
CCAPÍTULOAPÍTULO 6
TEMAS

6.1 DECLARACIONES DE FUNCIONES Y PARÁMETROS
PROTOTIPOS DE FUNCIÓN FUNCIONES CON LISTAS DE PARÁMETROS VACÍAS

LLAMADA A UNA FUNCIÓN ARGUMENTOS POR OMISIÓN

DEFINICIÓN DE UNA FUNCIÓN REUTILIZACIÓN DE NOMBRES DE FUNCIÓN

COLOCACIÓN DE INSTRUCCIONES (SOBRECARGA)
CABOS DE FUNCIÓN PLANTILLAS DE FUNCIÓN

6.2 DEVOLVER UN SOLO VALOR
FUNCIONES inline

6.3 DEVOLVER VALORES MÚLTIPLES
TRANSMISIÓN Y USO DE PARÁMETROS DE REFERENCIA

6.4 APLICACIONES
APLICACIÓN 1: CONVERSIÓN DE COORDENADAS RECTANGULARES A POLARES

APLICACIÓN 2: SIMULACIÓN

6.5 ALCANCE DE UNA VARIABLE
OPERADOR DE RESOLUCIÓN DE ALCANCE

MAL USO DE LAS VARIABLES GLOBALES

6.6 CLASES DE ALMACENAMIENTO DE VARIABLES
CLASES DE ALMACENAMIENTO DE VARIABLES LOCALES

CLASES DE ALMACENAMIENTO DE VARIABLES GLOBALES

6.7 ERRORES COMUNES DE PROGRAMACIÓN

6.8 RESUMEN DEL CAPÍTULO
CONSIDERACIÓN DE OPCIONES DE CARRERA: INGENIERÍA QUÍMICA

Los programas profesionales se diseñan, codifican y prueban en forma muy parecida
al hardware: como una serie de módulos que están integrados para funcionar en con-
junto. Una buena analogía de esto es un automóvil en el cual un módulo fundamen-
tal es el motor, otro es la transmisión, un tercero el sistema de frenos, un cuarto la
carrocería, etc. Cada uno de estos módulos está vinculado entre sí y colocado al final
bajo el control del conductor, el cual puede compararse con un supervisor o un mó-
dulo principal de un programa. El conjunto opera ahora como una unidad comple-
ta, capaz de hacer trabajo útil, como llevarnos a la tienda. Durante el proceso de
montaje, cada módulo se construye, prueba y se encuentra libre de defectos en forma
individual antes de ser instalado en el producto final.

6

299

Modularidad con el uso de funcionesModularidad con el uso de funciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones300

Ahora piense en lo que podría hacer si quisiera mejorar el desempeño de su automóvil. Po-
dría alterar el motor existente o eliminarlo por completo y armar un motor nuevo. Del mismo
modo, podría cambiar la transmisión o las llantas o los amortiguadores, haciendo cada modi-
ficación en forma individual conforme se lo permitan su tiempo y su presupuesto. En cada ca-
so, la mayor parte de los otros módulos pueden permanecer igual, pero el automóvil ahora
opera en forma diferente.

En esta analogía, cada uno de los componentes principales de un automóvil puede compa-
rarse con una función. Por ejemplo, el conductor llama al motor cuando se oprime el pedal del
acelerador. El motor acepta entradas de combustible, aire y electricidad para convertir la solici-
tud del conductor en un producto útil, potencia, y luego envía esta salida a la transmisión para
su procesamiento adicional. La transmisión recibe la salida del motor y la convierte en una for-
ma que pueda ser usada por el eje de transmisión. Una entrada adicional a la transmisión es la
selección de velocidades por parte del conductor (primera, reversa, neutral, etcétera).

En cada caso, el motor, la transmisión y otros módulos sólo “conocen” el universo limitado
por sus entradas y salidas. El conductor no necesita saber nada de la operación interna del mo-
tor, transmisión, aire acondicionado y otros módulos que se están controlando. Todo lo que re-
quiere es comprender qué hace cada unidad y cómo usarla. El conductor tan sólo “llama” a un
módulo, como el motor, los frenos, el aire acondicionado y la dirección cuando se requiere la sa-
lida de ese módulo. La comunicación entre módulos está restringida a pasar las entradas necesa-
rias a cada módulo conforme se le llame a ejecutar su tarea, y cada módulo opera en forma interna
de una manera relativamente independiente. Este mismo enfoque modular es usado por los inge-
nieros para crear y mantener programas confiables en C++ usando funciones.

Como se ha visto, cada programa en C++ debe contener una función main(). Además de
esta función requerida, los programas en C++ también pueden contener cualquier cantidad
de funciones adicionales. En este capítulo se aprenderá cómo escribir estas funciones, transmi-
tirles datos, procesar los datos transmitidos y devolver un resultado.

6.1 DECLARACIONES DE FUNCIONES Y PARÁMETROS

Al crear funciones en C++, debemos poner atención a la función en sí y en la forma en que
interactúa con otras funciones, como main(). Esto incluye transmitir datos en forma co-
rrecta a una función cuando es invocada y devolver valores de una función. En esta sec-
ción se describe la primera parte de la interfaz, transmitir datos a una función y hacer que
la función reciba, almacene y procese en forma correcta los datos transmitidos.

Como ya se ha visto con las funciones matemáticas, una función se invoca, o utiliza,
dando el nombre de la función y transmitiéndole datos, como argumentos, en el parénte-
sis que sigue al nombre de la función (véase la figura 6.1).

Figura 6.1 Llamar y transmitir datos a una función.

nombre-de-la-función (datos transmitidos a la función)

Esto identifica a la
función llamada

Esto transmite datos
a la función

www.FreeLibros.me

La función invocada debe ser capaz de aceptar los datos que le son transmitidos por la
función que hace la llamada. Sólo después que la función invocada recibe con éxito los da-
tos pueden ser manipulados éstos para producir un resultado útil.

Para aclarar el proceso de envío y recepción de datos, considérese el programa 6.1, el
cual invoca a una función nombrada encontrarMax(). El programa, como se muestra, no
está completo todavía. Una vez que se escribe la función encontrarMax() y se incluye en
el programa 6.1, el programa completado, consistente en las funciones main() y encon-
trarMax(), puede ser compilado y ejecutado.

Examinemos la declaración y llamada de la función encontrarMax() desde main().
Luego vamos a escribir encontrarMax() para aceptar los datos que se le transmiten y
determinar el valor mayor o máximo de los dos valores transmitidos.

La función encontrarMax() se conoce como la función llamada, en vista que es
llamada o invocada a la acción por su referencia en main(). La función que hace la lla-
mada, en este caso main(), se conoce como la función que llama. Los términos llama-
da y que llama vienen del uso del teléfono estándar, donde una persona llama a otra. La
persona que inicia la llamada se conoce como quien llama, y quien la recibe es la persona
llamada. Los mismos términos describen las llamadas a la función. La función llamada, en
este caso encontrarMax(), es declarada como una función que espera recibir dos nú-
meros enteros y no devolver ningún valor (void) a main(). Esta declaración se conoce
de manera formal como un prototipo de función. La función es invocada entonces por la
última instrucción en el programa.

Programa 6.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

void encontrarMax(int, int); // la declaracion de la funcion (prototipo)

intƒmain()
{
ƒƒint primernum, segundonum;

ƒƒcout << “\nIntroduzca un numero: ”;
ƒƒcin >> primernum;
ƒƒcout << “¡Estupendo! Por favor introduzca un segundo numero: ”;
ƒƒcin >> segundonum;

ƒƒencontrarMax(primernum, segundonum); // aquí se llama la funcion

ƒƒreturnƒ0;
}

6.1 Declaraciones de funciones y parámetros 301

www.FreeLibros.me

Prototipos de función

Antes que una función pueda ser llamada, debe ser declarada la función que hará la lla-
mada. La instrucción de declaración para una función se conoce como un prototipo de
función. El prototipo de función le indica a la función que llama el tipo de valor que se-
rá devuelto formalmente, si es que hay alguno, y el tipo de datos y orden de los valores
que la función que llama deberá transmitir a la función llamada. Por ejemplo, el prototi-
po de función usado antes en el programa 6.1

void encontrarMax(int, int);

declara que la función encontrarMax() espera que se le envíen dos valores enteros, y
que esta función particular devuelve de manera formal ningún valor (void). Los prototipos
de función pueden colocarse con las instrucciones de declaración de variable de la función
que llama, encima del nombre de la función que llama, como en el programa 6.1, o en un
archivo de encabezado separado que se incluirá utilizando una instrucción de preprocesa-
miento #include. Por tanto, el prototipo de función para encontrarMax() podría ha-
berse colocado antes o después de la instrucción #include <iostream>, antes de
main() o dentro de main(). (Las razones para la elección de la colocación se presentan
en la sección 6.3.) La forma general de las instrucciones de prototipo de función es:

tipo-de-datos-a-devolver nombre-de-función (lista de tipos de datos para los argumentos);

donde el tipo de datos se refiere al tipo del valor que será devuelto de manera formal por
la función. Son ejemplos de prototipos de función

intƒfmax(int,ƒint);
double intercambio(int, char, char, double);
void desplegar(double, double);

El prototipo de función para fmax() declara que esta función espera recibir dos argumentos
en número entero y devolverá de manera formal un valor en número entero. El prototipo de
función para intercambio() declara que esta función requiere cuatro argumentos consis-
tentes en un número entero, dos caracteres y un argumento de precisión doble, en este orden
y formalmente retornará un número de precisión doble. Por último, el prototipo de función
para desplegar() declara que esta función requiere dos argumentos de precisión doble y
no devuelve ningún valor. Dicha función podría ser utilizada para desplegar los resultados de
un cálculo en forma directa, sin devolver ningún valor a la función llamada.

El uso de prototipos de función permite la verificación de errores en los tipos de datos
por el compilador. Si el prototipo de función no concuerda con los tipos de datos definidos
cuando se escribe la función, ocurrirá una advertencia del compilador. El prototipo también
sirve para otra tarea: asegura la conversión de todos los argumentos transmitidos a la función
al tipo de datos del argumento declarado cuando se llama la función.

Llamada a una función

Llamar a una función es una operación bastante fácil. Los únicos requisitos son usar el nom-
bre de la función y que los datos transmitidos a la función estén encerrados dentro de los pa-
réntesis que siguen al nombre de la función usando el mismo orden y tipo que se declaró en
el prototipo de función. Los elementos encerrados dentro de los paréntesis se llaman argu-
mentos de la función llamada (véase la figura 6.2).

CAPÍTULO 6 Modularidad con el uso de funciones302

www.FreeLibros.me

Figura 6.2 Llamar a encontrarMax() y transmitirle dos valores.

Si una variable es uno de los argumentos en una llamada la función, la función llamada
recibe una copia del valor almacenado en la variable. Por ejemplo, la instrucción encon-
trarMax(primernum, segundonum); invoca a la función encontrarMax y causa
que los valores que residen en la actualidad en las variables primernum y segundonum
sean transmitidos a encontrarMax(). Los nombres de variable entre paréntesis son ar-
gumentos que proporcionan valores a la función llamada. Después que se transmiten los
valores, el control es transferido a la función llamada.

Como se ilustra en la figura 6.3, la función encontrarMax() no recibe las variables
nombradas primernum y segundonum y no tiene conocimiento de estos nombres de varia-
bles.1 La función tan sólo recibe los valores en estas variables y debe determinar por sí misma
dónde almacenarlos antes de hacer algo más. Aunque este procedimiento para transmitir da-
tos a una función puede parecer sorprendente, en realidad es un procedimiento de seguridad
para que una función invocada no cambie de manera inadvertida los datos almacenados en
una variable. La función obtiene una copia de los datos que va a usar. Puede cambiar su co-
pia y, por supuesto, cambiar cualesquiera variables declaradas dentro de sí misma. Sin embar-
go, a menos que se den pasos específicos para hacerlo, no se le permite a una función cambiar
el contenido de las variables declaradas en otras funciones.

Figura 6.3 encontrarMax() recibe valores actuales.

Ahora comenzaremos a escribir la función encontrarMax() para procesar los valores
que se le transmitieron.

encontrarMax (primernum, segundonum);

o
b

te
n

er
 e

l v
al

o
r

almacenado en
segundonum

un valoro
b

te
n

er
 e

l v
al

o
r

almacenado en primernum

un valor
la variable
primernum

Enviar el
valor a

encontrarMax()

la variable
segundonum

Enviar el
valor a

encontrarMax()

encontrarMax (primernum, segundonum);

Esto causa que se
transmitan dos valores
a encontrarMax()

Esto identifica
a la función

encontrarMax()

6.1 Declaraciones de funciones y parámetros 303

1En la sección 6.3 se verá cómo, al usar variables de referencia, C++ permite también el acceso directo a las variables de
la función que invoca.

www.FreeLibros.me

Definición de una función

Una función se define cuando se escribe. Cada función es definida una vez (es decir, escri-
ta una vez) en un programa y puede ser usada entonces por cualquier otra función en el
programa que la declare en forma adecuada.

Como la función main(), toda función en C++ consta de dos partes, un encabe-
zado de función y un cuerpo de función, como se ilustra en la figura 6.4. El propósi-
to del encabezado de función es identificar el tipo de datos del valor devuelto por la
función, proporcionarle un nombre a la función y especificar el número, orden y tipo
de los argumentos esperados por ella. El propósito del cuerpo de función es operar so-
bre los datos transmitidos y devolver en forma directa, cuando mucho, un valor a la
función que llama. (En la sección 6.3, se verá, cómo puede hacerse que una función de-
vuelva múltiples valores.)

Figura 6.4 Formato general de una función.

El encabezado de función siempre es la primera línea de una función y contiene el tipo de
valor devuelto de la función, su nombre y los nombres y tipos de datos de sus argumen-
tos. En vista que encontrarMax() no devolverá de manera formal ningún valor y reci-
birá dos argumentos en número entero, puede usarse la siguiente línea de encabezado:

Los nombres de argumento en el encabezado se conocen como parámetros formales de la
función.2 Por tanto, el parámetro x se usará para almacenar el primer valor transmitido a
encontrarMax() y el parámetro y se utilizará para almacenar el segundo valor transmi-
tido en el momento de la llamada a la función. La función no sabe de dónde provienen los
valores cuando se hace la llamada desde main(). La primera parte del procedimiento de
llamada ejecutado por la computadora implica ir a las variables primernum y segun-
donum y recuperar los valores almacenados. Estos valores son transmitidos luego a en-
contrarMax() y almacenados al final en los parámetros x y y (véase la figura 6.5).

void encontrarMax(int x, int y) sin punto y coma

 línea de encabezado de función

 {

}

Encabezado de función

Cuerpo de función
declaraciones de constante y
variable; cualquier otra
instrucción de C++;

CAPÍTULO 6 Modularidad con el uso de funciones304

2La porción del encabezado de función que contiene el nombre de la función y los parámetros se conoce de manera formal
como un declarador de función.

www.FreeLibros.me

Figura 6.5 Almacenar valores en parámetros.

El nombre de la función y todos los nombres de parámetros en el encabezado, en este ca-
so encontrarMax, x y y, son elegidos por el programador. Pueden usarse los nombres
seleccionados de acuerdo con las reglas usadas para elegir nombres de variables. Todos los
parámetros enumerados en la línea de encabezado de la función deben separarse con co-
mas y deben tener los tipos de datos individuales declarados por separado.

Ahora que hemos escrito el encabezado de función para la función encontrar-
Max(), se puede construir su cuerpo. Supongamos que la función encontrarMax() se-
lecciona y despliega el más grande de los dos números que se le transmiten.

Como se ilustra en la figura 6.6, un cuerpo de función comienza con una llave de aper-
tura, {, contiene las declaraciones necesarias y otras instrucciones de C++, y termina con
una llave de cierre, }. Esto debería serle familiar porque es la misma estructura usada en
todas las funciones main() que se han escrito. Esto no debería ser sorpresa porque
main() en sí es una función y debe apegarse a las reglas requeridas para construir todas
las funciones legítimas.

{
declaraciones de constantes simbólicas,
declaraciones de variables y otras
instrucciones de C++

}

Figura 6.6 Estructura de un cuerpo de función.

el parámetro
nombrado x

el parámetro
nombrado y

encontrarMax(int x, int y)

Se transmite el valor
en primernum

Se transmite el valor
en segundonum

encontrarMax(primernum, segundonum); Esta instrucción
lama a encontrarMax()

6.1 Declaraciones de funciones y parámetros 305

www.FreeLibros.me

En el cuerpo de la función encontrarMax(), se declarará una variable para almacenar
el máximo de los dos números transmitidos a ella. Entonces se usará una instrucción
if-else para encontrar el máximo de los dos números. Por último, se usará una instruc-
ción cout para desplegar el máximo. La definición de función completa para la función
encontrarMax() es:

void encontrarMax(int x, int y)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicio del cuerpo de funcion
ƒƒint numMax;ƒƒƒƒƒƒ//ƒdeclaración de variable
ƒƒ
ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒnumMaxƒ=ƒx;
ƒƒelse
ƒƒƒƒnumMaxƒ=ƒy;

ƒƒcoutƒ<<ƒ"\nEl máximo de los dos números esƒ"ƒ
ƒƒƒƒƒƒƒ<<ƒnumMaxƒ<<ƒendl;

}ƒƒ//ƒfin del cuerpo de funcion y fin de la funcion

Definiciones de función y prototipos de función

tipo-de-datos-que-devuelve nombre-de-funcion (lista de parámetros)
{
ƒƒdeclaraciones de constantes
ƒƒdeclaraciones de variables

ƒƒotras instrucciones de C++

ƒƒreturn valor
}

tipo-de-datos-que-devuelve nombre-de-funcion (lista de tipos de
datos de los parámetros);

Punto de Información

Como tal, el prototipo junto con comentarios previos y posteriores a la condición (véase el
siguiente recuadro Punto de información) deberán proporcionar al usuario toda la información de
programación necesaria para invocar a la función con éxito.

En general, todos los prototipos de funciones se colocan al principio del programa, y todas
las definiciones se colocan después de la función main(). Sin embargo, esta colocación puede
cambiarse. El único requisito en C++ es que una función no puede ser llamada antes que haya
sido declarada o definida.

Cuando se escribe una función, se crea de manera formal una definición de función. Cada defi-
nición comienza con una línea de encabezado que incluye una lista de parámetros, si es que hay
alguna, encerrada entre paréntesis y termina con la llave de cierre que finaliza el cuerpo de
función. Los paréntesis se requieren use o no algún parámetro la función. Una sintaxis utilizada
por lo común para una definición de función es:

Un prototipo de función declara una función. La sintaxis de un prototipo de función, el cual
proporciona el tipo de datos que devuelve la función, el nombre de la función y la lista de
argumentos de la función es:

CAPÍTULO 6 Modularidad con el uso de funciones306

www.FreeLibros.me

Nótese que las declaraciones de parámetros se hacen dentro de la línea de encabezado y
la declaración de variables se hace inmediatamente después de la llave de apertura del
cuerpo de función. Ello está de acuerdo con el concepto que los valores de parámetro son
transmitidos a una función desde fuera de la función, y que las variables son declaradas y
se les asignan valores desde dentro del cuerpo de función.

El programa 6.2 incluye la función encontrarMax() dentro del código del progra-
ma enlistado antes en el programa 6.1.

El programa 6.2 puede usarse para seleccionar e imprimir el máximo de dos números
enteros cualesquiera introducidos por el usuario. A continuación se ve una muestra de la
ejecución del programa 6.2:

Introduzca un número: 25
¡Estupendo! Por favor introduzca un segundo número: 5

El máximo de los dos números es 25

La colocación de la función encontrarMax() después de la función main() en el pro-
grama 6.2 es cuestión de elección. Por lo general enlistaremos primero main() porque es
la función conductora que le dará a cualquiera que lea el programa una idea de lo que se
refiere el programa completo antes de encontrar los detalles de cada función. Sin embar-
go, en ningún caso puede colocarse la definición de encontrarMax() dentro de
main(). Esto es verdad para todas las funciones de C++, las cuales deben definirse por
sí mismas fuera de cualquier otra función. Cada función en C++ es una entidad separada
e independiente con sus propios parámetros y variables; nunca se permite el anidamiento
de funciones.

Punto de información

bool bisiesto(int)

//ƒCondiciones previas: los numeros enteros deben representar un año en un formato

//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒde cuatro digitos, como 2006

//ƒCondiciones posteriores: debe devolver un valor de verdadero si el año
 es bisiesto;

//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒde lo contrario se devolvera falso

Punto de información

Los comentarios de las condiciones previas y posteriores deberán incluirse tanto en los prototipos
de función como en las definiciones de función siempre que se necesiten aclaraciones.

Las condiciones previas son cualquier conjunto de condiciones que una función requiere que sean
verdaderas para operar en forma correcta. Por ejemplo, si una función usa la constante simbólica
MAXCHARS, la cual debe tener un valor positivo, una condición previa es que MAXCHARS sea
declarado con un valor positivo antes que la función sea invocada.

Del mismo modo, una condición posterior es una condición que será verdadera después que
se ejecute la función, suponiendo que se cumplen las condiciones previas.

Las condiciones previas y posteriores se documentan de manera típica como comentarios al
usuario. Por ejemplo, considere la siguiente declaración y los comentarios:

6.1 Declaraciones de funciones y parámetros 307

www.FreeLibros.me

Colocación de instrucciones

C++ no impone una estructura de ordenamiento de instrucciones rígida al programador.
La regla general para colocar instrucciones en un programa en C++ es tan sólo que to-
das las directivas del preprocesador, constantes nombradas, variables y funciones deben
declararse o definirse antes que puedan usarse. Como se ha señalado antes, aunque esta
regla permite que tanto las directivas del preprocesador como las instrucciones de decla-
ración se coloquen a través del programa, hacerlo así produce una estructura de progra-
ma muy pobre.

Pr ograma 6.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

void encontrarMax(int, int); // el prototipo de la función

intƒmain()
{
ƒƒint primernum, segundonum;

ƒƒcout << “\nIntroduzca un número: ”;
ƒƒcin >> primernum;
ƒƒccout << “¡Estupendo! Por favor introduzca un segundo numero: ”;
ƒƒcin >> segundonum;

ƒƒencontrarMax(primernum, segundonum); // aquí se llama a la función

ƒƒreturnƒ0;
}

//ƒen seguida está la función encontrarMax()

void encontrarMax(int x, int y)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicio del cuerpo de función
ƒƒint numMax;ƒƒƒƒƒƒ//ƒdeclaración de variable

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒ//ƒencontrar el número máximo
ƒƒƒƒnumMax = x;
ƒƒels e
ƒƒƒƒnumMax = y;

ƒƒcout << “\nEl máximo de los dos números es ”
ƒƒƒƒƒƒƒ<<ƒnumMax << endl;

ƒƒreturn;
}ƒƒ//ƒfin del cuerpo de función y fin de la función

CAPÍTULO 6 Modularidad con el uso de funciones308

www.FreeLibros.me

Como una cuestión de buena forma de programación, el siguiente ordenamiento de
instrucciones deberá formar la estructura básica alrededor de la cual se construyan todos
sus programas en C++.

directivas del preprocesador

prototipos de función

intƒmain()
{
ƒƒconstantes simbólicas
ƒƒdeclaraciones de variables

ƒƒotras instrucciones ejecutables

ƒƒreturn valor
}

definiciones de función

Como siempre, pueden entremezclarse comentarios a las instrucciones en cualquier parte
dentro de esta estructura básica.

