciones de asignacion 121

Figura 3.6 Tres resistores conectados en paralelo.

. ¢Como sabe que el valor calculado por su programa es correcto?
. Una vez que ha verificado la salida producida por su programa, modifiquela para

determinar la resistencia combinada cuando los resistores R, = 1500, R, = 1200,
y R, = 2000 estan conectados en paralelo.

. Escriba un programa en C++ para calcular y desplegar el valor de la pendiente de

la linea que conecta dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use el he-
cho que la pendiente entre dos puntos que tienen coordenadas (x,, y,) v (x., y.) es
pendiente = (y,—y,) / (x,— x,). Su programa debera producir el despliegue “La pen-
diente es xxxx”, donde las x son reemplazadas por el valor calculado por su pro-
grama.

. ¢Como sabe que el resultado producido por su programa es correcto?
. Una vez que ha verificado la salida producida por su programa, modifiquela para

determinar la pendiente de la linea que conecta los puntos (2, 10) y (12, 6).

. Escriba un programa en C++ para calcular y desplegar las coordenadas del punto

medio de la linea que conecta los dos puntos dados en el ejercicio 18a. Use el he-
cho que las coordenadas del punto medio entre dos puntos que tienen coordena-
das (x,,y,) v (x,,y.) son [(x,+ x,)]/2, [(y,+ y.)]/2). Su programa debera producir el
siguiente despliegue:

La coordenada x del punto medio es xxxX

La coordenada y del punto medio es xxx

donde las x son reemplazadas con los valores calculados por su programa.

. ¢Como sabe que los valores del punto medio calculados por su programa son co-

rrectos?

. Una vez que ha verificado la salida producida por su programa, modifiquelo para

determinar las coordenadas del punto medio de la linea que conecta los puntos (2,
10) y (12, 6).

. Para el circuito eléctrico mostrado en la figura 3.7, las corrientes en los ramales,

i,, i,, € i, pueden determinarse usando las férmulas
E;R3+ E{(Ry + R3)
(R + R3)(R, + R3)—(R;)*

i1=

ER5+ Ez(Rl + R3)
(Ry + R3)R, + R3)—(R;)*

i =

i3 Zii —iz

www.FreelLibros.me

122

CarituLo 3 Asignacion, formateo y entrada interactiva

Usando estas férmulas escriba un programa en C++ para calcular las corrientes en
los ramales cuando R, = 10 ohmios, R, = 4 ohmios, R, = 6 ohmios, E, = 12
voltios y E, = 9 voltios. El despliegue producido por su programa debera ser

La corriente en el ramal 1 es XXXX
La corriente en el ramal 2 es XXXX
La corriente en el ramal 3 es XXXX

donde las x son reemplazadas por los valores determinados en su programa.

b. ;Como sabe que las corrientes en circuito calculadas por su programa son co-
rrectas?

¢. Una vez que ha verificado la salida producida por su programa, modifiquela para

determinar las corrientes en los ramales para los siguientes valores: R, = 1500, R,
= 1200, R, =2000, E, =15y E, = 12.

R R,

Figura 3.7 Un circuito eléctrico.

B.y DAR FORMATO A NUMEROS PARA LA SALIDA DEL PROGRAMA

Ademas de desplegar resultados correctos, es importante en extremo que un programa presen-
te sus resultados en forma atractiva. La mayor parte de los programas son juzgados por la fa-
cilidad de introduccion de datos percibida y el estilo y presentacion de su salida. Por ejemplo,
desplegar un resultado monetario como 1.897 no cumple con las convenciones aceptadas
para los informes. El despliegue deberd ser $1.90 o $1.89, dependiendo si se usa redondeo o
truncamiento.

El formato de los numeros desplegados por cout puede controlarse por manipuladores
de ancho de campo incluidos en cada flujo de salida. La tabla 3.1 enumera los manipulado-
res disponibles que mds se usan para este propdsito.

®Como se sefial6 en el capitulo 2, el manipulador end1l inserta una nueva linea y luego vacia el flujo.

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa

Tabla 3.1 Manipuladores de flujo mas comunes

Manipulador

Accion

setw(n)

Establece el ancho de campo en 7.

setprecision(n)

Establece la precision del punto flotante en 7 lugares. Si se designa el
manipulador £ixed, 7 especifica el nimero total de digitos desplegados
después del punto decimal; de otra manera, 7 especifica el namero total de
digitos significativos desplegados (nimeros enteros mas digitos fraccionarios).

setfill('x")

Establece el cardcter de relleno a la izquierda por omision en x. (El caricter
de relleno principal por omision es un espacio, el cual es la salida para
rellenar el frente de un campo de salida siempre que el ancho del campo es
mayor que el valor que se estd desplegando.)

setiosflags(flags) Establece el formato de los indicadores (véase la tabla 3.3 para las
configuraciones de los indicadores).
scientific Establece la salida para desplegar niimeros reales en notacién cientifica.
showbase Despliega la base usada para los niimeros. Se despliega un 0 a la izquierda
para los numeros octales y un 0x a la izquierda para nimeros hexadecimales.
showpoint Siempre despliega seis digitos en total (combinacion de partes enteras y
fraccionarias). Rellena con ceros a la derecha si es necesario. Para valores
enteros mayores, revierte a notacion cientifica.
showpos Despliega todos los numeros positivos con un signo de + a la izquierda.
boolalpha Despliega valores booleanos como verdadero y falso, en lugar de como 1y 0.
dec Establece la salida para un despliegue decimal por omision.
endl Da salida a un caricter de linea nueva y despliega todos los caracteres en el bifer.
fixed Siempre muestra un punto decimal y usa seis digitos por omision después
del punto decimal. Rellena con ceros a la derecha si es necesario.
flush Despliega todos los caracteres en el bufer.
left Justifica a la izquierda todos los nimeros.
hex Establece la salida para un despliegue hexadecimal.
oct Establece la salida para un despliegue octal.
uppercase Despliega digitos hexadecimales y el exponente en notacion cientifica
en mayusculas.
right Justifica a la derecha todos los ntimeros (éste es el valor por omision).
noboolalpha Despliega valores booleanos como 1y 0, en lugar de verdadero y falso.
noshowbase No despliega nameros octales con un 0 a la izquierda y los nameros
hexadecimales con un 0x a la izquierda.
noshowpoint No usa un punto decimal para niimeros reales sin partes fraccionarias,
no despliega ceros a la derecha en la parte fraccionaria de un ntimero y
despliega un maximo de sélo seis digitos decimales.
noshowpos No despliega signos de + a la izquierda (éste es el valor por omision).
nouppercase Despliega digitos hexadecimales y el exponente en notacion cientifica en mindsculas.

www.FreelLibros.me

123

124 Carituto 3 Asignacion, formateo y entrada interactiva

Por ejemplo, la instruccion cout << "La suma de 6 y 5 es" << setw(3) << 21;
crea esta impresion:

La suma de 6 y 5 es 21

El manipulador de ancho de campo setw(3) incluido en el flujo de datos pasado a cout se
usa para establecer el ancho del campo desplegado. El 3 en este manipulador establece el an-
cho de campo por omisiéon para el siguiente numero en el flujo para que tenga un ancho de
tres espacios. Esta configuracion del ancho de campo causa que 21 se imprima en un campo
de tres espacios, el cual incluye un espacio en blanco y el numero 21. Como se ilustra, los en-
teros estan justificados a la derecha dentro del campo especificado.

Los manipuladores de ancho de campo son ttiles para imprimir columnas de ntimeros de
modo que los niimeros en cada columna se alineen en forma correcta. Por ejemplo, el progra-
ma 3.5 ilustra como se alinearia una columna de nimeros enteros en ausencia de manipula-
dores de ancho de campo.

j —\ Programa 3.5

o, el >

W
v%/'

#include <iostream>
using namespace std;

int main()
{
cout << 6 << endl
<< 18 << endl
<< 124 << endl
<< "——-\n"
<< (6+18+124) << endl;

return 0;

La salida del programa 3.5 es la siguiente:

6
18
124

148

En vista que no se incluyeron manipuladores de ancho de campo en el programa 3.5, el obje-
to cout asigna suficiente espacio para cada numero conforme lo recibe. Para forzar a los nu-
meros a alinearse con el digito de las unidades se requiere un ancho de campo suficiente para
el nimero mas grande desplegado. Para el programa 3.5, un ancho de tres bastaria. El uso de
este ancho de campo se ilustra en el programa 3.6.

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 125

. —

-~ 2 Programa 3.6

-
a— =

Y

N,
”

b
\

v

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << setw(3) << 6 << endl
<< setw(3) << 18 << endl
<< setw(3) << 124 << endl
<< "——=\n"
<< (6+18+124) << endl;

return 0;

La salida del programa 3.6 es

6
18
124

148

El manipulador de ancho de campo debe incluirse para cada ocurrencia de un nimero inser-
tado en el flujo de datos enviado a cout; este manipulador particular sélo se aplica a la si-
guiente insercion de datos inmediata. Los otros manipuladores permanecen en efecto hasta
que se cambian.

Cuando se usa un manipulador que requiere un argumento debe incluirse el archivo de
encabezado iomanip como parte del programa. Esto se logra con el comando preprocesador
#include <iomanip>, el cual se enlista como la segunda linea en el programa 3.6.

Dar formato completo a nimeros de punto flotante requiere el uso de tres manipula-
dores de ancho de campo. El primer manipulador establece el ancho total del despliegue,
el segundo fuerza el despliegue de un punto decimal y el tercer manipulador determina
cuantos digitos significativos se desplegaran a la derecha del punto decimal. Por ejemplo,
analice la siguiente instruccion:

cout << "|" << setw(10) << fixed << setprecision(3) << 25.67 << "|";

www.FreelLibros.me

126

CarituLo 3 Asignacion, formateo y entrada interactiva

Causa la siguiente impresion:

| 25.670]

El simbolo de barra, |, en el ejemplo se usa para delimitar (marcar) el principio y el fin del cam-
po de despliegue. El manipulador setw le indica a cout que despliegue el nimero en un cam-
po total de 10, el manipulador fixed fuerza de manera explicita el despliegue de un punto
decimal y designa que el manipulador setprecision se usa para designar el nimero de di-
gitos que se va a desplegar después del punto decimal. En este caso, setprecision especi-
fica un despliegue de tres digitos después del punto decimal. Sin la designacion explicita de un
punto decimal (el cual también puede designarse como setiosflags(ios::fixed)), el manipulador
setprecision especifica el nimero total de digitos desplegados, el cual incluye las partes
enteras y fraccionarias del ntimero.

Para todos los nimeros (enteros, de precision simple y de precision doble), cout ignora
la especificacion del manipulador setw si el campo especificado total es demasiado pequeiio,
y asigna suficiente espacio para la parte entera del niimero que se va a imprimir. La parte frac-
cionaria de los nimeros de precision simple y de precision doble es desplegada hasta la pre-
cision establecida con el manipulador setprecision. (En ausencia de un manipulador
setprecision, la precision por omision se establece en seis lugares decimales.) Si la parte
fraccionaria del niimero que se va a desplegar contiene mas digitos de los indicados en el ma-
nipulador setprecision, el nimero se redondea al nimero indicado de lugares decimales;
si la parte fraccionaria contiene menos digitos que los especificados, el niimero es desplegado
con menos digitos. La tabla 3.2 ilustra el efecto de varias combinaciones de manipuladores de
formato. Una vez mas, por claridad, se usa el simbolo de barra, |, para delinear el principio y
el fin de los campos de salida.

Tabla 3.2 Efecto de los manipuladores de formato

Manipuladores Nuamero Despliegue Comentarios

setw(2) 3 | 3] El nimero cabe en el campo
setw(2) 43 |43] El numero cabe en el campo
setw(2) 143 [143] El ancho de campo se ignora
setw(2) 2.3 [2.3] El ancho de campo se ignora
setw(5) 2.366 | 2.37] Ancho de campo de cinco con
fixed dos digitos decimales

setprecision(2)

setw(5) 42.3 [42.30]| El nimero cabe en el campo
fixed con precision especificada
setprecision(2)

setw(5) 142.364 |1.4e+002] El ancho de campo se ignora y
setprecision(2) se usa notacion cientifica con el
manipulador setprecision
especificando el nimero total de
digitos significativos (enteros
mds fraccionarios)

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 127

. '||||||J

|— Punto de Informacién |
N I S YN .|

¢Qué es un indicador o bandera?

En la programacion actual, el término indicador o bandera se refiere a un elemento, como una va-
riable o argumento, que establece una condicion por lo general considerada activa o inactiva. Aun-
que se desconoce el origen exacto de este término en programacion, es probable que se haya
originado del uso de banderas reales para sefalar una condicion, como las banderas de alto, siga,
precaucion y ganador que se usan por lo comun en las carreras de automoviles.

De manera similar, cada argumento de indicador para la funcion del manipulador setios-
flags () activa una condicion especifica. Por ejemplo, el indicador ios: : dec establece el forma-
to de despliegue decimal, y el indicador ios: :oct activa el formato de despliegue octal. En vista
que estas condiciones son mutuamente excluyentes (solo una condicion puede estar activa a la
vez), activar uno de estos indicadores desactiva de manera automatica los otros indicadores.

Los indicadores que no son mutuamente excluyentes, como ios: :dec, ios::showpoint
e ios::fixed pueden establecerse como activas de manera simultanea. Esto puede hacerse
usando tres llamadas setiosflag() individuales o combinando todos los argumentos en una
llamada como sigue:

cout << setiosflags ios::dec | ios::fixed | ios::showpoint);

Tabla 3.2 Efecto de los manipuladores de formato (continuacion)

Manipuladores Numero Despliegue Comentarios

setw(5) 142.364 |142.36]| Se ignora el ancho de campo
fixed pero se usa la especificacion de
setprecision(2) precision. Aqui el manipulador

setprecision especifica el
numero de digitos fraccionarios

setw(5) 142.366 |142.37| Se ignora el ancho de campo
fixed pero se usa la especificacion de
setprecision(2) precision. Aqui el manipulador

setprecision especifica el
ndmero de digitos fraccionarios.
(Notese el redondeo del ultimo
digito decimal)

setw(5) 142 | 142] Se usa el ancho de campo, los
fixed manipuladores fixed y
setprecision(2) setprecision irrelevantes,

porque el nimero es un entero.

Ademas de los manipuladores setw y setprecision, también esta disponible un manipu-
lador de justificacion de campo. Como se ha visto, los nimeros enviados a cout se desplie-
gan por lo normal con justificacion a la derecha en el campo de despliegue, mientras las
cadenas se despliegan justificadas a la izquierda. Para alterar la justificaciéon por omisién pa-
ra un flujo de datos, puede usarse el manipulador setiosflags. Por ejemplo, analice la si-
guiente instruccion:

cout << "|" << setw(1l0) << setiosflags(ios::left) << 142 << "|";

www.FreelLibros.me

128

CarituLo 3 Asignacion, formateo y entrada interactiva

Esto causa el siguiente despliegue justificado a la izquierda:
|142 |

Como se ha visto, ya que los datos pasados a cout pueden continuarse a lo largo de muilti-
ples lineas, el despliegue anterior también seria producido por la instruccion:

cout << "|" << setw(10)
<< setiosflags(ios::left)
<< 142 << uln;

Como siempre, el manipulador de ancho de campo sélo esta para el siguiente conjunto senci-
llo de datos desplegado por cout. La justificacion a la derecha para las cadenas en un flujo
se obtiene con el manipulador setiosflags(ios::right). El simbolo ios tanto en el
nombre de la funcién como en el argumento ios: :right se deriva de las primeras letras de
las palabras “input output stream” (flujo de entrada y salida).

Ademas de los indicadores de izquierda y derecha que pueden usarse con el manipulador
setiosflags(), pueden usarse otros indicadores para afectar la salida. Los indicadores
mas usados para este manipulador se enumeran en la tabla 3.3. Los indicadores en esta tabla
proporcionan de manera efectiva una forma alternativa para establecer los manipuladores
equivalentes enumerados en la tabla 3.1.

Tabla 3.3 Indicadores de formato para usar con setiosflags()

Indicador Significado

ios::fixed Siempre muestra el punto decimal con seis digitos después del punto decimal.
Rellena con ceros a la derecha si es necesario. Este indicador tiene precedencia si
se establece con el indicador ios: : showpoint.

ios::scientific | Usa despliegue exponencial en la salida.

ios::showpoint | Siempre despliega un punto decimal y seis digitos significativos en total
(combinacion de partes enteras y fraccionarias). Rellena con ceros a la derecha
después del punto decimal si es necesario. Para valores enteros mas grandes, revierte
a notacion cientifica a menos que esté establecido el indicador ios: : fixed.

ios: :showpos Despliega un signo + a la izquierda cuando el niimero es positivo.
ios::left Justifica a la izquierda la salida.
ios::right Justifica a la derecha la salida.

