>> >

%)

e

6.2
6.3

6.4
/

6.5

6.6

6.7
6.8

> W

ITULC) 6

d>ad con el uso de funcnone;
/EMAS 4

DECLARACIOKIEES DE FUNCIONES Y PARAMETROS

PrROTOTIPOS DE FUNCION/ FUNCIONES CON LISTAS DE AMETROS VACIAS
LLAMADA A UNA FUNCIO ARGUMENTOS POR OMISIGN
DEFINICION DE UNA FUNCION REUTILIZACION DE NOMBRES DE FUNCION

COLOCACION DE INSTRUCCIONES (SOBRECARGA)
CABOS DE FUNCION) PLANTILLAS DE FUNCION

DEVOLVER UN SOLO VALOR
FUNCIONES inline

DEVOLVER VALORES MULTIPLES
TRANSMISION Y. USO DE PARAMETROS DE REFERENCIA

APLICACIONES
APLICACION 1: CONVERSION DE COORDENADAS RECTANGULARES A POLARES
APLICACION 2: SIMULACION

ALCANCE DE UNA VARIABLE
OPERADOR DE RESOLUCION DE ALCANCE
MAL USO DE LAS VARIABLES GLOBALES

CLASES DE ALMACENAMIENTO DE VARIABLES
CLASES DE ALMACENAMIENTO DE VARIABLES LOCALES
CLASES DE ALMACENAMIENTO DE VARIABLES GLOBALES

ERRORES COMUNES DE PROGRAMACION

RESUMEN DEL CAPITULO
CONSIDERACION DE OPCIONES DE CARRERA: INGENIERIA QUIMICA

Los programas profesionales se disenan, codifican y prueban en forma muy parecida
al hardware: como una serie de modulos que estdn integrados para funcionar en con-
junto. Una buena analogia de esto es un automovil en el cual un modulo fundamen-
tal es el motor, otro es la transmision, un tercero el sistema de frenos, un cuarto la
carroceria, etc. Cada uno de estos moédulos estd vinculado entre si y colocado al final
bajo el control del conductor, el cual puede compararse con un supervisor o un mo-
dulo principal de un programa. El conjunto opera ahora como una unidad comple-

4 ta, capaz de hacer trabajo util, como llevarnos a la tienda. Durante el proceso de
montaje, cada modulo se construye, prueba y se encuentra libre de defectos en forma
individual antes de ser instalado en el producto final.

299

www.FreelLibros.me

300 CarituLo 6 Modularidad con el uso de funciones

Abora piense en lo que podria hacer si quisiera mejorar el desempeno de su automovil. Po-
dria alterar el motor existente o eliminarlo por completo y armar un motor nuevo. Del mismo
modo, podria cambiar la transmision o las llantas o los amortiguadores, haciendo cada modi-
ficacion en forma individual conforme se lo permitan su tiempo y su presupuesto. En cada ca-
so, la mayor parte de los otros médulos pueden permanecer igual, pero el automovil ahora
opera en forma diferente.

En esta analogia, cada uno de los componentes principales de un automovil puede compa-
rarse con una funcion. Por ejemplo, el conductor llama al motor cuando se oprime el pedal del
acelerador. El motor acepta entradas de combustible, aire y electricidad para convertir la solici-
tud del conductor en un producto util, potencia, y luego envia esta salida a la transmision para
su procesamiento adicional. La transmision recibe la salida del motor vy la convierte en una for-
ma que pueda ser usada por el eje de transmision. Una entrada adicional a la transmision es la
seleccion de velocidades por parte del conductor (primera, reversa, neutral, etcétera).