Cabos de función

Una alternativa para completar cada función requerida en un programa completo es escri-
bir primero la función main(), y agregar las funciones más adelante, conforme se desa-
rrollan. El problema que surge con este enfoque, sin embargo, es el mismo que ocurrió con
el programa 6.1; es decir, el programa no puede ejecutarse hasta que todas las funciones
se han incluido. Por conveniencia a continuación se ha reproducido el código para el pro-
grama 6.1.

#includeƒ<iostream>
usingƒnamespaceƒstd;

void encontrarMax(int, int); // la declaración de la función
(prototipo)

intƒmain()
{
ƒƒint primernum, segundonum;

ƒƒcout << “\nIntroduzca un número: ”;
ƒƒcin >> primernum;
ƒƒcout << “¡Estupendo! Por favor introduzca un segundo número: ”;
ƒƒcin >> segundonum;

ƒƒencontrarMax(primernum, segundonum); // aquí se llama la fúnción

ƒƒreturnƒ0;
}

6.1 Declaraciones de funciones y parámetros 309

www.FreeLibros.me

Este programa estaría completo si existiera una definición de función para encontrar-
Max. Pero en realidad no se necesita una función encontrarMax correcta para probar
y ejecutar lo que se ha escrito, sólo necesitamos una función que actúe como si fuera una
encontrarMax “falsa” que acepte el número y tipos apropiados de parámetros y devuel-
va valores de la manera apropiada para invocar la función es todo lo que se necesita pa-
ra permitir la prueba inicial. Esta función falsa se llama cabo. Un cabo es el comienzo de
una función final que se puede usar como un sustituto de la unidad final hasta que la uni-
dad esté completa. Un cabo para encontrarMax es como sigue:

void encontrarMax(int x, int y)
{
ƒƒcout << “En encontrarMax()\n”;
ƒƒcout << “El valor de x es ” << x << endl;
ƒƒcout << “El valor de x es ” << y << endl;
}

Esta función cabo puede ahora compilarse y vincularse con el código completado con ante-
rioridad para obtener un programa ejecutable. Entonces el código para la función puede de-
sarrollarse más con el código “real” cuando es completado, reemplazando la porción cabo.

El requerimiento mínimo de una función cabo es que se compila y se vincula con el
módulo que llama. En la práctica, es una buena idea hacer que un cabo despliegue un
mensaje que se ha introducido con éxito y el valor o los valores de sus parámetros recibi-
dos, como en el cabo para encontrarMax().

Prueba de aislamiento

función 1
llama a

función 2
El valor devuelto

es incorrecto

Punto de Información

Uno de los métodos más exitosos que se conoce para probar software es incorporar siempre el
código que se está probando dentro de un ambiente de código funcional. Por ejemplo, suponga
que tiene dos funciones no probadas que son llamadas en el orden que se muestra a conti-
nuación, y el resultado devuelto por la segunda función es incorrecto.

A partir de la información mostrada en esta figura, una de las funciones o quizás ambas podrían
estar operando en forma incorrecta. El primer paso para solucionar el problema es aislar una
función específica.

Uno de los métodos más potentes para llevar a cabo este aislamiento de código es desacoplar
las funciones. Esto se hace probando cada función en forma individual o probando una función
primero y, sólo cuando se sabe que está operando en forma correcta, reconectarla a la segunda
función. Luego, si ocurre un error, lo habrá aislado a la transferencia de datos entre funciones o a
la operación interna de la segunda función.

Este procedimiento específico es un ejemplo de la regla básica de la prueba, la cual establece
que cada función sólo debería probarse en un programa en el que se sabe que todas las demás
funciones son correctas. Esto significa que una función debe probarse primero por sí misma,
usando cabos si es necesario para las funciones llamadas, y una segunda función debería
probarse ya sea por sí misma o con una función probada con anterioridad, y así en forma sucesiva.
Esto asegura que cada función nueva es aislada dentro de una capa de prueba de funciones
correctas, con el programa final de código de funciones probadas construido de manera efectiva.

CAPÍTULO 6 Modularidad con el uso de funciones310

www.FreeLibros.me

Conforme se depura la función, puede permitir que haya cada vez más, quizá devol-
ver resultados intermedios o incompletos. Este refinamiento creciente, o por etapas, es un
concepto importante en el desarrollo eficiente de programas que le proporcionan el medio
para ejecutar un programa que todavía no satisface todos sus requerimientos finales.

Funciones con listas de parámetros vacías

Aunque las funciones útiles que tienen una lista de parámetros vacía son limitadas en ex-
tremo (se proporciona una de dichas funciones en el ejercicio 11), pueden ocurrir. El pro-
totipo de función para dicha función requiere escribir la palabra clave void o no poner
nada en absoluto entre los paréntesis que siguen al nombre de la función. Por ejemplo, am-
bos prototipos

int despliegue();

e

int despliegue(void);

indican que la función despliegue() no tiene parámetros y devuelve un número ente-
ro. Una función con una lista de parámetros vacía es llamada por su nombre sin nada es-
crito dentro del paréntesis requerido después del nombre de la función. Por ejemplo, la
instrucción despliegue(); llama en forma correcta a la función despliegue() cuyo
prototipo se proporcionó antes.

Argumentos por omisión3

Una característica conveniente de C++ es su flexibilidad para proporcionar argumentos
por omisión mediante una llamada a la función. El uso primario de los argumentos por
omisión es extender la lista de parámetros de funciones existentes sin requerir algún cam-
bio en las listas de argumentos invocados que ya están en su lugar dentro de un progra-
ma.

Los valores del argumento por omisión se enlistan en el prototipo de función y son
transmitidos en forma automática a la función llamada cuando los argumentos correspon-
dientes son omitidos de la llamada a la función. Por ejemplo, el prototipo de función

void ejemplo (int, int = 5, double = 6.78);

proporciona valores por omisión para los últimos dos argumentos. Si alguno de estos argu-
mentos se omite cuando la función es llamada en realidad, el compilador de C++ suministra-
rá estos valores por omisión. Por tanto, todas las siguientes llamadas a la función son válidas:

ejemplo(7,ƒ2,ƒ9.3)ƒƒ//ƒno se usan valores por omisión
ejemplo(7,ƒ2)ƒƒƒƒƒƒƒ//ƒigual que ejemplo(7, 2, 6.78)
ejemplo(7)ƒƒƒƒƒƒƒƒƒƒ//ƒigual que ejemplo(7, 5, 6.78)

Cuando se usan parámetros por omisión deben seguirse cuatro reglas. La primera es que los
valores por omisión deberían asignarse en el prototipo de función.4 La segunda es que si a
cualquier parámetro se le da un valor por omisión en el prototipo de función, a todos los

6.1 Declaraciones de funciones y parámetros 311

3Este tema puede omitirse en la primera lectura sin perder la continuidad de la materia.
4Algunos compiladores aceptan asignaciones por omisión en la definición de la función.

www.FreeLibros.me

parámetros que siguen también deben asignárseles valores por omisión. La tercera es que si
un argumento se omite en la llamada a la función real, entonces todos los argumentos a
su derecha también deben omitirse. Estas dos reglas le dejan claro de C++ cuáles argumen-
tos se están omitiendo y le permite suministrar valores por omisión correctos para los argu-
mentos faltantes, empezando por el argumento de la extrema derecha y trabajando hacia la
izquierda. La última regla especifica que el valor por omisión utilizado en el prototipo de
función puede ser una expresión consistente en constantes y variables declaradas con ante-
rioridad. Si se usa una expresión así, debe pasar la verificación del compilador para varia-
bles declaradas con validez, aun cuando el valor real de la expresión sea evaluado y asignado
en tiempo de ejecución.

Los argumentos por omisión son útiles en extremo cuando se extiende una función
existente para incluir más características que requieren argumentos adicionales. Agregar
los argumentos nuevos a la derecha de los argumentos existentes y proporcionarle a cada
argumento nuevo un valor por omisión permite que todas las llamadas a funciones exis-
tentes permanezcan como están. Por tanto, el efecto de los cambios nuevos es aislado con-
venientemente del código existente en el programa.

Reutilización de nombres de función (sobrecarga)5

C++ proporciona la capacidad de usar el mismo nombre de función para más de una fun-
ción, lo cual se conoce como sobrecarga de función. El único requisito para crear más de
una función con el mismo nombre es que el compilador debe ser capaz de determinar cuál
función usar con base en los tipos de datos de los parámetros (no los tipos de datos del
valor devuelto, si es que hay alguno). Por ejemplo, considere las tres funciones siguientes,
todas nombradas cdabs().

void cdabs(int x) // calcula y despliega el valor absoluto de un número entero
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒƒxƒ=ƒ-x;
ƒƒcout << “El valor absoluto del número entero es ” << x << endl;
}

void cdabs(float x) // calcula y despliega el valor absoluto de un número de
punto flotante
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒƒxƒ=ƒ-x;
ƒƒcout << “El valor absoluto del número de punto flotante es ” << x << endl;
}

void cdabs(double x) // calcula y despliega el valor absoluto de un número
en doble precision
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒxƒ=ƒ-x;
ƒƒcout << “El valor absoluto del número de doble precisión es ” << x << endl;
}

CAPÍTULO 6 Modularidad con el uso de funciones312

5Este tema puede omitirse en la primera lectura sin que pierda la continuidad de la materia.

www.FreeLibros.me

Cuál de las tres funciones nombradas cdabs() se llama en realidad depende de los tipos
de argumento suministrados en el momento de la llamada. Por tanto, la llamada a la fun-
ción cdabs(10); causaría que el compilador utilizara la función nombrada cdabs()
que espera un argumento de número entero, y la llamada a la función cdabs(6.28f);
causaría que el compilador usara la función nombrada cdabs() que espera un argumen-
to de precisión simple.6

Hay que observar que sobrecargar un nombre de función tan sólo significa usar el
mismo nombre para más de una función. Cada función que utiliza el nombre debe escri-
birse aún y existe como una entidad separada. El uso del mismo nombre de función no re-
quiere que el código dentro de las funciones sea similar, aunque la buena práctica de
programación dicta que las funciones con el mismo nombre deberían ejecutar en esencia
las mismas operaciones. Todo lo que se requiere de manera formal para usar el mismo
nombre de función es que el compilador pueda distinguir cuál función seleccionar con ba-
se en los tipos de datos de los argumentos cuando es llamada la función. Sin embargo, es
evidente que si todo lo que es diferente acerca de las funciones sobrecargadas son los ti-
pos de argumentos, una mejor solución de programación es tan sólo crear una plantilla de
función. El uso de funciones sobrecargadas, sin embargo, es útil en extremo con funcio-
nes constructoras, un tema que se presenta en la sección 8.3.

Plantillas de función7

En la mayor parte de los lenguajes de nivel alto, incluyendo C, el predecesor inmediato de
C++, cada función requiere su propio nombre único. En teoría esto tiene sentido, pero en
la práctica puede conducir a una profusión de nombres de función, incluso para funcio-
nes que realizan en esencia las mismas operaciones. Por ejemplo, considere determinar y
desplegar el valor absoluto de un número. Si el número transmitido a la función puede ser
un número entero, uno de precisión simple o un valor de precisión doble, deben escribir-
se tres funciones distintas para manejar en forma correcta cada caso. Por supuesto, podría
dársele a cada una de estas funciones un nombre único, como abs(), fabs() y dabs(),
respectivamente, teniendo los prototipos de función:

voidƒabs(int);
voidƒfabs(float);
voidƒdabs(double);

Es evidente que cada una de estas funciones realiza en esencia la misma operación, pero
con diferentes tipos de datos en los parámetros. Una solución mucho más limpia y elegan-
te es escribir una función general que maneje todos los casos, pero cuyos parámetros, va-
riables e incluso tipo devuelto puedan ser establecidos por el compilador basado en la
llamada a la función real. Esto es posible en C++ usando plantillas de función.

6.1 Declaraciones de funciones y parámetros 313

6Esto se logra por un proceso conocido como mutilación del nombre. Usando este proceso el nombre de función genera-
do en realidad por el compilador de C++ difiere del nombre de función usado en el código fuente. El compilador añade infor-
mación al nombre de función del código fuente dependiendo del tipo de datos que se transmiten, y se dice que el nombre
resultante es una versión mutilada del nombre del código fuente.

7Este tema puede omitirse en la primera lectura sin perder la continuidad de la materia.

www.FreeLibros.me

Una plantilla de función es una función única completa que sirve como modelo para
una familia de funciones. Cuál función de la familia se creará en realidad depende de las
llamadas a la función subsiguientes. Para hacer esto más concreto, considere una plantilla
de función que calcule y despliegue el valor absoluto de un argumento transmitido. Una
plantilla de función apropiada es:

template <class T>
void mostrarabs(T numero)
{
ƒƒif (numero < 0)
ƒƒƒƒnumero = -numero;
ƒƒcout << “El valor absoluto del numero ”
ƒƒƒƒƒƒƒ<< “ es ” << numero << endl;

ƒƒreturn
}

Por el momento, ignore la primera línea template <class T> y observe la segunda lí-
nea, la cual consiste del encabezado de función mostrarabs(T numero). Hay que
observar que esta línea de encabezado tiene la misma sintaxis que se ha usado para todas
las definiciones de función, excepto por la T en el lugar donde se coloca por lo general un
tipo de datos. Por ejemplo, si la línea de encabezado fuera void mostrarabs(int nu-
mero), lo reconocería como una función llamada mostrarabs que espera que se le
transmita un argumento en número entero y que no devuelve ningún valor. Del mismo mo-
do, si la línea de encabezado fuera void mostrarabs(float numero), la reconoce-
ría como una función que espera que se transmita un argumento de punto flotante cuando
se llame a la función.

La ventaja al usar la T dentro de la línea de encabezado de la plantilla de función es
que representa un tipo de datos general que es reemplazado por un tipo de datos real, co-
mo int, float, double, etc., cuando el compilador encuentra una llamada a la fun-
ción real. Por ejemplo, si se encuentra una llamada a la función con un argumento en
número entero, el compilador usará la plantilla de función para construir el código para
una función que espera un parámetro en número entero. Del mismo modo, si se hace una
llamada con un argumento de punto flotante, el compilador construirá una función que
espera un parámetro en punto flotante. Como un ejemplo específico de esto, considérese
el programa 6.3.

Primero observe las tres llamadas a función que se hacen en la función main() mos-
trada en el programa 6.3, la cual llama a la función mostrarabs() con un valor entero,
flotante y doble, respectivamente. Ahora revise la plantilla de función para mostrarabs()
y considere la primera línea template <class T>. Esta línea, la cual se llama prefijo
de plantilla, se usa para informar al compilador que la función que sigue inmediatamente
es una plantilla que usa un tipo de datos nombrado T. Dentro de la plantilla de función se
usa la T de la misma manera que cualquier otro tipo de datos, como int, float, double,
etc. Luego, cuando el compilador encuentra una llamada a la actual función para mostra-
rabs(), o el tipo de datos del argumento transmitido en la llamada es sustituido por T a
lo largo de la función. En efecto, el compilador crea una función específica, usando la plan-
tilla, que espera el tipo de argumento en la llamada. En vista que el programa 6.3 hace tres
llamadas a mostrarabs, cada una con un tipo de datos diferente para el argumento, el
compilador creará tres funciones mostrarabs() separadas. El compilador sabe cuál

CAPÍTULO 6 Modularidad con el uso de funciones314

www.FreeLibros.me

función usar con base en los argumentos transmitidos en el momento de la llamada. La
salida desplegada cuando el programa 6.3 se ejecuta es:

El valor absoluto del numero es 4
El valor absoluto del numero es 4.23
El valor absoluto del numero es 4.23456

La letra T usada en el prefijo de plantilla template <class T> tan sólo es un sustitu-
to para un tipo de datos que se define cuando la función es invocada en realidad. Puede

Pr ograma 6.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

template <clases T>
void mostrarabs(T número)
{

ƒƒif (numero < 0)
ƒƒƒƒnumero = -numero;
ƒƒcout << “El valor absoluto del número es ”
ƒƒƒƒƒƒƒ<< numero << endl;

ƒƒreturn;
}

intƒmain()
{
ƒƒintƒnum1ƒ=ƒ-4;
ƒƒfloatƒnum2ƒ=ƒ-4.23f;
ƒƒdoubleƒnum3ƒ=ƒ-4.23456;

ƒƒmostrarabs(num1);
ƒƒmostrarabs(num2);
ƒƒmostrarabs(num3);

ƒƒreturnƒ0;
}

6.1 Declaraciones de funciones y parámetros 315

www.FreeLibros.me

utilizarse en cambio cualquier letra o identificador que no sea una palabra clave. Por tan-
to, la plantilla de la función mostrarabs() podría haberse definido también como:

template <class TIPOD>
void abs(TIPOD numero)
{
ƒƒif (numero < 0)
ƒƒƒƒnumero = -numero;
ƒƒcout << “El valor absoluto del número es ”
ƒƒƒƒƒƒƒ<< numero << endl;

ƒƒreturn;
}

Así, en ocasiones es más simple y claro leer la palabra clase en el prefijo de plantilla que
las palabras tipo de datos. Por tanto, el prefijo de plantilla template <clases T> pue-
de leerse como “estamos definiendo una plantilla de función que tiene un tipo de datos
nombrado T”. Luego, dentro de la línea de encabezado y el cuerpo de la función definida
se usa el tipo de datos T (o cualquier otra letra o identificador definido en el prefijo) de la
misma manera que cualquier tipo de datos incorporado, como int, float, double,
etcétera.

Ahora suponga que se quiere crear una plantilla de función para incluir el tipo de
retorno y una variable declarada en forma interna. Por ejemplo, considere la siguiente
plantilla de función:

template <clase T> // prefijo de plantilla
T abs(T valor) // linea de encabezado
{
ƒƒT numabs; // declaracion de variable

ƒƒif (valor < 0)
ƒƒƒƒnumabs = -valor;
ƒƒelse
ƒƒƒƒnumabs = valor;

ƒƒreturn numabs;
}

En esta definición de plantilla, se ha usado el tipo de datos T para declarar tres elementos:
el tipo devuelto de la función, el tipo de datos de un parámetro de función único llamado
valor, y una variable declarada dentro de la función. El programa 6.4 ilustra cómo esta
plantilla de función podría utilizarse dentro del contexto de un programa completo.

CAPÍTULO 6 Modularidad con el uso de funciones316

www.FreeLibros.me

En la primera llamada a abs() hecha dentro de main(), se transmite un valor entero co-
mo un argumento. En este caso, el compilador sustituye un tipo de datos int para el ti-
po de datos T en la plantilla de función y crea la siguiente función:

int abs(int valor) // linea de encabezado
{
ƒƒint numabs; // declaracion de la variable

ƒƒif (valor < 0)
ƒƒƒƒnumabs = -valor;
ƒƒelse
ƒƒƒƒnumabs = valor;

Pr ograma 6.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

template <class T> // prefijo de plantilla
T abs(T valor) // linea de encabezado
{
ƒƒT numabs; // declaracion de variable

ƒƒif (valor < 0)
ƒƒƒƒnumabs = -valor;
ƒƒels e
ƒƒƒƒnumabs = valor;

ƒƒreturn numabs;
}
intƒmain()
{
ƒƒintƒnum1ƒ=ƒ-4;
ƒƒfloatƒnum2ƒ=ƒ-4.23f;
ƒƒdoubleƒnum3ƒ=ƒ-4.23456;

ƒƒcout << “El valor absoluto de ” << num1
ƒƒƒƒƒƒƒ<<ƒ“ es ” << abs(num1) << endl;
ƒƒcout << “El valor absoluto de ” << num2
ƒƒƒƒƒƒƒ<<ƒ“ es ” << abs(num2) << endl;
ƒƒcout << “El valor absoluto de ” << num3
ƒƒƒƒƒƒƒ<< “ es ” << abs(num3) << endl;

ƒƒreturnƒ0;
}

6.1 Declaraciones de funciones y parámetros 317

www.FreeLibros.me

ƒƒreturn numabs;
}

Del mismo modo, en la segunda y tercera llamadas a la función, el compilador crea dos
funciones más, una en la que el tipo de datos T es reemplazado por la palabra clave
float, y otra en la que el tipo de datos T es reemplazado por la palabra clave double.
La salida producida por el programa 6.4 es:

El valor absoluto de -4 es 4
El valor absoluto de -4.23 es 4.23
El valor absoluto de -4.23456 es 4.23456

El valor de usar la plantilla de función es que se ha usado una definición de función para
crear tres funciones diferentes, cada una de las cuales usa la misma lógica y operaciones
pero opera sobre diferentes tipos de datos.

Por último, aunque los programas 6.3 y 6.4 definen una plantilla de función que usa
un solo tipo de datos sustituto, pueden definirse plantillas de función con más de un tipo
de datos. Por ejemplo, el prefijo de plantilla

template <class TIPOD1, class TIPOD2, class TIPOD3>

puede utilizarse para crear una plantilla de función que requiere tres tipos de datos dife-
rentes. Como antes, dentro del encabezado y el cuerpo de la plantilla de función los tipos
de datos TIPOD1, TIPOD2 y TIPOD3 se usarían de la misma manera que cualquier tipo de
datos incorporado, como un int, float, double, etc. Además, como se señaló antes,
los nombres TIPOD1, TIPOD2 y TIPOD3 pueden ser cualquier identificador que no sea
una palabra clave. De manera convencional, se usaría la letra T seguida por cero o más dí-
gitos, como T, T1, T2, T3, etcétera.

Ejercicios 6.1

1. Para los siguientes encabezados de función, determine el número, tipo y orden (se-
cuencia) de los valores que deben transmitirse a la función:
a. void factorial(int n)
b. void voltios(int res, double induc, double cap)
c. void potencia(int tipo, double induc, double cap)
d. void marcador(char tipo, double corriente, double tiempo)
e. void total(double cantidad, double tasa)
f. void roi(int a, int b, char c, char d, double e, double f)
g. void obtener_valor(int elemento, int iter, char decmarcador,

char delim)

2. a. Escriba una función nombrada revisar() que tenga tres parámetros. El pri-
mer parámetro deberá aceptar un número entero, el segundo parámetro un nú-
mero de precisión doble y el tercer parámetro un número de precisión doble. El
cuerpo de la función deberá desplegar sólo los valores de los datos transmitidos
a la función cuando es llamada. (NOTA: Cuando se rastrean errores en las fun-
ciones, es muy útil hacer que la función despliegue los valores que se le han
transmitido. Con bastante frecuencia, el error no está en lo que el cuerpo de la
función hace con los datos, sino en los datos recibidos y almacenados.)