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 129

! L N W ekl
| Punto de Informacién |—
T Punte de Informacien |
Dar formato a los datos en el flujo de cout
Los datos de punto flotante en un flujo de salida cout pueden formatearse en formas precisas.
Uno de los requerimientos de formato mas comunes es desplegar nimeros en un formato mone-

tario con dos digitos después del punto decimal, como 123.45. Esto puede hacerse con la siguien-
te instruccion:

cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(12);

El primer indicador en el manipulador, ios: : f£ixed, hace que todos los numeros de punto flo-
tante colocados en el flujo cout se desplieguen en notacion decimal. Este indicador también im-
pide el uso de notacion cientifica. El siguiente indicador, ios: : showpoint, le indica al flujo que
siempre despliegue un punto decimal. Por tltimo, el manipulador setprecision le indica al flu-
jo que siempre despliegue dos valores decimales después del punto decimal. En lugar de usar ma-
nipuladores, también puede usar los métodos de flujo de cout setf() y precision(). Por
ejemplo, el formato anterior puede lograrse también usando el cédigo:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Notese la sintaxis aqui: el nombre del objeto, cout, se separa del método con un punto. Esta es la
forma estandar de especificar un método y conectarlo con un objeto especifico. El estilo que selec-
cione es cuestion de preferencia.

Ademas, los indicadores usados tanto en el método setf () como en el manipulador se-
tiosflags() pueden combinarse usando el operador a nivel de bit Or, | (que se explica en la
seccion 15.2). Usando este operador, las siguientes dos instrucciones son equivalentes.

cout << setiosflags(ios::fixed | ios::showpoint);
cout.setf(ios::fixed | ios::showpoint);

El estilo que seleccione es cuestion de preferencia.

www.FreelLibros.me

130

S

\

W,

"

{

~

Sl
=
<>

// un programa que ilustra conversiones de salida
#include <iostream>

#include <iomanip>

using namespace std;

int main()

cout << "El valor decimal (base 10) de 15 es " << 15 << endl;
cout << "El valor octal (base 8) de 15 es "

cout << "El valor hexadecimal (base 16) de 15 es "

return 0;

CarituLo 3 Asignacion, formateo y entrada interactiva

Debido a que los indicadores en la tabla 3.3 se usan como argumentos para el método del ma-
nipulador setiosflags () y debido a que los términos “argumento” y “parametro” son si-
nénimos, otro nombre para un método manipulador que use argumentos es el de manipulador
parametrizado. El siguiente es un ejemplo de métodos de manipulador parametrizado:

cout << setiosflags(ios::showpoint) << setprecision(4);

Esto hace que todos los ntimeros de punto flotante subsiguientes sean enviados al flujo de sa-
lida para ser desplegados con un punto decimal y cuatro digitos decimales. Si el namero tiene
menos de cuatro digitos decimales, se llenara con ceros a la derecha.

Ademas de dar salida a los enteros en notacion decimal, los manipuladores oct y hex
permiten conversiones a formato octal y hexadecimal, respectivamente. El programa 3.7 ilus-
tra el uso de estos indicadores. Debido a que el formato decimal es el despliegue por omision,
el manipulador dec no se requiere en el primer flujo de salida.

_ ~ Programa 3.7

-~
>

>

<< showbase << oct << 15 <<endl;

<< showbase << hex << 15 << endl;

La salida producida por el programa 3.7 es la siguiente:

El valor decimal (base 10) de 15 es 15
El valor octal (base 8) de 15 es 017
El valor hexadecimal (base 16) de 15 es 0xf

El despliegue de valores enteros en uno de los tres sistemas numéricos posibles (decimal, octal
y hexadecimal) no afecta la manera en que se almacena el niumero dentro de una computado-
ra. Todos los niimeros se almacenan usando los codigos internos propios de la computadora.
Los manipuladores enviados a cout le indican al objeto como convertir el cdigo interno con
el propésito de desplegar la salida.

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 131

Ademds de desplegar enteros en forma octal o hexadecimal, pueden escribirse las cons-
tantes en numeros enteros en un programa en estos formatos. Para designar una constante en-
tera octal, el nimero debe tener un cero a la izquierda. El nimero 023, por ejemplo, es un
namero octal en C++. Los nimeros hexadecimales se denotan usando un 0x a la izquierda. El
uso de constantes enteras octales y hexadecimales se ilustra en el programa 3.8.

j— Programa 3.8

S
> "

v
\>// K

P
S
SO

N/ v
e %/ i
Vi \/ 4

#include <iostream>
using namespace std;

int main()
{
cout << "El valor decimal de 025 es " << 025 << endl;
<< "El valor decimal de 0x37 es "<< 0x37 << endl;

return 0;

La salida producida por el programa 3.8 es la siguiente:

El valor decimal de 025 es 21
El valor decimal de 0x37 es 55

La relacion entre la entrada, almacenamiento y despliegue de enteros se ilustra en la figura 3.8.

Por dltimo, los manipuladores especificados en las tablas 3.1 y 3.2 pueden establecerse
usando los métodos de clase ostream enumerados en la tabla 3.4.

www.FreelLibros.me

132 CarituLo 3 Asignacion, formateo y entrada interactiva

Un numero convierte
entero con un
un0ala == numero
izquierda en octal
, convierte
Un numero
. un
entero sin 0 & namero
ni 0X a la -
. . en decimal
izquierda
U ., convierte
n numero .
ent%r)cz cclm N\ numero en
l_m . ald hexadecimal
izquierda L L
codigo
interno del . desoli
e convierte a una espliegue
1 representacion en octal
en octal
cout << oct
convierte a una ~ despliegue
representacién en decimal
cout << dec en decimal
convierte auna | despliegue
representacion S
cout << hex en hexadecimal hexadecimal
La entrada es en octal, El almacenamiento El despliegue es en octal,
decimal o hexadecimal siempre es en binario decimal o hexadecimal

Figura 3.8 Entrada, almacenamiento y despliegue de numeros enteros.

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 133

Tabla 3.4 Métodos de clase ostream

Método Comentario Ejemplo

precision(n) Equivalente a setprecision() cout.precision(2)
£fill('x") Equivalente a set£ill() cout.fill('*")
setf(ios::fixed) Equivalente a cout.setf(ios::fixed)

setiosflags(ios::fixed)

setf(ios::showpoint) | Equivalente a cout.setf(ios::showpoint)
setiosflags(ios: :showpoint)

setf(iof::1left) Equivalente a left cout.setf(ios::left)
setf(ios::right) Equivalente a right cout.setf(ios::right)
setf(ios::flush) Equivalente a endl cout.setf(ios::flush)

En la columna de ejemplos de la tabla 3.4, el nombre del objeto, cout, se separa del método
con un punto. Esta es la forma estindar de llamar a un método de clase y proporcionarle el
objeto sobre el que va a operar.

Ejercicios 3.2

1. Determine la salida del siguiente programa:

#include <jiostream>
using namespace std;

int main() // un programa que ilustra el truncamiento de
nimeros enteros

cout << "respuestal es el entero " << 9/4
<< "\nrespuesta2 es el entero " << 17/3 << endl;

return 0;

}

2. Determine la salida del siguiente programa:

#include <iostream>
using namespace std;

int main() // un programa que ilustra el operador

{

cout << "El residuo de 9 dividido entre 4 es " << 9

% 4
<< "\nEl residuo de 17 dividido entre 3 es " << 17 %

3 << endl;

return 0;

www.FreelLibros.me

134 Carituto 3 Asignacion, formateo y entrada interactiva

3. Escriba un programa en C++ que despliegue los resultados de las expresiones 3.0 *
5.0,7.1%83-22y3.2/(6.1*5). Calcule el valor de estas expresiones en forma
manual para verificar que los valores desplegados son correctos.

4. Escriba un programa en C++ que despliegue los resultados de las expresiones 15 / 4,
15 % 4y S5 *3-(6*4). Calcule el valor de estas expresiones en forma manual pa-
ra verificar que el despliegue producido por su programa es correcto.

5. Determine los errores en cada una de las siguientes instrucciones:

a. cout << "\n << " 15)

. cout << "setw(4)" << 33;

cout << "setprecision(5)" << 526.768;

. "Hello World!" >> cout;

cout << 47 << setw(6);

cout << set(1l0) << 526.768 << setprecision(2);

m"0angT

6. Determine y escriba el despliegue producido por las siguientes instrucciones:

cout << "|" << 5 <<"|";

.cout << "|" << setw(4) << 5 << "|";

cout << "|" << setw(4) << 56829 << "|";

.cout << "|" << setw(5) << setiosflags(ios::fixed)

<< setprecision(2) << 5.26 << "|";

e. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.267 << "|";

f. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 53.264 << "|";

g. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534.264 << "|";

h. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534. << "|";

angy

7. Escriba el despliegue producido por las siguientes instrucciones.

a. cout << "El nGmero es " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << "El numero es " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << "El numero es " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
b. cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "—————- \n";
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;

www.FreelLibros.me

3.2 Dar formato a numeros para la salida del programa 135

C. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "e————nm \n";
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;
d. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 36.164 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 10.003 << endl;
cout << "————- " << endl;

8. La siguiente tabla enumera la correspondencia entre los nimeros decimales 1 a 15 y
su representacion octal y hexadecimal.

Decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octal: 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadecimal: 1 2 3 4 5 6 7 8 9 a b c d e f

Usando la tabla anterior, determine la salida del siguiente programa.

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
cout << "\nEl valor de 14 en octal es " << oct << 14
<< "\nEl valor de 14 en hexadecimal es " << hex << 14
<< "\nEl valor de 0xA en decimal es " << dec << 0xA
<< "\nEl valor de 0xA en octal es " << oct << 0xA
<< endl;
return 0;
}

9. La resistencia combinada de tres resistores conectados en paralelo, como se muestra
en la figura 3.9, estd dada por la ecuacion

Resistencia combinada = ﬁ
—_—
Ry Ry R;

Usando esta formula, escriba un programa en C++ para calcular y desplegar la resis-
tencia combinada cuando los tres resistores R, = 1000, R, = 1000 y R, = 1000 estan
conectados en paralelo. La salida debera producir el despliegue

La resistencia combinada es xXxXxxX.xxX ohmios,

www.FreelLibros.me

136

CarituLo 3 Asignacion, formateo y entrada interactiva

10.

11.

12.

donde xxxx.xx denota que el valor calculado debera colocarse en un ancho de cam-
po de 7 columnas, con dos posiciones a la derecha del punto decimal.

R,

Figura 3.9 Tres resistores conectados en paralelo.

Escriba un programa en C++ para calcular y desplegar el valor de la pendiente de la
linea que conecta los dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use el hecho
que la pendiente entre dos puntos que tienen coordenadas (x1, y1) y (x2, y2) es pen-
diente = (y2 — y1) / (x2 — x1). El despliegue producido por su programa debera ser:
El valor de la pendiente es xxx.xx, donde xxx.xx denota que el valor calculado de-
berd ser colocado en un ancho de campo suficiente para tres lugares a la izquierda del
punto decimal y dos lugares a la derecha de éste.

Escriba un programa en C++ para calcular y desplegar las coordenadas del punto me-
dio de la linea que conecta los dos puntos cuyas coordenadas son (3, 7) y (8, 12). Use
el hecho que las coordenadas del punto medio entre dos puntos que tienen coordena-
das (x1, y1) y (x2, y2) son ((X1 + X2)/2, (Y1 + Y2)/2). El despliegue producido por
su programa debera ser:

La coordenada x del punto medio es XXX.XX
La coordenada y del punto medio es XXX.XX

donde xxx.xx denota que el valor calculado deberd colocarse en un ancho de campo
suficiente para tres lugares a la izquierda del punto decimal y dos lugares a la derecha
de éste.

Escriba un programa en C++ para calcular y desplegar el momento de flexion maxi-
ma, M, de una viga, la cual esta sostenida en ambos extremos (véase la figura 3.10).
La formula para el momento de flexion maximo es, M = XW (L — X) / L, donde X
es la distancia del extremo de la viga en que se coloca un peso, Wy L es el largo de
la viga. El despliegue producido por su programa debera ser

El momento de flexidén maxima es XXXX.XXXX

donde xxxx.xxxx denota que el valor calculado debera colocarse en un ancho de
campo suficiente para cuatro lugares a la derecha y a la izquierda del punto decimal.

< X—>|
w |
A L

Figura 3.10 Calculo del momento de flexion maxima.

www.FreelLibros.me

3.3 Empleo de la biblioteca de funciones matematicas 137

13. Para el circuito eléctrico mostrado en la figura 3.11, las corrientes en los ramales, 7,,
i, e i, pueden determinarse usando las formulas

E)R5 + El(R1 + R3)
(Ry + R3)R, + R3)—(R3)*

ilz

EiR;5 + EZ(Rl + R3)
(Ry + R3)(R, + R3)—(R;)*

iz =iy~ iy

Usando estas férmulas, escriba un programa en C++ para calcular las corrientes en los
ramales cuando R, = 10 ohmios, R, = 4 ohmios, R, = 6 ohmios, E, = 12 voltios y
E, = 9 voltios. El despliegue producido por su programa debera ser

L.a corriente en el ramal 1 es XX.XXXXX
L.a corriente en el ramal 2 es XX.XXXXX
La corriente en el ramal 3 es XX.XXXXX

donde xx.xxxxx denota que el valor calculado debera colocarse en un ancho de cam-
po suficiente para dos lugares a la izquierda del punto decimal y cinco lugares a la de-
recha de éste.

| |
| |
E =12 E=9

Figura 3.11 Calculo de corrientes en circuito en un circuito eléctrico.

N\,

3.? EMPLEO DE LA BIBLIOTECA DE FUNCIONES MATEMATICAS

Como se ha visto, las instrucciones de asignacion pueden usarse para ejecutar calculos aritmé-
ticos. Por ejemplo, la instruccion de asignacion

voltios = resistencia * corriente;

multiplica el valor en corriente por el valor en resistencia y asigna el valor resultan-
te a voltios. Aunque la adicion, sustraccion, multiplicacion y division se logran con facili-
dad usando operadores aritméticos de C++, no existen operadores para elevar un ntimero a
una potencia, encontrar la raiz cuadrada de un nimero o determinar valores trigonométricos.

www.FreelLibros.me

138

CarituLo 3 Asignacion, formateo y entrada interactiva

Para facilitar estos cdlculos, C++ proporciona funciones preprogramadas estandares que pue-
den incluirse en un programa.
Antes de usar una de las funciones matematicas de C++, necesita saber

e El nombre de la funcién matematica deseada

® Qué hace la funciéon matematica

e El tipo de datos requerido por la funcién matematica

e El tipo de datos del resultado devuelto por la funcién matematica
e Como incluir la biblioteca

Para ilustrar el uso de las funciones matematicas de C++, considere la funcion matematica lla-
mada sqrt, la cual calcula la raiz cuadrada de un numero. La raiz cuadrada de un niimero
se calcula usando la expresion

sqrt (ntmero)

donde el nombre de la funcién, en este caso sqrt, es seguido por paréntesis que contienen el
namero cuya raiz cuadrada se desea calcular. El propésito de los paréntesis que siguen al nom-
bre de la funcién es proporcionar un embudo por el que puedan pasar los datos a la funcion
(véase la figura 3.12). Los elementos que pasan a la funcion por medio de los paréntesis se lla-
man argumentos de la funcion y constituyen sus datos de entrada. Por ejemplo, las siguientes
expresiones se usan para calcular la raiz cuadrada de los argumentos 4., 17.0, 25., 1043.29
and 6.4516, respectivamente:

sqrt(4.)
sqrt(17.0)
sqgrt(25.)
sqrt(1043.29)
sqrt(6.4516)

sqgrt(a valor)

Funcion sqgrt
Figura 3.12 Transmision de datos a la funcion sqrt ().