En cada caso, el motor, la transmision y otros modulos sélo “conocen” el universo limitado
por sus entradas vy salidas. El conductor no necesita saber nada de la operacion interna del mo-
tor, transmision, aire acondicionado y otros modulos que se estan controlando. Todo lo que re-
quiere es comprender qué hace cada unidad y como usarla. El conductor tan sélo “llama™ a un
modulo, como el motor, los frenos, el aire acondicionado vy la direccion cuando se requiere la sa-
lida de ese modulo. La comunicacion entre modulos estd restringida a pasar las entradas necesa-
rias a cada médulo conforme se le llame a ejecutar su tarea, y cada moédulo opera en forma interna
de una manera relativamente independiente. Este mismo enfoque modular es usado por los inge-
nieros para crear y mantener programas confiables en C++ usando funciones.

Como se ha visto, cada programa en C++ debe contener una funcion main(). Ademads de
esta funcion requerida, los programas en C++ también pueden contener cualquier cantidad
de funciones adicionales. En este capitulo se aprenderd como escribir estas funciones, transmi-
tirles datos, procesar los datos transmitidos y devolver un resultado.

6.1 > DECLARACIONES DE FUNCIONES Y PARAMETROS

Al crear funciones en C++, debemos poner atencion a la funcién en si y en la forma en que
interactda con otras funciones, como main (). Esto incluye transmitir datos en forma co-
rrecta a una funcién cuando es invocada y devolver valores de una funcién. En esta sec-
cion se describe la primera parte de la interfaz, transmitir datos a una funcién y hacer que
la funcion reciba, almacene y procese en forma correcta los datos transmitidos.

Como ya se ha visto con las funciones matematicas, una funcion se invoca, o utiliza,
dando el nombre de la funcién y transmitiéndole datos, como argumentos, en el parénte-
sis que sigue al nombre de la funcion (véase la figura 6.1).

nombre-de-la-funcion (datos transmitidos a la funcion)

Esto identifica a la Esto transmite datos
funcion llamada a la funcion

Figura 6.1 Llamar y transmitir datos a una funcion.

www.FreelLibros.me

Wy
I
Vi

#include <iostream>
using namespace std;

void encontrarMax(int, int); // la declaracion de la funcion (prototipo)
int main()
{

/ iy
\\,>/ Y

/

int

cout << "\nIntroduzca un numero: ";

cin

cout << "iEstupendo! Por favor introduzca un segundo numero: ";

cin

encontrarMax (primernum, segundonum); // aqui se llama la funcion

return 0;

6.1 Declaraciones de funciones y parametros 301

La funcién invocada debe ser capaz de aceptar los datos que le son transmitidos por la
funcion que hace la llamada. S6lo después que la funcion invocada recibe con éxito los da-
tos pueden ser manipulados éstos para producir un resultado util.

Para aclarar el proceso de envio y recepcion de datos, considérese el programa 6.1, el
cual invoca a una funcién nombrada encontrarMax (). El programa, como se muestra, no
estd completo todavia. Una vez que se escribe la funciéon encontrarMax () y se incluye en
el programa 6.1, el programa completado, consistente en las funciones main() y encon-
trarMax(), puede ser compilado y ejecutado.

Programa 6.1

> >

primernum, segundonum;

>> primernum;

>> segundonum;

Examinemos la declaracion y llamada de la funcion encontrarMax() desde main().
Luego vamos a escribir encontrarMax () para aceptar los datos que se le transmiten y
determinar el valor mayor o maximo de los dos valores transmitidos.

La funcién encontrarMax () se conoce como la funcién llamada, en vista que es
llamada o invocada a la accion por su referencia en main (). La funcién que hace la lla-
mada, en este caso main(), se conoce como la funcién que llama. Los términos llama-
da y que llama vienen del uso del teléfono estindar, donde una persona llama a otra. La
persona que inicia la llamada se conoce como quien llama, y quien la recibe es la persona
llamada. Los mismos términos describen las llamadas a la funcién. La funcion llamada, en
este caso encontrarMax (), es declarada como una funcién que espera recibir dos nu-
meros enteros y no devolver ningun valor (void) a main(). Esta declaracion se conoce
de manera formal como un prototipo de funcién. La funcién es invocada entonces por la
ultima instruccion en el programa.