CAPÍTULO 6 Modularidad con el uso de funciones318

www.FreeLibros.me

b. Incluya la función escrita en el ejercicio 2a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmi-
tiéndole varios datos.

3. a. Escriba una función llamada encontrarAbs() que acepte un número trasmi-
tido de precisión doble, calcule su valor absoluto y despliegue el valor absolu-
to. El valor absoluto de un número es el mismo número si éste es positivo y el
negativo del número si éste es negativo.

b. Incluya la función escrita en el ejercicio 3a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmitién-
dole varios datos.

4. a. Escriba una función llamada mult() que acepte dos números en punto flotan-
te como parámetros, multiplique estos dos números y despliegue el resultado.

b. Incluya la función escrita en el ejercicio 4a en un programa que funcione. Ase-
gúrese que su función es invocada desde main(). Pruebe la función transmi-
tiéndole varios datos.

5. a. Escriba una función llamada al_cuadrado() que calcule el cuadrado del va-
lor que se le transmite y despliegue el resultado. La función deberá ser capaz de
elevar al cuadrado números con puntos decimales.

b. Incluya la función escrita en el ejercicio 5a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmitién-
dole varios datos.

6. a. Escriba una función nombrada funpot() que eleve un número entero que se
le transmita a una potencia en número entero positivo y despliegue el resulta-
do. El número entero positivo deberá ser el segundo valor transmitido a la fun-
ción. Declare la variable usada para almacenar el resultado como un tipo de
datos entero largo para asegurar suficiente almacenamiento para el resultado.

b. Incluya la función escrita en el ejercicio 6a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmitién-
dole varios datos.

7. a. Escriba un programa en C++ que devuelva la parte fraccionaria de cualquier nú-
mero introducido por el usuario. Por ejemplo, si se introduce el número
256.879, debería desplegarse el número 0.879. (Sugerencia: Use un int cast.)

b. Introduzca, compile y ejecute el programa escrito para el ejercicio 7a.

8. a. Escriba un programa en C++ que acepte un argumento en número entero y
determine si el entero transmitido es par o non. (Sugerencia: Utilice el ope-
rador %.)

b. Introduzca, compile y ejecute el programa escrito para el ejercicio 8a.

9. a. Escriba una función que produzca una tabla de los números del 1 al 10, sus cua-
drados y sus cubos. La función deberá producir el mismo despliegue que el pro-
ducido por el programa 5.11.

b. Incluya la función escrita en el ejercicio 9a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmitién-
dole varios datos.

6.1 Declaraciones de funciones y parámetros 319

www.FreeLibros.me

10. a. Modifique la función escrita para el ejercicio 9 para aceptar el valor inicial de
la tabla, el número de valores que se van a desplegar y el incremento entre va-
lores. Si el incremento no se envía de manera explícita, la función deberá usar
un valor por omisión de 1. Nombre su función selTab(). Una llamada a
selTab(6, 5, 2); deberá producir una tabla de cinco líneas, la primera
línea iniciando con el número 6 y cada número subsiguiente incrementándose
en 2.

b. Incluya la función escrita en el ejercicio 10a en un programa que funcione. Ase-
gúrese que su función es llamada desde main(). Pruebe la función transmitién-
dole varios datos.

11. Puede construirse una función útil que no utilice parámetros para que devuelva un
valor para π que sea preciso al número máximo de lugares decimales permitido por
su computadora. Este valor se obtiene tomando el arco seno de 1.0, el cual es π/2,
y multiplicando el resultado por 2. En C++, la expresión requerida es 2.0*
asin(1.0), donde la función asin() es proporcionada en la biblioteca matemática
estándar de C++ (recuerde incluir cmath). Usando esta expresión, escriba una fun-
ción en C++ llamada pi() que calcule y despliegue el valor de π.

12. a. Escriba una plantilla de función llamada despliegue() que despliegue el va-
lor del argumento único que se le transmite cuando es invocada la función.

b. Incluya la plantilla de función creada en el ejercicio 12a dentro de un progra-
ma en C++ completo que llame a la función tres veces: una con un argumento
de carácter, una con un argumento en número entero y una con un argumento de
número de precisión doble.

13. a. Escriba una plantilla de función llamada entero() que devuelva el valor
entero de cualquier argumento que se le transmita cuando la función sea lla-
mada.

b. Incluya la plantilla de función creada en el ejercicio 13a dentro de un progra-
ma en C++ completo que llame a la función tres veces: una con un argumento
de carácter, una con un argumento en número entero y una con un argumento de
número de precisión doble.

14. a. Escriba una plantilla de función llamada maximo() que devuelva el valor má-
ximo de tres argumentos que se transmitan a la función cuando sea llamada.
Suponga que los tres argumentos serán del mismo tipo de datos.

b. Incluya la plantilla de función creada para el ejercicio 14a dentro de un progra-
ma en C++ completo que llame a la función con tres números enteros y luego
con tres números de precisión doble.

15. a. Escriba una plantilla de función llamada al_cuadrado() que calcule y de-
vuelva el cuadrado del argumento único transmitido a la función cuando es
llamada.

b. Incluya la plantilla de función creada para el ejercicio 15a dentro de un progra-
ma en C++ completo.

CAPÍTULO 6 Modularidad con el uso de funciones320

www.FreeLibros.me

6.2 DEVOLVER UN SOLO VALOR

Al utilizar el método de transmitir datos a una función presentado en la sección anterior,
la función llamada sólo recibe copias de los valores contenidos en los argumentos en el
momento de la llamada (repase la figura 6.3 si no le ha quedado claro esto). Cuando se
transmite un valor a una función invocada de esta manera, el argumento transmitido se
conoce como transmitido por valor y es una ventaja distintiva de C++.8 En vista que la fun-
ción llamada no tiene acceso directo a las variables usadas como argumentos por la función
que llama, no puede alterar de manera inadvertida el valor almacenado en una de estas va-
riables.

La función que recibe los argumentos transmitidos por valor puede procesar los valo-
res que se le envían en cualquier forma deseada y devolver en forma directa cuando mu-
cho uno, y sólo un, valor “legítimo” a la función que llama (véase la figura 6.7). En esta
sección se verá cómo se devuelve un valor así a la función que llama. Como podría espe-
rarse, dada la flexibilidad de C++, hay una forma de devolver más de un solo valor, pero
éste es el tema de la siguiente sección.

Figura 6.7 Una función devuelve en forma directa cuando mucho un valor.

Como ocurre con la llamada a una función, devolver en forma directa un valor requiere
que la interfaz entre la función llamada y la que llama se maneje en forma correcta. Des-
de el lado de la transacción devuelta, la función llamada debe proporcionar los siguientes
elementos:

• el tipo de datos del valor devuelto

• el valor real que se devuelve

Una función que devuelve un valor debe especificar, en su línea de encabezado, el tipo de
datos del valor que se devolverá. Recuérdese que la línea de encabezado de la función es
la primera línea de la función, la cual incluye tanto el nombre de la función como una lis-
ta de nombres de parámetros. Como ejemplo, considérese la función encontrarMax()
escrita en la sección anterior. Determina el valor máximo de dos números transmitidos a
la función. Por conveniencia, se enlista de nuevo el código encontrarMax():

Una función puede recibir muchos valores

Sólo puede devolverse
en forma directa un valor

6.2 Devolver un solo valor 321

8Esto también se conoce como llamada por valor. Sin embargo, el término no se refiere a la llamada de la función en
conjunto, sino a la forma en que se transmite un argumento individual cuando se hace la llamada a una función.

www.FreeLibros.me

void encontrarMax(int x, int y)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicio del cuerpo de la funcion
ƒƒint numMax;ƒƒƒƒƒƒƒƒ//ƒdeclaracion de la variable

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒƒƒ//ƒencontrar el numero maximo
ƒƒƒƒnumMax = x;
ƒƒelse
ƒƒƒƒnumMax = y;

ƒƒcout << “\nEl máximo de los dos números es ”ƒ
ƒƒƒƒƒƒƒ<< numMax << endl;

}ƒƒ//ƒfin del cuerpo de la funcion y fin de la funcion

Tal como está escrito, la línea de encabezado de la función es

void encontrarMax(int x, int y)

donde x y y son los nombres elegidos para los parámetros de la función.
Si ahora encontrarMax() va a devolver un valor, la línea de encabezado de la fun-

ción debe ser modificado para incluir el tipo de datos del valor que se devuelve. Por ejem-
plo, si se va a devolver un valor entero, la línea de encabezado de la función apropiada es

int encontrarMax(int x, int y)

Del mismo modo, si la función va a recibir dos parámetros de precisión simple y devolve-
rá un valor de precisión simple, la línea de encabezado de la función correcta es

float encontrarMax(float x, float y)

y si la función va a recibir dos parámetros de precisión doble y a devolver un valor de pre-
cisión doble, la línea de encabezado sería9

double encontrarMax(double x, double y)

Ahora se modificará la función encontrarMax() para devolver el valor máximo de los dos
números que se le transmiten. Para hacer esto, primero se debe determinar el tipo de datos
del valor que se va a devolver e incluir este tipo de datos en la línea de encabezado de la fun-
ción.

En vista que el valor máximo determinado por encontrarMax() se almacena en la
variable de número entero numMax, es el valor de esta variable el que deberá devolver
la función. Devolver un valor entero de encontrarMax() requiere que la declaración de la
función sea

int encontrarMax(int x, int y)ƒ

Obsérvese que ésta es igual a la línea de encabezado de la función original para encon-
trarMax() con la sustitución de la palabra clave int en lugar de la palabra clave void.

CAPÍTULO 6 Modularidad con el uso de funciones322

9El tipo de datos devuelto sólo se relaciona con los tipos de datos de los parámetros en la medida en que el valor devuelto
se calcula a partir de valores de parámetros. En este caso, en vista que la función se usa para devolver el valor máximo de sus
parámetros, tendría poco sentido devolver un tipo de datos que no correspondiera con los tipos de parámetros de la función.

www.FreeLibros.me

Habiendo declarado el tipo de datos que devolverá encontrarMax(), todo lo que
resta es incluir una instrucción dentro de la función que cause la devolución del valor co-
rrecto. Para devolver un valor, una función debe usar una instrucción de devolución, la
cual tiene la forma:10

return expresión;

Cuando se encuentra la instrucción de devolución, la expresión se evalúa primero. El va-
lor de la expresión es convertido entonces de manera automática en el tipo de datos de-
clarado en el encabezado de la función antes de ser enviado de regreso a la función que
llama. Después que es devuelto el valor, el control del programa se revierte a la función
que llama. Por tanto, para devolver el valor almacenado en numMax, todo lo que se ne-
cesita hacer es agregar la instrucción return numMax; antes de la llave de cierre de la
función encontrarMax(). El código de la función completo es:

En este nuevo código para la función encontrarMax() hay que observar que el tipo de da-
tos de la expresión contenida en la instrucción de devolución corresponde en forma correcta
al tipo de datos en la línea de encabezado de la función. Le corresponde al programador ase-
gurar que esto sea así en todas las funciones que devuelven un valor. Si hay una falla en ha-
cer que corresponda con exactitud el valor devuelto con el tipo de datos declarado en la
función, puede ser que no se produzca un error cuando su programa sea compilado, pero es-
to puede conducir a resultados indeseables debido a que el valor devuelto siempre es conver-
tido al tipo de datos declarado en la declaración de la función. Por lo general esto es un
problema sólo cuando la parte fraccionaria de un número de punto flotante o de precisión do-
ble devuelta es truncada debido a que se declaró que la función devolvería un valor entero.

Habiendo cuidado el lado emisor de la transacción de devolución, ahora se debe pre-
parar a la función que llama para recibir el valor enviado por la función llamada. En el la-
do que llama (receptor), la función que llama debe

• ser alertada del tipo de valor a esperar

• usar de manera apropiada el valor devuelto

6.2 Devolver un solo valor 323

10Muchos programadores colocan la expresión entre paréntesis, produciendo la instrucción return (expresión);. Aun-
que puede usarse cualquier forma, por consistencia sólo se adoptará una.

ƒint encontrarMax(int x, int y) // linea de encabezado
 de la funcion

{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicio del cuerpo de
 la funcion
ƒƒint numMax;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdeclaración de la variable

ƒƒƒifƒ(xƒ>=ƒy)
ƒƒƒƒƒnumMax = x;
ƒƒƒelse
ƒƒƒƒƒnumMax = y;

ƒƒƒreturnƒnumMax;ƒƒƒƒƒƒƒƒƒƒƒ//ƒinstruccion de devolucion
}

Éstos deberán
ser del mismo
tipo de datos

www.FreeLibros.me

Para alertar a la función que llama acerca del tipo de valor devuelto que debe esperar se
utiliza el prototipo de función. Por ejemplo, incluir el prototipo de función

int encontrarMax(int, int);

antes de la función main() es suficiente para alertar a main() que encontrarMax()
es una función que devolverá un valor entero.

Para usar en verdad un valor devuelto hay que proporcionar una variable para alma-
cenar el valor o usar el valor en forma directa en una expresión. Se logra almacenar el va-
lor devuelto en una variable usando una instrucción de asignación estándar. Por ejemplo,
puede usarse la instrucción de asignación

max = encontrarMax (primernum, segundonum);ƒ

para almacenar el valor devuelto por encontrarMax() en la variable llamada max. Esta ins-
trucción de asignación hace dos cosas. Primera, el lado derecho de la instrucción de asigna-
ción llama a encontrarMax(), luego el resultado devuelto por encontrarMax() se
almacena en la variable max. En vista que el valor devuelto por encontrarMax() es un nú-
mero entero, la variable max deberá declararse también como una variable en número en-
tero dentro de las declaraciones de variables de la función que llama.

El valor devuelto por una función no necesita almacenarse en forma directa en una
variable, pero puede usarse siempre que una expresión sea válida. Por ejemplo la expre-
sión 2ƒ*ƒencontrarMax(primernum, segundonum) multiplica el valor devuelto
por encontrarMax() por dos, y la instrucción

cout << encontrarMax(primernum, segundonum);ƒ

despliega el valor devuelto.
El programa 6.5 ilustra la inclusión de instrucciones de prototipo y de asignación pa-

ra que main() declare, llame y almacene en forma correcta un valor devuelto por en-
contrarMax(). Como antes, y para conservar la convención de colocar primero la
función main(), se ha colocado la función encontrarMax() después de main().

Al revisar el programa 6.5 es importante señalar los cuatro elementos que se han intro-
ducido en esta sección. El primer elemento es el prototipo para encontrarMax(). Esta ins-
trucción, la cual termina con punto y coma, como todas las instrucciones de declaración,
alerta a main() y a las funciones subsiguientes que usen encontrarMax() con el tipo
de datos que devolverá encontrarMax(). El segundo elemento que se puede observar en
main() es el uso de una instrucción de asignación para almacenar el valor devuelto de la
llamada a encontrarMax() en la variable numMax. También se ha asegurado de declarar
en forma correcta numMax como un número entero dentro de las declaraciones de variables
de main() de modo que concuerde con el tipo de datos del valor devuelto.

Los últimos dos elementos que hay que observar conciernen a la codificación de la
función encontrarMax(). La primera línea de encontrarMax() declara que la fun-
ción devolverá un valor entero, y la expresión en la instrucción de devolución evalúa un
tipo de datos que corresponda. Por tanto encontrarMax() es consistente internamente
en enviar un valor entero de vuelta a main(), y main() ha sido alertado en forma co-
rrecta para recibir y usar el número entero devuelto.

Al escribir sus propias funciones debe tener en cuenta siempre estos cuatro elementos.
Como ejemplo, vea si puede identificar estos cuatro elementos en el programa 6.6.

CAPÍTULO 6 Modularidad con el uso de funciones324

www.FreeLibros.me

Pr ograma 6.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

int encontrarMax(int, int); // el prototipo de la función

intƒmain()
{
ƒƒint primernum, segundonum, max;

ƒƒcout << “\nIntroduzca un numero: ”;
ƒƒcin >> primernum;
ƒƒcout << “¡Estupendo! Por favor introduzca un segundo número: ”;
ƒƒcin >> segundonum;

ƒƒmax = encontrarMax(primernum, segundonum); // aquí se llama a la función

ƒƒcout << “\nEl máximo de los dos números es ” << max << endl;

ƒƒreturnƒ0;
}

int encontrarMax(int x, int y)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicio del cuerpo de la función
ƒƒint numMax;ƒƒƒƒƒƒƒƒ//ƒdeclaración de variable

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒƒƒ//ƒencontrar el número máximo
ƒƒƒƒnumMax = x;
ƒƒels e
ƒƒƒƒnumMax = y;

ƒƒreturn numMax;ƒƒƒƒƒ//ƒinstrucción de devolución
}

6.2 Devolver un solo valor 325

www.FreeLibros.me

Al revisar el programa 6.6, se analizará primero la función convertir_temp(). La defini-
ción completa de la función comienza con la línea de encabezado de la función y termina
con la llave de cierre después de la instrucción de devolución. La función es declarada co-
mo double; esto significa que la expresión en la instrucción de devolución de la función
debe evaluar a un número de precisión doble, lo cual hace. En vista que la línea de enca-
bezado de la función no es una instrucción sino el inicio del código que define la función,
la línea de encabezado de la función no termina con punto y coma.

En el lado receptor, main() tiene un prototipo para la función convertir-
_temp() que concuerda con la definición de la función de convertir_temp().
No se declara una variable en main() para almacenar el valor devuelto de conver-
tir_temp() porque el valor devuelto es transmitido de inmediato a cout para su
despliegue.

Pr ograma 6.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

double convertir_temp(double); // prototipo de la función

intƒmain()
{
ƒƒconst CONVERSIONES = 4; // numero de conversiones que se harán
ƒƒint cuenta;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒdouble fahren;

ƒƒfor(cuenta = 1; cuenta <= CONVERSIONES; cuenta++)
ƒƒ{
ƒƒƒƒcout << “\nIntroduzca una temperatura en grados Fahrenheit: ”;
ƒƒƒƒcinƒƒ>>ƒfahren;
ƒƒƒƒcout << “El equivalente en grados Celsius es ”
ƒƒƒƒƒƒƒƒƒ<< convertir_temp(fahren) << endl;
ƒƒ}

ƒƒreturnƒ0;
}

//ƒconvertir Fahrenheit a Celsius
double convertir_temp(double in_temp)
{
ƒƒreturn (5.0/9.0) * (in_temp – 32.0);
}

CAPÍTULO 6 Modularidad con el uso de funciones326

www.FreeLibros.me

Vale la pena mencionar un punto más aquí. Uno de los propósitos de las declaracio-
nes, como se aprendió en el capítulo 2, es alertar a la computadora de la cantidad de al-
macenamiento interno reservado para los datos. El prototipo para convertir_temp()
ejecuta esta tarea y alerta al compilador del tipo de almacenamiento necesario para el va-
lor devuelto. En vista que se ha elegido siempre enlistar main() como la primera función
en un archivo, se deben incluir prototipos de función para todas las funciones llamadas
por main() y cualesquiera funciones subsiguientes.

Funciones inline11

Llamar a una función pone una cierta cantidad de sobrecarga en la computadora, ya que
consiste en colocar valores de argumentos en una región de memoria reservada a la que la
función tiene acceso (esta región de memoria se conoce como pila), transmitir el control a
la función, proporcionar una ubicación de memoria reservada para cualquier valor devuel-
to (de nuevo, la región de pila de la memoria se usa para este propósito) y por último re-
gresar al punto apropiado en el programa que llama. Esta sobrecarga se justifica cuando
una función es invocada muchas veces, porque puede reducir de manera significativa el ta-
maño de un programa. En lugar de repetir el mismo código cada vez que es necesario, el
código se escribe una sola vez, como una función, y se llama cada vez que es necesario.

Sin embargo, para funciones pequeñas que no son llamadas muchas veces no se justi-
fica la sobrecarga de transmitir y devolver valores. No obstante, aún sería conveniente
agrupar las líneas repetitivas de código bajo un nombre de función común y hacer que el
compilador coloque este código en forma directa en el programa siempre que se llame a
la función. Esta capacidad es proporcionada por funciones inline.

Indicarle al compilador de C++ que una función es inline causa que una copia del
código de la función sea colocada en el programa en el punto en que es invocada. la fun-
ción. Por ejemplo, considérese la función convertir_temp() definida en el programa
6.6. En vista que ésta es una función relativamente corta, es ideal para ser una función in-
line. Para hacer a ésta, o a cualquier otra función, una función inline, tan sólo se re-
quiere colocar la palabra reservada inline antes del nombre de la función y definir la
función antes que se haga cualquier llamada. Esto se lleva a cabo para la función con-
vertir_temp() en el programa 6.7.

6.2 Devolver un solo valor 327

11Esta sección es opcional y puede omitirse en la primera lectura sin perder la continuidad de la materia.

www.FreeLibros.me

En el programa 6.7 hay que observar que la función inline se coloca antes de cuales-
quier llamada a ella. Esto es un requisito de todas las funciones inline y evita la necesi-
dad de un prototipo de función antes de cualquier función subsiguiente que llama. En vista
que la función ahora es una inline, su código será expandido en forma directa siempre
que sea llamada en el programa.

La ventaja de usar una función inline es que aumenta la velocidad de ejecución. En
vista que la función inline es expandida en forma directa e incluida en cada expresión
o instrucción que la llame, no se pierde tiempo de ejecución debido a la sobrecarga de la
llamada y devolución requeridas por una función que no es inline. La desventaja es el
aumento en el tamaño del programa cuando una función inline es llamada en forma re-
petida. Cada vez que se hace referencia a una función inline, se reproduce el código
completo de la función y se almacena como una parte integral del programa. Una función
que no es inline, sin embargo, se almacena en la memoria una sola vez. Sin importar
cuántas veces sea llamada la función, se usa el mismo código. Por consiguiente, las funcio-
nes inline sólo deberán usarse para funciones pequeñas que no son llamadas en forma
eshaustiva en un programa.