Hay que observar que el argumento para la funcién sqrt () debe ser un valor real. Este es
un ejemplo de las capacidades de sobrecarga de la funcion de C++. La sobrecarga de la fun-
ci6én permite que el mismo nombre de la funcion sea definido para argumentos con diferentes
tipos de datos. En este caso en realidad hay tres funciones de raiz cuadrada nombradas
sqrt (), una definida para argumentos en nimero de punto flotante, de doble precision y de

www.FreelLibros.me

3.3 Empleo de la biblioteca de funciones matematicas 139

doble precision largos. La funcion sqrt correcta es invocada dependiendo del tipo de valor
que se le da. La funcién sqrt () determina la raiz cuadrada de su argumento y devuelve el
resultado como un nimero doble. Los valores devueltos por las expresiones anteriores son

Expresion Valor devuelto
sqrt(4.) 2
sqrt(17.0) 4.12311
sgrt(25.) S
sqrt(1043.29) 32.3
sqrt(6.4516) 2.54

Ademas de la funcion sqrt, la tabla 3.5 enumera las funciones matematicas de C++ mas usa-
das. Tener acceso a estas funciones en un programa requiere que se incluya con la funcion el
archivo de encabezado matematico llamado cmath, el cual contiene declaraciones apropiadas
para la funcién matematica. Esto se hace colocando la siguiente instruccion preprocesadora al
principio de cualquier programa que use una funciéon matematica:

#include <cmath>-€———sin puntoy coma

Aunque algunas de las funciones matematicas enumeradas requieren mds de un argumento,
todas las funciones, por definicion, pueden devolver en forma directa como maximo un valor.
Ademas, todas las funciones enumeradas estan sobrecargadas: esto significa que puede usarse
el mismo nombre de funcién con argumentos con nimeros enteros y reales. La tabla 3.6 ilus-
tra el valor devuelto por funciones selectas usando argumentos de ejemplo.

Tabla 3.5 Funciones comunes de C++

Nombre de la funcion | Descripcion Valor devuelto

abs(a) valor absoluto mismo tipo de datos que el argumento
pow(al,a2) al elevado a la potencia a2 tipo de datos del argumento al
sqrt(a) raiz cuadrada de un nimero real | precisién doble

sin(a) seno de a (a en radianes) doble

cos(a) coseno de a (d en radianes) doble

tan(a) tangente de a (d en radianes) doble

log(a) logaritmo natural de a doble

loglO(a) logaritmo comtn (base 10) de a | doble

exp(a) e elevado a la potencia a doble

www.FreelLibros.me

140

CarituLo 3 Asignacion, formateo y entrada interactiva

Table 3.6 Ejemplos de funciones selectas

Ejemplo Valor devuelto
abs(-7.362) 7.362
abs(-3) 3
pow(2.0,5.0) 32
pow(10,3) 1000
log(18.697) 2.92836
10g10(18.697) 1.27177
exp(-3.2) 0.040762

En cada caso que se usa una funcion matematica, ésta se activa al dar el nombre de la funcion
y transmitirle datos dentro del paréntesis que sigue al nombre de la funcion (véase la figura
3.13).

nombre de la funcion (datos transmitidos a la funcion),

v g)
Esto identifica Esto transmite
a la funcion datos a la funcion
llamada

Figura 3.13 Uso y transmision de datos a una funcion.

Los argumentos que se transmiten a una funcién no necesitan ser constantes simples. Las ex-
presiones también pueden ser argumentos, siempre que la expresion pueda calcularse para
producir un valor del tipo de datos requerido. Por ejemplo, los siguientes argumentos son va-
lidos para las funciones dadas:

sqrt (4.0 + 5.3 * 4.0) abs (2.3 * 4.6)
sqrt(1l6.0 * 2.0 - 6.7) sin(theta - phi)
sgrt(x * y - z/3.2) cos(2.0 * omega)

Las expresiones entre paréntesis se evaltian primero para producir un valor especifico. Por tan-
to, tendrian que asignarse valores a las variables theta, phi, x, y, z y omega antes de usarse en
las expresiones anteriores. Después que se calcula el valor del argumento, éste se transmite a
la funcién.

Las funciones también pueden incluirse como parte de expresiones mas grandes. Por
ejemplo,

4 * sqrt(4.5 *# 10.0 - 9.0) - 2.0
= 4 * gqrt(36.0) - 2.0
4 * 6.0 - 2.0
24.0 - 2.0
= 22.0

www.FreelLibros.me

#include <iostream> // esta linea puede colocarse en segundo lugar en vez
#include <cmath> // esta linea puede colocarse en primer lugar en vez
using namespace std;

int main()

{

3.3 Empleo de la biblioteca de funciones matematicas 141

La evaluacién paso por paso de una expresion como

3.0 * sqrt(5 * 33 - 13.71) / 5

€S
Paso Resultado
1. Realizar la multiplicacion en el argumento 3.0 * sqrt(l65 - 13.71) / 5
2. Completar el célculo del argumento 3.0 * sqrt(151.29) / 5
3. Devolver un valor de la funcién 3.0 * 12.3 / 5
4. Realizar la multiplicacion 36.9 / 5
5. Realizar la divisiéon 7.38

El programa 3.9 ilustra el uso de la funcion sqrt para determinar el tiempo que tarda una
pelota en golpear el suelo después de haber sido dejada caer desde una torre de 800 pies. La
formula matematica usada para calcular el tiempo, en segundos, que tarda en caer una distan-
cia determinada, en pies, es

tiempo = sqgrt(2 * distancia / g)

donde g es la constante gravitacional igual a 32.2 pies/s>.

j -~ Programa 3.9

>
=
> ~

de en primero

de en segundo

int altura;
double tiempo;

altura 800;
sqrt(2 * altura / 32.2);
cout << "Tardarad " << tiempo << " segundos en caer "

<< altura << " pies.\n";

tiempo

return 0;

www.FreelLibros.me

142

CarituLo 3 Asignacion, formateo y entrada interactiva

La salida producida por el programa 3.9 es

Tardara 7.04907 segundos en caer 800 pies.

Como se usa en el programa 3.9, el valor devuelto por la funcién sqrt es asignado a la va-
riable tiempo. Ademas de asignar el valor devuelto de una funcién a una variable, el valor
devuelto puede incluirse dentro de una expresion mas grande, o incluso usarse como un argu-
mento para otra funcion. Por ejemplo, la expresion

sqrt(sin(abs(theta)))

es valida. En vista que estan presentes paréntesis, el calculo procede de los pares interiores ha-
cia los pares de paréntesis exteriores. Por tanto, el valor absoluto de theta se calcula prime-
ro y se usa como un argumento para la funcion sin. El valor devuelto por la funcién sin se
usa luego como un argumento para la funcion sqrt ().

Hay que observar que los argumentos de todas las funciones trigonométricas (sin, cos,
etc.) deben expresarse en radianes. Por tanto, para obtener el seno de un angulo que esta da-
do en grados, primero debe convertirse el dngulo a una medida en radianes. Esto se logra con
facilidad al multiplicar el angulo por el término (3.1416/180.). Por ejemplo, para obtener el
seno de 30 grados, puede usarse la expresion sin (30 * 3.1416/180.)

Moldes

Ya se ha visto la conversion del tipo de datos de un operando dentro de expresiones aritméti-
cas en modo mixto (seccion 2.4) y mediante operadores de asignacion (seccion 3.1). Ademas
de estas conversiones del tipo de datos implicitas, C++ también proporciona conversiones de
tipo explicitas especificadas por el usuario. El operador usado para forzar la conversion de un
valor a otro tipo es el operador de molde (cast). C++ proporciona operadores de molde en
tiempo de compilacién y en tiempo de ejecucion.

El molde en tiempo de compilacion es un operador unitario que tiene la sintaxis tipo-
DeDatos (expresién), donde tipoDeDatos es el tipo de datos deseado al que se convier-
te la expresion entre paréntesis. Por ejemplo, la siguiente expresion

int (a * b)

asegura que el valor de la expresion a * b es convertido en un valor de nimero entero.”

Con la introduccion del estindar mas reciente de C++, se incluyeron moldes en tiempo
de ejecucion. En este tipo de molde, la conversion de tipo solicitada es verificada en tiem-
po de ejecucion y se aplica si la conversion produce un valor valido. Aunque se dispone de
cuatro tipos de moldes en tiempo de ejecucion, el molde mas usado y que corresponde al mol-
de en tiempo de compilacion tiene la sintaxis siguiente:

staticCast<tipo-de-datos> (expresidn)

Por ejemplo, el molde en tiempo de ejecucion staticCast<int>(a * b) es equivalente
al molde en tiempo de compilacion int (a* b).

7La sintaxis de tipo molde en C, en este caso (int)(a * b), también funciona en C++.

www.FreelLibros.me

3.3 Empleo de la biblioteca de funciones matematicas 143

Ejercicios 3.3

1. Escriba las llamadas de funcién para determinar:

La raiz cuadrada de 6.37.

. La raiz cuadrada de x - y.

El seno de 30 grados.

. El seno de 60 grados.

El valor absoluto de a* — be.

El valor de e elevado a la tercera potencia.

O Q0T

2. Paraa =10.6, b = 13.9, c = -3.42, determine los siguientes valores:
int (a)

int (b)

int (c)

int (a + b)

int (a) + b + ¢

int (a + b) + ¢
.int (a + b + ¢)

. float (int (a)) + b
float (int (a + b))
abs(a) + abs(b)
sqrt(abs(a - b))

oo SQmoanTy

3. Escriba instrucciones de C++ para lo siguiente:

a. b =seno x — cos x
b. b = seno*x — cos*x
C. drea = (c™* b * seno a)/2

d. c =va? + b?

e. p= |m—n|

r—1

f. suma=

4. Escriba, compile y ejecute un programa en C++ que calcule y devuelva la raiz cuarta
del nimero 81.0, la cual es 3. Cuando haya verificado que su programa funciona en
forma correcta, tselo para determinar la raiz cuarta de 1,728.896400. Su programa
deberd usar la funcién sqrt ().

5. Escriba, compile y ejecute un programa en C++ que calcule la distancia entre dos pun-
tos cuyas coordenadas son (7, 12) y (3, 9). Use el hecho que la distancia entre dos
puntos que tienen coordenadas (x,, y,) v (X,, ¥») es distancia = sqrt([x; — x,]* + [y,
- v,J?). Cuando haya verificado que su programa funciona en forma correcta, calcu-
lando la distancia entre los dos puntos en forma manual, use su programa para deter-
minar la distancia entre los puntos (-12, -=15) y (22, §5).

www.FreelLibros.me

144

CarituLo 3 Asignacion, formateo y entrada interactiva

6. Si se coloca una escalera de 20 pies en un angulo de 85 grados sobre un lado de un

edificio, como se ilustra en la figura 3.14, la altura a la que la escalera toca el edificio
puede calcularse como altura = 20 * seno 85°. Calcule esta altura en forma manual
y luego escriba, compile y ejecute un programa en C++ que determine y despliegue el
valor de la altura. Cuando haya verificado que su programa funciona en forma co-
rrecta, uselo para determinar la altura de una escalera de 25 pies colocada en un an-
gulo de 85 grados.

85°

Figura 3.14 Calcular la altura de una escalera contra un edificio.

. La altura maxima alcanzada por una pelota lanzada con una velocidad inicial v, en

metros/segundo, en un angulo de 0 estd dada por la férmula altura = (.5 * v* *

seno” 0) / 9.8. Usando esta formula, escriba, compile y ejecute un programa en C++
que determine y despliegue la altura maxima alcanzada cuando la pelota es lanza-
da a 5 millas/hora en un dngulo de 60 grados. (Sugerencia: Asegirese de convertir la
velocidad inicial en las unidades correctas. Hay 1609 metros en una milla.) Calcule la
altura maxima en forma manual y verifique el resultado producido por su progra-
ma. Después de haber verificado que su programa funciona en forma correcta, uselo
para determinar la altura alcanzada por una pelota lanzada a 7 millas/hora en un 4n-
gulo de 45 grados.

. Para valores pequefios de x, el valor de seno(x) puede aproximarse con la serie de po-

tencias:

x3 xd

+__.. .
6 120

Como con la funcién sin, el valor de x debe expresarse en radianes. Usando esta serie
de potencias, escriba, compile y ejecute un programa en C++ que aproxime el seno de
180/3.1416 grados, lo cual es igual a un radian. Ademads, haga que su programa use
la funcion sin para calcular el seno y desplegar tanto los valores calculados como la
diferencia absoluta de los dos resultados. Verifique la aproximacion producida por su
programa en forma manual. Después que haya verificado que su programa funciona
en forma correcta, uselo para aproximar el valor del seno de 62.2 grados.

www.FreelLibros.me

10.

11.

12.

13.

3.3 Empleo de la biblioteca de funciones matematicas 145

. Las coordenadas polares de un punto consisten en la distancia, 7, de un origen espe-

cificado y un angulo, 6, con respecto al eje x. Las coordenadas (x y y) del punto se re-
lacionan con sus coordenadas polares por las formulas

X = r cos 0O
y = r seno 0

Usando estas formulas, escriba un programa en C++ que calcule las coordenadas
(x, y) del punto cuyas coordenadas polares son » = 10 y 6 = 30 grados. Verifique los
resultados producidos por su programa calculando los resultados en forma manual.
Después de haber verificado que su programa funciona en forma correcta, tselo para
convertir las coordenadas polares 7 = 12.5 y 6 = 67.8° en coordenadas rectangulares.

Un modelo del crecimiento de la poblaciéon mundial, en miles de millones de personas,
desde 2000 esta dado por la ecuacion:

Poblacién = 6.0 e0-02[ado - 2000]

Usando esta férmula, escriba, compile y ejecute un programa en C++ para estimar la
poblacion mundial en el afio 2005. Verifique el resultado desplegado por su progra-
ma calculando la respuesta en forma manual. Después que haya verificado que su pro-
grama funciona en forma correcta, uselo para estimar la poblacion mundial en el afio
2012.

Un modelo para estimar el nimero de gramos de un cierto isétopo radiactivo que res-
tan después de N afos esta dado por la férmula

Material remanente = (material original) e-0.00012N

Usando esta férmula, escriba, compile y ejecute un programa en C++ para determinar
la cantidad de material radiactivo remanente después de 1000 afos, suponiendo una
cantidad inicial de 100 gramos. Verifique el despliegue producido por su programa
usando un calculo manual. Después que haya verificado que su programa funciona en
forma correcta, uselo para determinar la cantidad de material radiactivo remanente
después de 275 anos, suponiendo una cantidad inicial de 250 gramos.

El numero de afios que se requiere para que se descomponga un cierto isotopo de ura-
nio a la mitad de una cantidad original esta dado por la

Vida media = 1n(2)/k

donde k es igual a 0.00012. Usando esta formula, escriba, compile y ejecute un pro-
grama en C++ que calcule y despliegue la vida media de este isotopo de uranio. Veri-
fique el resultado producido por su programa usando un céalculo manual. Después que
haya verificado que su programa funciona en forma correcta, uselo para determinar
la vida media de un is6topo de uranio que tenga k = 0.00026.

La amplificacion de circuitos electronicos se mide en unidades de decibeles, las cuales
se calculan como

10 LOG (P,/P;)

donde P, es la potencia de la seial de salida y P; es la potencia de la sefial de entra-
da. Usando esta formula, escriba, compile y ejecute un programa en C++ que calcule
y despliegue la amplificacion en decibeles en la que la potencia de salida es 50 veces

www.FreelLibros.me

146

CarituLo 3 Asignacion, formateo y entrada interactiva

la potencia de entrada. Verifique el resultado desplegado por su programa usando un
calculo manual. Después de haber verificado que su programa funciona en forma co-
rrecta, uselo para determinar la amplificacion de un circuito cuya potencia de salida
es 4.639 vatios y la potencia de entrada es 1 vatio.

14. La intensidad de un sonido se mide en unidades de decibeles, las cuales se calculan

como
10 LOG (SL/RL)

donde SL es la intensidad del sonido que se estd midiendo y RL es un sonido de refe-
rencia del nivel de intensidad. Usando esta formula, escriba un programa en C++ que
calcule y despliegue el ruido en decibeles de una calle transitada que tiene una intensi-
dad de sonido de 10 000 000 RL. Verifique el resultado producido por su programa
usando un calculo manual. Después que haya verificado que su programa funciona en
forma correcta, tselo para determinar el nivel de sonido, en decibeles, de los siguientes
sonidos:

a. Un susurro con una intensidad de sonido de 200 RL

b. Una banda de rock tocando con una intensidad de sonido de 1 000 000 000 000

RL
¢. Un avion despegando con una intensidad de sonido de 100 000 000 000 000 RL

15. Cuando una pelota de hule especial se deja caer desde una altura dada (en metros)

su velocidad de impacto (en metros/segundo) cuando golpea el suelo esta dada por
la féormula velocidad = sqrt(2 * g * altura). La pelota rebota entonces a 2/3 de la al-
tura desde la cual cay6 la dltima vez. Usando esta informacion, escriba, pruebe y eje-
cute un programa en C++ que calcule y despliegue la velocidad de impacto de los
primeros tres rebotes y la altura alcanzada en cada rebote. Pruebe su programa usan-
do una altura inicial de 2.0 metros. Ejecute el programa dos veces y compare los re-
sultados de soltar la pelota en la Tierra (g = 9.81 m/s?) y en la Luna (g = 1.67 m/s?).