www.FreelLibros.me

302

CAPiTULO 6 Modularidad con el uso de funciones

Prototipos de funcion

Antes que una funcion pueda ser llamada, debe ser declarada la funcion que hara la lla-
mada. La instruccién de declaracion para una funcién se conoce como un prototipo de
funcion. El prototipo de funcion le indica a la funcion que llama el tipo de valor que se-
rd devuelto formalmente, si es que hay alguno, y el tipo de datos y orden de los valores
que la funcién que llama debera transmitir a la funcion llamada. Por ejemplo, el prototi-
po de funcion usado antes en el programa 6.1

void encontrarMax(int, int);

declara que la funcion encontrarMax () espera que se le envien dos valores enteros, y
que esta funcion particular devuelve de manera formal ningtn valor (void). Los prototipos
de funcion pueden colocarse con las instrucciones de declaracion de variable de la funcion
que llama, encima del nombre de la funciéon que llama, como en el programa 6.1, o en un
archivo de encabezado separado que se incluird utilizando una instruccion de preprocesa-
miento #include. Por tanto, el prototipo de funcién para encontrarMax () podria ha-
berse colocado antes o después de la instruccion #include <iostream>, antes de
main() o dentro de main(). (Las razones para la eleccion de la colocacion se presentan
en la seccion 6.3.) La forma general de las instrucciones de prototipo de funcién es:

tipo-de-datos-a-devolver nombre-de-funcion (lista de tipos de datos para los argumentos);

donde el tipo de datos se refiere al tipo del valor que sera devuelto de manera formal por
la funcion. Son ejemplos de prototipos de funcion

int fmax(int, int);
double intercambio(int, char, char, double);
void desplegar(double, double);

El prototipo de funcion para fmax () declara que esta funcion espera recibir dos argumentos
en numero entero y devolverd de manera formal un valor en nimero entero. El prototipo de
funcion para intercambio () declara que esta funcion requiere cuatro argumentos consis-
tentes en un numero entero, dos caracteres y un argumento de precision doble, en este orden
y formalmente retornara un nimero de precision doble. Por tltimo, el prototipo de funcién
para desplegar () declara que esta funcion requiere dos argumentos de precision doble y
no devuelve ningun valor. Dicha funcién podria ser utilizada para desplegar los resultados de
un calculo en forma directa, sin devolver ningtin valor a la funcion llamada.

El uso de prototipos de funcién permite la verificacion de errores en los tipos de datos
por el compilador. Si el prototipo de funcién no concuerda con los tipos de datos definidos
cuando se escribe la funcion, ocurrird una advertencia del compilador. El prototipo también
sirve para otra tarea: asegura la conversion de todos los argumentos transmitidos a la funcion
al tipo de datos del argumento declarado cuando se llama la funcion.

Llamada a una funcion

Llamar a una funcion es una operacion bastante facil. Los tnicos requisitos son usar el nom-
bre de la funcion y que los datos transmitidos a la funcion estén encerrados dentro de los pa-
réntesis que siguen al nombre de la funcion usando el mismo orden y tipo que se declar6 en
el prototipo de funcién. Los elementos encerrados dentro de los paréntesis se llaman argu-
mentos de la funcion llamada (véase la figura 6.2).

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 303

encontrarMax (primernum, segundonum);

Esto identifica Esto causa que se
a la funcion transmitan dos valores
encontrarMax() aencontrarMax()

Figura 6.2 Llamar a encontrarMax () y transmitirle dos valores.

Si una variable es uno de los argumentos en una llamada la funcién, la funcién llamada
recibe una copia del valor almacenado en la variable. Por ejemplo, la instrucciéon encon-
trarMax(primernum, segundonum); invoca a la funcién encontrarMax y causa
que los valores que residen en la actualidad en las variables primernum y sequndonum
sean transmitidos a encontrarMax () . Los nombres de variable entre paréntesis son ar-
gumentos que proporcionan valores a la funciéon llamada. Después que se transmiten los
valores, el control es transferido a la funcion llamada.