Pr ograma 6.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

inline double convertir_temp(double in_temp) // una función inline
{
ƒƒreturn (5.0/9.0) * (in_temp – 32.0);
}

intƒmain()
{
ƒƒconst CONVERSIONES = 4; // numero de conversiones que se harán
ƒƒint cuenta;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒdoubleƒfahren;

ƒƒfor(cuenta = 1; cuenta <= CONVERSIONES; cuenta++)
ƒƒ{
ƒƒƒƒcout << “\nIntroduzca una temperatura en grados Fahrenheit: ”;
ƒƒƒƒcinƒƒ>>ƒfahren;
ƒƒƒƒcout << “El equivalente en grados Celsius es ”
ƒƒƒƒƒƒƒƒƒ<< convertir_temp(fahren) << endl;
ƒƒ}

ƒƒreturnƒ0;
}

CAPÍTULO 6 Modularidad con el uso de funciones328

www.FreeLibros.me

Ejercicios 6.2

1. Vuelva a escribir el programa 6.5 de modo que la función encontrarMax()
acepte dos argumentos de precisión doble y devuelva un valor de precisión doble
a main(). Asegúrese de modificar main() a fin de transmitir dos valores de pun-
to flotante a encontrarMax() y aceptar y almacenar el valor de precisión doble
devuelto por encontrarMax().

2. Para los siguientes encabezados de función, determine el número, tipo y orden (se-
cuencia) de los valores que deberán ser transmitidos a la función cuando sea lla-
mada y el tipo de datos del valor devuelto por la función.

a. int factorial(int n)
b. double voltios(int res, double induc, double cap)
c. double potencia(int tipo, double induc, double cap)
d. char marcador(char tipo, float corriente, float tiempo)
e. int total(float cantidad, float tasa)
f. float roi(int a, int b, char c, char d, float e, float f)
g. void obtener_valor(int elemento, int iter, char decmarcador,

char delim)

3. Escriba encabezados de función para lo siguiente:

a. una función llamada verificar que tenga tres parámetros. El primer pará-
metro deberá aceptar un número entero, el segundo un número de precisión do-
ble y el tercer parámetro un número de precisión doble. La función no devuelve
ningún valor.

b. una función nombrada encontrarAbs() que acepte un número de precisión
doble que se le transmite y devuelva su valor absoluto.

c. una función nombrada mult que acepte dos números de punto flotante como
parámetros, multiplique estos dos números y devuelva el resultado.

d. una función nombrada al_cuadrado() que calcule y devuelva el cuadrado
del valor entero que se le transmite.

e. una función llamada funpot() que eleve un número entero que se le transmi-
ta a una potencia entera positiva (como un argumento) y devuelva el resultado
como un número entero.

f. una función que produzca una tabla de los números del 1 al 10, sus cuadrados
y sus cubos. Que no se transmitan argumentos a la función y la función no de-
vuelve ningún valor.

4. a. Escriba una función llamada trianguloRectangulo() que acepte el largo
de dos lados de un triángulo rectángulo como los argumentos a y b, respectiva-
mente. La subrutina deberá determinar y devolver la hipotenusa, c, del triángu-
lo. (Sugerencia: Use el teorema de Pitágoras, c2 = a2 + b2).

b. Incluya la función escrita para el ejercicio 4a en un programa que funcione. La
unidad de función main() deberá llamar en forma correcta a triangulo-
Rectangulo() y desplegar el valor devuelto por la función.

6.2 Devolver un solo valor 329

www.FreeLibros.me

5. a. Escriba una función en C++ llamada encontrarAbs() que acepte un núme-
ro de precisión doble que se le transmite, calcule su valor absoluto y devuelva
el valor absoluto a la función que llama. El valor absoluto de un número es el
mismo número si éste es positivo y el negativo del número si éste es negativo.

b. Incluya la función escrita en el ejercicio 5a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y que devuelve en forma co-
rrecta un valor a main(). Haga que main() use una instrucción cout para
desplegar el valor devuelto. Pruebe la función transmitiéndole varios datos.

6. a. El volumen, v, de un cilindro está dado por la fórmula

v = πr2l

donde r es el radio del cilindro y l es su largo. Usando esta fórmula, escriba una
función C++ nombrada vol_cil() que acepte el radio y el largo de un cilin-
dro y devuelva su volumen.

b. Incluya la función escrita en el ejercicio 6a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelve en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

7. a. El área de la superficie, s, de un cilindro está dada por la fórmula

s = 2πrl

donde r es el radio del cilindro y l su largo. Usando esta fórmula escriba una
función en C++ nombrada areasup() que acepte el radio y largo de un cilin-
dro y devuelva su superficie.

b. Incluya la función escrita en el ejercicio 7a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelva en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

8. Un polinomio de segundo grado en x está dado por la expresión ax2 + bx + c, donde
a, b, y c son números conocidos y a no es igual a cero. Escriba una función en C++
nombrada poli_dos(a, b, c, x) que calcule y devuelva el valor de un polinomio de
segundo grado para valores transmitidos de a, b, c y x.

9. a. La deflexión máxima permisible de una viga depende de su función. Para un
piso, la deflexión máxima permisible típica, en pulgadas, es Dmáx = L / 240,
mientras para una viga del techo Dmáx = L / 180, donde L es el largo de la
viga en pulgadas. Usando estas fórmulas, escriba y pruebe una función nom-
brada deflexMax() que acepte el largo de una viga, en pies, y el tipo de
viga (piso o techo) como un código de carácter y devuelva la deflexión má-
xima permisible.

b. Incluya la función escrita en el ejercicio 9a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelve en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

CAPÍTULO 6 Modularidad con el uso de funciones330

www.FreeLibros.me

10. a. La carga, Pcr , en unidades de kilolibras (klb), aplicada a una columna que cau-
sará que la columna se combe se conoce como la carga de combamiento críti-
ca. Esta carga puede determinarse usando la ecuación

Pcr = π2 E A / (L / r)2

donde E es el módulo de elasticidad del material usado en la columna, A es el
área de corte transversal, L es el largo de la columna y r es su radio de giro.
Usando esta fórmula, escriba una función en C++ llamada cargaC() que
acepte valores de E, A, L y r, y devuelva la carga crítica.

b. Incluya la función escrita en el ejercicio 10a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelve en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

11. a. Un algoritmo de programación útil en extremo para redondear un número real
a n lugares decimales es

Paso 1: Multiplicar el número por 10n

Paso 2: Sumar 0.5

Paso 3: Eliminar la parte fraccionaria del resultado

Paso 4: Dividir entre 10n

Por ejemplo, usar este algoritmo para redondear el número 78.374625 a tres
lugares decimales produce:

Paso 1: 78.374625 � 103 = 78374.625

Paso 2: 78374.625 + 0.5 = 78375.125

Paso 3: Conservar la parte entera = 78375

Paso 4: 78375 dividido entre 103 = 78.375

Usando este algoritmo, escriba una función en C++ que acepte un valor intro-
ducido por un usuario y devuelva el resultado redondeado a dos lugares deci-
males.

b. Introduzca, compile y ejecute el programa escrito para el ejercicio 11a.

12. a. Escriba una función en C++ llamada entero() que devuelva la parte entera
de cualquier número que se transmita a la función. (Sugerencia: Asigne el argu-
mento transmitido a una variable entera.)

b. Incluya la función escrita en el ejercicio 12a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelve en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

13. a. Escriba una función en C++ nombrada partefrac() que devuelva la parte
fraccionaria de cualquier número transmitido a la función. Por ejemplo, si se
transmite el número 256.879 a partefrac(), debería devolverse el número
0.879. Haga que la función partefrac() llame a la función entero() que
escribió en el ejercicio 12. El número devuelto puede determinarse entonces co-
mo el número transmitido a partefrac() menos el valor devuelto cuando el

6.2 Devolver un solo valor 331

www.FreeLibros.me

mismo argumento es transmitido a entero(). El programa completo deberá
consistir de main() seguido por partefrac() seguido por entero().

b. Incluya la función escrita en el ejercicio 13a en un programa que funcione. Ase-
gúrese que su función es llamada desde main() y devuelve en forma correcta
un valor a main(). Haga que main() use una instrucción cout para desple-
gar el valor devuelto. Pruebe la función transmitiéndole varios datos.

14. Todos los años que son divisibles entre 400 o son divisibles entre cuatro y no son
divisibles entre 100 son años bisiestos. Por ejemplo, en vista que 1600 es divisible
entre 400, el año 1600 fue un año bisiesto. Del mismo modo, en vista que 1988 es
divisible entre cuatro pero no entre 100, el año 1988 también fue un año bisiesto.
Usando esta información, escriba una función en C++ que acepte el año como en-
trada de un usuario y devuelva un uno si el año transmitido es un año bisiesto o
un cero si no lo es.

6.3 DEVOLVER VALORES MÚLTIPLES

En una invocación de una función típica, la función llamada recibe valores de la función
que la llama, almacena y manipula los valores transmitidos y devuelve en forma directa
cuando mucho un valor único. Cuando los datos son transmitidos en esta manera se co-
noce como transmisión por valor.

Llamar a una función y transmitir argumentos por valor es una ventaja distintiva de
C++. Permite que se escriban funciones como entidades independientes que pueden usar
cualquier nombre de variable o parámetro sin preocuparse por que otras funciones pue-
dan usar también el mismo nombre. También alivia cualquier preocupación de que alterar
un parámetro o variable en una función pueda alterar de manera inadvertida el valor de
una variable en otra función. Bajo este enfoque, los parámetros pueden considerarse co-
mo variables inicializadas o variables a las que se les asignarán valores cuando se ejecute
la función. Sin embargo, en ningún momento la función llamada tiene acceso directo a
cualquier variable definida en la función que llama, aun si la variable se usa como un ar-
gumento en la llamada a la función.

Hay ocasiones, sin embargo, en que es necesario alterar este enfoque dándole a una
función llamada acceso directo a las variables de su función que llama. Esto le permite a
la función, la cual es la función llamada, usen y cambien el valor de variables que se han
definido en la función que llama. Para hacer esto se requiere que la dirección de la varia-
ble se transmita a la función llamada. Una vez que la función llamada tiene la dirección
de la variable, “sabe dónde vive la variable”, por así decirlo, y puede tener acceso y cam-
biar el valor almacenado ahí en forma directa.

La transmisión de direcciones se conoce como función de transmisión por referencia,12

en vista que la función llamada puede hacer referencia, o tener acceso, a la variable cuya
dirección se ha transmitido. C++ proporciona dos tipos de parámetros de dirección, refe-
rencias y apuntadores. En esta sección se describe el método que usa parámetros de refe-
rencia.

CAPÍTULO 6 Modularidad con el uso de funciones332

12También se conoce como llamada por referencia, donde, una vez más, el término se aplica sólo a los argumentos cuya di-
rección se ha transmitido.

www.FreeLibros.me

Transmisión y uso de parámetros de referencia

Como siempre, al intercambiar datos entre dos funciones se deben atender los lados emi-
sor y receptor del intercambio de datos. Desde el lado emisor, sin embargo, llamar a una
función y transmitir una dirección como un argumento que se aceptará como parámetro
de referencia es exactamente lo mismo que llamar a una función y transmitir un valor; la
función llamada es convocada a la acción proporcionando su nombre y una lista de argu-
mentos. Por ejemplo, la instrucción valnuevo(primernum, segundonum); llama a la
función nombrada valnuevo y le transmite dos argumentos. Que se transmita en reali-
dad un valor o una dirección depende de los tipos de parámetros declarados para val-
nuevo(). Ahora se escribirá la función y el prototipo valnuevo de modo que reciban
las direcciones de las variables primernum y segundonum, las cuales se supondrá que
son variables de precisión doble, en lugar de sus valores.

Uno de los primeros requisitos al escribir valnuevo() es declarar dos parámetros de
referencia para aceptar direcciones transmitidas. En C++ se declara un parámetro de refe-
rencia usando la sintaxis

tipo-de-datos& nombre-de-referencia

Por ejemplo, la declaración de referencia

double&ƒnum1;

declara que num1 es un parámetro de referencia que se utilizará para almacenar la direc-
ción de un double. Del mismo modo, int& segundonum declara que segundonum es
una referencia a un número entero y char& clave declara que clave es una referencia
a un carácter.

Se recordará de la sección 2.4 que el símbolo ampersand, &, en C++ significa “la di-
rección de”. Además, cuando se usa un símbolo & dentro de una declaración se refiere a
“la dirección del” tipo de datos precedente. Usando esta información, declaraciones como
double& num1 e int& segundonum a veces se entienden con más claridad si se leen
al revés. Leer la declaración double& num1 de esta manera produce la información que
“num1 es la dirección de un valor de precisión doble”.

En vista de que es necesario aceptar dos direcciones en la lista de parámetros para
valnuevo(), pueden usarse las declaraciones double& num1, double& num2. Al in-
cluir estas declaraciones dentro de la lista de parámetros para valnuevo(), y suponer
que la función no devuelve ningún valor (void), el encabezado de función para valnue-
vo() se vuelve:

void valnuevo(double& num1, double& num2)

Para la línea de encabezado de esta función, un prototipo de función apropiado es

void valnuevo(double&, double&);

Este prototipo y línea de encabezado se han incluido en el programa 6.8, el cual incorpo-
ra un cuerpo de función valnuevo() completo que despliega y altera en forma directa
los valores almacenados en estas variables de referencia desde dentro de la función que se
ha llamado.

6.3 Devolver valores múltiples 333

www.FreeLibros.me

Al llamar a la función valnuevo() dentro del programa 6.8, es importante entender
la conexión entre los argumentos, primernum y segundonum, usados en la llamada a la
función y los parámetros, xnum y ynum, usados en el encabezado de la función. Ambos
se refieren a los mismos elementos de datos. La importancia de esto es que los valores en
los argumentos (primernum y segundonum) ahora pueden alterarse desde dentro de
valnuevo() usando los nombres de parámetros (xnum y ynum). Por tanto, el pará-
metro xnum y ynum no almacena copias de los valores en primernum y segundonum,
sino que tiene acceso directo a las ubicaciones en la memoria apartados para estos dos ar-
gumentos. La equivalencia de los nombres de argumentos en el programa 6.8, la cual es
la esencia de una transmisión por referencia, se ilustra en la figura 6.8. Como se muestra
en esta figura, los nombres de argumentos y sus nombres de parámetros correspondientes
tan sólo son nombres diferentes que se refieren a las mismas áreas de almacenamiento en la
memoria. En main() se hace referencia a estas ubicaciones de memoria por los nombres

Pr ograma 6.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

void valnuevo(double&, double&); // prototipo con dos parámetros de referencia

intƒmain()
{
ƒƒdouble primernum, segundonum;

ƒƒcout << “Introduzca dos números: ”;
ƒƒcin >> primernum >> segundonum;
ƒƒcout << “\nEl valor en primernum es: ” << primernum << endl;
ƒƒcout << “El valor en segundonum es: ” << segundonum << “\n\n”;

ƒƒvalnuevo(primernum, segundonum); // llamada a la función

ƒƒcout << “Ahora el valor en primernum es: ” << primernum << endl;
ƒƒcout << “Ahora el valor en segundonum es: ” << segundonum << endl;

ƒƒreturnƒ0;
}

void valnuevo(double& xnum, double& ynum)
{
ƒƒccout << “El valor en xnum es: ” << xnum << endl;
ƒƒcout << “El valor en ynum es: ” << ynum << “\n\n”;
ƒƒxnumƒ=ƒ89.5;
ƒƒynumƒ=ƒ99.5;

ƒƒreturn;
}

CAPÍTULO 6 Modularidad con el uso de funciones334

www.FreeLibros.me

primernum y segundonum, respectivamente, mientras en valnuevo() se hace referencia
a las mismas ubicaciones con los nombres de parámetro xnum y ynum, respectivamente.

Figura 6.8 La equivalencia de argumentos y parámetros en el programa 6.8.

El siguiente ejemplo muestra la ejecución que se obtuvo usando el programa 6.8:

Introduzca dos números:ƒ22.5ƒ33.0

El valor en primernum es:ƒ22.5
El valor en segundonum es:ƒƒƒ33

El valor en xnum es:ƒ22.5
El valor en ynum es:ƒ33

Ahora el valor en primernum es:ƒ89.5
Ahora el valor en segundonum es:ƒ99.5

Al revisar esta salida, hay que observar que los valores desplegados al principio para los pa-
rámetros xnum y ynum son los mismos que los desplegados para los argumentos primer-
num y segundonum. Sin embargo, en vista que xnum y ynum son parámetros de referencia,
valnuevo() ahora tienen acceso directo a los argumentos primernum y segundonum.
Por tanto, cualquier cambio a xnum dentro de valnuevo() altera en forma directa el valor
de primernum en main() y cualquier cambio a ynum cambia en forma directa el valor de
segundonum. Como lo ilustran los valores finales desplegados, la asignación de valores a
xnum y ynum dentro de valnuevo() se refleja en main() como la alteración de los valo-
res de primernum y segundonum.

La equivalencia entre los argumentos reales que llaman y los parámetros de función
ilustrados en el programa 6.8 proporcionan la base para devolver valores múltiples desde
adentro de una función. Por ejemplo, suponga que se requiere una función para aceptar tres
valores, calcular la suma y el producto de estos valores y devolver estos resultados calcula-
dos a la rutina que llama. Al nombrar a la función calcular() y proporcionar cinco pa-
rámetros (tres para los datos de entrada y dos referencias para los valores devueltos), puede
usarse la siguiente función.

En valnuevo() se hace
referencia a los mismos

valores como

En main() se hace referencia
a los valores como

primernum segundonum

se almacena un valor se almacena un valor

xnum ynum

6.3 Devolver valores múltiples 335

www.FreeLibros.me

void calcular(double num1, double num2, double num3, double& total, double& producto)
{
ƒƒtotalƒ=ƒnum1ƒ+ƒnum2ƒ+ƒnum3;
ƒƒproductoƒ=ƒnum1ƒ*ƒnum2ƒ*ƒnum3;
ƒƒreturn;
}ƒƒƒƒ

Esta función tiene cinco parámetros, nombrados num1, num2, num3, total y pro-
ducto, de los cuales sólo los últimos dos son declarados como referencias. Por tanto,
los primeros tres argumentos son transmitidos por valor y los últimos dos argumentos
son transmitidos por referencia. Dentro de la función sólo se alteran los dos últimos
parámetros. El valor del cuarto parámetro, total, se calcula como la suma de los pri-
meros tres parámetros y el último parámetro, producto, se calcula como el producto
de los parámetros num1, num2 y num3. El programa 6.9 incluye esta función en un
programa completo.

Pr ograma 6.9

#includeƒ<iostream>
usingƒnamespaceƒstd;

void calcular(double, double, double, double&, double&); // prototipo

intƒmain()
{
ƒƒdouble primernum, segundonum, tercernum, suma, producto;

ƒƒcout << “Introduzca tres números: ”;
ƒƒcin >> primernum >> segundonum >> tercernum;

ƒƒcalcular(primernum, segundonum, tercernum, suma, producto); // llamada a la función

ƒƒcout << “\nLa suma de los números es: ” << suma << endl;
ƒƒcout << “El producto de los números es: ” << producto << endl;

ƒƒreturnƒ0;
}

void calcular(double num1, double num2, double num3, double& total, double& producto)
{
ƒƒtotalƒ=ƒnum1ƒ+ƒnum2ƒ+ƒnum3;
ƒƒproducto = num1 * num2 * num3;
ƒƒreturn;
}

CAPÍTULO 6 Modularidad con el uso de funciones336

www.FreeLibros.me

Dentro de main(), la función calcular() es llamada usando los cinco argumentos
primernum, segundonum, tercernum, suma y producto. Como se requiere, estos ar-
gumentos concuerdan en número y tipo de datos con los parámetros declarados por cal-
cular(). De los cinco argumentos transmitidos, sólo a primernum, segundonum y
tercernum se les han asignado valores cuando se hace la llamada a calcular(). Los
dos argumentos restantes no se han inicializado y se usarán para recibir valores devueltos
por calcular(). Dependiendo del compilador utilizado para compilar el programa, es-
tos argumentos contendrán al principio ceros o valores “basura”. La figura 6.9 ilustra la
relación entre los nombres reales y de parámetro y los valores que contienen después de
ser devueltos de calcular().

Figura 6.9 Relación entre los nombres de argumento y de parámetro.

Una vez que es llamada calcular(), usa sus primeros tres parámetros para calcular va-
lores para total y producto y luego devuelve el control a main(). Debido al orden de los
argumentos reales de la función que llama, main() conoce los valores calculados por
calcular() como suma y producto, los cuales son desplegados luego. A continuación
se presenta una muestra de ejecución usando el programa 6.9.

Introduzca tres números:ƒ2.5ƒ6.0ƒ10.0
La suma de los números introducidos es:ƒ18.5
El producto de los números introducidos es:ƒ150

Como un ejemplo final que ilustra la utilidad de transmitir referencias a una función lla-
mada, se construirá una función llamada intercambio() que intercambia los valores
de dos de las variables de precisión doble de main(). Una función así es útil cuando se
clasifica una lista de números.

En vista que es afectado el valor de más de una variable, intercambio() no puede
escribirse como una función de transmisión por valor que devuelve un valor único. El in-
tercambio deseado de las variables de main() por intercambio() sólo puede obtener-
se dándole a intercambio() acceso a las variables de main(). Una forma de hacer esto
es usar parámetros de referencia.

2. 5

2. 5

6. 0

6. 0

10. 0

10. 0

18. 5

tercernum

segundonum

primernum

suma

n u m 3
n u m 2

n u m 1

t o t a l

150.0

producto

producto

Se transmite un valor
main()

calcular()

nombres de argumentos usados en main()

nombres de parámetros usados en calcular()

6.3 Devolver valores múltiples 337

www.FreeLibros.me

Ya se ha visto cómo transmitir referencias a dos variables en el programa 6.8. Ahora
se construirá una función para intercambiar los valores en los argumentos de referencia
transmitidos. Intercambiar valores en dos variables se logra usando el algoritmo de inter-
cambio en tres pasos:

1. Guardar el valor del primer parámetro en una ubicación temporal (véase la figu-
ra 6.10a).

2. Almacenar el valor del segundo parámetro en la primera variable (véase la figura
6.10b).

3. Almacenar el valor temporal en el segundo parámetro (véase la figura 6.10c).

Figura 6.10a Guardar el primer valor.

Figura 6.10b Reemplazar el primer valor con el segundo valor.

Figura 6.10c Cambiar el segundo valor.

A continuación está la función intercambio() escrita de acuerdo con estas especificaciones:

void intercambio(double& num1, double& num2)
{
ƒƒdoubleƒtemp;

ƒƒtempƒ=ƒnum1;ƒƒƒƒƒ//ƒguarda el valor de num1
ƒƒnum1ƒ=ƒnum2;ƒƒƒƒƒ//ƒalmacena el valor de num2 en num1
ƒƒnum2ƒ=ƒtemp;ƒƒƒƒƒ//ƒcambia el valor de num2

ƒƒreturn;
}

Hay que observar que el uso de referencias en la línea de encabezado de intercambio()
le da acceso a intercambio() a los argumentos equivalentes en la función que llama. Por

num2num1temp

num2num1temp

num1temp num2

CAPÍTULO 6 Modularidad con el uso de funciones338

www.FreeLibros.me

tanto, cualquier cambio a los dos parámetros de referencia en intercambio() de mane-
ra automática cambia los valores en los argumentos de la función que llama. El programa
6.10 contiene intercambio() en un programa completo.