16. a. Una balanza tiene pesas de los siguientes tamanos: 100 lb., 50 Ib., 10 Ib., 5 lb. y

1 Ib. El nimero de pesas de 100 Ib. y 50 Ib. requeridas para pesar un objeto cuyo
peso es de PESO libras puede calcularse usando las siguientes instrucciones de C++:

// Determine la cantidad de pesas de 100 1b.
wl00 = int(WEIGHT/100)

// Determine la cantidad de pesas de 50 1b.
w50 = int((WEIGHT - wl00 * 100)/50)

Usando estas instrucciones como punto de partida, escriba un programa en C++
que calcule la cantidad de cada tipo de pesas necesarias para pesar un objeto de
789 Ib.

b. Sin compilar ni ejecutar su programa, compruebe el efecto, en forma manual, de
cada instruccion en el programa y determine qué esta almacenado en cada varia-
ble conforme se encuentra cada instruccion.

¢. Cuando haya verificado que su algoritmo funciona en forma correcta, compile y
ejecute su programa. Verifique que los resultados producidos por su programa son
correctos. Después que haya verificado que su programa funciona en forma correc-
ta, Uselo para determinar las pesas requeridas para pesar un objeto de 626 lb.

www.FreelLibros.me

3.4 Entrada de datos al programa usando el objeto cin 147

39 ENTRADA DE DATOS AL PROGRAMA USANDO EL OBJETO Cin

Los datos para programas que solo se van a ejecutar una vez pueden incluirse en forma direc-
ta en el programa. Por ejemplo, si se desea multiplicar los nimeros 30.0 y 0.05, podria usar-
se el programa 3.10.

:/ Programa 3.10

VY
/
/

=

N\

'y
VA
iy
Y

VA

#include <iostream>
using namespace std;

int main()

{

double numl, num2, producto;

numl
num?2

30.0;

0.05;

producto = numl * num2;

cout << "30.0 por 0.05 es " << producto << endl;

return 0;

La salida desplegada por el programa 3.10 es

30.0 por 0.05 es 1.5
El programa 3.10 puede acortarse, como se ilustra en el programa 3.11. Ambos programas,
sin embargo, tienen el mismo problema basico de que deben rescribirse a fin de multiplicar di-

ferentes numeros. Ambos programas carecen de la facilidad para introducir nimeros diferen-
tes con los cuales operar.

www.FreelLibros.me

148

{

#include <iostream>
using namespace std;

int main()

CariTuLo 3 Asignacion, formateo y entrada interactiva

— Programa 3.11

>

cout << "30.0 por 0.05 es " << 30.0 * 0.05 << endl;

return 0;

Con excepcion de la practica proporcionada al programador por escribir, introducir y ejecu-
tar el programa, es evidente que los programas que hacen el mismo célculo s6lo una vez, con
el mismo conjunto de niimeros, no son muy utiles. Después de todo, es mas simple usar una
calculadora para multiplicar dos nimeros que introducir y ejecutar el programa 3.10 o 3.11.

Esta seccion presenta el objeto cin, el cual se usa para introducir datos en un programa
mientras se esta ejecutando. Del mismo modo que el objeto cout despliega una copia del va-
lor almacenado dentro de una variable, el objeto cin permite al usuario introducir un valor
en la terminal (véase la figura 3.15). El valor se almacena entonces en forma directa en una
variable.

int main()

{ - 1
SO -

\

cout << b |

Teclado } =

Pantalla

Figura 3.15 cin se usa para introducir datos; cout se usa para desplegar datos.

Cuando se encuentra una instrucciéon como cin >> numl; la computadora detiene la eje-
cucion del programa y acepta datos del teclado. Cuando se escribe un elemento de datos, el
objeto cin almacena el elemento en la variable mostrada después del operador de extraccion
(“obtener de”), >>. El programa contintia luego su ejecucion con la siguiente instruccion des-
pués de la llamada a cin. Para ver esto, considere el programa 3.12.

www.FreelLibros.me

\/\/

i

3.4 Entrada de datos al programa usando el objeto cin

149

. \\ Programa 3.12

AV

P
SN P

o as .
= >

#include <iostream>
using namespace std;

int main()

{

double numl, num2, producto;

cout << "Por favor introduzca un nGmero: ";

cin >> numl;

cout << "Por favor introduzca otro nGmero: ";

cin >> num2;

producto = numl * num2;

cout << numl << " por " << num2 << " es " << producto << endl;

return 0;

La primera instruccion cout en el programa 3.12 imprime una cadena que le indica a la per-
sona en la terminal qué debera introducir. Cuando se usa una cadena de salida de esta ma-
nera se llama indicador de comandos. En este caso el indicador de comandos le indica al
usuario que introduzca un numero. La computadora entonces ejecuta la siguiente instruc-
cion, la cual usa un objeto cin. El objeto cin pone a la computadora en un estado de pau-
sa temporal (o espera) tanto tiempo como le tome al usuario introducir un valor. Luego el
usuario le senala al objeto cin que se termind la entrada de datos al oprimir la tecla de re-
torno después que se ha introducido el valor. El valor introducido se almacena en la variable
a la derecha del simbolo de extraccion, y la computadora sale de su estado de pausa. Luego
procede la ejecucion del programa con la siguiente instruccion, la cual en el programa 3.12
es otra instruccion que usa cout. Esta instruccion causa que se despliegue el siguiente men-
saje. La siguiente instruccion usa entonces cin para poner de nuevo a la computadora en un
estado de espera temporal mientras el usuario introduce un segundo valor. Este segundo nu-
mero se almacena en la variable num2.
La siguiente ejecucion se hizo usando el programa 3.12.

Por favor introduzca un nutmero: 30
Por favor introduzca otro numero: 0.05
30 por 0.05 es 1.5

www.FreelLibros.me

150

CarituLo 3 Asignacion, formateo y entrada interactiva

En el programa 3.12, cada vez que se invoca cin se usa para almacenar un valor en una va-
riable. Sin embargo, el objeto cin puede usarse para introducir y almacenar tantos valores co-
mo simbolos de extraccion, >>, y variables haya para contener los datos introducidos. Por
ejemplo, la instruccion

cin >> numl >> num2;

produce dos valores que se leen de la terminal y se asignan a las variables numl y num2. Si
los datos introducidos en la terminal fueran

0.052 245.79

las variables num1 y num2 contendrian los valores 0.052 y 245.79, respectivamente. Hay que
observar que cuando se introducen cifras como 0.052 y 245.79 debe haber al menos un espa-
cio entre ellas. El espacio entre las cifras introducidas indica con claridad donde termina una
cifra y comienza la siguiente. Insertar mas de un espacio entre cifras no tiene efecto en cin.

El mismo espaciado también es aplicable al introducir datos de caracteres; es decir, el ope-
rador de extraccion, >>, se saltara los espacios en blanco y almacenara el siguiente caracter
que no sea un espacio en blanco en una variable de caracter. Por ejemplo, en respuesta a las
instrucciones

char chl, ch2, ch3; // declara tres variables de carécter
cin >> chl >> ch2 >> ch3; // acepta tres caracteres

La entrada

a b c

causa que la letra a sea almacenada en la variable ch1l, sea almacenada en la variable ch2,
y la letra ¢ sea almacenada en la variable ch3. En vista que una variable de caracter sélo pue-
de usarse para almacenar un caracter,

abc

también puede usarse la entrada.

Puede utilizarse cualquier cantidad de instrucciones que usen el objeto cin e introducir-
se cualquier cantidad de valores usando una sola instruccion cin. El programa 3.13 ilustra el
uso del objeto cin para introducir tres nimeros desde el teclado. El programa calcula lue-
go y despliega el promedio de los nimeros introducidos.

www.FreelLibros.me

Vi /

\/\/:/ '

V4
AV |

W
\

3.4 Entrada de datos al programa usando el objeto cin

151

Programa 3.13

>

‘A

>
Sy
Sl
-~

s
\//

#include <iostream>
using namespace std;

int main()

{
int numl, num2, num3;
double promedio;
cout << "Introduzca tres nameros enteros: ";
cin >> numl >> num2 >> num3;
promedio = (numl + num2 + num3) / 3.0;
cout << "El promedio de los nimeros es " << promedio << endl;
return 0;
}

La siguiente muestra de ejecucion se hizo usando el programa 3.13:

Introduzca tres numeros enteros: 22 56 73
El promedio de los ntmeros es 50.3333

Hay que observar que los datos introducidos en el teclado para esta muestra de ejecucién con-
sisten en la entrada

22 56 73

En respuesta a este flujo de entrada, el programa 3.13 almacena el valor 22 en la variable
numl, el valor 56 en la variable num2, y el valor 73 en la variable num3 (véase la figura 3.16).
En vista que el promedio de tres nimeros enteros puede ser un nimero de punto flotante, la
variable promedio, la cual se usa para almacenar el promedio, es declarada como una va-
riable de punto flotante. Hay que observar también que los paréntesis son necesarios en la
instruccion de asignacion promedio = (numl + num2 + num3) / 3.0;. Sin estos
paréntesis, el tnico valor que se dividiria entre tres seria el entero en num3 (porque la division
tiene una precedencia mayor que la adicion).

www.FreelLibros.me

152

CarituLo 3 Asignacion, formateo y entrada interactiva

numl

\22’

num?2

\56’

num3

>0

cin >> numl >> num2 >> num3;

22 56 73

Figura 3.16 Introduccion de datos en las variables numl, num2, and num3.

La operacion de extraccion cin como la operacion de insercion cout es lo bastante “lista”
para hacer unas cuantas conversiones de tipo de datos. Por ejemplo, si se introduce un niime-
ro entero en lugar de un numero de precision doble, el entero serd convertido al tipo de datos
correcto.® Del mismo modo, si se introduce un nimero de precision doble cuando se espera
un entero, solo se usara la parte entera del numero. Por ejemplo, suponga que se introducen
los siguientes numeros en respuesta a la instruccion cin >> numl >> num2 >> num3;,
donde numl y num3 han sido declarados como variables de precision doble y num2 es una
variable entera:

56 22.879 33.923

El 56 sera convertido en 56.0 y almacenado en la variable numl. La operacion de extraccion
continua extrayendo datos del flujo de entrada que se le envia, esperando un valor entero. Por
lo que respecta a cin el punto decimal después de 22 en el numero 22.879 indica el final de
un entero y el inicio de un nimero decimal. Por tanto, el nimero 22 es asignado a num2. Al
continuar procesando su flujo de entrada, cin toma .879 como el siguiente nimero de pun-
to flotante y lo asigna num3. Por lo que respecta a cin es entrada extra y es ignorado. Sin
embargo, si al principio no se introducen suficientes datos, el objeto cin continuara hacien-
do que la computadora esté en pausa hasta que se hayan introducido suficientes datos.

Una primera mirada a la validacion de entradas del usuario

Un programa bien construido deberia validar las entradas del usuario y asegurar que no se cai-
ga el programa o produzca una salida sin sentido debido a una entrada inesperada. El térmi-
no validar significa verificar que el valor introducido corresponde al tipo de datos de la
variable a la que es asignado el valor dentro de una instrucciéon cin y también que el valor
esta dentro de un rango aceptable de valores apropiados para la aplicacion. Los programas
que detectan y responden en forma efectiva a una entrada inesperada del usuario se conocen
de manera formal como programas robustos y de manera informal como programas “a prue-
ba de balas”. Una de sus labores como programador es producir tales programas. Tal como
estan escritos, los programas 3.12 y 3.13 no son programas robustos. Veamos por qué.

8En sentido estricto, lo que viene del teclado no es ningiin tipo de datos, como un int o double, sino es tan sélo una secuencia
de caracteres. La operacion de extracciéon maneja la conversion desde secuencia de caracteres hacia un tipo de datos definido.

www.FreelLibros.me

3.4 Entrada de datos al programa usando el objeto cin 153

El primer problema con estos programas se hace evidente cuando un usuario introduce
un valor no numérico. Por ejemplo, considere la siguiente muestra de ejecucion usando el pro-
grama 3.13:

Introduzca tres nGmeros enteros: 10 20.68 20
El promedio de los ntGmeros es -2.86331e+008

Esta salida ocurre debido a que la conversion del segundo nimero introducido produce que
el valor entero 20 sea asignado a num2 y el valor —858993460 sea asignado a num3.” Este ul-
timo valor corresponde a un cardacter invalido, el punto decimal, al que se le asigna un valor
entero esperado. El promedio de los niimeros 10, 20 y —858993460 es calculado en forma co-
rrecta como —286331143.3, el cual es desplegado en notacion cientifica con seis digitos signi-
ficativos como —2.86331e+08. Por lo que respecta al usuario de promedio, esto se reportara
como un error del programa. Este mismo problema ocurre siempre que se introduce un valor
no entero en cualquiera de las primeras dos entradas. (No ocurre para cualquier valor numé-
rico introducido como la tercera entrada porque la parte entera de la dltima entrada es acep-
tada y se ignora la entrada restante.) Como programador, su respuesta inicial puede ser “El
programa pide en forma clara que se introduzcan valores enteros”. Esta, sin embargo, es la
respuesta de un programador inexperto. Los programadores profesionales entienden que es su
responsabilidad asegurar que un programa anticipe y maneje en forma apropiada todas las en-
tradas que introducird un usuario. Esto se logra pensando qué puede salir mal con su progra-
ma mientras lo desarrolla y luego haciendo que otra persona o grupo lo pruebe.

En enfoque basico para manejar la introduccion de datos invalidos se conoce como va-
lidacion de entradas del usuario, lo cual significa validar los datos introducidos durante la
introduccion o inmediatamente después que los datos han sido introducidos y luego propor-
cionarle al usuario una forma de reintroducir cualesquiera datos invalidos. La validacion de
entradas del usuario es una parte esencial de cualquier programa viable desde el punto de vis-
ta comercial; si se hace en forma correcta, protege al programa de intentar procesar datos
que pueden causar problemas de cdlculo. Se vera como proporcionar este tipo de valida-
ci6n después de presentar las instrucciones de seleccion y repeticion de C++ en los capitulos 4
y 5, respectivamente.

Ejercicios 3.4

1. Para las siguientes instrucciones de declaracion, escriba una instruccion con el objeto
cin que cause que la computadora entre en pausa mientras el usuario introduce los
datos apropiados.

int primernum;

double calificacion;

double segundonum;

char valorclave;

int mes, anios;

double promedio;

char ch;

int numl,num2;

double calificacionl, calificacion2;

g. double interés, principal, capital;
double precio, rédito;

Pangd

=h

?Algunos sistemas aceptaran el .68 como la tercera entrada. En todos los casos el Gltimo valor 20 es ignorado.

www.FreelLibros.me

154

CariTuLo 3
h

i.

2. a

b

Asignacion, formateo y entrada interactiva

. char ch, letral, letra2;

int numl,num2,num3;
double templ,temp2,temp3;
double voltiosl, voltios2;

. Escriba un programa en C++ que despliegue primero el siguiente indicador:

Introduzca la temperatura en grados Celsius:

Haga que su programa acepte un valor introducido desde el teclado y convierta la
temperatura introducida a grados Fahrenheit, usando la formula Fabrenbeit = (9.0
/ 5.0) * Celsius + 32.0. Su programa debera desplegar entonces la temperatura en
grados Fahrenheit, usando un mensaje de salida apropiado.