Como se ilustra en la figura 6.3, la funcion encontrarMax () no recibe las variables
nombradas primernum y sequndonum y 7o tiene conocimiento de estos nombres de varia-
bles.! La funcion tan solo recibe los valores en estas variables y debe determinar por si misma
donde almacenarlos antes de hacer algo mas. Aunque este procedimiento para transmitir da-
tos a una funcion puede parecer sorprendente, en realidad es un procedimiento de seguridad
para que una funcion invocada no cambie de manera inadvertida los datos almacenados en
una variable. La funcion obtiene una copia de los datos que va a usar. Puede cambiar su co-
pia y, por supuesto, cambiar cualesquiera variables declaradas dentro de si misma. Sin embar-
g0, a menos que se den pasos especificos para hacerlo, no se le permite a una funcion cambiar
el contenido de las variables declaradas en otras funciones.

almacenado en primernum

N la variable
= .
IS un valor primernum
©
>
[0
—
g almacenado en
i) o6 segundonum _
2 IS N la variable
5 unvalor 8 segundonum
—
()
c
)
et
0o
¢}
encontrarMax (primernum, segundonum);
Enviar el Enviar el
valor a valor a

encontrarMax() encontrarMax()

Figura 6.3 encontrarMax () recibe valores actuales.

Ahora comenzaremos a escribir la funcion encontrarMax () para procesar los valores
que se le transmitieron.

1En la seccién 6.3 se verd cémo, al usar variables de referencia, C++ permite también el acceso directo a las variables de
la funcién que invoca.

www.FreelLibros.me

304

CAPiTULO 6 Modularidad con el uso de funciones

Definicion de una funcion

Una funcion se define cuando se escribe. Cada funcion es definida una vez (es decir, escri-
ta una vez) en un programa y puede ser usada entonces por cualquier otra funcién en el
programa que la declare en forma adecuada.

Como la funcién main(), toda funcion en C++ consta de dos partes, un encabe-
zado de funcién y un cuerpo de funcién, como se ilustra en la figura 6.4. El proposi-
to del encabezado de funcién es identificar el tipo de datos del valor devuelto por la
funcién, proporcionarle un nombre a la funcion y especificar el nimero, orden y tipo
de los argumentos esperados por ella. El proposito del cuerpo de funcion es operar so-
bre los datos transmitidos y devolver en forma directa, cuando mucho, un valor a la
funcién que llama. (En la seccién 6.3, se vera, como puede hacerse que una funcién de-
vuelva multiples valores.)

linea de encabezado de funcion ’} Encabezado de funcion

{

declaraciones de constante y
variable; cualquier otra Cuerpo de funcion
nstruccion de C++;

/

Figura 6.4 Formato general de una funcion.

El encabezado de funcién siempre es la primera linea de una funcion y contiene el tipo de
valor devuelto de la funcion, su nombre y los nombres y tipos de datos de sus argumen-
tos. En vista que encontrarMax () no devolvera de manera formal ningtn valor y reci-
bird dos argumentos en niimero entero, puede usarse la siguiente linea de encabezado:

void encontrarMax(int x, int y) «——sin punto y coma

Los nombres de argumento en el encabezado se conocen como parametros formales de la
funcién.2 Por tanto, el pardmetro x se usara para almacenar el primer valor transmitido a
encontrarMax () y el parametro y se utilizard para almacenar el segundo valor transmi-
tido en el momento de la llamada a la funcion. La funcién no sabe de donde provienen los
valores cuando se hace la llamada desde main (). La primera parte del procedimiento de
llamada ejecutado por la computadora implica ir a las variables primernum y segun-
donum y recuperar los valores almacenados. Estos valores son transmitidos luego a en-
contrarMax () y almacenados al final en los parametros x y y (véase la figura 6.5).

La porcién del encabezado de funcién que contiene el nombre de la funcién y los pardmetros se conoce de manera formal
y
como un declarador de)unczo'n

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 305

encontrarMax (primernum, segundonum); :) Esta instruccion
lama a encontrarMax ()

Se transmite el valor Se transmite el valor
en primernum en segundonum

encontrarMax(int x, int y)

7 7

el parametro el parametro
nombrado x nombrado y

Figura 6.5 Almacenar valores en parametros.