La siguiente muestra de ejecución se obtuvo usando el programa 6.10:

El valor almacenado en primernum es:ƒ20.5
El valor almacenado en segundonum es:ƒ6.25

Ahora el valor almacenado en primernum es:ƒ6.25ƒ
Ahora el valor almacenado en segundonum es: ƒ20.5

Pr ograma 6.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

void intercambio(double&, double&); // la función recibe dos referencias

intƒmain()
{
ƒƒdouble primernum = 20.5, segundonum = 6.25;

ƒƒcout << “El valor almacenado en primernum es: ” << primernum << endl;
ƒƒcout << “El valor almacenado en segundonum es : ” << segundonum << “\n\n”;

ƒƒintercambio(primernum, segundonum); // llama a la función con referencias

ƒƒcout << “Ahora el valor almacenado en primernum es: ”
ƒƒƒƒƒƒƒ<< primernum << endl;
ƒƒcout << “Ahora el valor almacenado en segundonum es: ”
ƒƒƒƒƒƒƒ<< segundonum << endl;

ƒƒreturnƒ0;
}

void intercambio(double& num1, double& num2)
{
ƒƒdoubleƒtemp;

ƒƒtempƒ=ƒnum1;ƒƒƒƒƒ//ƒguarda el valor de num1
ƒƒnum1ƒ=ƒnum2;ƒƒƒƒƒ//ƒalmacena el valor de num2 en num1
ƒƒnum2ƒ=ƒtemp;ƒƒƒƒƒ//ƒcambia el valor de num2

ƒƒreturn;
}

6.3 Devolver valores múltiples 339

www.FreeLibros.me

Como lo ilustra su salida, los valores almacenados en las variables de main() se han mo-
dificado desde dentro de intercambio(), lo cual fue posible por el uso de parámetros
de referencia. Si se hubiera utilizado una transmisión por valor, el intercambio dentro de
intercambio() sólo habría afectado los parámetros de intercambio() y no lograría
nada con respecto a las variables de main(). Por tanto, una función como intercam-
bio() sólo puede escribirse usando referencias o algún otro medio que proporcione ac-
ceso a las variables de main() (este otro medio se llava a cabo por apuntadores, tema del
capítulo 12).

Al usar argumentos de referencia, es necesario mencionar dos precauciones. La prime-
ra es que los argumentos de referencia deben ser variables (es decir, no pueden usarse pa-
ra cambiar constantes). Por ejemplo, llamar a intercambio() con dos constantes, como
en la llamada intercambio(20.5, 6.5) transmite dos constantes a la función. Aun-
que intercambio() puede ejecutarse, no cambiará los valores de estas constantes.13

La segunda precaución es que una llamada a función en sí no da indicio de que la fun-
ción llamada usará parámetros de referencia. La opción por omisión en C++ es hacer trans-
misiones por valor en lugar de transmisiones por referencia, precisamente para limitar la
capacidad de una función llamada para alterar variables en la función que llama. Este pro-
cedimiento de llamada deberá acatarse siempre que sea posible, lo cual significa que los pa-
rámetros de referencia sólo deberían usarse en situaciones muy restringidas que en realidad
requieran múltiples valores devueltos, como en la función intercambio() ilustrada en el
programa 6.10. La función calcular(), incluida en el programa 6.9, aunque útil con pro-
pósitos ilustrativos, también podría ser escrita como dos funciones separadas, cada una de-
volviendo un valor único.

Ejercicios 6.3

1. Escriba declaraciones de parámetros para lo siguiente:
a. un parámetro nombrado cantidad que será una referencia a un valor de preci-

sión doble.
b. un parámetro nombrado precio que será una referencia a un número de preci-

sión doble.
c. un parámetro nombrado minutos que será una referencia a un número entero.
d. un parámetro nombrado clave que será una referencia a un carácter.
e. un parámetro nombrado rendimiento que será una referencia a un número

de precisión doble.

2. Se van a usar tres argumentos en número entero en una llamada a una función
denominada tiempo(). Escriba un encabezado de función adecuado para tiem-
po(), suponiendo que tiempo() acepte estas variables como los parámetros de
referencia seg, min y horas, y no devuelva ningún valor a la función que llama.

3. Vuelva a escribir la función encontrarMax() del programa 6.5 de modo que la
variable max, declarada en main(), se use para almacenar el valor máximo de los
dos números transmitidos. El valor de max deberá establecerse en forma directa
desde dentro de encontrarMax(). (Sugerencia: encontrarMax() tendrá que
aceptar una referencia a max.)

CAPÍTULO 6 Modularidad con el uso de funciones340

13Muchos compiladores tomarán esto como un error.

www.FreeLibros.me

4. Escriba una función nombrada cambio() que tenga un parámetro en número ente-
ro y seis parámetros de referencia en número entero nombrados cien, cincuenta,
veinte, diez, cinco y uno, respectivamente. La función tiene que considerar el
valor entero transmitido como una cantidad en dólares y convertir el valor en el nú-
mero menor de billetes equivalentes. Usando las referencias, la función deberá alterar
de manera directa los argumentos respectivos en la función que llama.

5. Escriba una función nombrada tiempo() que tenga un parámetro en número ente-
ro llamado segundos y tres parámetros de referencia enteros nombrados horas, min
y seg. La función es convertir el número de segundos transmitido en un número equi-
valente de horas, minutos y segundos. Usando las referencias la función deberá alte-
rar de manera directa los argumentos respectivos en la función que llama.

6. Escriba una función nombrada calc_años() que tenga un parámetro entero que
represente el número total de días desde la fecha 1/1/1900 y parámetros de referencia
nombrados año, mes y día. La función es calcular el año, mes y día actual para el
número dado de días que se le transmitan. Usando las referencias, la función deberá
alterar en forma directa los argumentos respectivos en la función que llama. Para es-
te problema suponga que cada año tiene 365 días y cada mes tiene 30 días.

7. El siguiente programa usa los mismos nombres de argumento y parámetro tanto
en la función que llama como en la función llamada. Determine si esto causa al-
gún problema para la computadora.

#includeƒ<iostream>
usingƒnamespaceƒstd;

void tiempo(int&, int&); // prototipo de la función

intƒmain()
{
ƒƒint min, hora;
ƒƒ
ƒƒcout << “Introduzca dos números :”;
ƒƒcin >> min >> hora;
ƒƒtiempo(min, hora);

ƒƒreturnƒ0;
}

void tiempo(int& min, int& hora) // acepta dos referencias
{
ƒƒint seg;
ƒ
ƒƒseg = (hora * 60 + min) * 60;
ƒƒccout << “El número total de segundos es ” << seg <<
endl;

ƒƒreturn;
}

6.3 Devolver valores múltiples 341

www.FreeLibros.me

342

6.4 APLICACIONES

Preparar un programa de computadora bien diseñado es muy parecido a preparar un re-
porte semestral bien diseñado; ambos deben comenzar con un esquema, el cual puede ser
escrito o, para programas muy pequeños, puede tan sólo mantenerse en la mente confor-
me se desarrolla el programa. Sin embargo, como sucede con un esquema para un repor-
te semestral, el cual enumera los temas principales del reporte, el esquema inicial de un
programa de computadora debe proporcionar un listado de las tareas primarias que debe
cumplir el programa.

En forma escrita, el esquema inicial de un programa de computadora por lo general
es una descripción en seudocódigo (véase la sección 1.3) o un diagrama de estructura de
primer nivel (véase la sección 1.2). Este esquema inicial comienza el proceso de definir un
problema más complicado en un conjunto de tareas más pequeñas y más manejables. Ca-
da una de estas tareas puede subdividirse o depurarse más, en tareas aún más pequeñas,
si se requiere. Una vez que las tareas están bien definidas, el trabajo real de codificación
puede comenzar, iniciando con cualquier tarea, en cualquier orden. Si hay más tareas de
las que puedan ser manejadas por un programador, pueden distribuirse entre tantos pro-
gramadores como se requiera. Esto es equivalente a tener a muchas personas trabajando
en un proyecto de investigación grande, con cada persona responsable de un tema indivi-
dual. Un esquema general aplicable a muchas tareas de ingeniería y científicas es el siguien-
te algoritmo:

Obtener las entradas del problema
Calcular el resultado deseado
Reportar los resultados del cálculo

Estas tres tareas son las responsabilidades primarias de todo programa, y se hará referen-
cia a este algoritmo como el algoritmo para resolver problemas. Un diagrama de estructu-
ra de primer nivel de este algoritmo se muestra en la figura 6.11.

Figura 6.11 Diagrama de estructura de primer nivel del algoritmo para resolver problemas.

Cada tarea en el algoritmo para resolver problemas puede trabajarse en forma indepen-
diente como una función, una especie de “mini” programa en C++ que de manera típica
es más fácil de completar que un programa entero. Cada una de estas tareas de función
puede refinarse y codificarse en cualquier orden deseado, aunque completar primero la
sección de entrada por lo general hace más fácil la prueba y el desarrollo. Ahora aplicare-
mos este procedimiento de desarrollo a un problema de programación real.

Algoritmo
para resolver

problemas

Obtener
entradas

Calcular
el resultado

Desplegar
el resultado

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

343

Aplicación 1: Conversión de coordenadas rectangulares a polares

Suponga que debemos escribir un programa en C++ para convertir las coordenadas rec-
tangulares (x,y) de un punto en forma polar. Es decir, dada una posición x y y en un sis-
tema de coordenadas cartesiano, como se ilustra en la figura 6.12, se debe calcular la
distancia desde el origen, r, y el ángulo desde el eje x, θ, especificado por el punto. Los va-
lores de r y θ se conocen como las coordenadas polares del punto.

Figura 6.12 Correspondencia entre coordenadas polares (distancia y ángulo) y cartesia-
nas (x,y).

Cuando se conocen las coordenadas x y y de un punto, las coordenadas r y θ equivalen-
tes pueden calcularse usando las fórmulas:

Se inicia el desarrollo del programa con un esquema de lo que éste ha de lograr. Puede
construirse una descripción primaria en seudocódigo del programa deseado usando el al-
goritmo para resolver problemas en lo que se refiere a los detalles de esta aplicación. Las
entradas requeridas son una coordenada x y una coordenada y, el cálculo es convertir los
valores introducidos en su forma de coordenadas polares, y el despliegue son las coorde-
nadas polares calculadas. Por tanto, la descripción de seudocódigo inicial es

Obtener los valores de las coordenadas x y y
Calcular los valores de las coordenadas polares (r y θ)
Desplegar los valores de las coordenadas polares

El diagrama de estructura de primer nivel o nivel superior equivalente para este algoritmo
se ilustra en la figura 6.13.

r = x2 + y2

θ = tan−1(y / x) x ≠ 0

θ

(x,y)

Eje y

Eje x

r

6.4 Aplicaciones

www.FreeLibros.me

Figura 6.13 Diagrama de estructura de nivel superior.

Como éste es un programa relativamente simple y cada tarea descrita por el algoritmo es-
tá bien definida, se puede iniciar la codificación de cada tarea. Para ilustrar que cada ta-
rea puede ser codificada de manera independiente de cualquier otra tarea, se comenzará
de manera arbitraria con la codificación de la función que realiza el cálculo de las coorde-
nadas polares. Como una característica adicional, esta función devolverá el ángulo θ en
grados en lugar de la medida radianes devuelta por la función intrínseca atan(). En vis-
ta que esta función debe recibir dos entradas, las coordenadas x y y, y devolver dos sali-
das, las coordenadas r y θ, se le proporcionan a la función cuatro parámetros, dos para
sus entradas y dos para sus salidas. Seleccionando de manera arbitraria los nombres de pa-
rámetros de x, y, r, y theta, y nombrando a la función polar(), el siguiente código lle-
va a cabo el cálculo requerido de coordenadas polares.

voidƒpolar(doubleƒx,ƒdoubleƒy,ƒdouble&ƒr,ƒdouble&ƒtheta)
{
ƒƒconst double A_GRADOS = 180.0/3.141593;

ƒƒrƒ=ƒsqrt(xƒ*ƒxƒ+ƒyƒ*ƒy);
ƒƒtheta = atan(y/x) * A_GRADOS;
ƒƒ
ƒƒreturn;
}

La función polar() es bastante sencilla. La línea de encabezado de la función declara
que la función no devolverá en forma directa ningún valor y cada uno de sus parámetros
es declarado como un tipo de datos en precisión doble. Los primeros dos parámetros se
usarán para aceptar un valor x y uno y, mientras los últimos dos parámetros, los cuales
son parámetros de referencia, se usarán para transmitir los valores de distancia y ángulo
convertidos de vuelta a la función que llama. Dentro del cuerpo de la función se define
una constante llamada A_GRADOS como el factor 180.0/3.142593. Las siguientes dos ins-
trucciones de asignación usan los dos parámetros, x y y, para asignar valores a los pará-
metros r y theta. La constante nombrada A_GRADOS se usa para convertir el valor en
radianes devuelto de la función atan() a grados. Como está escrita, la función polar()
puede ser complicada para verificar cualquier error en tiempo de compilación.

Para entender cómo se transmiten los valores devueltos es útil pensar en los paráme-
tros de referencia r y theta como recipientes (o variables) a través de los cuales pueden
transmitirse valores en cualquier dirección. Esta situación se muestra en la figura 6.14, la

Conversión de
coordenadas
rectangulares

a polares

Introducir
coordenadas x y y

Calcular
r y θ

Desplegar
r y θ

CAPÍTULO 6 Modularidad con el uso de funciones344

www.FreeLibros.me

cual es útil para entender las características fundamentales de los parámetros de referen-
cia: tan sólo proporcionan la capacidad para que una función llamada y una que llama
tengan acceso a la misma área de almacenamiento usando nombres diferentes.

Figura 6.14 Valores de los parámetros cuando se llama a polar().

Como se muestra en la figura 6.14, la función que llama puede tener acceso a los valores asig-
nados a r y theta dentro de polar() usando los nombres de argumento distancia y
angulo, o cualesquier otros nombres de argumentos seleccionados por el programador.

Probar la función

Una vez que se ha escrito polar(), puede probarse en forma independiente de cualquier
otra función. Esto se hace escribiendo una función controladora dedicada que sólo llame
a polar(), como se hace en el programa 6.11.

Pr ograma 6.11

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

void polar(double, double, double&, double&); // prototipo de la función

intƒmain()
{
ƒƒdouble distancia, angulo;
ƒƒpolar(3.0, 4.0, distancia, angulo);
ƒƒcout << “r = ” << distancia << endl;
ƒƒcout << “ángulo = ” << angulo << endl;

ƒƒreturnƒ0;
}

(Continúa)

distancia

r theta

ángulo

main()

polar()

main()

polar()
5.0 53.1301

6.4 Aplicaciones 345

www.FreeLibros.me

346

Hay que observar que en main() se transmitieron las constantes 3.0 y 4.0 a polar().
La función acepta estas entradas como los parámetros x y y, y usa estos parámetros para
calcular valores para los parámetros r y theta. Dentro de main(), estos dos últimos pa-
rámetros se conocen como distancia y angulo, cuyos valores se despliegan inmediatamen-
te después que se hace la llamada a polar(). La salida producida cuando se ejecuta el
programa 6.11 es

rƒ=ƒ5
anguloƒ=ƒ53.1301

Éstos son los mismos resultados que se obtendrían por medio de un cálculo manual. Có-
mo la función lleva a cabo sólo dos cálculos, y el resultado desplegado por el programa
de prueba concuerda por medio del obtenido con el cálculo manual, la función ha sido
probada por completo por sí misma. Aún resta probarla en grupo con las dos funciones
restantes requeridas por el programa completo para asegurar que los valores de argumen-
tos correctos se intercambian entre cada función.

Completar el Programa

El diagrama de estructura para el programa completo (figura 6.13) requiere que también
se escriban funciones para aceptar dos coordenadas rectangulares y desplegar las coorde-
nadas polares calculadas, respectivamente. La siguiente función, obtrec(), puede uti-
lizarse para aceptar los datos de entrada.

void obtrec(double& x, double& y)
{
ƒƒcout << “Programa de conversión de coordenadas”
ƒƒƒƒƒƒƒ<< “ rectangulares a polares\n” << endl;
ƒƒcout << “Introduzca la coordenada x: ”;
ƒƒcinƒƒ>>ƒx;
ƒƒcout << “Introduzca la coordenada y: ”;
ƒƒcinƒƒ>>ƒy;
ƒƒ
ƒƒreturn;
}

voidƒpolar(doubleƒx,ƒdoubleƒy,ƒdouble&ƒr,ƒdouble&ƒtheta)
{
ƒƒconst double A_GRADOS = 180.0/3.141593;

ƒƒrƒ=ƒsqrt(xƒ*ƒxƒ+ƒyƒ*ƒy);
ƒƒtheta = atan(y/x) * A_GRADOS;
ƒ
ƒƒreturn;ƒƒƒƒ
}

(Continuación)

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

347

En esta función se usan los parámetros de referencia x y y para devolver los valores que
se introducen en respuesta a los dos indicadores cin. Como con la función polar(), es-
ta función puede probarse por sí misma usando un pequeño programa controlador dedi-
cado. La función con su programa controlador se ilustra en el programa 6.12.

Observe que el programa controlador dedicado, el cual también se conoce como contro-
lador de “aplicación para el usuario” o “de interfaz”, se ha usado tanto para llamar a ob-
trec() como para desplegar los valores devueltos por esta función. La siguiente salida
producida por el programa 6.12 verifica la operación correcta de la función obtrec():

Programa de conversión de coordenadas rectangulares a
polares

Introduzca la coordenada x:ƒ3
Introduzca la coordenada y:ƒ4

Pr ograma 6.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

void obtrec(double&, double&); // prototipo de la función

intƒmain()
{
ƒƒdoubleƒxcoord,ƒycoord;

ƒƒobtrec(xcoord, ycoord);
ƒƒcout << “El valor introducido para x es ” << xcoord << endl;
ƒƒcout << “El valor introducido para y es ” << ycoord << endl;

ƒƒreturnƒ0;
}

void obtrec(double& x, double& y)
{
ƒƒcout << “Programa de conversión de coordenadas”
ƒƒƒƒƒƒƒ<< “ rectangulares a polares\n” << endl;
ƒƒcout << “Introduzca la coordenada x: ”;
ƒƒcinƒƒ>>ƒx;
ƒƒcout << “Introduzca la coordenada y: ”;
ƒƒcinƒƒ>>ƒy;
ƒƒ
ƒƒreturn;
}

6.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones348

El valor introducido para x es 3
El valor introducido para y es 4

De una manera similar, se construye la función para desplegar las coordenadas polares. El
programa 6.13 contiene tanto la función, la cual se ha nombrado mostrarlo(), como
un controlador de interfaz usado para probar la función. Hay que observar que los nom-
bres de parámetros usados en la línea de encabezado para mostrarlo() no necesitan ser
iguales que los usados en cualquier otra función. mostrarlo() se construye tan sólo pa-
ra desplegar los valores en sus dos parámetros, los cuales en este caso se han nombrado
radio y angulo.

La salida del programa 6.13, la cual se muestra a continuación, verifica que mostrar-
lo() despliega en forma correcta los valores que se le transmiten.

Las coordenadas polares son:
ƒƒDistancia desde el origen:ƒ5
ƒƒAngulo (en grados) respecto al eje x:ƒ53.1301

Ahora falta crear un programa main() que llame a cada una de las funciones desarrolla-
das en el orden correcto. Esto se hace en el programa 6.14, el cual también incluye las fun-
ciones obtrec(), polar() y mostrarlo().

Pr ograma 6.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

void mostrarlo(double, double); // prototipo de la función

intƒmain()
{
ƒƒmostrarlo(5.0, 53.1301);

ƒƒreturnƒ0;
}

void mostrarlo(double radio, double angulo)
{
ƒƒcout << “\nLas coordenadas polares son: ” << endl;
ƒƒcout << “ Distancia desde el origen: ” << radio << endl;
ƒƒcout << “ Angulo (en grados) respecto al eje x: ” << angulo << endl; ƒ

ƒƒreturn;
}

www.FreeLibros.me

Pr ograma 6.14

//ƒEste programa convierte coordenadas rectangulares en coordenadas polares
//ƒFunciones usadas: obtrec() – obtener las coordenadas rectangulares
//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒpolar() – calcular las coordenadas polares
//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒmostrarlo() – desplegar las coordenadas polares
//
#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

void obtrec(double&, double&);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒprototipo de la función
voidƒpolar(double,ƒdouble,ƒdouble&,ƒdouble&);ƒƒ//ƒprototipo de la función
void mostrarlo(double, double);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒprototipo de la función

intƒmain()
{
ƒƒdouble x, y, distancia, angulo;

ƒƒobtrec(x, y);
ƒƒpolar(x, y, distancia, angulo);
ƒƒmostrarlo(distancia, angulo);

ƒƒreturnƒ0;
}

void obtrec(double& x, double& y)
{
ƒƒcout << “Programa de conversión de coordenadas”
ƒƒƒƒƒƒƒ<< “ rectangulares a polares\n” << end;
ƒƒcout << “Introduzca la coordenada x: ”;
ƒƒcinƒƒ>>ƒx;
ƒƒcout << “Introduzca la coordenada y: ”;
ƒƒcinƒƒ>>ƒy;
ƒ
ƒƒreturn;
}

voidƒpolar(floatƒx,ƒfloatƒy,ƒfloat&ƒr,ƒfloat&ƒtheta)
(Continúa)

3496.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones350

La siguiente salida se produjo con una ejecución utilizando el programa 6.14:

Programa de conversión de coordenadas rectangulares
a polares

Introduzca la coordenada x:ƒ3
Introduzca la coordenada y:ƒ4

Las coordenadas polares son:
ƒƒDistancia desde el origen:ƒ5
ƒƒÁngulo (en grados) respecto al eje x:ƒ53.1301

Antes de dejar el programa 6.14, hay que señalar que una alternativa al escribir progra-
mas controladores para cada subrutina conforme se desarrollan las subrutinas es escribir
primero un programa main() y agregar después las subrutinas conforme se desarrollan.
Esto se logra utilizando cabos para cada función (véase la sección 6.1) y luego reempla-
zando cada cabo, uno a la vez, con la función completada.