. Compile y ejecute el programa escrito para el ejercicio 2a. Verifique su programa

calculando, en forma manual y luego usando su programa, el equivalente en Fah-
renheit de los siguientes datos de prueba:

Conjunto de datos de prueba 1: 0 grados Celsius
Conjunto de datos de prueba 2: 50 grados Celsius
Conjunto de datos de prueba 3: 100 grados Celsius

Cuando esté seguro que su programa funciona en forma correcta, tselo para com-
pletar la siguiente tabla:

Celsius Fahrenheit

45

50

55

60

65

70

3. Escriba, compile y ejecute un programa en C++ que despliegue el siguiente indicador:

Introduzca el radio de un circulo:

Después de aceptar un valor para el radio, su programa debera calcular y desplegar el
area del circulo. (Sugerencia: drea = 3.1416 * radio*) Con propositos de prueba, ve-
rifique su programa usando una entrada de prueba de un radio de 3 pulgadas. Des-

www.FreelLibros.me

3.4 Entrada de datos al programa usando el objeto cin 155

pués de determinar en forma manual que el resultado producido por su programa es
correcto, use su programa para completar la siguiente tabla:

Radio Area
(pulg.) (pulg.’)
1.0

1.5

2.0

2.5

3.0

3.5

4. a. Escriba, compile y ejecute un programa en C++ que despliegue los siguientes indi-
cadores:

Introduzca las millas recorridas:
Introduzca los galones de gasolina consumidos:

Después que se despliegue cada indicador, su programa debera usar una instruc-
cion cin para aceptar datos desde el teclado para el indicador desplegado. Des-
pués que se haya introducido el nimero de galones de gasolina consumidos, su
programa debera calcular y desplegar las millas por galon obtenidas. Este valor de-
berd ser incluido en un mensaje apropiado y calculado usando a ecuacion millas
por galon = millas/galones consumidos. Verifique su programa usando los siguien-
tes datos de prueba:

Conjunto de datos de prueba 1: Millas = 276, Gasolina = 10 galones
Conjunto de datos de prueba 2: Millas = 200, Gasolina = 15.5 galones

Cuando haya completado su verificacion, use su programa para completar la si-
guiente tabla:

Millas recorridas | Galones consumidos | MPG
250 16.00
2758 18.00
312 19.54
296 17.39

b. Para el programa escrito para el ejercicio 4a, determine cudntas ejecuciones de ve-
rificacion se requieren para asegurar que el programa funciona en forma correcta
y dé una razon que apoye su respuesta.

www.FreelLibros.me

156

CariTuLo 3

5. a.

Asignacion, formateo y entrada interactiva

Escriba, compile y ejecute un programa en C++ que despliegue los siguientes indi-
cadores:

Introduzca un nGmero:

Introduzca un segundo nGmero:
Introduzca un tercer numero:
Introduzca un cuarto nuimero:

Después que se despliega cada indicador, su programa debera usar una instruccion
cin para aceptar un niamero desde el teclado para el indicador desplegado. Después
que se ha introducido el cuarto nimero, su programa debera calcular y desplegar
el promedio de los numeros. El promedio debera incluirse en un mensaje apropia-
do. Verifique el promedio desplegado por su programa usando los siguientes datos
de prueba:

Conjunto de datos de prueba 1: 100, 100, 100, 100
Conjunto de datos de prueba 2: 100, 0, 100, 0

Cuando haya completado su verificacion, use su programa para completar la si-
guiente tabla:

Numeros Promedio

92,98, 79, 85

86, 84,75, 86

63, 85,74, 82

. Repita el ejercicio 5a, asegurandose que usa el mismo nombre de variable, nume-

ro, para cada entrada de nimero. También use la variable suma para la suma de
los ntimeros. (Sugerencia: para hacer esto, puede usar la instruccion suma = su-
ma + numero después que se ha aceptado cada numero. Repase el material so-
bre acumulacion presentado en la seccion 2.3.)

. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el valor de

polinomio de segundo orden ax* + bx + ¢ para valores introducidos por el usuario
de los coeficientes a, b, c y la variable x. Haga que su programa despliegue prime-
ro un mensaje informando al usuario que realizara el programa, y luego desplie-
gue indicadores apropiados para avisar al usuario que introduzca los datos
deseados. (Sugerencia: use un indicador como Introduzca el coeficiente
del término x al cuadrado:)

. Verifique el resultado producido por su programa para el ejercicio 6a usando los

siguientes datos de prueba:

Conjunto de datos de prueba 1: a = 0,6 =0, c =22, x = 56
Conjunto de datos de prueba 2: a =0,b=22,c=0,x=2
Conjunto de datos de prueba 3: a =22, 6=0,c=0,x =2
Conjunto de datos de prueba 4:a=2,b=4,c=5,x=2
Conjunto de datos de prueba 5:a=5,b=-3,c=2,x=1

www.FreelLibros.me

3.4 Entrada de datos al programa usando el objeto cin 157

Cuando haya completado su verificacion, use su programa para completar la si-
guiente tabla:

a b c X valor del polinomio
2.0 17.0 -12.0 1.3
3.2 2.0 15.0 2.5
3.2 2.0 15.0 -2.5
-2.0 10.0 0.0 2.0
-2.0 10.0 0.0 4.0
-2.0 10.0 0.0 5.0
-2.0 10.0 0.0 6.0
5.0 22.0 18.0 8.3
4.2 -16 =20 5.2

7. El nimero de bacterias, B, en un cierto cultivo que es sometido a refrigeracion puede
aproximarse por la ecuacién B = 300000 ¢°-°**, donde e es el ntimero irracional
2.71828 (redondeado a cinco lugares decimales), conocido como ntimero de Euler, y ¢
es el tiempo, en horas, que se ha refrigerado el cultivo. Usando esta ecuacion, escriba,
compile y ejecute un programa simple en C++ que indique al usuario que introduzca
un valor de tiempo, calcule el niimero de bacterias en el cultivo y despliegue el resulta-
do. Con propésitos de prueba, verifique su programa usando una entrada de prueba
de 10 horas. Cuando haya verificado la operacion de su programa, uselo para deter-
minar el nimero de bacterias en el cultivo después de 12, 18, 24, 36, 48 y 72 horas.

8. Escriba, compile y ejecute un programa que calcule y despliegue el valor de la raiz cua-
drada de un namero real introducido por el usuario. Verifique su programa calculan-
do las raices cuadradas de los siguientes datos: 25, 16, 0 y 2. Cuando complete su
verificacion, use su programa para determinar la raiz cuadrada de 32.25, 42, 48, 55,
63y 79.

9. Escriba, compile y ejecute un programa que calcule y despliegue la raiz cuarta de un
numero introducido por el usuario. Recuerde del dlgebra elemental que la raiz cuarta
de un nimero puede encontrarse elevando el numero a la potencia %. (Sugerencia: no
utilice la division de nameros enteros; ¢puede ver por qué?) Verifique su programa
calculando la raiz cuarta de los siguientes datos: 81, 16, 1 y 0. Cuando haya comple-
tado su verificacion, use su programa para determinar la raiz cuarta de 42, 121, 256,
587,1240 y 16 256.

10. Para el circuito en serie mostrado en la figura 3.17, la baja del voltaje, V,, a través del
resistor, R,, y de la potencia, P,, enviada al resistor esta dada por las ecuaciones V, =
IR,y P,=1V, dondeI=E/R; +R,). Usando estas ecuaciones, escriba, compile y
ejecute un programa en C++ que indique al usuario que introduzca los valores de E,

www.FreelLibros.me

158 Carituto 3 Asignacidn, formateo y entrada interactiva

R, y R,, calcule la baja de voltaje y la potencia enviadas a R,, y despliegue los resul-
tados. Verifique su programa usando los datos de prueba: E = 10 voltios, R; = 100
ohmios y R, = 200 ohmios. Cuando haya completado su verificacion, use su progra-
ma para completar la siguiente tabla:

E Rq R,y Baja de voltaje | Potencia enviada
(voltios) | (ohmios) | (ohmios) (voltios) (vatios)
10 100 100
10 100 200
10 200 200
20 100 100
20 100 200
20 200 200
R
E R,

Figura 3.17 Calculo de la baja de voltaje.

11. Escriba, compile y ejecute un programa en C++ que calcule la resistencia combinada
de tres resistores paralelos. Los valores de cada resistor deberian ser aceptados usan-
do una instrucciéon cin (use la formula para la resistencia combinada dada en el ejer-
cicio 9 de la seccion 3.2). Verifique la operacion de su programa usando los siguientes
datos de prueba:

Conjunto de datos de prueba 1: R; = 1000, R, = 1000 y R; = 1000.
Conjunto de datos de prueba 2: R, = 1000, R, = 1500 y R5 = 500.

www.FreelLibros.me

3.4 Entrada de datos al programa usando el objeto cin 159

Cuando haya completado su verificacion, use su programa para completar la siguien-

te tabla:
R1 R2 R3 Resistencia
(voltios) (ohmios) (ohmios) combinada
(ohmios)

3000 3000 3000

6000 6000 6000

2000 3000 1000

2000 4000 5000

4000 2000 1000

10000 100 100

12. Usando instrucciones input, escriba, compile y ejecute un programa en C++ que
acepte las coordenadas (x y y) de dos puntos. Haga que su programa determine y des-
pliegue los puntos medios de los dos puntos (use la férmula dada en el ejercicio 11 de
la seccion 3.2). Verifique su programa usando los siguientes datos de prueba:

Conjunto de datos de prueba 1: Punto 1 = (0, 0) y Punto 2 = (16, 0)
Conjunto de datos de prueba 2: Punto 1 = (0, 0) y Punto 2 = (0, 16)
Conjunto de datos de prueba 3: Punto 1 = (0, 0) y Punto 2 = (=16, 0)
Conjunto de datos de prueba 4: Punto 1 = (0, 0) y Punto 2 = (0, —16)
Conjunto de datos de prueba 5: Punto 1 = (-5, =5) y Punto 2 = (5, 5)

Cuando haya completado su verificacion, use su programa para completar la siguien-

bl

te tabla.
Punto 1 Punto 2 Punto medio
(4, 6) (16, 18)
(22, 3) (8, 12)
(=10, 8) (14, 4)
(=12, 2) (14, 3.1)
(3.1, -6) (20, 16)
(3.1, -6) (-16, -18)

13. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el valor del
flujo de corriente a través de un circuito RC. El circuito consiste en una bateria que
esta conectada en serie a un interruptor, un resistor y un capacitor. Cuando el inte-
rruptor se cierra, la corriente, i, que fluye a través del circuito esta dada por la ecua-
cion:

i = (E/R) e

www.FreelLibros.me

160

CarituLo 3 Asignacion, formateo y entrada interactiva

14.

15.

16.

17.

donde E es el voltaje de la bateria (en voltios), R es la resistencia (en ohmios), T es
la constante de tiempo y ¢ es el tiempo (en segundos) desde que el interruptor fue
cerrado.

El programa debera indicar al usuario que introduzca valores apropiados y use instruc-
ciones de entrada para aceptar los datos. Al construir los indicadores, use instruccio-
nes como Introduzca el voltaje de la bateria. Verifique la operacion de su
programa calculando, en forma manual, la corriente para los siguientes datos de prue-

ba:

Conjunto de datos de prueba 1: Voltaje = 20 voltios, R = 10 ohmios, T = 0.044, ¢ =
0.023 segundos.

Conjunto de datos de prueba 2: Voltaje = 35 voltios = 35, R = 10 ohmios, 1= 0.16, ¢ =
0.067 segundos.

Cuando haya completado su verificacion, use su programa para determinar el valor
de la corriente para los siguientes casos:

Voltaje = 35 voltios, R = 10 ohmios, T = 0.16, ¢ = 0.11 segundos.
. Voltaje = 35 voltios, R = 10 ohmios, T = 0.16, ¢ = 0.44 segundos.
Voltaje = 35 voltios, R = 10 ohmios, T = 0.16, ¢ = 0.83 segundos.
. Voltaje = 15 voltios, R = 10 ohmios, T = 0.55, ¢t = 0.11 segundos.
Voltaje = 15 voltios, R = 10 ohmios, T = 0.55, t = 0.44 segundos.
Voltaje = 15 voltios, R = 10 ohmios, T = 0.55, t = 0.067 segundos.
. Voltaje = 6 voltios, R = 1000 ohmios, T = 2.6, ¢t = 12.4 segundos.

@arpanoTy

El programa 3.12 indica al usuario que introduzca dos nimeros, donde el primer va-
lor introducido es almacenado en numl y el segundo valor es almacenado en num?2.
Usando este programa como punto de partida, escriba un programa que intercambie
los valores almacenados en las dos variables.

Escriba un programa en C++ que indique al usuario que introduzca un nimero. Ha-
ga que su programa acepte el niimero como un entero y lo despliegue de inmediato
usando una llamada al objeto cout. Ejecute su programa tres veces. La primera vez
que ejecute el programa introduzca un numero entero valido, la segunda vez introduz-
ca un numero de precision doble y la tercera vez introduzca un caracter. Usando el
despliegue de salida, vea qué ntimero acept6 en realidad su programa de los datos que
introdujo.

Repita el ejercicio 15 pero haga que su programa declare la variable usada para alma-
cenar el nimero como una variable de precision doble. Ejecute el programa tres ve-
ces. La primera vez introduzca un entero, la segunda vez introduzca un namero de
precision doble y la tercera vez introduzca un caracter. Usando el despliegue de sali-
da, siga la pista de cudl nimero acept6 en realidad su programa de los datos que in-
trodujo. ¢Qué sucedid, y por qué?

a. ¢Por qué cree que los programas de aplicaciones exitosos contienen verificacio-
nes de validez extensas de los datos de entrada? (Sugerencia: revise los ejercicios
16y 17.)

b. ¢Cual piensa que es la diferencia entre una verificacion del tipo de datos y una ve-
rificacion de lo razonable que son esos datos?

¢. Suponga que un programa requiere que el usuario introduzca un dia, mes y afo.
¢Cuales son algunas verificaciones que podria hacer en los datos introducidos?

www.FreelLibros.me

3.5 Constantes simbdlicas 161

/
/
/

37 CONSTANTES SIMBOLICAS

Ciertas constantes usadas dentro de un programa tienen un significado mas general que es re-
conocido fuera del contexto del programa. Los ejemplos de estos tipos de constantes incluyen
el niimero 3.1416, el cual es ® con una precision de cuatro lugares decimales; 32.2 pies/sec?,
lo cual es la constante gravitacional; y el nimero 2.71828, el cual es el numero de Euler con
una precision de cinco lugares decimales.

El significado de otras constantes que aparecen en un programa se define estrictamente
dentro del contexto de la aplicacion que se esta programando. Por ejemplo, al determinar el
peso de objetos de varios tamafios, la densidad del material que se estd usando adquiere un
significado especial. Por si mismos los nimeros de densidad son bastante ordinarios, pero en
el contexto de una aplicacion particular tienen un significado especial. Numeros como éstos
son conocidos a veces por los programadores como numeros magicos. Cuando el mismo nu-
mero magico aparece de manera repetida dentro del mismo programa se vuelve una fuente po-
tencial de error, por lo que se tendra que cambiar la constante. Sin embargo, multiples cambios
estan sujetos a error, con un solo valor que se pase por alto y no sea cambiado, el resultado
obtenido cuando se ejecuta el programa sera incorrecto y la fuente de error dificil de localizar.

Para evitar el problema de tener un niimero magico diseminado en un programa en mu-
chos lugares y permitir la identificacion clara de constantes universales, como ®, C++ permite
al programador darle a estas constantes su propio nombre simbdlico. Entonces, en lugar de
usar el numero en todo el programa, se usa en cambio un nombre simbdlico. Si alguna vez se
tiene que cambiar el nimero, el cambio s6lo necesita hacerse una vez en el punto donde el
nombre simbolico es equiparado con el valor numérico real. Equiparar nimeros con nombres
simbdlicos se logra usando el calificador de declaracion const. El calificador const especi-
fica que el identificador declarado solo puede leerse después que es inicializado; no puede cam-
biarse. Tres ejemplos que usan este calificador son

const double PI = 3.1416;
const double DENSIDAD = 0.238;
const int MAXNUM = 100;

La primera instruccion de declaracion crea una constante de doble precision llamada Pl y la
inicializa con el valor 3.1416, mientras la segunda instruccion de declaracion crea la constan-
te de precision doble llamada DENSIDAD vy la inicializa con 0.238. Por dltimo, la tercera de-
claracion crea una constante entera llamada MAXNUM v la inicializa con el valor 100.

Una vez que se crea e inicializa un identificador const, el valor almacenado en él no pue-
de cambiarse. Por tanto, para propésitos practicos, el nombre de la constante y su valor se
vinculan por la duracién del programa que los declara.