El nombre de la funcién y todos los nombres de parametros en el encabezado, en este ca-
so encontrarMax, Xy y, son elegidos por el programador. Pueden usarse los nombres
seleccionados de acuerdo con las reglas usadas para elegir nombres de variables. Todos los
parametros enumerados en la linea de encabezado de la funcién deben separarse con co-
mas y deben tener los tipos de datos individuales declarados por separado.

Ahora que hemos escrito el encabezado de funciéon para la funcién encontrar-
Max (), se puede construir su cuerpo. Supongamos que la funciéon encontrarMax () se-
lecciona y despliega el mas grande de los dos numeros que se le transmiten.

Como se ilustra en la figura 6.6, un cuerpo de funcién comienza con una llave de aper-
tura, {, contiene las declaraciones necesarias y otras instrucciones de C++, y termina con
una llave de cierre, } . Esto deberia serle familiar porque es la misma estructura usada en
todas las funciones main() que se han escrito. Esto no deberia ser sorpresa porque
main() en si es una funcion y debe apegarse a las reglas requeridas para construir todas
las funciones legitimas.

{

declaraciones de constantes simbdlicas,
declaraciones de variables y otras
instrucciones de C++

/

Figura 6.6 Estructura de un cuerpo de funcion.

www.FreelLibros.me

306

CAPiTULO 6 Modularidad con el uso de funciones

b 5 I’LmtcjJ de Jlnl’_cjrmjn:jc':mLJ| -

Definiciones de funcion y prototipos de funcion

Cuando se escribe una funcion, se crea de manera formal una definicion de funcion. Cada defi-
nicion comienza con una linea de encabezado que incluye una lista de parametros, si es que hay
alguna, encerrada entre paréntesis y termina con la llave de cierre que finaliza el cuerpo de
funcion. Los paréntesis se requieren use o no algtin parametro la funcion. Una sintaxis utilizada
por lo comun para una definicion de funcion es:

tipo-de-datos-que-devuelve nombre-de-funcion (lista de parametros)

{

declaraciones de constantes
declaraciones de variables

otras instrucciones de C++

return valor
}
Un prototipo de funcion declara una funcion. La sintaxis de un prototipo de funcion, el cual
proporciona el tipo de datos que devuelve la funcién, el nombre de la funcion y la lista de
argumentos de la funcion es:

tipo-de-datos-que-devuelve nombre-de-funcion (lista de tipos de
datos de los parametros);

Como tal, el prototipo junto con comentarios previos y posteriores a la condicion (véase el
siguiente recuadro Punto de informacion) deberan proporcionar al usuario toda la informacion de
programacion necesaria para invocar a la funcion con éxito.

En general, todos los prototipos de funciones se colocan al principio del programa, y todas
las definiciones se colocan después de la funcion main() . Sin embargo, esta colocacion puede
cambiarse. El dnico requisito en C++ es que una funcion no puede ser llamada antes que haya
sido declarada o definida.

En el cuerpo de la funcion encontrarMax(), se declarara una variable para almacenar
el maximo de los dos nimeros transmitidos a ella. Entonces se usara una instruccion
if-else para encontrar el maximo de los dos nimeros. Por tltimo, se usara una instruc-
cién cout para desplegar el maximo. La definicién de funcién completa para la funcién
encontrarMax() es:

void encontrarMax(int x, int y)

{ // inicio del cuerpo de funcion
int numMax; // declaracién de variable
if (x >=y) // f£ind the maximum number
numMax = X;
else

numMax = y;

cout << "\nEl méximo de los dos numeros es "
<< numMax << endl;

} // fin del cuerpo de funcion y fin de la funcion

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 307

W w W W Www |

b Punto de informacién| |
% = ww w9 N

Punto de informacion
Las condiciones previas son cualquier conjunto de condiciones que una funcion requiere que sean
verdaderas para operar en forma correcta. Por ejemplo, si una funcion usa la constante simbdlica
MAXCHARS, la cual debe tener un valor positivo, una condicion previa es que MAXCHARS sea
declarado con un valor positivo antes que la funcion sea invocada.