Aplicación 2: Simulación

Hay muchos problemas de simulación científicos y de ingeniería en los que hay que con-
siderar la probabilidad o deben utilizarse técnicas de muestreo estadístico. Por ejemplo, al
simular el flujo de tráfico de automóviles o los patrones de uso de teléfono, se requieren
modelos estadísticos. Además, aplicaciones como juegos de computadora simples y esce-
narios más vinculados con la ingeniería sólo pueden describirse en forma estadística. To-
dos estos modelos estadísticos requieren la generación de números aleatorios; es decir,
una serie de números cuyo orden no pueda predecirse.

En la práctica, no hay números que en verdad sean aleatorios. Los dados nunca son
perfectos; las cartas nunca se barajan en forma completamente aleatoria; los movimientos
de las moléculas que se suponen aleatorios son influidos por el ambiente; y las computado-

Pr ogram 6.14

voidƒpolar(doubleƒx,ƒdoubleƒy,ƒdouble&ƒr,ƒdouble&ƒtheta)
{
ƒƒconst double A_GRADOS = 180.0/3.141593;

ƒƒrƒ=ƒsqrt(xƒ*ƒxƒ+ƒyƒ*ƒy);
ƒƒtheta = atan(y/x) * A_GRADOS;

ƒƒreturn;
}

void mostrarlo(double radio, double angulo)
{
ƒƒcout << “\nLas coordenadas polares son: ” << endl;
ƒƒcout << “ Distancia desde el origen: ” << radio << endl;
ƒƒcout << “ Ángulo (en grados) respecto al eje x: ” << angulo << endl;

ƒƒreturn;
}

(Continuación)

www.FreeLibros.me

351

ras digitales sólo pueden manejar números dentro de un rango finito y con precisión limi-
tada. Lo mejor que puede hacerse es generar números seudoaleatorios, los cuales son sufi-
cientemente aleatorios para la tarea a realizar.

Algunos lenguajes de computadora contienen una función de biblioteca que produce
números aleatorios; otros no. Las funciones proporcionadas por C++ se llama rand(), la
cual genera números aleatorios, y srand(), la cual establece valores “semilla” aleatorios
iniciales. Se presentarán estas dos funciones y luego se usarán en una aplicación que simu-
la el lanzamiento de una moneda para determinar el número de caras y cruces resultante.

Generación de números seudoaleatorios

Los compiladores de C++ proporcionan dos funciones para crear números aleatorios:
rand() y srand(). La función rand() produce una serie de números aleatorios en el
rango 0 ≤ rand() ≤ RAND_MAX, donde la constante RAND_MAX se define en el archivo de
encabezado cmath. La función srand() proporciona un valor “semilla” inicial para
rand(). Si no se usa srand() o alguna otra técnica de “sembrado” equivalente,
rand() producirá siempre la misma serie de números aleatorios.

El procedimiento general para crear una serie de n números aleatorios usando funcio-
nes de biblioteca de C++ se ilustra con el siguiente código:

srand(time(NULL)); // esto genera el primer valor “semilla”

for (int i = 1; i <= N; i++) // esto genera N números aleatorios
{
ƒƒrvalor = rand();
ƒƒcout << rvalor << endl;
}

Aquí, el argumento para la función srand() es una llamada a la función time() con
un argumento NULL. Con este argumento la función time() lee el tiempo del reloj inter-
no de la computadora, en segundos. Entonces la función srand() usa este tiempo, con-
vertido a un int sin signo para inicializar la función generadora de números aleatorios
rand().14 El programa 6.15 usa este código para generar una serie de 10 números alea-
torios.

6.4 Aplicaciones

14De manera alternativa, muchos compiladores de C++ tienen una rutina randomize() que se define usando la función
srand(). Si esta rutina está disponible, la llamada randomize() puede usarse en lugar de la llamada srand(time(NULL)).
En cualquier caso, la rutina “semilla” de inicialización es llamada una sola vez, después de lo cual se usa la función rand() pa-
ra generar una serie de números.

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones352

La siguiente es la salida producida por una ejecución del programa 6.15:

20203
21400
15265
26935
8369
10907
31299
15400
5074
20663

Debido a la llamada a la función srand() en el programa 6.15, la serie de diez números
aleatorios diferirá cada vez que se ejecute el programa. Sin el efecto de “sembrado” alea-
torizador de esta función, siempre se produciría la misma serie de números aleatorios.

Pr ograma 6.15

#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cmath>
#includeƒ<ctime>
usingƒnamespaceƒstd;

//ƒeste programa genera diez números seudoaleatorios
//ƒusando la funcion rand() de C++

intƒmain()
{
ƒƒconst int NUMEROS = 10;
ƒƒ
ƒƒdouble valor_azar;
ƒƒintƒi;

ƒƒsrand(time(NULL));
ƒƒfor (i = 1; i <= NUMEROS; i++)
ƒƒ{
ƒƒƒƒvalor_azar = rand();
ƒƒƒƒcout << valor_azar << endl;
ƒƒ}

ƒƒreturnƒ0;
}

www.FreeLibros.me

353

Nótese también la inclusión de los archivos de encabezado cmath y ctime. El archivo
cmath contiene los prototipos de función para las funciones srand() y rand(), mien-
tras el archivo de encabezado ctime contiene el prototipo de función para la función ti-
me().

Escalamiento

En la práctica por lo general debe hacerse una modificación al número aleatorio produci-
do por la función rand(). En la mayor parte de las aplicaciones, se requiere que los nú-
meros aleatorios sean valores de punto flotante dentro del rango 0.0 a 1.0 o que sean
números enteros dentro de un rango especificado, como 1 a 100. El método para ajustar
los números aleatorios producidos por un generador de números aleatorios para que resi-
dan dentro de dichos rangos se llama escalamiento.

El escalamiento de números aleatorios para que residan dentro del rango 0.0 a 1.0 se
logra con facilidad dividiendo el valor devuelto de rand() entre RAND_MAX. Por tanto,
la expresión double (rand())/RAND_MAX produce un número aleatorio en precisión
doble entre 0.0 y 1.0.

El escalamiento de un número aleatorio como un valor entero entre 0 y N-1 se logra
usando cualquiera de las expresiones rand() % N o int(double(rand())/RAND_MAX
* N). Por ejemplo, la expresión int(double(rand())/RAND_MAX * 100) produce
un número entero aleatorio entre 0 y 99.

Para producir un número entero aleatorio entre 1 y N puede usarse la expresión 1 +
rand() % N. Por ejemplo, al simular el lanzamiento de un dado, la expresión 1 + rand()
% 6 produce un número entero aleatorio entre 1 y 6. Puede usarse la expresión de escala-
miento más general a + rand() % (b + 1 – a) para producir un número entero aleato-
rio entre los números a y b.

Un uso común de los números aleatorios es simular eventos usando un programa, en
lugar de dedicar tiempo y costo a construir un experimento real. Por ejemplo, la teoría es-
tadística indica que la probabilidad de obtener cara en un solo lanzamiento de una mone-
da es 1–

2
. Del mismo modo, hay una probabilidad de 50% de obtener cruz en un solo

lanzamiento de una moneda.
Usando estas probabilidades se esperaría que una sola moneda que es lanzada 1000

veces produzca 500 caras y 500 cruces. En la práctica, sin embargo, esto no se realiza nun-
ca con exactitud en un solo experimento consistente de 1000 lanzamientos. En lugar de
lanzar en realidad una moneda 1000 veces, podemos usar un generador de números alea-
torios para simular esos lanzamientos.

Paso 1 Analizar el problema

Para este problema se requieren dos salidas: el porcentaje de caras y el porcentaje de cru-
ces que resultan cuando se simula que una moneda es lanzada 1000 veces. No se requeri-
rá ningún elemento de entrada para la función del generador de números aleatorios.

6.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones354

Paso 2 Desarrollar una solución

El porcentaje de caras y cruces se determina como

Para determinar el número de caras y cruces, se tienen que simular 1000 números aleato-
rios de tal manera que se pueda definir un resultado de “caras” o “cruces” de cada núme-
ro generado. Hay diversas formas de hacer esto.

Una forma es usar la función rand() para generar números enteros entre 0 y RAND-
_MAX. Sabiendo que cualquier lanzamiento individual tiene una probabilidad de 50% de
ser cara o cruz, podría designarse una “cara” como un número aleatorio par y una “cruz”
como un número aleatorio non. Otro método sería escalar el valor devuelto de rand()
para que resida entre 0.0 y 1.0 como se describió antes. Entonces se podría definir una
“cara” como cualquier número mayor que 0.5 y cualquier otro resultado como una
“cruz”. Éste es el algoritmo que se adoptará.

Habiendo definido cómo se creará un solo lanzamiento que tiene una probabilidad de
50% de producir caras o cruces, la generación de 1000 lanzamientos es bastante simple:
se usa un ciclo de cuenta fija que genera 1000 números aleatorios. Para cada generación
se identifica el resultado como cara o cruz y se acumulan los resultados en un contador de
caras y cruces. Por tanto, el algoritmo de simulación completo está dado por el seudocó-
digo

Inicializar un contador de caras en cero
Inicializar un contador de cruces en cero
For 1000 veces

generar un número aleatorio entre 0 y 1
If el número aleatorio es mayor que 0.5

considérelo como cara y
sume uno a la cuenta de caras

Else
considérelo cruz y
sume uno a la cuenta de cruces

Endif
Endfor
Calcular el porcentaje de caras como el número de caras dividido entre 1000 � 100%
Calcular el porcentaje de cruces como el número de cruces dividido entre 1000 � 100%
Imprimir el porcentaje de caras y cruces obtenido

Paso 3 Codificar la solución

El programa 6.16 codifica este algoritmo en C++.

percentaje de caras =
número de caras

1000
× 100%

percentaje of cruces =
número de cruces

1000
× 100%

www.FreeLibros.me

355

A continuación hay dos muestras de ejecuciones usando el programa 6.16.

Caras salio 50.9 por ciento de las veces
Cruces salio 49.1 por ciento de las veces

y

Caras salio 49.7 por ciento de las veces
Cruces salio 50.3 por ciento de las veces

Pr ograma 6.16

#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cmath>
#includeƒ<ctime>
usingƒnamespaceƒstd;

//ƒun programa para simular el lanzamiento de una moneda NUMLANZ veces
intƒmain()
{
ƒƒconst int NUMLANZ = 1000;

ƒƒint caras = 0; // inicializa el contador de caras
ƒƒint cruces = 0; // inicializa el contador de cruces
ƒƒintƒi;
ƒƒdouble volado, porcaras, porcruces;

ƒƒƒƒ//ƒsimular los lanzamientos de NUMLANZ de una moneda
ƒƒsrand(time(NULL)) ;
ƒƒfor (i = 1; i <= NUMLANZ; i++)
ƒƒ{
ƒƒƒƒvolado = double(rand())/RAND_MAX; // escala el número entre 0 y 1
ƒƒƒƒif (volado > 0.5)
ƒƒƒƒƒƒcabezas = cabezas + 1;
ƒƒƒƒelse
ƒƒƒƒƒƒcruces = cruces + 1;
ƒƒ}
ƒƒporcaras = (caras / double (NUMLANZ)) * 100.0; // calcula el porcentaje de caras
ƒƒporcruces = (cruces / double (NUMLANZ)) * 100.0; // calcula el porcentaje de cruces
ƒƒcout << “\nCaras salio ” << porcaras << “ por ciento de las veces”;
ƒƒcout << “\nCruces salio ” << porcruces << “ por ciento de las veces”;

ƒƒreturnƒ0;
}

6.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones356

Por supuesto es más fácil escribir y ejecutar el programa 6.16 que lanzar una moneda 1000
veces en forma manual. Debe señalarse que la validez de los resultados producidos por el
programa depende de cuán aleatorios son en realidad los números producidos por
rand().

Paso 4 Probar y depurar el programa

En realidad hay dos pruebas que el programa 6.16 debe pasar. La prueba más importan-
te se refiere a la aleatoriedad de cada número generado. Ésta, por supuesto, es en realidad
una prueba de la función de números aleatorios. Para nuestros propósitos, se ha usado una
función escrita con anterioridad suministrada por el compilador. Así que en este punto
aceptamos la “aleatoriedad” del generador. (Véase el ejercicio 13 para un método de ve-
rificación de la aleatoriedad de la función.)

Una vez que se ha resuelto la cuestión del generador de números aleatorios, la segun-
da prueba requiere que se generen en forma correcta 1000 números y acumular una cuen-
ta de caras y cruces. Que esto se logra en forma correcta se verifica de manera adecuada
con una simple verificación de escritorio del ciclo for dentro del programa 6.16. Además,
sabemos que el resultado de la simulación debe estar cerca del 50% de caras y 50% de
cruces. Los resultados de la simulación verifican que esto fue así.

Ejercicios 6.4

1. El volumen, v, y el área superficial, s, de un cilindro están dados por las fórmulas
v= πr2l y s = 2πrl, donde r es el radio del cilindro y l es su largo. Usando estas
fórmulas, escriba y pruebe una función nombrada cilindro() que acepte el ra-
dio y el largo de un cilindro y devuelva su volumen y su área superficial.

2. Escriba y pruebe una función en C++ que calcule el radio, r, y el área, a, de un círculo
cuando se da su circunferencia, c. Las fórmulas relevantes son r = c/(2π) y a = πr2. Prue-
be su función usando un programa que tenga una función controladora dedicada.

3. Un líquido puede fluir por un tubo con un flujo en un patrón suave conocido co-
mo flujo laminar o en un patrón violento conocido como flujo turbulento. Las ve-
locidades que produce cada tipo de flujo dentro del tubo pueden determinarse
usando las fórmulas:

vlam = 2100μ / ρ d and vtur = 4000μ / ρ d,

donde

vlan es la velocidad del líquido, en pies/s, que produce un flujo laminar determinado

vtur es la velocidad del líquido, en pies/s, que produce un flujo turbulento determinado

μ es la viscosidad del líquido, en libras-pie por s/pie2

ρ es la densidad del líquido, en slug/pies3

d es el diámetro interior del tubo, en pies

Usando estas fórmulas, escriba y pruebe una función en C++ llamada flujo()
que devuelva tanto la velocidad de flujo laminar, vlan, y la velocidad de flujo tur-
bulento, vtur, usando parámetros de referencia. La función deberá calcular estas ve-
locidades para el agua, la cual tiene una viscosidad, μ, de 1.9 � 105 libras-pie por
s/pie2 y una densidad, ρ, de 1.94 slug/pies3. El diámetro del tubo deberá ser trans-
mitido por valor en la función flujo().

www.FreeLibros.me

357

4. La viscosidad y densidades de tres líquidos comunes se enumeran a continuación:

Usando estos datos, escriba y pruebe una función en C++ llamada viscDen()
que devuelva la viscosidad y la densidad del líquido seleccionado usando paráme-
tros de referencia. El tipo de líquido deberá introducirse a la función como un ca-
rácter que es transmitido por valor.

5. Escriba un programa en C++ que acepte las coordenadas rectangulares de dos puntos
(x1, y1) y (x2, y2), calcule la distancia de cada punto a partir del origen y la distancia
entre los dos puntos. La distancia entre dos puntos, d, está dada por la fórmula

6. Modifique el programa 6.16 de modo que solicite el número de lanzamientos del
usuario. (Sugerencia: Asegúrese de hacer que el programa determine en forma co-
rrecta los porcentajes de caras y cruces obtenidas.)

7. Se han desarrollado muchos algoritmos para generar números seudoaleatorios. Al-
gunos de estos algoritmos utilizan un esquema de conteo, como contar bits comen-
zando en alguna ubicación arbitraria en una memoria cambiante. Otro esquema,
el cual crea números seudoaleatorios realizando un cálculo, es el método del resi-
duo de potencias.

El método del residuo de potencias comienza con un número entero non de n dí-
gitos, el cual se conoce como en número “semilla”. La semilla se multiplica por el
valor (10n/2 – 3). Usar los n dígitos inferiores del resultado (el “residuo”) produce
una nueva semilla. Continuar este procedimiento produce una serie de números
aleatorios, con cada nuevo número usado como la semilla para el siguiente núme-
ro. Si la semilla original tiene cuatro o más dígitos (n igual a o mayor que 4) y no
es divisible entre dos ni cinco, este procedimiento produce 5 � 10(n–2) números
aleatorios antes que una secuencia de números se repita. Por ejemplo, si se comien-
za con una semilla de seis dígitos (n = 6), como 654321, puede generarse una se-
rie de 5 � 104 = 50 000 números aleatorios.

Como un algoritmo, los pasos específicos en la generación de números seudoalea-
torios usando un procedimiento de residuo de potencias son los siguientes:

Paso 1: Hacer que un usuario introduzca una semilla en número entero de seis dí-
gitos que no sea divisible entre 2 ni 5; esto significa que el número debe-
rá ser un número non que no termine en 5.

Paso 2: Multiplicar el número semilla por 997, lo cual es 103 – 3.
Paso 3: Extraer los seis dígitos inferiores del resultado producido por el paso 2.

Use este número aleatorio como la siguiente semilla.
Paso 4: Repita los pasos 2 y 3 para tantos números aleatorios como sean necesarios.

d = (x2 − x1)2 + (y2 − y1)
2

V iscosidad Densidad
(libras-pies s/pies2) (slug/pies3)

Alcohol etílico 2.29 � 10 5 1.527

Alcohol metílico 1.17 � 10 5 1.531

Alcohol propílico 4.01 � 10 5 1.556

6.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones358

Por tanto, si el número semilla introducido por el usuario es 654321 (paso 1), el
primer número aleatorio generado se calcula como sigue:

Paso 2: 654321 * 997 = 652358037
Paso 3: Extraer los seis dígitos inferiores del número obtenido en el paso 2. Esto

se logra usando un “truco” de programación estándar.

El truco implica:

Paso 3a: Dividir el número entre 106 = 1000000.
Por ejemplo, 652358037 / 1000000 = 652.358037

Paso 3b: Tomar la parte entera del resultado del paso 3a.
Por ejemplo, la parte entera de 652.358037 = 652

Paso 3c: Multiplicar el resultado anterior por 106

Por ejemplo, 652 � 106 = 652000000
Paso 3d: Restar este resultado del número original.

Por ejemplo, 652358037 – 652000000 = 358037

La parte entera de un número en punto flotante puede tomarse asignando el núme-
ro en punto flotante a una variable en número entero, o mediante un molde de C++
(véase la sección 3.3). En nuestro procedimiento se utilizará el mecanismo de molde.
Por tanto, el algoritmo para producir un número aleatorio puede lograrse usando el
siguiente código:

iƒ=ƒint(997.0ƒ*ƒxƒ/ƒ1.e6);ƒƒƒƒ//ƒtomar la parte entera
xƒ=ƒ997.0ƒ*ƒxƒ-ƒiƒ*ƒ1.e6;

Usando esta información,
a. Cree una función llamada numalea() que acepte una “semilla” en punto flo-

tante como un parámetro y devuelva un número aleatorio en punto flotante en-
tre 0 y 1.e6.

b. Incorpore la función numalea() creada en el ejercicio 7a en un programa en
C++ que produzca diez números aleatorios entre 0 y 1.e6.

c. Pruebe la aleatoriedad de la función numalea() creada en el ejercicio 7a usan-
do el método descrito en el ejercicio 13. Inténtelo con algunos valores semilla
pares y algunos valores semilla nones que terminen en 5 para determinar si es-
to afecta la aleatoriedad de los números.

8. Escriba una función en C++ que determine en cuál cuadrante reside una línea tra-
zada desde el origen. La determinación del cuadrante se hace usando el ángulo que
forma la línea con el eje x positivo como sigue:

Ángulo desde el eje x positivo Cuadrante

Entre 0 y 90 grados 1

Entre 90 y 180 grados 2

Entre 180 y 270 grados 3

Entre 270 y 360 grados 4

www.FreeLibros.me

NOTA: Si el ángulo tiene exactamente 0, 90, 180 o 270 grados la línea correspon-
diente no reside en ningún cuadrante sino que se encuentra en un eje. Para este ca-
so su función deberá devolver un cero.

9. Escriba un programa para simular el lanzamiento de dos dados. Si el total de los
dos dados es 7 u 11 usted gana; de lo contrario pierde. Adorne este programa tan-
to como quiera, con apuestas, posibilidades diferentes, combinaciones diferentes
para ganar o perder, dejar de jugar cuando no le quede dinero o alcance el límite
de la casa, desplegar los dados, etc. (Sugerencia: Calcule los puntos que se mues-
tran en cada dado con la expresión puntos = (int)(6.0 * numero alea-
torio + 1), donde el número aleatorio esté entre 0 y 1.)

10. Un valor que a veces es útil es el máximo común divisor de dos números enteros
n1 y n2. Hace más de dos mil años un matemático famoso, Euclides, descubrió un
método eficiente para hacer esto. Sin embargo, por ahora nos conformaremos con
un cabo. Escriba la función en número entero stub gcd(n1, n2). Tan sólo ha-
ga que devuelva un valor que sugiera que recibió sus parámetros en forma correc-
ta. (Sugerencia: n1 + n2 es una buena elección de valores de devolución. ¿Por qué
n1/n2 no es una buena elección?)

11. El método de Euclides para encontrar el máximo común divisor (GCD, por sus si-
glas en inglés) de dos números enteros positivos consiste en los siguientes pasos:
a. Divida el número mayor entre el menor y conserve el residuo.
b. Divida el número menor entre el residuo, conservando de nuevo el residuo.
c. Continúe dividiendo el residuo anterior entre el residuo actual hasta que el re-

siduo sea cero, punto en el cual el último residuo diferente de cero es el máxi-
mo común divisor.

Por ejemplo, suponga que los dos números enteros positivos son 84 y 49, tenemos:

Paso a: 84/49 produce un residuo de 35
Paso b: 49/35 produce un residuo de 14
Paso c: 35/14 produce un residuo de 7
Paso d: 14/7 produce un residuo de 0

Por tanto, el último residuo diferente de cero, el cual es 7, es el máximo común di-
visor de 84 y 49.

Utilizando el algoritmo de Euclides, reemplace la función cabo escrita para el ejer-
cicio 10 con una función real que determine y devuelva el GCD de sus dos pará-
metros en número entero.

12. El siguiente programa usa los mismos nombres de variables tanto en la función que
llama como en la función llamada. Determine si esto causa algún problema para el
compilador.