Aunque hemos escrito los identificadores const en letras mayusculas, podrian haberse
usado letras mindsculas. Sin embargo, es comin en C++, usar letras mayusculas para los iden-
tificadores const a fin de identificarlos con facilidad. Luego, siempre que un programador vea
letras mayusculas en un programa, sabra que el valor de la constante no puede cambiarse.

www.FreelLibros.me

162

CarituLo 3 Asignacion, formateo y entrada interactiva

Una vez declarado, puede usarse un identificador const en cualquier instruccion C++ en
lugar del nimero que representa. Por ejemplo, las instrucciones de asignacion

circum = 2 * PI * radio;
peso = DENSIDAD * volumen;

son validas. Por supuesto que estas instrucciones deben aparecer después de las declaraciones
para todas sus variables. En vista que una declaracion const equipara de manera efectiva un
valor constante con un identificador, y el identificador puede ser usado como un reemplazo
directo para su constante inicializada, estos identificadores se conocen por lo general como
constantes simbolicas o constantes nombradas. Se usaran estos términos en forma intercam-

biable.

Colocacion de instrucciones

En esta etapa se han introducido una variedad de tipos de instrucciones. La regla general en
C++ para la colocacion de las instrucciones es tan s6lo que una variable o constante simbdli-
ca debe declararse antes que pueda ser usada. Aunque esta regla permite que tanto las direc-
tivas del preprocesador como las instrucciones de declaracion sean colocadas a lo largo de un
programa, hacerlo asi resultard en una estructura de programa muy pobre. Como una buena
forma de programacion, debera usarse el siguiente orden en las instrucciones:

directivas del preprocesador

int main()
{
constantes simbdlicas
declaraciones de la funcidén principal

otras instrucciones ejecutables

return valor

}

Conforme se introduzcan nuevos tipos de instruccion se expandira esta estructura de coloca-
cion para acomodarlos. Hay que observar que las instrucciones de comentario pueden entre-
mezclarse con libertad en cualquier parte dentro de esta estructura basica.

El programa 3.14 ilustra esta estructura basica y usa una constante simbdlica para calcu-
lar el peso de un cilindro de acero. La densidad del acero es 0.284 Ib/pulg’.

www.FreelLibros.me

3.5 Constantes simbodlicas 163

Programa 3.14

>

0

// Este programa determina el peso de un cilindro de acero

// al multiplicar el volumen del cilindro por su densidad

// E1l volumen del cilindro estd dado por la férmula PI * pow(radio,2) * altura.
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{
const double PI = 3.1416;
const double DENSIDAD = 0.284;
double radio, altura, peso;

cout << "Introduzca el radio del cilindro (en pulgadas): ";
cin >> radio;
cout << "Introduzca la altura del cilindro (en pulgadas): ";
cin >> altura;
weight = DENSIDAD * PI * pow(radio,2) * altura;
cout << setiosflags(ios:: fixed)

<< setiosflags(ios::showpoint)

<< setprecision(4)

<< "El cilindro pesa " << peso << " libras" << endl;

return 0;

Se puede observar en el programa 3.14 que se han definido dos constantes simbdlicas: PI y
DENSIDAD. La siguiente ejecucion se hizo para determinar el peso de un cilindro con un ra-
dio de 3 pulgadas y una altura de 12 pulgadas.

Introduzca el radio del cilindro (en pulgadas): 3
Introduzca la altura del cilindro (en pulgadas): 12
El cilindro pesa 96.3592 libras

www.FreelLibros.me

164

CarituLo 3 Asignacion, formateo y entrada interactiva

La ventaja de usar la constante nombrada PI en el programa 3.14 es que identifica con clari-
dad el valor de 3.1416 en términos reconocibles por la mayoria de las personas. La ventaja de
usar la constante nombrada DENSIDAD es que permite que el programador cambie el valor
de la densidad por otro material sin tener que buscar por todo el programa para ver donde se
usa la densidad. Por supuesto, si van a ser considerados muchos materiales diferentes, la den-
sidad debera cambiarse de una constante simbdlica a una variable. Surge una interrogante na-
tural, entonces, sobre la diferencia entre constantes simbolicas y variables.

El valor de una variable puede alterarse en cualquier parte dentro de un programa. Por
su naturaleza, una constante nombrada es un valor constante que no debe alterarse des-
pués que se ha definido. Nombrar una constante en lugar de asignar el valor a una variable
asegura que el valor en la constante no pueda ser alterada en lo subsiguiente. Siempre que
aparece una constante nombrada en una instruccion tiene el mismo efecto que la constan-
te que representa. Por tanto, DENSIDAD en el programa 3.14 tan solo es otra forma de
representar el numero 0.284. En vista que DENSIDAD y el namero 0.284 son equivalen-
tes, el valor de DENSIDAD no puede cambiarse después dentro del programa. Una vez que
se ha definido DENSIDAD como una constante, una instruccion de asignacion como

DENSIDAD = 0.156;

carece de significado y producird un mensaje de error, porque DENSIDAD no es una varia-
ble. En vista que DENSIDAD es s6lo un sustituto para el valor 0.284, esta instruccion es equi-
valente a escribir la expresion invalida 0.284 = 0.156. Ademas de usar una instruccion const
para nombrar constantes, como en el programa 3.14, esta instruccién también puede utilizar-
se para equiparar el valor de una expresion constante con un nombre simbdlico. Una expre-
sidén constante es una expresion que consta solo de operadores y constantes. Por ejemplo, la
instruccion

const double GRAD A RAD = 3.1416/180.0;

equipara el valor de la expresion constante 3.1416/180.0 con el nombre simbdlico GRAD
A RAD. El nombre simbdlico, como siempre, puede ser usado en cualquier instrucciéon des-
pués de su definicion. Por ejemplo, en vista que la expresion 3.1416/180.0 se requiere para
convertir grados a radianes, el nombre simbdlico seleccionado para este factor de conversion
puede usarse en forma conveniente siempre que se requiera una conversion de este tipo. Por
tanto, en la instruccion de asignacién

altura = distancia * sin(angulo * GRAD A RAD);

la constante simbodlica GRAD_A RAD se usa para convertir el valor de la medida de un angu-
lo en radianes.

Una constante nombrada definida con anterioridad también puede usarse en una instruc-
cion const subsiguiente. Por ejemplo, la siguiente secuencia de instrucciones es valida:

const double PI = 3.1416;
const double GRAD A RAD = PI / 180.0;

En vista que la constante 3.1416 habia sido equiparada con el nombre simbdlico PI, puede
usarse de manera legitima en cualquier definicion subsiguiente, aun dentro de otra instruccion
const. El programa 3.15 usa la constante nombrada GRAD A RAD para convertir un angu-
lo introducido por un usuario, en grados, en su medida equivalente en radianes para que la
use la funcién sin.

www.FreelLibros.me

>

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main()

{

3.5 Constantes simbadlicas 165

>
< U
5; "l

j> < ~Programa 3.15

const double PI = 3.1416;
const double GRAD A RAD = PI/180.0;
double angulo;

cout << "Introduzca el angulo (en grados): ";
cin >> angulo;
cout << setiosflags(ios:: fixed)
<< setiosflags(ios::showpoint)
<< setprecision(4)
<< "El seno del angulo es " << sin(angulo * GRAD A RAD) << endl;

return 0;

La siguiente muestra de ejecucion se hizo usando el programa 3.15.
Introduzca el angulo (en grados): 30
El seno del angulo es 0.5000

Aunque se ha usado el calificador const para construir constantes simbdlicas, este tipo de
datos se encontrard una vez mas en el capitulo 6, donde se mostrara que son ttiles como ar-
gumentos de funcién al asegurar que el argumento no es modificado dentro de la funcion.

Ejercicios 3.5

1. Modifique el programa 3.9 para usar la constante nombrada GRAV en lugar del va-
lor 32.2 usado en el programa. Compile y ejecute su programa para verificar que pro-
duce el mismo resultado mostrado en el texto.

2. Vuelva a escribir el siguiente programa para usar la constante nombrada FACTOR en
lugar de la expresion (5.0/9.0) contenida dentro del programa.

#include <iostream>
using namespace std;

int main()

www.FreelLibros.me

166 Carituto 3 Asignacion, formateo y entrada interactiva

double fahren, celsius;
cout << "Introduzca una temperatura en grados Fahrenheit: ";
cin >> fahren;
celsius = (5.0/9.0) * (fahren - 32.0);
cout << "La temperatura Celsius equivalente es "
<< celsius << endl;

return 0;

}

3. Vuelva a escribir el siguiente programa para usar la constante simbolica PRIMA en
lugar del valor 0.04 contenido dentro del programa.

#include <iostream>
using namespace std;

int main()
{
float prima, cantidad, interés;
prime = 0.04; // tasa de interés de la prima
cout << <Introduzca la cantidad: ";
cin >> cantidad;

interés = prima * cantidad;
cout << "El interés ganado es"
<< interés << " ddbélares" << endl;

return 0;

}

4. Vuelva a escribir el siguiente programa de modo que la variable voltios sea cam-
biada a una constante simbdlica.

#include <iostream>
using namespace std;

int main()

{

double corriente, resistencia, voltios;

voltios = 12;

cout << " Introduzca la resistencia: ";

cin >> resistencia;

corriente = voltios / resistencia;

cout << "La corriente es " << corriente << endl;

return 0;

www.FreelLibros.me

3.6 Aplicaciones 167

3.y APLICACIONES

En esta seccion se presentan dos aplicaciones para ilustrar mds a fondo tanto el uso de la ins-
truccion cin para aceptar datos introducidos por el usuario como el uso de la biblioteca de
funciones para realizar calculos.

Aplicacion 1: Lluvia acida

El uso de carbon como la fuente principal de energia por vapor comenz6 con la Revolucion
Industrial. En la actualidad el carbon es una de las fuentes principales de generacion de ener-
gia eléctrica en muchos paises industrializados.

Desde mediados del siglo xix se ha sabido que el oxigeno usado en el proceso de combus-
tién se combina con el carbono y el azufre en el carbon para producir diéxido de carbono y
dioxido de azufre. Cuando estos gases se liberan en la atmosfera el dioxido de azufre se com-
bina con el agua y el oxigeno en el aire para formar 4cido sulfurico, el cual es transformado
en iones hidronio y sulfatos separados (véase la figura 3.18). Son los iones hidronio en la at-
mosfera que caen a la tierra, como componentes de la lluvia, los que cambian los niveles de
acidez de lagos y bosques.

El nivel de 4cido de la lluvia y lagos se mide en una escala de pH usando la férmula

pH = - log,, (concentracién de iones hidronio)

donde la concentracion de iones hidronio se mide en unidades de moles/litro. Un valor de pH
de 7 indica un valor neutral (ni 4cido ni alcalino), mientras niveles por debajo de 7 indican la
presencia de un acido, y niveles por encima de 7 indican la presencia de una sustancia alcali-
na. Por ejemplo, el acido sulfurico tiene un valor de pH de aproximadamente 1, la lejia tiene
un valor de pH de aproximadamente 13, y el agua de manera tipica tiene un valor de pH de
7. La vida marina por lo general no puede sobrevivir en agua con un nivel de pH por debajo
de 4.

Usando la férmula para el pH, se escribird un programa en C++ que calcula el nivel de
pH de una sustancia con base en un valor introducido por un usuario para la concentracion
de iones hidronio. Usando el procedimiento de desarrollo descrito en la seccion 2.6 tenemos
los siguientes pasos.

Paso 1 Analizar el problema

Aunque el planteamiento del problema proporciona informacion técnica sobre la composi-
cion de la lluvia acida, desde un punto de vista de programacion éste es un problema bastan-
te simple. Aqui sélo se requiere una salida (un nivel de pH) y una entrada (la concentracion
de iones hidronio).

www.FreelLibros.me

168

CarituLo 3 Asignacion, formateo y entrada interactiva

azufre y didxido de carbono + agua
acido ——» sulfatos

y =
oxigeno sulfurico___ hidronio
en el aire iones
lluvia
acida

chimenea

carbon

Figura 3.18 La formacion de lluvia acida.

Paso 2 Desarrollar una solucion

El algoritmo requerido para transformar la entrada en la salida requerida es un uso bastante
sencillo de la férmula del pH que se proporciona. La representacion en seudocddigo del algo-
ritmo completo para introducir los datos de entrada, procesar los datos para producir la sali-
da deseada y desplegar la salida es:

Desplegar un indicador para introducir un nivel de concentracion de iones.
Leer un valor para el nivel de concentracion.

Calcular un nivel de pH usando la formula dada.

Desplegar el valor calculado.

Para asegurar que entendemos la formula usada en el algoritmo, haremos un célculo manual.
El resultado de este calculo puede usarse luego para verificar el resultado producido por el pro-
grama. Suponiendo una concentracion de hidronio de 0.0001 (cualquier valor es util), el nivel
de pH se calcula como —log;, 10™*. Ya sea que sepa que el logaritmo de 10 elevado a una po-

www.FreelLibros.me

SN

#include <iostream>
#include <cmath>
using namespace std;

int main()

{

S
S
>

double hidronio, nivelpH;

cout << "Introduzca la concentracién de iones hidronio: ";
cin >> hidronio;

nivelpH = -logl0O(hidronio);

cout << "El nivel de pH es " << nivelpH << endl;

return 0;

~

3.6 Aplicaciones 169

tencia es la potencia misma, o usando una tabla de logaritmos, el valor de esta expresion es
—(-4) = 4.
Paso 3 Codificar la solucion

El programa 3.16 describe el algoritmo seleccionado en C++. La eleccion de los nombres de
las variables es arbitrario.

~ Programa 3.16

> ~

El programa 3.16 comienza con dos instrucciones de preprocesador #include, seguidos por
la funcion main (). Dentro de main (), una instruccion de declaracion declara dos variables
de punto flotante, hidronio y nivelpH. El programa despliega entonces un indicador so-
licitando datos de entrada del usuario. Después que se despliega el indicador, se usa una ins-
truccion cin para almacenar los datos introducidos en la variable hidronio. Por dltimo, se
calcula un valor para nivelpH, usando la funcion logaritmica de biblioteca, y se despliega.
Como siempre, el programa es terminado con una llave de cierre.

Paso 4 Probar y corregir el programa

Una ejecucion de prueba del programa 3.16 produjo lo siguiente:

Introduzca el nivel de concentracidén de iones hidronio: 0.0001
El nivel de pH es 4

Debido a que el programa realiza un célculo sencillo, y el resultado de esta ejecucion de prue-
ba concuerda con nuestro célculo manual previo, el programa se ha probado por completo.
Ahora puede usarse para calcular el nivel de pH de otras concentraciones de hidronio con con-
fianza en que los resultados producidos son precisos.

www.FreelLibros.me

170

CarituLo 3 Asignacion, formateo y entrada interactiva

Aplicacion 2: Aproximacion a la funcién exponencial

La funcién exponencial ¢, donde e se conoce como el numero de Euler (y tiene el valor

2.718281828459045. . .) aparece muchas veces en descripciones de fenémenos naturales. Por

ejemplo, la descomposicion radiactiva, el crecimiento de la poblacién y la curva normal (en

forma de campana) usada en aplicaciones estadisticas pueden describirse usando esta funcion.
El valor de ¢* puede aproximarse usando la serie'’

x2 xd Xt xS &

1+ g2 X X L x
1 2 6 24 120 720

Usando este polinomio como base, escriba un programa que aproxime e elevado a un valor
de x introducido por un usuario utilizando los primeros cuatro términos de esta serie. Para ca-
da aproximacion despliegue el valor calculado por la funcion exponencial de C++, exp (), el
valor aproximado y la diferencia absoluta entre los dos. Asegtirese de verificar su programa
usando un calculo manual. Una vez que esté completa la verificacion, use el programa para
aproximar e*. Usando el procedimiento de desarrollo descrito en la seccién 2.6 se llevan a ca-

bo los siguientes pasos.

Paso 1 Analizar el problema

El planteamiento del problema especifica que se van a hacer cuatro aproximaciones, usando
uno, dos, tres y cuatro términos del polinomio de aproximacion, respectivamente. Para cada
aproximacion se requieren tres valores de salida: el valor de ¢* producido por la funcién ex-
ponencial, el valor aproximado y la diferencia absoluta entre los dos valores. La figura 3.19
ilustra, en forma simbdlica, la estructura del despliegue de salida requerido.

e* Aproximacién Diferencia
valor de la funcidén en biblioteca ler valor aproximado la diferencia
valor de la funcidén en biblioteca 20 valor aproximado 2a diferencia
valor de la funcién en biblioteca 3er valor aproximado 3a diferencia
valor de la funcidén en biblioteca 4o valor aproximado 4a diferencia

Figura 3.19 Despliegue de salida requerido.