#includeƒ<iostream.h>ƒƒƒƒƒ

int tiempo(int, int); // prototipo de la función

intƒmain()

3596.4 Aplicaciones

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones360

{
ƒƒint min, hora, seg;

ƒƒcout << “Introduzca dos números: ”;
ƒƒcin >> min, hora;
ƒƒseg = tiempo(min, hora);
ƒƒcout << “El número total de segundos es ” << seg <<
endl;ƒ

ƒƒreturnƒ0;ƒƒƒƒ
}

int tiempo(int min, int hora)
{
ƒƒint seg;

ƒƒseg = (hora * 60 + min) * 60;ƒ
ƒƒreturn seg;
}

13. Escriba un programa que pruebe la efectividad de la función de biblioteca rand().
Empiece inicializando en cero 10 contadores, como cuentacero, cuentauno,
cuentados,..., cuentanueve. Luego genere un número grande de números
enteros seudoaleatorios entre 0 y 9. Cada vez que ocurra un 0 incremente cuen-
tacero, cuando ocurra un 1 incremente cuentauno, etc. Por último, imprima el
número de 0, 1, 2, etc., que ocurrieron y el porcentaje de veces que ocurrieron.

14. El determinante de la matriz de 2 por 2

es a11a22 – a21a12.

Del mismo modo, el determinante de una matriz de 3 por 3

Utilizando esta información, escriba y pruebe dos funciones, llamadas det2() y
det3(). La función det2() deberá aceptar los cuatro coeficientes de una matriz
de 2 por 2 y devolver su determinante. La función det3() deberá aceptar los nue-
ve coeficientes de una matriz de 3 por 3 y devolver su determinante llamando a
det2() para calcular los determinantes 2 por 2 requeridos.

a

a a

a a
a

a a

a a
a

a a

a a11
22 23

32 33
21

12 13

32 33
31

12 13

22 23

− +

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

=

a a

a a
11 12

21 22

www.FreeLibros.me

361

6.5 ALCANCE DE UNA VARIABLE

Ahora que hemos comenzado a escribir programas que contienen más de una función, se
pueden observar con más detenimiento las variables declaradas dentro de cada función y
su relación con las variables en otras funciones.

Por su misma naturaleza, las funciones en C++ están construidas como módulos inde-
pendientes. Como se ha visto, los valores se transmiten a la función usando la lista de pa-
rámetros de la función y se devuelve un valor usando una instrucción de devolución. Visto
desde esta perspectiva, una función puede considerarse como una caja cerrada, con ranu-
ras en la parte superior para recibir valores y una sola ranura en la parte inferior de la ca-
ja para devolver un valor (véase la figura 6.15).

Figura 6.15 Una función puede considerarse una caja cerrada.

La metáfora de una caja cerrada es útil porque enfatiza el hecho que todo lo que va den-
tro de la función, incluyendo todas las declaraciones de variables dentro del cuerpo de la
función, está oculto de la vista de todas las demás funciones. Dado que las variables crea-
das dentro de una función están disponibles de manera convencional sólo para la función
en sí, se dice que son locales para la función o variables locales. Este término se refiere al
alcance de un identificador, donde alcance se define como la sección del programa donde
el identificador, como una variable, es válido o “conocido”. Se dice que esta sección del
programa es donde la variable es visible. Una variable puede tener alcance local o global.
Una variable con un alcance local es aquella a la que una instrucción de declaración he-
cha dentro del cuerpo de una función le ha designado ubicaciones de almacenamiento. Las
variables locales sólo son significativas cuando se usan en expresiones o instrucciones den-
tro de la función que las declaró. Esto significa que el mismo nombre de variable puede
declararse y usarse en más de una función. Para cada función que declara la variable, se
crea una variable separada y distinta.

Todas las variables que se han utilizado hasta ahora han sido variables locales. Éste es
un resultado directo de colocar las instrucciones de declaración dentro de las funciones y
usarlas como instrucciones de definición que causan que la computadora reserve almace-
namiento para la variable declarada. Como se verá, las instrucciones de declaración pue-
den colocarse fuera de las funciones y no necesitan actuar como definiciones para que se
reserven nuevas áreas de almacenamiento para la variable declarada.

Una variable con alcance global, por lo general denominada variable global, el alma-
cenamiento se crea mediante una instrucción de declaración localizada fuera de cualquier

......

Valores que entran en la función

Un solo valor devuelto en
forma directa por la función

6.5 Alcance de una variable

www.FreeLibros.me

función. Estas variables pueden ser utilizadas por todas las funciones que se colocan físi-
camente después de la declaración de la variable global. Esto se muestra en el programa
6.17, donde se utiliza a propósito el mismo nombre de variable dentro de ambas funcio-
nes contenidas en el programa.

Pr ograma 6.17

#includeƒ<iostream>
usingƒnamespaceƒstd;

int primernum; // crea una variable global llamada primernum

void valfun(); // prototipo de la función (declaración)

intƒmain()
{
ƒƒint segundonum;ƒƒƒƒƒƒƒƒƒƒ//ƒcrea una variable local llamada segundonum

ƒƒprimernum = 10; // almacena un valor en la variable global
ƒƒsegundonum = 20; // almacena un valor en la variable local

ƒƒcout << “De main(): primernum = ” << primernum << endl;
ƒƒcout << “De main(): segundonum = ” << segundonum << endl;

ƒƒvalfun(); // llama a la función valfun

ƒƒcout << “\nDe main() de nuevo: primernum = ” << primernum << endl;
ƒƒcout << “De main() de nuevo: segundonum = ” << segundonum << endl;

ƒƒreturnƒ0;
}

void valfun() // no se transmiten valores a esta función
{
ƒƒint segundonum; // crea una segunda variable local llamada segundonum

ƒƒsegundonum = 30; // esto sólo afecta al valor de esta variable local

ƒƒcout << “\nDe valfun(): primernum = ” << primernum << endl;
ƒƒcout << “De valfun(): segundonum = ” << segundonum << endl;

ƒƒprimernum = 40; // esto cambia primernum para ambas funciones

ƒƒreturn;
}

362 CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

363

La variable primernum en el programa 6.17 es una variable global debido a que su al-
macenamiento fue creado por una instrucción de definición localizada fuera de una fun-
ción. En vista que ambas funciones, main() y valfun(), siguen a la definición de
primernum, ambas funciones pueden usar esta variable global sin que necesiten ninguna
otra declaración.

El programa 6.17 también contiene dos variables locales separadas, ambas nombra-
das segundonum. El almacenamiento para la variable segundonum nombrada en
main() es creado por la instrucción de definición localizada en main(). Un área de al-
macenamiento diferente para la variable segundonum en valfun() es creada por la ins-
trucción de definición localizada en la función valfun(). La figura 6.16 ilustra las tres
áreas de almacenamiento distintas reservadas por las tres instrucciones de definición que
se encuentran en el programa 6.17.

Figura 6.16 Las tres áreas de almacenamiento creadas por el programa 6.17.

Cada una de las variables nombradas segundonum es local para la función en la que se
crea su almacenamiento, y cada una de estas variables sólo puede usarse desde dentro de
la función apropiada. Por tanto, cuando se usa segundonum en main(), se tiene acceso
al área de almacenamiento reservada por main() para su variable segundonum, y cuan-
do se usa segundonum en valfun(), se tiene acceso al área de almacenamiento reser-
vada por valfun() para su variable segundonum. La siguiente salida se produce
cuando se ejecuta el programa 6.17:

De main(): primernum = 10
De main(): segundonum = 20

De valfun(): primernum = 10
De valfun(): segundonum = 30

primernum

main()

almacenamiento para
un número entero

valfun()

segundonum

segundonum

almacenamiento para
un número entero

6.5 Alcance de una variable

www.FreeLibros.me

364

De main() de nuevo: primernum = 40
De main() de nuevo: segundonum = 20ƒƒ

Vamos a analizar esta salida. En vista que primernum es una variable global, las funcio-
nes main() y valfun() pueden usar y cambiar su valor. Al principio, ambas funciones
imprimen el valor de 10 que almacenó main() en primernum. Antes de devolver, val-
fun() cambia el valor de primernum a 40, que es el valor que corresponde cuando a con-
tinuación la variable primernum se despliega desde dentro de main().

Debido a que cada función sólo “conoce” sus propias variables locales, main() sólo
puede enviar el valor de su segundonum al objeto cout. Por tanto, siempre que se obtie-
ne segundonum desde main() se despliega el valor 20, y siempre que se obtiene segun-
donum desde valfun() se despliega el valor 30.

C++ no confunde las dos variables segundonum porque sólo puede ejecutarse una
función en un momento determinado. Mientras se ejecuta una función, sólo se puede te-
ner acceso a aquellas variables y parámetros que están “al alcance” de esa función (global
y local).

El alcance de una variable de ninguna manera influye o restringe el tipo de datos de
la variable. Del mismo modo en que una variable local puede ser un carácter, número en-
tero, booleano, de precisión doble o cualquiera de los otros tipos de datos (largo/corto)
que se han introducido, así también pueden ser las variables globales de estos tipos de da-
tos, como se ilustra en la figura 6.17. El alcance de una variable es determinado por la co-
locación de la instrucción de definición que reserva almacenamiento para ella y de manera
opcional por una instrucción de declaración que la hace visible, mientras el tipo de datos
de la variable se determina usando la palabra clave apropiada (char, int, bool, dou-
ble, etc.) antes del nombre de la variable en una instrucción de declaración.

Figura 6.17 Relación del alcance y el tipo de una variable.

Operador de resolución de alcance

Cuando una variable local tiene el mismo nombre que una variable global, todas las refe-
rencias al nombre de la variable hechas dentro del alcance de la variable local se refieren
a esta variable local. Esta situación se ilustra en el programa 6.18, donde se define el nom-
bre de la variable numero como una variable global y como una local.

char int bool double

local

char int bool double

global

Alcance

Tipos de datos

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

365

Cuando se ejecuta el programa 6.18, se despliega la siguiente salida.

El valor de número es 26.4

Como lo muestra esta salida, el nombre de la variable local toma precedencia sobre la va-
riable local. En tales casos, aún se puede tener acceso a la variable global utilizando el ope-
rador de resolución de alcance de C++. Este operador, el cual tiene el símbolo ::, debe
colocarse inmediatamente antes del nombre de la variable, como en :: número. Cuando
se usa de esta manera, :: le indica al compilador que use la variable global. Como un
ejemplo, se usa el operador de resolución de alcance en el programa 6.18a.

Pr ogram 6.18a

#includeƒ<iostream>
usingƒnamespaceƒstd;

double numero = 42.5;ƒƒƒƒƒƒƒ// una variable global nombrada número

intƒmain()
{
ƒƒdouble numero = 26.4;ƒƒƒƒƒƒƒ// una variable local nombrada número

ƒƒcout << “El valor de número es ” << ::número << endl;

ƒƒreturnƒ0;
}

Pr ograma 6.18

#includeƒ<iostream>
usingƒnamespaceƒstd;

double numero = 42.8;ƒƒƒƒƒ// una variable global llamada número

intƒmain()
{
ƒƒdouble numero = 26.4;ƒƒƒƒƒ// una variable local llamada número

ƒƒcout << “El valor de número es ” << número << endl;

ƒƒreturnƒ0;
}

6.5 Alcance de una variable

www.FreeLibros.me

366

La salida producida por el programa 6.18a es:

El valor de número es 42.5

Como lo indica esta salida, el operador de resolución de alcance causa que se tenga acce-
so a la variable global en lugar de a la local.

Mal uso de las variables globales

Las variables globales permiten al programador “brincarse” las salvaguardas normales pro-
porcionadas por las funciones. En lugar de transmitir variables a una función, es posible ha-
cer que todas las variables sean globales. No haga esto. Al hacer todas las variables globales
de manera indiscriminada, al instante destruye las salvaguardas que C++ proporciona para
hacer que las funciones sean independientes y aisladas entre sí, incluyendo la necesidad de
designar con cuidado el tipo de argumentos que necesita una función, las variables usadas
en la función y el valor devuelto.

Usar sólo variables globales puede ser desastroso, en especial en programas más gran-
des que tienen muchas funciones creadas por el usuario. En vista que todas las variables
en una función deben ser declardas, crear funciones que utilicen variables globales requie-
re recordar escribir las declaraciones globales apropiadas al principio de cada programa
que use la función; ya no se encuentran junto con la función. Sin embargo, más devasta-
dor que esto es tratar de rastrear un error en un programa grande que utiliza variables glo-
bales. Dado que cualquier función que siga a la declaración global puede tener acceso a
una variable global y cambiarla, localizar el origen de un valor erróneo es una tarea frus-
trante y que consume tiempo.

Sin embargo, las definiciones globales, en ocasiones son útiles para crear variables y cons-
tantes que deben ser compartidas entre muchas funciones. En lugar de transmitir la misma
variable a cada función, es más fácil definir la variable una vez como global. Hacer esto aler-
ta a cualquiera que lea el programa respecto a que muchas funciones usan esta variable. La
mayor parte de los programas grandes casi siempre usan unas cuantas variables o constantes
globales. Sin embargo, los programas más pequeños que contienen sólo algunas funciones ca-
si nunca deben contener variables globales.

El mal uso de las variables globales no se aplica a los prototipos de funciones, los cuales
por lo general son globales. Debe señalarse que todos los prototipos de función que hasta
ahora se han usado han sido de alcance global, declaran el prototipo para todas las funcio-
nes subsiguientes. Colocar un prototipo de función dentro de una función hace del prototipo
una declaración local disponible sólo para la función que se declara adentro.

Ejercicios 6.5

1. a. Para la siguiente sección de código, determine el tipo de datos y el alcance de
todas las funciones declaradas. Para hacer esto, utilice una hoja de papel sepa-
rada y anote los tres encabezados de columna que siguen (se han llenado las en-
tradas para la primera variable):

Nombre del a variable Tipo de datos Alcance

voltios int global para main, roi y paso

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

367

#includeƒ<iostream>
usingƒnamespaceƒstd;

int voltios;
long int resistencia;
double corriente;

intƒmain()
{
ƒƒint potencia;
ƒƒdouble factor, tiempo;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒ0;
}

doubleƒroi(intƒmat1,ƒintƒmat2)
{
ƒƒint cuenta;
ƒƒdouble peso;
ƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ.
ƒƒreturn peso;
}

int paso(double primero, double ultimo)
{
ƒƒint horas;
ƒƒdouble partefrac;
ƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ.
ƒƒreturn 10*horas;
}

b. Dibuje cuadros alrededor de la sección apropiada del código anterior para en-
cerrar el alcance de cada variable.

c. Determine el tipo de datos de los parámetros que esperan las funciones roi y
paso, y el tipo de datos del valor devuelto por estas funciones.

2. a. Para la siguiente sección de código, determine el tipo de datos y el alcance de
todas las variables declaradas. Para hacer esto, use una hoja de papel separada
y anote los tres encabezados de columna que siguen (se han llenado las entra-
das de la primera variable):

Nombre de la variable Tipo de datos Alcance

clave char global para main, func1 y func2

6.5 Alcance de una variable

www.FreeLibros.me

368

#includeƒ<iostream>
usingƒnamespaceƒstd;

char clave;
long int numero;

intƒmain()
{
ƒƒintƒa,b,c;
ƒƒdoubleƒx,y;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒ0;
}

double segundonum;

intƒfunc1(intƒnum1,ƒintƒnum2)
{
ƒƒintƒo,p;
ƒƒfloatƒq;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒp;
}

double func2(double primero, double ultimo)
{
ƒƒintƒa,b,c,o,p;
ƒƒdoubleƒr;
ƒƒdoubleƒs,t,x;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒsƒ*ƒt;
}

b. Dibuje un cuadro alrededor de la sección apropiada del código anterior para
encerrar el alcance de las variables clave, segundonum, y y r.

c. Determine el tipo de datos de los argumentos que esperan las funciones func1
y func2, y el tipo de datos del valor devuelto por estas funciones.

3. Además de hablar sobre el alcance de una variable, también se puede aplicar el tér-
mino a los parámetros de una función. ¿Cuál piensa que es el alcance de todos los
parámetros de función?

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

4. Considere la siguiente estructura de programa:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒa,ƒb;
double Uno(float);
void Dos(void);
intƒmain()
{
ƒƒintƒc,ƒd;
ƒƒdoubleƒe,ƒf;
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒreturnƒ0;
}

double Uno(double p2)
{
ƒƒcharƒm,ƒn;
ƒƒƒƒ.
ƒƒƒƒ.
}

void Dos(void)
{
ƒƒintƒp,ƒd;
ƒƒdoubleƒq,ƒr;
ƒƒƒƒ.
ƒƒƒƒ.
}

Defina el alcance del parámetro p2 y las variables a, b, c, d, m, n, p, d, q y r.

5. Determine los valores desplegados por cada instrucción cout en el siguiente pro-
grama:

ƒƒƒƒ#includeƒ<iostream>
ƒƒƒƒusingƒnamespaceƒstd;
ƒƒƒƒ
ƒƒƒƒint primernum = 10; // declara e inicializa una variable

global
ƒƒƒƒvoid desplegar(); // prototipo de la función
ƒƒƒƒintƒmain()
ƒƒƒƒ{
ƒƒƒƒƒƒint primernum = 20; // declara e inicializa una variable

local
ƒƒƒƒƒƒcout << “\nEl valor de primernum es ” << primernum << endl;
ƒƒƒƒƒƒdesplegar();
ƒƒƒƒ
ƒƒƒƒƒƒreturnƒ0;
ƒƒƒƒ}

3696.5 Alcance de una variable

www.FreeLibros.me

370

ƒƒƒƒvoid desplegar(void)
ƒƒƒƒ{
ƒƒƒƒƒƒcout << “Ahora el valor de primernum es ” << primernum

<< endl;
ƒƒƒƒƒƒreturn;
ƒƒƒƒ}

6.6 CLASES DE ALMACENAMIENTO DE VARIABLES

El alcance de una variable define la ubicación dentro de un programa donde ésta puede
usarse. Dado un programa, se podría tomar un lápiz y trazar un cuadro alrededor de la
sección del programa donde es válida cada variable. El espacio dentro del cuadro repre-
sentaría el alcance de una variable. Desde este punto de vista, el alcance de una variable
puede considerarse como el espacio dentro del programa donde es válida la variable.

Además de la dimensión espacial representada por su alcance, las variables también
tienen una dimensión temporal. La dimensión temporal se refiere al tiempo que las ubica-
ciones de almacenamiento son reservadas para una variable. La dimensión temporal se co-
noce como la “vida” de la variable. Por ejemplo, todas las ubicaciones de almacenamiento
de la variable se devuelven a la computadora cuando un programa termina su ejecución.
Sin embargo, mientras un programa aún está en ejecución, las áreas de almacenamiento
de la variable provisional se reservan y en lo subsiguiente se devuelven a la computadora.
Puede determinarse dónde y cuánto se conservan las áreas de almacenamiento de una va-
riable antes que sean liberadas por la clase de almacenamiento de la variable.

Además de tener un tipo de datos y un alcance, cada variable tiene también una clase
de almacenamiento. Las cuatro clases de almacenamiento disponibles se llaman auto,
static, extern y register. Si se usa uno de estos nombres de clase, debe colocarse
antes del tipo de datos de la variable en una instrucción de declaración. Son ejemplos de
instrucciones de declaración que incluyen una designación de clase de almacenamiento:

auto int num; // clase de almacenamiento auto y tipo de datos int
static int millas; // clase de almacenamiento static y tipo de datos int
register int dist; // clase de almacenamiento register y tipo de datos int
extern int voltios; // clase de almacenamiento extern y tipo de datos int
auto float cupon; // clase de almacenamiento auto y tipo de datos float
static double años; // clase de almacenamiento static y tipo de datos double
extern float resultado; // clase de almacenamiento extern y tipo de datos float
auto char tecla_en; // clase de almacenamiento auto y variable char

Para entender lo que significa la clase de almacenamiento de una variable, se considerarán
primero las variables locales (aquellas variables creadas dentro de una función) y luego las
variables globales (aquellas variables creadas fuera de una función).

Clases de almacenamiento de variables locales

Las variables locales sólo pueden ser miembros de las clases de almacenamiento au-
to, static o register. Si no se incluye una descripción de clase en la instrucción de de-
claración, la variable es asignada de manera automática a la categoría auto. Por tanto, auto

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

371

es la clase por omisión usada por C++. Todas las variables locales que se han usado, en vista
que se omitió la designación de la clase de almacenamiento, han sido variables auto.

El término auto es una abreviatura de automático. El almacenamiento para variables
automáticas locales es reservado o creado en forma automática cada vez que se llama una
función que declara variables automáticas. En tanto la función no haya regresado el con-
trol a la función que la llama, todas las variables automáticas locales para la función es-
tán “vivas”; es decir, el almacenamiento de las variables está disponible. Cuando la
función devuelve el control a la función que la llama, sus variables automáticas locales
“mueren”; es decir, el almacenamiento para las variables es devuelto a la computadora.
Este proceso se repite cada vez que es llamada una función. Por ejemplo, considere el pro-
grama 6.19, donde se llama tres veces a la función probarauto() desde main().

La salida producida por el programa 6.19 es:

El valor de la variable automática num es 0
El valor de la variable automática num es 0
El valor de la variable automática num es 0

Pr ograma 6.19

#includeƒ<iostream>
usingƒnamespaceƒstd;

void probarauto();ƒƒƒƒ// prototipo de la función

intƒmain()
{
ƒƒint cuenta;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// cuenta es una variable automática local

ƒƒfor(cuenta = 1; cuenta <= 3; cuenta++)
ƒƒƒƒprobarauto();

ƒƒreturnƒ0;
}

void probarauto()
{
ƒƒintƒnumƒ=ƒ0;ƒƒƒƒƒ//ƒnum es una variable automática local
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinicializada en cero
ƒƒcout << “El valor de la variable automática num es ”
ƒƒƒƒƒƒƒ<<ƒnumƒ<<ƒendl;
ƒƒnum++ ;

ƒƒreturn;
}

6.6 Clases de almacenamiento de variables

www.FreeLibros.me

372

Cada vez que es llamada probarauto(), se crea e inicializa en cero la variable automá-
tica num. Cuando la función devuelve el control a main(), la variable num se destruye
junto con cualquier valor almacenado en num. Por tanto, se pierde el efecto de incremen-
tar num en probarauto(), antes de la instrucción de devolución de la función, cuando
se regresa el control a main().

Para la mayor parte de las aplicaciones, el uso de variables automáticas funciona bien.
Sin embargo, hay casos en los que nos gustaría que una función recordara valores entre
las llamadas a la función. Éste es el propósito de la clase de almacenamiento static. Una
vez creadas, las variables static locales permanecen en existencia durante la vida del
programa. Esto significa que el último valor almacenado en la variable cuando termina de
ejecutarse la función está disponible para la función la próxima vez que es llamada.

staticƒintƒrate;
staticƒdoubleƒresistance;
staticƒcharƒinKey;

Una variable local static no se crea y se destruye cada vez que se llama a la función que
declara dicha variable. Una vez creadas, las variables locales static siguen existiendo du-
rante la vida del programa. Esto significa que el valor menor almacenado en la variable
cuando termina la función, queda disponible cuando la función vuelve a ser llamada.

Debido a que las variables static locales conservan sus valores, no se inicializan den-
tro de una instrucción de declaración en la misma forma que las variables automáticas. Pa-
ra entender por qué, considérese la declaración automática int num = 0; la cual causa que
se cree la variable automática num y se coloque en cero cada vez que se encuentra la decla-
ración. Esto se llama inicialización en tiempo de ejecución porque la inicialización ocurre
cada vez que se encuentra la instrucción de declaración. Este tipo de inicialización sería de-
sastroso para una variable static, porque reestablecer el valor de la variable en cero cada
vez que se llama la función destruiría el valor mismo que se está tratando de guardar.

La inicialización de las variables static (tanto locales como globales) sólo se hace
una vez, cuando el programa se compila por primera vez. En tiempo de compilación se
crea la variable y se coloca cualquier valor de inicialización en ella.15 A partir de enton-
ces, el valor en la variable es conservado sin mayor inicialización. Para ver cómo funcio-
na esto, considere el programa 6.20.

CAPÍTULO 6 Modularidad con el uso de funciones

15Algunos compiladores inicializan las variables static locales la primera vez que se ejecuta la instrucción de definición en
vez de hacerlo cuando se compila el programa.

www.FreeLibros.me

373

La salida producida por el programa 6.20 es

El valor de la variable static num ahora es 0
El valor de la variable static num ahora es 1
El valor de la variable static num ahora es 2

Como lo ilustra esta salida, la variable static num se pone en cero sólo una vez. Lue-
go la función probarstat() incrementa esta variable justo antes de regresar el control
a main(). El valor que tenía num cuando deja la función probarstat() es conservado
y desplegado cuando se vuelve a llamar a la función.

A diferencia de las variables automáticas que pueden ser inicializadas por constantes
o por expresiones que usan tanto constantes como variables inicializadas con anterioridad,
las variables static sólo pueden inicializarse usando constantes o expresiones constan-
tes, como 3.2 + 8.0. Además, a diferencia de las variables automáticas, todas las varia-
bles static se colocan en cero cuando no se da una inicialización explícita. Por tanto, en
el programa 6.19 no se requiere la inicialización específica de num en cero.

Pr ograma 6.20

#includeƒ<iostream>
usingƒnamespaceƒstd;

void probarstat();ƒƒƒƒ// prototipo de la función

intƒmain()
{
ƒƒint cuenta;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// cuenta es una variable auto local

ƒƒfor(cuenta = 1; cuenta <= 3; cuenta++)
ƒƒƒƒprobarstat();

ƒƒreturnƒ0;
}

void probarstat()
{
ƒƒstatic int num = 0;ƒƒƒƒƒ// num es una variable static local
ƒƒcout << “El valor de la variable static num ahora es ”
ƒƒƒƒƒƒƒ<<ƒnumƒ<<ƒendl;
ƒƒnum++ ;

ƒƒreturn;
}

6.6 Clases de almacenamiento de variables

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones374

La clase de almacenamiento restante disponible para variables locales, la clase re-
gister, no se usa en forma tan extensa como las variables auto o static. Son
ejemplos de declaraciones de variable register

register int tiempo;
register double diferencia;
register float cupon;

Las variables register tienen la misma duración que las variables auto; es decir, una
variable register local se crea cuando se introduce la función que la declara y se des-
truye cuando la función completa su ejecución. La única diferencia entre las variables re-
gister y auto es dónde se localiza el almacenamiento para la variable.

El almacenamiento para todas las variables (locales y globales), con excepción de las va-
riables register, se reserva en el área de memoria de la computadora. La mayor parte de
las computadoras tienen unas cuantas áreas de almacenamiento de alta velocidad adicionales
localizadas en forma directa en la unidad de procesamiento de la computadora que también
pueden usarse para almacenamiento de variables. Estas áreas de almacenamiento de alta ve-
locidad especiales se llaman registros. Dado que los registros se localizan físicamente en la uni-
dad de procesamiento de la computadora, también puede tenerse acceso a ellos con más
rapidez que a las áreas de almacenamiento de memoria normales localizadas en la unidad de
memoria. Además, las instrucciones de computadora que hacen referencia a registros por lo
general requieren menos espacio que las instrucciones que hacen referencia a ubicaciones de
memoria debido a que hay menos registros a los que se pueda tener acceso que ubicaciones
de memoria. Cuando el compilador sustituye la ubicación de un registro por una variable du-
rante la compilación del programa, se necesita menos espacio en la instrucción del que se re-
quiere para dirigirse a una memoria que tiene millones de ubicaciones.

Además de disminuir el tamaño de un programa en C++ compilado, usar variables re-
gister puede aumentar la velocidad de ejecución de un programa en C++ si su computado-
ra admite este tipo de datos. Los programas de aplicaciones que están pensados para ser
ejecutados en varias computadoras no deberán usar registros. Los intentos de hacerlo por lo
general serán frustrados por el compilador cambiando de manera automática las variables de-
claradas con la clase de almacenamiento register a una clase de almacenamiento auto.

La única restricción al usar la clase de almacenamiento register es que no se pue-
de utilizar la dirección de una variable register con el operador de direccionamiento &.
Esto se comprende con facilidad cuando se recuerda que los registros no tienen direccio-
nes de memoria estándares.

Clases de almacenamiento de variables globales

Las variables globales son creadas por instrucciones de definición externas a una función.
Por su naturaleza, estas variables definidas en forma externa no llegan y se van con la lla-
mada de cualquier función. Una vez que se crea una variable global, existe hasta que el
programa en el que se declaró termina de ejecutarse. Por tanto, las variables globales no
pueden declararse como variables auto o register que se crean y destruyen conforme
se ejecuta el programa. Además, las variables globales pueden declararse como miembros
de las clases de almacenamiento static o extern (pero no de ambas). Son ejemplos de
instrucciones de declaración que incluyen estas dos descripciones de clases

extern int suma;
extern double voltios;
static double corriente;

www.FreeLibros.me

375

Las clases static y extern sólo afectan el alcance, no la duración, de variables globa-
les. Como con las variables static locales, todas las variables globales se inicializan en
cero en tiempo de compilación.

El propósito de la clase de almacenamiento extern es extender el alcance de una va-
riable global más allá de sus límites normales. Para entender esto, primero hay que obser-
var que todos los programas que se han escrito hasta ahora siempre se habían contenido
en un solo archivo. Por tanto, cuando guardaba o recuperaba programas sólo necesitaba
darle a la computadora un nombre para su programa. Esto no se requiere en C++.

Los programas más grandes por lo general consisten en muchas funciones que son al-
macenadas en múltiples archivos. Un ejemplo de esto se muestra en la figura 6.18, donde
las tres funciones main(), func1() y func2() se almacenan en un archivo y las dos
funciones func3() y func4() se almacenan en un segundo archivo.

Figura 6.18 Un programa puede estar almacenado en más de un archivo.

Para los archivos ilustrados en la figura 6.18, las variables globales voltios, corrien-
te y potencia declaradas en archivo1 sólo pueden ser usadas por las funciones main(),
func1() y func2() en este archivo. La variable global única, factor, declarada en ar-
chivo2 sólo puede ser usada por las funciones func3() y func4() en el archivo2.

intƒvoltios;
doubleƒcorriente;
staticƒdoubleƒpotencia;
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
intƒmain(ƒ)
{
ƒƒƒƒfunc1(ƒ);
ƒƒƒƒfunc2(ƒ);
ƒƒƒƒfunc3(ƒ);
ƒƒƒƒfunc4(ƒ);
}
intƒfunc1(ƒ)
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
intƒfunc2(ƒ)
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

archivo1 archivo2

doubleƒfactor;
intƒfunc3(ƒ)
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
intƒfunc4(ƒ)
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

6.6 Clases de almacenamiento de variables

www.FreeLibros.me

376

Aunque la variable voltios se ha creado en el archivo1, se puede utilizar en el archi-
vo2. Colocar la instrucción de declaración extern int voltios; en el archivo2, como
se muestra en la figura 6.19, nos permite hacerlo. Poner esta instrucción en la parte superior
de archivo2 extiende el alcance de la variable voltios al archivo2 de modo que pueda usar-
se tanto en func3() como en func4(). Por tanto, la designación extern tan sólo decla-
ra una variable global que es definida en otro archivo. Así, colocar la instrucción extern
double corriente; en func4() extiende el alcance de esta variable global, creada en
archivo1, a la func4(), y el alcance de la variable global factor, creada en archivo2, se
extiende a func1() y func2() por la instrucción de declaración extern double fac-
tor; colocada antes de func1(). Hay que observar que factor no está disponible para
main().

Figura 6.19 Extensión del alcance de variables globales.

Una instrucción de declaración que contiene de manera específica la palabra extern es di-
ferente de todas las otras instrucciones de declaración porque no origina una variable nueva
reservando nuevo almacenamiento para la variable. Una instrucción de declaración extern
tan sólo informa a la computadora que ya existe una variable global y que ahora puede
usarse. El almacenamiento real para la variable debe crearse en alguna otra parte del pro-
grama usando una, y sólo una, instrucción de declaración global en la que no se ha usado

intƒvoltios;
doubleƒcurriente;
staticƒdoubleƒpotencia;
ƒƒƒƒ.
ƒƒƒƒ.

ƒƒƒƒ.
intƒmain(ƒ)
{
ƒƒƒfunc1(ƒ);
ƒƒƒfunc2(ƒ);
ƒƒƒfunc3(ƒ);
ƒƒƒfunc4(ƒ);
}
extern double factor;
intƒfunc1(ƒ)ƒƒƒƒƒƒ
{
ƒƒƒƒ.

ƒƒƒƒ.

ƒƒƒƒ.
}
intƒfunc2(ƒ)
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

archivo1 archivo2

doubleƒfactor;

extern int voltios;

intƒfunc3(ƒ)

{

ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

intƒfunc4(ƒ)

{ƒƒƒƒ

ƒƒƒextern double corriente;
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

CAPÍTULO 6 Modularidad con el uso de funciones

www.FreeLibros.me

la palabra extern. La inicialización de la variable global puede hacerse, por supuesto,
con la declaración original de la variable global. La inicialización dentro de una instruc-
ción de declaración extern no se permite y causará un error de compilación.

La existencia de la clase de almacenamiento extern es la razón por la cual se ha te-
nido tanto cuidado en distinguir entre la creación y declaración de una variable. Las ins-
trucciones de declaración que contienen la palabra extern no crean nuevas áreas de
almacenamiento; sólo extienden el alcance de variables globales existentes.

La última clase global, las variables globales static, se utilizan para prevenir la ex-
tensión de una variable global a un segundo archivo. Las variables globales static se de-
claran en la misma forma que las variables locales static, excepto que la instrucción de
declaración se coloca afuera de cualquier función.

El alcance de una variable global static no puede extenderse más allá del archivo
en el que es declarada. Esto proporciona un grado de privacidad para las variables globa-
les static. Dado que sólo son “conocidas” y sólo pueden usarse en el archivo en el que
son declaradas, otros archivos no pueden tener acceso a ellas ni cambiar sus valores. Por
tanto, las variables globales static no pueden extenderse después a un segundo archivo
usando una instrucción de declaración extern. Intentar hacerlo producirá un error de
compilación.

Ejercicios 6.6

1. a. Enumere las clases de almacenamiento disponibles para variables locales.
b. Enumere las clases de almacenamiento disponibles para variables globales.

2. Describa la diferencia entre una variable local auto y una variable local static.

3. ¿Cuál es la diferencia entre las siguientes funciones?

voidƒinit1()
{
ƒƒstatic int años = 1;
ƒƒcout << “El valor de anios es ” << años << endl;
ƒƒaños = años + 2;
}

Clases de almacenamiento

Punto de información

Las variables del tipo auto y register siempre son variables locales. Sólo variables globales no
estáticas pueden declararse usando la palabra clave extern. Hacerlo así extiende el alcance de la
variable a otro archivo o función.

Hacer static una variable global reduce una variable privada del archivo en el que se
declara. Por tanto, las variables static �� ������ utilizar la palabra clave extern. Excepto para
variables static, todas las variables son inicializadas cada vez que ingresan a un alcance. Las
variables static sólo se inicializan una vez cuando se definen.

3776.7 Errores comunes de programación

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones378

voidƒinit2()
{
ƒƒstatic int años;
ƒƒanios = 1;
ƒƒcout << “El valor de años es ” << años << endl;
ƒƒaños = años + 2;
}

4. a. Describa la diferencia entre una variable global static y una variable global
extern.

b. Si una variable es declarada con una clase de almacenamiento extern, ¿qué
otra instrucción de declaración debe estar presente en alguna otra parte del pro-
grama?

5. La instrucción de declaración static double resistencia; puede usarse
para crear ya sea una variable local o una global. ¿Qué determina el alcance de la
variable resistencia?

6. Para las declaraciones de función y variable ilustradas en la figura 6.20, coloque
una declaración extern para lograr de manera individual lo siguiente:
a. Extender el alcance de la variable global eleccion a todo el archivo2.
b. Extender el alcance de la variable global marcador sólo a la función prome-

dio().
c. Extender el alcance de la variable global fecha a promedio() y varian-

cia().
d. Extender el alcance de la variable global fecha sólo a roi().
e. Extender el alcance de la variable global factor sólo a roi().
f. Extender el alcance de la variable global tipo_b a todo el archivo1.
g. Extender el alcance de la variable global resistencia a vatios() y empu-

je().

16En la práctica deberá usarse un buen programa depurador.

www.FreeLibros.me

6.7 Errores comunes de programación 379

Figura 6.20 Archivos para el ejercicio 6.

6.7 ERRORES COMUNES DE PROGRAMACIÓN

Un error de programación demasiado común relacionado con las funciones es transmitir
tipos de datos incorrectos. Los valores transmitidos a una función deben corresponder a
los tipos de datos de los parámetros declarados para la función. Una forma de verificar
que se han recibido valores correctos es desplegar todos los valores transmitidos dentro
del cuerpo de una función antes que se hagan cálculos. Una vez que ha tenido lugar esta
verificación, puede prescindirse del despliegue.16

Otro error común puede ocurrir cuando se declara la misma variable en forma local
dentro de la función que llama y la función que es invocada. Aun cuando el nombre de la
variable es el mismo, un cambio a una variable local no altera el valor en la otra variable
local.

Un error relacionado con esto puede ocurrir cuando una variable local tiene el mismo
nombre que una variable global. Dentro de la función que la declara, el uso del nombre
de la variable sólo afecta al contenido de la variable local a menos que se utilice el opera-
dor de resolución de alcance, ::.

char eleccion;
int marcador;
long fecha, tiempo;
int main()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
double factor;
ddouble vatios ()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
double empuje()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

archivo1 archivo2

char tipo_b;
double resistencia;
double roi()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
double promedio()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}
double variancia()
{
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
}

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones380

Otro error común es omitir el prototipo de la función llamada ya sea antes o dentro
de la función que llama. La función invocada debe ser alertada del tipo de valor que se de-
volverá, y esta información es proporcionada por el prototipo de la función. El prototipo
puede omitirse si la función llamada está colocada físicamente en un programa antes de la
función que la llama. Aunque también es permisible omitir el prototipo y el tipo de devo-
lución para funciones que devuelven un número entero, es una mala práctica de documen-
tación hacerlo de esta manera. El valor real devuelto por una función puede verificarse
desplegándolo antes y después de que es devuelto.

Los últimos dos errores comunes son terminar una línea de encabezado de una función
con un punto y coma, y olvidar incluir el tipo de datos de los parámetros de una función den-
tro de la línea de encabezado.

6.8 RESUMEN DEL CAPÍTULO

1. Una función es invocada dando su nombre y transmitiéndole cualesquier datos
que haya en el paréntesis que sigue al nombre. Si una variable es uno de los
argumentos en una llamada a la función, la función llamada recibe una copia del
valor de la variable.

2. La forma usada de una función escrita por el usuario por lo general es

tipo-de-datos-a-devolver nombre-de-función(lista de parámetros)

{

declaraciones y otras instrucciones de C++;

return expresion;

}

La primera línea de la función se llama encabezado de la función. Las llaves
de apertura y cierre de la función y todas las instrucciones entre estas llaves
constituyen el cuerpo de la función. El tipo de datos devuelto, por omisión, es un
número entero cuando no se especifica ningún tipo de datos devuelto. La lista de
parámetros es una lista de declaraciones de parámetros separadas por comas.

3. El tipo de devolución de una función es el tipo de datos del valor devuelto por la
función. Si no se declara ningún tipo se asume que la función devuelve un valor
entero. Si la función no devuelve un valor deberá declararse como un tipo void.

4. Las funciones pueden devolver en forma directa cuando mucho un valor de un
solo tipo de datos a las funciones que las llaman. Este valor es el valor de la
expresión en la instrucción de devolución.

www.FreeLibros.me

5. Usando argumentos de referencia, se puede transmitir a una función la dirección
de una variable. Si a una función llamada se le transmite una dirección tiene la
capacidad de tener acceso directo a la variable de la función que llama respecti-
va. Usar direcciones transmitidas permite que una función llamada devuelva de
manera efectiva múltiples valores.

6. Las funciones pueden declararse a todas las funciones que llaman por medio de
un prototipo de función. El prototipo proporciona una declaración para una
función que especifica el tipo de datos devuelto por la función, su nombre y los
tipos de datos de los argumentos esperados por la función. Como con todas las
declaraciones, un prototipo de función se termina con un punto y coma y puede
incluirse dentro de declaraciones de variable local o como una declaración
global. La forma más común de un prototipo de función es:

tipo-de-datos nombre-de-función(lista de tipos de datos de los parámetros);

Si la función llamada es colocada físicamente arriba de la función que llama, no
se requieren más declaraciones porque la definición de la función sirve como una
declaración global para todas las funciones que siguen.

7. Todas las variables usadas en un programa tienen un alcance, el cual determina
en qué parte del programa puede utilizarse la variable. El alcance de una variable
es local o global y está determinado por el lugar donde se coloca la instrucción
de definición de la variable. Una variable local se define dentro de una función y
sólo puede usarse dentro de la función o bloque que la define. Una variable
global se define fuera de una función y puede usarse en cualquier función que
siga a la definición de la variable. Todas las variables globales que no son
inicializadas de manera específica por el usuario son inicializadas en cero por el
compilador y pueden ser compartidas entre archivos que usen la palabra clave
extern.

8. Todas las variables tienen una clase. La clase de una variable determina cuánto
se conservará el valor en la variable, lo cual también se conoce como la duración
de la variable: las variables auto son variables locales que sólo existen mientras
se está ejecutando la función que las define; las variables register son
similares a las variables auto pero son almacenadas en los registros internos de
una computadora y no en la memoria; las variables static pueden ser globales
o locales y conservan sus valores mientras dura la ejecución de un programa.
Todas las variables static se colocan en cero cuando se definen si no son
inicializadas de manera explícita por el usuario.

3816.7 Errores comunes de programación

www.FreeLibros.me

CAPÍTULO 6 Modularidad con el uso de funciones382

Ingeniería química

La ingeniería química es la aplicación del conocimiento o técnicas de la ciencia, en particular
de la química, a la industria. Los ingenieros químicos son responsables del diseño y operación de
plantas manufactureras, a gran escala, para materiales que experimentan cambios químicos en su
producción. Estos materiales incluyen todos los productos nuevos y mejorados que han afectado
en forma tan profunda a la sociedad, como petroquímicos, hules y polímeros, nuevas aleaciones
de metales, sustancias químicas industriales y refinados, alimentos, pinturas, detergentes, cemen-
tos, pesticidas, gases industriales y medicinas. Los ingenieros químicos también desempeñan un
papel importante en el abatimiento de la contaminación y la administración de los recursos ener-
géticos existentes. Debido a que el campo de la ingeniería química ha crecido tanto, es difícil cla-
sificar las actividades de los ingenieros químicos. A grandes rasgos pueden dividirse en sistemas
de producción a gran escala, o procesamiento químico, y en sistemas a escala más pequeña, o mo-
leculares.

Procesamiento químico

El procesamiento químico tiene que ver con todos los aspectos del diseño y operación de plantas
de procesamiento químico grandes. Incluye las siguientes áreas:

1. Petroquímicos. La destilación y refinación de combustibles como gasolina, gas natural sintéti-
co, licuefacción y gasificación del carbón, y la producción de una variedad infinita de produc-
tos hechos de petróleo, desde cosméticos hasta productos farmacéuticos.

2. Materiales sintéticos. El proceso de polimerización, la unión de moléculas más simples en mo-
léculas complejas grandes, es responsable de muchos materiales modernos como el nailon, hu-
les sintéticos, poliestireno, y una gran variedad de plásticos y fibras sintéticas.

3. Ingeniería de alimentos y bioquímica. La manufactura de alimentos empacados, aditivos ali-
menticios mejorados, esterilización y la utilización de bacterias, hongos y levaduras industria-
les en procesos como la fermentación.

4. Operaciones unitarias. El análisis del transporte de calor o líquidos, como el bombeo de sus-
tancias químicas a través de una tubería o la transferencia de calor entre sustancias. Esta área
incluye también el efecto de la transferencia de calor en reacciones químicas como la oxida-
ción, la clorinación, etcétera.

5. Ingeniería criogénica. El diseño de plantas que operan a temperaturas cercanas al cero absoluto.

6. Ingeniería electroquímica. El uso de electricidad para alterar reacciones químicas, como el elec-
trochapado, o el diseño de baterías o celdas de energía.

7. Control de la contaminación. Un campo que ha tenido un crecimiento rápido que busca vigi-
lar y reducir los efectos perjudiciales del procesamiento químico en el ambiente. Sus áreas de
interés son el control del desperdicio de agua, el abatimiento de la contaminación del aire y los
aspectos económicos del control de la contaminación.

(continúa)

Consideración de opciones de carrera

www.FreeLibros.me

383

Sistemas moleculares

Este campo implica la aplicación de técnicas de laboratorio en procesos en gran escala. Incluye las
siguientes áreas:

1. Ingeniería bioquímica. Aplicación de enzimas, bacterias u otros microorganismos para mejo-
rar los procesos químicos a gran escala.

2. Síntesis de polímeros. La base molecular de las propiedades de los polímeros y la síntesis quí-
mica de nuevos polímeros adaptados a la producción a gran escala.

3. Investigación y desarrollo en todas las áreas del procesamiento químico.

La preparación para una carrera en la ingeniería química requiere una educación sólida en física,
química y matemáticas y un conocimiento de termodinámica y química física, analítica y orgánica.
Aunque con una capacitación extensa en química, los ingenieros químicos difieren de los químicos,
ya que su principal interés es la adaptación de las técnicas de laboratorio a plantas manufactureras
a gran escala.

Consideración de opciones de carrera

6.8 Resumen del capítulo

www.FreeLibros.me

www.FreeLibros.me