La salida indicada en la figura 3.19 puede usarse para darse una “idea” de como se verd el
programa. Al presentarse que cada linea en el despliegue solo puede ser producida al ejecutar
una instruccioén cout, debera quedar claro que deben ejecutarse cuatro de estas instrucciones.
Ademas, en vista que cada linea de salida contiene tres valores calculados, cada instruccion
cout tendra tres elementos en su lista de expresion.

La unica entrada al programa consiste en el valor de x. Por supuesto, esto requerirda un
solo indicador y una instruccién cin para introducir el valor necesario.

La férmula de la que se deriva ésta es

. ox0 Xt xr X3 x"
= e

ef =+
0! 1 2! 3! n!

www.FreelLibros.me

3.6 Aplicaciones 171

Paso 2 Desarrollar una solucion

Antes que puedan calcularse los elementos de salida, sera necesario hacer que el programa le
indique al usuario que introduzca un valor de x y luego haga que el programa acepte el valor
introducido. El despliegue de salida real consiste de dos lineas seguidas por cuatro lineas de
datos calculados. Las lineas de titulo pueden producirse usando dos instrucciones cout. Aho-
ra veamos cOmo se producen los datos reales que se estan desplegando.

El primer elemento en la primera linea de salida de datos ilustrada en la figura 3.19 pue-
de obtenerse usando la funcion de biblioteca exp (). El segundo elemento en esta linea, la
aproximacion a e, puede obtenerse usando el primer término en el polinomio que se dio en
la especificacion del programa. Por tultimo, el tercer elemento en la linea puede calcularse
usando la funcién de biblioteca abs () en la diferencia entre los primeros dos elementos.
Cuando se calculan todos estos elementos, puede usarse una sola instruccién cout para des-
plegar los tres resultados en la misma linea.

La segunda linea de salida ilustrada en la figura 3.19 despliega el mismo tipo de elemen-
tos que la primera linea, excepto que la aproximacion a e* requiere el uso de dos términos del
polinomio de aproximacion. Hay que observar que ademds que el primer elemento en la se-
gunda linea, el valor obtenido por la funcién exp (), es el mismo que el primer elemento en
la primera linea. Esto significa que este elemento no tiene que recalcularse y tan sélo puede
desplegarse una segunda vez el valor calculado para la primera linea. Una vez que se han
calculado los datos para la segunda linea, puede usarse una sola instruccion cout para des-
plegar los valores requeridos.

Por altimo, s6lo el segundo y tercer elementos en las tltimas dos lineas de salida mostra-
das en la figura 3.19 necesitan recalcularse, en vista que el primer elemento en estas lineas es
el mismo que se calcul6 antes para la primera linea.

Por tanto, para este problema, el algoritmo completo descrito en seudocédigo es

Desplegar un indicador para el valor de entrada de x
Leer el valor de entrada

Desplegar las lineas de encabezado

Calcular el valor exponencial de x usando la funcién exp()
Calcular la primera aproximacion

Calcular la primera diferencia

Imprimir la primera linea de salida

Calcular la sequnda aproximacion

Calcular la sequnda diferencia

Imprimir la sequnda linea de salida

Calcular la tercera aproximacion

Calcular la tercera diferencia

Imprimir la tercera linea de salida

Calcular la cuarta aproximacion

Calcular la cuarta diferencia

Imprimir la cuarta linea de salida

Para asegurar que entendemos el procesamiento usado en el algoritmo se hara un calculo ma-
nual. El resultado de este cdlculo puede utilizarse luego para verificar el resultado producido
por el programa que escribimos. Para propositos de prueba se usara un valor de 2 para x, el
cual produce las siguientes aproximaciones.

Usando el primer término del polinomio la aproximacion es

=1

www.FreelLibros.me

172 CarituLo 3 Asignacion, formateo y entrada interactiva

Usando los primeros dos términos del polinomio la aproximacion es

Usando los primeros tres términos del polinomio la aproximacion es

2
2=3+2_ -5
2

Usando los primeros cuatro términos del polinomio la aproximacion es

3
=5+ 2? = 6.3333

Hay que observar que al usar cuatro términos del polinomio no fue necesario recalcular el va-
lor de los primeros tres términos; en cambio, se usé el valor calculado antes.

Paso 3 Codificar la solucion

El programa 3.17 representa una descripcion del algoritmo seleccionado en C++.

- ~ Programa 3.17

>

// este programa aproxima la funcion e elevada a la potencia x

// usando uno, dos, tres y cuatro terminos de un polinomio de aproximacion
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()
{

double x, val func, aprox, diferencia;

cout << "\nIntroduzca un valor de x: ";
cin >> x;

// imprimir las dos lineas del titulo

cout << " e a la x Aproximacion Diferencia\n";
cout << "—————————— | e \n";
val func = exp(x); // utilizar la funcion de biblioteca

// calcular la primera aproximacion

(continua)

www.FreelLibros.me

3.6 Aplicaciones 173

(Continuacion)

aprox = 1;

diferencia = abs(val_func - aprox);

cout << setw(10) << setiosflags(ios::showpoint) << val_func
<< setw(18) << aprox
<< setw(18) << diferencia << endl;

// calcular la segunda aproximacion
aprox = aprox + X;
diferencia = abs(val_func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val_ func
<< setw(1l8) << aprox
<< setw(1l8) << diferencia << endl;

// calcular la tercera aproximacion
aprox = aprox + pow(x,2)/2.0;
diferencia = abs(val func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val func
<< setw(1l8) << aprox
<< setw(1l8) << diferencia << endl;

// calcular la cuarta aproximacion
aprox = aprox + pow(x,3)/6.0;
diferencia = abs(val_func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val_ func
<< setw(1l8) << aprox
<< setw(18) << diferencia << endl;

return 0;

Al revisar el programa 3.17 se puede observar que el valor de entrada de x se obtiene pri-
mero. Luego se imprimen las dos lineas del titulo antes que se haga cualquier calculo. Lue-
go se calcula el valor de ¢* usando la funcién de biblioteca exp () y se asigna a la variable
val func. Esta asignacion permite que este valor sea usado en los cuatro calculos de dife-
rencias y se despliegue cuatro veces sin necesidad de recalcularse.

En vista que la aproximacion a e se “acumula” usando cada vez mds términos del poli-
nomio de aproximacion, solo se calcula el término nuevo para cada aproximacion y se agre-
ga a la aproximacién previa. Por ultimo, para permitir que las mismas variables se usen de
nuevo, los valores en ellas se imprimen de inmediato antes que se haga la siguiente aproxima-
cion. La siguiente es una muestra de ejecucion producida por el programa 3.17.

www.FreelLibros.me

174

CarituLo 3 Asignacion, formateo y entrada interactiva

Introduzca un valor de x: 2

e a la x Aproximacidn Diferencia
7.38906 1.00000 6.38906
7.38906 3.00000 4.38906
7.38906 5.00000 2.38906
7.38906 6.33333 1.05572

Paso 4 Probar y corregir el programa

Las primeras dos columnas de datos de salida producidos por la muestra de ejecucion con-
cuerdan con nuestro cdlculo manual. Una comprobacion manual de la dltima columna veri-
fica que también contiene en forma correcta la diferencia en valores entre las primeras dos
columnas.

Debido a que el programa sélo ejecuta nueve calculos, y el resultado de la ejecucion de
prueba concuerda con nuestros calculos manuales, parece que el programa se ha probado por
completo. Sin embargo, es importante entender que esto se debe a nuestra eleccion de los da-
tos de prueba. Seleccionar un valor de 2 para x nos oblig6 a verificar que el programa estaba,
de hecho, calculando 2 elevado a las potencias requeridas. Una eleccion de 0 o 1 para nuestro
calculo manual no nos habria proporcionado la verificacién que necesitamos. ¢Puede ver por
qué sucede asi?

Usar estos ultimos dos valores no probaria de manera adecuada si el programa us6 la fun-
cion pow () en forma adecuada, jo ni siquiera si la us6 en absoluto! Es decir, podria haberse
construido un programa incorrecto que no usara la funciéon pow () para producir valores co-
rrectos para = 0 y x = 1, pero no para otros valores de x. Sin embargo, en vista que los datos
de prueba que usamos verifican de manera adecuada el programa, podemos usarlo con con-
fianza en los resultados producidos. Es claro, sin embargo, que la salida demuestra que para
lograr cualquier nivel de precision con el programa se requeririan mas de cuatro términos.

Ejercicios 3.6
1. Introduzca, compile y ejecute el programa 3.16 en su computadora.

2. a. Introduzca, compile y ejecute el programa 3.17 en su computadora.
b. Determine cudntos términos del polinomio de aproximacion deberian usarse para
lograr un error de menos de 0.0001 entre la aproximacién y el valor de e* deter-
minado por la funcién exp ().

3. Por error un estudiante escribi6 el programa 3.17 como sigue:

// este programa aproxima la funcion e elevada a la potencia x

// usando uno, dos, tres y cuatro terminos de un polinomio de aproximacion
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

double x, Val func, aprox, diferencia;

www.FreelLibros.me

3.6 Aplicaciones

// imprimir las dos lineas del titulo
cout << " e a la x Aproximacion Diferencia\n";
cout << Mmoo \n";

cout << "\nIntroduzca un valor de x: ";
cin >> x;
val func = exp(x); // usar la funcion de biblioteca

// calcular la primera aproximacion
aprox = 1;
diferencia = abs(val_func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val func
<< setw(1l8) << aprox
<< setw(1l8) << diferencia << endl;

// calcular la segunda aproximacion
aprox = aprox + Xx;
diferencia = abs(val_func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val func
<< setw(1l8) << aprox
<< setw(1l8) << diferencia << endl;

// calcular la tercera aproximacion
aprox = aprox + pow(x,2)/2.0;
diferencia = abs(val func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val func
<< setw(1l8) << aprox
<< setw(1l8) << diferencia << endl;

// calcular la cuarta aproximacion
aprox = aprox + pow(x,3)/6.0;
diferencia = abs(val_func - aprox);
cout << setw(10) << setiosflags(ios::showpoint) << val func
<< setw(18) << aprox
<< setw(1l8) << diferencia << endl;

return 0;

Determine la salida que producira este programa.

4. El valor de m puede aproximarse con la serie

4 1_14_1_1.’_. ..
3 5 7

175

Usando esta formula, escriba un programa que calcule y despliegue el valor de 1 usan-

do 2, 3 y 4 términos de la serie.

www.FreelLibros.me

176

CarituLo 3 Asignacion, formateo y entrada interactiva

. a. La férmula para la desviacion normal estandar, z, usada en aplicaciones estadisti-

cas €s

donde p se refiere a un valor medio y 6 a una desviacion estandar. Usando esta
formula, escriba un programa que calcule y despliegue el valor de la desviacion
normal estandar cuando x = 85.3, u =80y o = 4.

b. Vuelva a escribir el programa elaborado en el ejercicio 5a para aceptar los valores
de x, L y 6 como entradas del usuario mientras se esta ejecutando el programa.

. a. La ecuacion de la curva normal (en forma de campana) utilizada en aplicaciones

estadisticas es

1 —(%)[(x—u)/ 0]2

= e
oV2T

Usando esta ecuacion, y suponiendo que L = 90 y 6 = 4, escriba un programa que
determine y despliegue el valor de y cuando x = 80.

b. Vuelva a escribir el programa elaborado en el ejercicio 6a para aceptar los valores
de x, L y 6 como entradas del usuario mientras se esta ejecutando el programa.

. a. Escriba, compile y ejecute un programa en C++ que calcule y despliegue el aumen-

to de voltaje de un amplificador de tres etapas a una frecuencia de 1000 Hertz. Los
aumentos de voltaje de las etapas son:

Aumento de la etapa 1: 23/[2.3% + (0.044f)*]"*
Aumento de la etapa 2: 12/[6.7% + (0.34f)%]"*
Aumento de la etapa 3: 17/[1.9% + (0.45f)%]"*

donde f es la frecuencia en Hertz. El aumento de voltaje del amplificador es el pro-
ducto de los aumentos de las etapas individuales.

b. Vuelva a hacer el ejercicio 7a suponiendo que la frecuencia se introducird cuando
el programe esté en ejecucion.

. El volumen de petréleo almacenado en un tanque cilindrico enterrado en el subsuelo

a 200 pies de profundidad esta determinado por la medicion de la distancia de la par-
te superior del tanque a la superficie del petréleo. Conociendo esta distancia y el ra-
dio del tanque, el volumen de petrdleo en el tanque puede determinarse usando la
formula volumen = w radio® (200 — distancia). Usando esta informacion, escriba,
compile y ejecute un programa en C++ que acepte las mediciones del radio y la dis-
tancia, calcule el volumen de petréleo en el tanque y despliegue los dos valores de en-
trada y el volumen calculado. Verifique los resultados de su programa haciendo un
calculo manual usando los siguientes datos de prueba: radio igual a 10 pies y distan-
cia igual a 12 pies.

. El perimetro, el 4drea de superficie aproximada y el volumen aproximado de una al-

berca estan dados por las siguientes formulas:

perimetro = 2(largo + ancho)

volumen = largo * ancho * profundidad promedio

drea de superficie subterranea = 2(largo + ancho)profundidad promedio + largo *
ancho

www.FreelLibros.me

3.7 Errores comunes de programacion 177

Usando estas formulas como base, escriba un programa en C++ que acepte las medi-
das de largo, ancho y profundidad promedio, y luego calcule el perimetro, el volumen
y el area de superficie subterranea de la alberca. Al escribir su programa haga los si-
guientes dos calculos inmediatamente después que se han introducido los datos de en-
trada: largo * ancho y largo + ancho. Los resultados de estos dos célculos deberan
usarse luego, seguin sea apropiado, en las instrucciones de asignacion para determinar
el perimetro, volumen y area de superficie subterranea sin recalcularlas para cada
ecuacion. Verifique los resultados de su programa haciendo un célculo manual
usando los siguientes datos de prueba: largo igual a 25 pies, ancho igual a 15 pies
y profundidad promedio igual a 5.5 pies. Cuando haya verificado que su progra-
ma funciona, dselo para completar la siguiente tabla.

Largo | Ancho | Profundidad | Perimetro | Volumen | Area de superficie subterranea
25 10 5.0
25 10 5.5
25 10 6.0
25 10 6.5
30 12 5.0
30 12 5.5
30 12 6.0
30 12 6.5

; /
#

3.? ERRORES COMUNES DE PROGRAMACION

Al usar el material presentado en este capitulo, esté consciente de los siguientes errores
posibles:

1. Olvidar asignar o inicializar valores para todas las variables antes que éstas se

usen en una expresion. Tales valores pueden ser asignados por instrucciones de
asignacion, ser inicializados dentro de una instruccién de declaracion o asignados
en forma interactiva introduciendo los valores usando el objeto cin.

. Utilizar una funcién matematica de biblioteca sin incluir la declaracion de

preprocesador #include <cmath> (y en un sistema basado en UNIX olvidar
incluir el argumento —-1m en la linea de comandos cc).

. Utilizar una funcién de biblioteca sin proporcionar el nimero correcto de

argumentos que tengan el tipo de datos apropiado.

. Aplicar el operador de incremento o decremento a una expresion. Por ejemplo, la

expresion

(count + n)++

www.FreelLibros.me

178 Carituto 3 Asignacion, formateo y entrada interactiva

/
/

3.8/

1

es incorrecta. Los operadores de incremento y decremento solo pueden aplicarse a
variables individuales.

. Olvidar separar todas las variables transmitidas a cin con un simbolo de

extraccion, >>.

. No estar dispuesto a probar un programa a fondo. Después de todo, en vista que

usted escribid el programa, supone que es correcto o lo habria cambiado antes de
compilarlo. Es dificil en extremo retroceder y probar con honestidad su propio
software. Como programador debera recordar en forma constante que un
programa no es correcto por el solo hecho que usted piense que lo es. Encontrar
errores en su propio programa es una experiencia seria, pero le ayudara a
convertirse en un programador maestro.

. Un error mas exético y menos comun ocurre cuando se usan los operadores de

incremento y decremento con variables que aparecen mas de una vez en la misma
expresion. Este error ocurre debido a que C++ no especifica el orden en el que se
tiene acceso a los operandos dentro de una expresion. Por ejemplo, el valor
asignado a resultado en la instruccién

resultado = i + i++;

es dependiente del compilador. Si su compilador tiene acceso primero al primer
operando, i, la instruccion anterior es equivalente a

result = 2 * i;

i++;

Sin embargo, si su compilador tiene acceso primero al segundo operando, i++, el
valor del primer operando sera alterado antes que se use la segunda vez y el valor
2i + 1 es asignado al resultado. Por consiguiente, como regla general, no use el

operador de incremento o decremento en una expresion cuando la variable sobre la
que opera aparece mas de una vez en la expresion.

RESUMEN DEL CAPITULO

Una expresion es una secuencia de uno o mds operandos separados por operadores.
Un operando es una constante, una variable u otra expresion. Un valor se asocia
con una expresion.

. Las expresiones se evaltan de acuerdo con la precedencia y asociatividad de los

operadores usados en la expresion.

. El simbolo de asignacién, =, es un operador. Las expresiones que usa este operador

asignan un valor a una variable; ademas, la expresion en si adquiere un valor. En
vista que la asignacion es una operacion en C++, son posibles multiples usos del
operador de asignacion en la misma expresion.

www.FreelLibros.me

N

3.8 Resumen del capitulo 179

. El operador de incremento, ++, agrega uno a una variable, mientras el operador de

decremento, ——-, resta uno de una variable. Ambos operadores pueden ser usados
como prefijos o posfijos. En la operacion de prefijo la variable es aumentada

(o disminuida) antes que su valor sea usado. En la operacion de posfijo la variable
es aumentada (o disminuida) después que se usa su valor.

. C++ proporciona funciones de biblioteca para calcular raiz cuadrada, logaritmos y

otros calculos matematicos. Cada programa que utilice una de estas funciones
matematicas debe incluir la instruccion #include <cmath> o tener una
declaracion de funcion para la funcion matematica antes de llamarla.

. Todas las funciones matematicas de biblioteca operan sobre sus argumentos para

calcular un solo valor. Para usar una funcién de biblioteca de manera efectiva, debe
saber lo que hace la funcion, el nombre de la funcion, el nimero y tipos de datos
de los argumentos esperados por la funcion y el tipo de datos del valor devuelto.

Los datos transmitidos a una funcion se llaman argumentos de la funcion. Los
argumentos son transmitidos a una funcién de biblioteca al incluir cada argumento,
separado por comas, dentro de los paréntesis que siguen al nombre de la funcién.
Cada funcion tiene sus propios requisitos para el nimero y tipos de datos de los
argumentos que deben proporcionarse.

8. Las funciones pueden incluirse dentro de expresiones mas grandes.

9. El objeto cin se usa para introducir datos. Este objeto acepta un flujo de datos del

10.

11.

12.

teclado y asigna los datos a variables. La forma general de una instruccion que
utiliza cin es:

cin >> varl >> var2 . . . >> varn;
El simbolo de extraccion, >>, debe usarse para separar los nombres de las variables.

Cuando encuentra una instruccion cin la computadora suspende de manera
temporal la ejecucion de mas instrucciones hasta que se hayan introducido
suficientes datos para el nimero de variables contenidas en la instruccién cin.

Es una buena practica de programacion desplegar un mensaje, antes de una
instruccion cin, que alerte al usuario sobre el tipo y nimero de elementos de datos
que deben introducirse. Dicho mensaje se llama indicador.

Los valores pueden equipararse a una sola constante, usando la palabra clave
const. Esto crea una constante nombrada que es de sélo lectura después que es
inicializada dentro de la instruccion de declaracion. Esta declaracion tiene la sintaxis

const Tipodedatos NombreSimbdolico = valorlnicial;

y permite que se use la constante en lugar del valor inicial en cualquier parte del
programa después de la declaracion.

www.FreelLibros.me

180

CarituLo 3 Asignacion, formateo y entrada interactiva

3.9

UN ACERCAMIENTO MAS A FONDO:!
ERRORES DE PROGRAMACION

El ideal en la programacion es producir programas legibles libres de errores que funcionen en
forma correcta y puedan modificarse o cambiarse con un minimo de pruebas. Puede trabajar
hacia este ideal teniendo en cuenta los diferentes tipos de errores que pueden ocurrir, cudndo
se detectan de manera tipica y como corregirlos.

Puede detectar un error en cuatro formas:

1. Antes que un programa sea compilado

2. Mientras el programa se compila

3. Mientras el programa se ejecuta

4. Después que el programa se ha ejecutado y se ha examinado la salida

Y, por extrafio que parezca, en algunos casos, un error puede no detectarse en absoluto.

El método para detectar errores antes que se compile un programa se llama verificaciéon de
escritorio. La verificacion de escritorio, la cual por lo general se lleva a cabo mientras se encuen-
tra sentado ante un escritorio con el c6digo enfrente de usted, se refiere al proceso de verificar
el codigo fuente en busca de errores inmediatamente después que ha sido mecanografiado.

Los errores detectados por el compilador se conocen de manera formal como errores en
tiempo de compilacién, y los errores que ocurren mientras el programa se ejecuta se conocen
de manera formal como errores en tiempo de ejecucion. Otros nombres para los errores en
tiempo de compilacion son errores de sintaxis y errores de analisis gramatical, términos que
enfatizan el tipo de error que es detectado por el compilador.

En este momento, es probable que haya encontrado numerosos errores en tiempo de com-
pilacién. Aunque los programadores principiantes tienden a frustrarse por ellos, los progra-
madores experimentados entienden que el compilador esta realizando una verificacion valiosa,
y que corregir los errores que detecte el compilador por lo general es facil. Debido a que estos
errores ocurren mientras se estd desarrollando el programa y no mientras un usuario intenta
realizar una tarea importante, nadie excepto el programador sabe que ocurrieron; los arregla
y se van.

Los errores en tiempo de ejecucion son mds problematicos debido a que ocurren mientras
un usuario ejecuta el programa; en la mayor parte de los sistemas comerciales, el usuario no
es el programador. Aunque muchos tipos de errores pueden causar un error en tiempo de eje-
cucién, como una falla en el hardware, desde un punto de vista de programacion la mayor
parte de los errores en tiempo de ejecucion se conocen como errores de logica o 1ogica defec-
tuosa, lo cual abarca no haber pensado lo que el programa deberia hacer o no anticipar c6-
mo un usuario puede hacer que falle el programa. Por ejemplo, si un usuario introduce datos
que producen un intento de dividir un niumero entre cero, ocurre un error en tiempo de ejecu-
ciéon. Como programador, la tnica forma de protegerse contra errores en tiempo de ejecucion
es anticipar todo lo que podria hacer una persona para causar errores y someter su programa
a una prueba rigurosa. Aunque los programadores principiantes tienden a culpar al usuario
por un error causado al introducir datos incorrectos, los profesionales no lo hacen. Entienden
que un error en tiempo de ejecucion es un defecto en el producto final que puede causar da-
fos a la reputacion del programa y el programador.

Para prevenir errores en tiempo de compilacion y en tiempo de ejecucion, es mas fructife-
ro distinguir entre ellos basindose en lo que los causa. Como se ha sefialado, los errores de

www.FreelLibros.me

3.9 Un acercamiento mas a fondo: Errores de programacion 181

compilacion también se llaman errores de sintaxis, lo cual se refiere a errores en la estructura
u ortografia de una instruccion. Por ejemplo, examine las siguientes instrucciones:

cout << "Hay cuatro errores de sintaxis aquiln
cot " Puede encontralos";

Contienen cuatro errores de sintaxis. Estos errores son los siguientes:
1. Faltan las comillas que cierran en la linea 1.
2. Falta un punto y coma para terminar en la linea 1.
3. La palabra clave cout esta mal escrita en la linea 2.
4. Falta el simbolo de insercion, <<, en la linea 2.

Todos estos errores seran detectados por el compilador cuando el programa es compilado. Es-
to sucede con todos los errores de sintaxis porque violan las reglas basicas de C++; si no son
descubiertos por la verificacion de escritorio, el compilador los detecta y despliega un mensa-
je de error.'" En algunos casos, el mensaje de error es claro y el error es obvio; en otros casos,
se requiere un poco de trabajo detectivesco para entender el mensaje de error desplegado por
el compilador. Debido a que los errores de sintaxis son el unico tipo de error que puede detec-
tarse en el momento de la compilacion, los términos errores en tiempo de compilacion y erro-
res de sintaxis se usan de manera indistinta. En sentido estricto, sin embargo, tiempo de
compilacion se refiere al momento en que se detecta el error y sintaxis se refiere al tipo de error
detectado.

El error en la palabra “encontralos” en la segunda instruccion no es un error de sintaxis.
Aunque este error de ortografia producird que se despliegue una linea de salida indeseable, no
es una violacion de las reglas sintacticas de C++. Es un error tipografico, conocido por lo co-
mun como “error de dedo”.

Un error logico puede causar un error en tiempo de ejecucion o producir resultados in-
correctos. Estos errores se caracterizan por una salida erronea, inesperada o involuntaria que
es un resultado directo de algin defecto en la logica del programa. Estos errores, los cuales
nunca son detectados por el compilador, pueden detectarse en la verificacion de escritorio, al
probar el programa, por accidente cuando un usuario obtiene una salida errénea mientras el
programa se estd ejecutando, o no detectarse en absoluto. Si el error es detectado mientras
el programa esta en ejecucion, puede ocurrir un error en tiempo de ejecucion que produce
que se genere un mensaje de error, la terminacion prematura del programa, o ambos.

El error de l6gica mas grave es causado por una comprension incorrecta de los requeri-
mientos totales del programa, debido a que la lgica dentro de un programa se refleja en la
logica con la que es codificado. Por ejemplo, si el propésito de un programa es calcular
la fuerza de soporte de carga de una viga de acero y el programador no entiende por com-
pleto como se va a hacer el cilculo, qué entradas son necesarias para realizar el calculo o
qué condiciones especiales existen (como la forma en que la temperatura afecta a la viga),
ocurrird un error de logica. Debido a que estos errores no son detectados por el compilador
y con frecuencia pueden pasarse por alto en el tiempo de ejecucion, siempre son mas difici-
les de detectar que los errores de sintaxis. Si son detectados, un error de logica de manera
tipica aparece en una de dos formas predominantes. En un caso, el programa se ejecuta has-

11Sin embargo, puede ser que no se detecten todos al mismo tiempo. Con frecuencia, un error de sintaxis enmascara a otro error,
y el segundo error es detectado después que se corrige el primer error.

www.FreelLibros.me

182

CarituLo 3 Asignacion, formateo y entrada interactiva

ta completarse pero produce resultados incorrectos. Por lo general, los errores de logica de
este tipo son revelados por lo siguiente:

¢ No hay salida. Esto es causado por una omision en una instruccion de salida o una
secuencia de instrucciones que elude de manera inadvertida una instruccion de
salida.

e Salida poco atractiva o mal alineada. Esto es causado por un error en una instruc-
cion de salida.

¢ Resultados numéricos incorrectos. Esto es causado por valores incorrectos asignados
a las variables usadas en una expresion, el uso de una expresion aritmética
incorrecta, una omision de una instruccion, un error de redondeo o el uso de una
secuencia de instrucciones inapropiada.

Una segunda forma en que se revelan los errores de légica es causando un error en tiempo de
ejecucion. Son ejemplos de este tipo de error de légica son los intentos de dividir entre cero u
obtener la raiz cuadrada de un niimero negativo.

Debera planear la prueba de su programa cuidadosamente para maximizar la posibilidad
de localizar errores. Siempre tenga en cuenta que aunque una sola prueba puede revelar la pre-
sencia de un error, no verifica la ausencia de otro error. Es decir, el hecho que un error sea re-
velado por la prueba, no indica que otro error no esté al acecho en alguna otra parte en el
programa; ademas, el hecho que una prueba no revele errores no significa que no haya errores.

Sin embargo, una vez que descubre un error debe localizar donde ocurre y arreglarlo. En
jerga de computacion, un error de programa se conoce como bug, y el proceso de aislar, co-
rregir y verificar la correccion se llama depuracion.'?

Aunque no existen reglas inflexibles para aislar la causa de un error, pueden aplicarse al-
gunas técnicas utiles. La primera de éstas es una técnica preventiva. Con frecuencia, muchos
errores son introducidos por el programador por la premura de codificar y ejecutar un pro-
grama antes de entender qué se requiere y como se va a lograr el resultado. Un sintoma de
esta prisa por introducir un programa en la computadora es la falta de un esbozo del progra-
ma propuesto o la falta de una comprension detallada de lo que se requiere en realidad. Mu-
chos errores pueden eliminarse al verificar en el escritorio una copia del programa antes de
introducirlo o compilarlo.

Una segunda técnica util es imitar a la computadora y ejecutar cada instruccion en forma
manual, como lo haria la computadora. Esto significa escribir cada variable, tal como se en-
cuentra en el programa, y enumerar el valor que deberia almacenarse en la variable conforme
se encuentre cada entrada e instruccion de asignacion. Hacer esto agudiza sus habilidades de
programacion porque requiere que entienda lo que causa que suceda cada instruccion en su
programa. Esta verificacion se llama rastreo del programa.

Una tercera técnica de depuracion poderosa es incluir algin codigo temporal en su pro-
grama que despliegue los valores de variables selectas. Si los valores desplegados son incorrec-
tos, puede determinar qué parte de su programa los generé y hacer las correcciones necesarias.

12La derivacion de este término es interesante. Cuando un programa dej6 de ejecutarse en la computadora MARK 1, en la Uni-
versidad de Harvard, en septiembre de 1945, el mal funcionamiento fue rastreado hasta un insecto muerto que habia entrado en
los circuitos eléctricos. La programadora, Grace Hopper, registré el incidente en su bitdcora como “Primer caso real de bug (in-
secto) encontrado”.

www.FreelLibros.me

3.9 Un acercamiento mas a fondo: Errores de programacion 183

En la misma manera, podria agregar cdigo temporal que despliegue los valores de todos
los datos de entrada. Esta técnica se conoce como impresién en eco y es util para establecer
que el programa esta recibiendo en forma correcta e interpretando en forma correcta los da-
tos de entrada.

La mds poderosa de todas las técnicas de depuracion y rastreo es usar un programa es-
pecial llamado depurador. Un programa depurador puede controlar la ejecucion de un pro-
grama en C++, puede interrumpir el programa C++ en cualquier punto de su ejecucion y
desplegar los valores de todas las variables en el punto de interrupcion.

Por dltimo, ninguna exposicion de la depuracion esta completa sin mencionar el ingre-
diente primario necesario para el aislamiento y correccion exitosa de los errores. Es la actitud
y espiritu con que se emprende la tarea. Después de escribir un programa, es natural que su-
ponga que es correcto. Es dificil retroceder y probar honestamente y encontrar errores en su
propio software. Como programador, debe recordar en forma constante que un programa no
es correcto solo porque usted piensa que lo es. Encontrar errores en su propio programa es
una experiencia seria, pero le ayudara a que se convierta en un programador maestro. El pro-
ceso puede ser emocionante y divertido si lo enfoca como una deteccién de problemas con us-
ted como el detective maestro.

[
Consideracion de opciones de carrera
Y bk b AR

Ingenieria mecanica

En general, los ingenieros mecdnicos trabajan con maquinas o sistemas que producen o aplican ener-
gia. El rango de actividades tecnoldgicas que se consideran parte de la ingenieria mecdnica quizas es
mas amplio que en cualquier otro campo de la ingenieria. El campo puede subdividirse mas o menos
en cuatro categorias.

1. Energia. Disenio de maquinas y sistemas generadores de energia como quemadores y turbinas
para generar electricidad, energia solar, sistemas de calefaccion e intercambio de calor.

2. Disefio. Disefio innovador de partes o componentes de maquinas desde los mas intrincados y
pequefios hasta los gigantescos. Por ejemplo, los ingenieros mecanicos trabajan al lado de los in-
genieros eléctricos para disefiar sistemas de control automatico como los robots.

3. Automotriz. Disefio y prueba de vehiculos de transporte y las maquinas usadas para fabricarlos.

4. Calefaccion, ventilacion, aire acondicionado y refrigeracion. Disefio de sistemas para controlar
nuestro ambiente tanto en interiores como en exteriores y para controlar la contaminacion.

Los ingenieros mecanicos por lo general tienen estudios s6lidos en materias como termodindmica,
transferencia de calor, estatica y dinimica y mecanica de fluidos.

www.FreelLibros.me

www.FreelLibros.me