Del mismo modo, una condicién posterior es una condicion que sera verdadera después que
se ejecute la funcion, suponiendo que se cumplen las condiciones previas.

Las condiciones previas y posteriores se documentan de manera tipica como comentarios al
usuario. Por ejemplo, considere la siguiente declaracion y los comentarios:

bool bisiesto(int)
// Condiciones previas: los numeros enteros deben representar un afo en un formato
// : de cuatro digitos, como 2006

// Condiciones posteriores: debe devolver un valor de verdadero si el afio
es bisiesto;

// : de lo contrario se devolvera falso

Los comentarios de las condiciones previas y posteriores deberan incluirse tanto en los prototipos
de funcién como en las definiciones de funcion siempre que se necesiten aclaraciones.

Notese que las declaraciones de parametros se hacen dentro de la linea de encabezado y
la declaracion de variables se hace inmediatamente después de la llave de apertura del
cuerpo de funcién. Ello esta de acuerdo con el concepto que los valores de parametro son
transmitidos a una funcion desde fuera de la funcion, y que las variables son declaradas y
se les asignan valores desde dentro del cuerpo de funcion.

El programa 6.2 incluye la funcién encontrarMax () dentro del codigo del progra-
ma enlistado antes en el programa 6.1.

El programa 6.2 puede usarse para seleccionar e imprimir el maximo de dos numeros
enteros cualesquiera introducidos por el usuario. A continuacién se ve una muestra de la
ejecucion del programa 6.2:

Introduzca un nUmero: 25
iEstupendo! Por favor introduzca un segundo ntmero: 5

El maximo de los dos nlGmeros es 25

La colocacion de la funcion encontrarMax () después de la funcion main() en el pro-
grama 6.2 es cuestion de eleccion. Por lo general enlistaremos primero main () porque es
la funcion conductora que le dara a cualquiera que lea el programa una idea de lo que se
refiere el programa completo antes de encontrar los detalles de cada funcién. Sin embar-
go, en ningun caso puede colocarse la definicion de encontrarMax() dentro de
main(). Esto es verdad para todas las funciones de C++, las cuales deben definirse por
si mismas fuera de cualquier otra funcion. Cada funciéon en C++ es una entidad separada
e independiente con sus propios parametros y variables; nunca se permite el anidamiento
de funciones.

www.FreelLibros.me

308

M\/
A

#include <iostream>
using namespace std;

void encontrarMax(int, int); // el prototipo de la funcién

int main()

{

// en seguida estd la funcidén encontrarMax()

void encontrarMax(int x, int y)

{

b

CAPiTULO 6 Modularidad con el uso de funciones

j—\> Programa 6.2

e

—
> -~

> >
>

int primernum, segundonum;

cout << "\nIntroduzca un nimero: ";

cin >> primernum;

ccout << "iEstupendo! Por favor introduzca un segundo numero: ";
cin >> segundonum;

encontrarMax (primernum, segundonum); // aqui se llama a la funcidn

return 0;

// inicio del cuerpo de funcidbn
int numMax; // declaracidén de variable
if (x >=vy) // encontrar el nimero maximo
numMax = X;
else

numMax = y;

cout << "\nEl madximo de los dos numeros es "
<< numMax << endl;

return;
// fin del cuerpo de funcién y fin de la funcidn

Colocacion de instrucciones

C++ no impone una estructura de ordenamiento de instrucciones rigida al programador.
La regla general para colocar instrucciones en un programa en C++ es tan sélo que to-
das las directivas del preprocesador, constantes nombradas, variables y funciones deben
declararse o definirse antes que puedan usarse. Como se ha senalado antes, aunque esta
regla permite que tanto las directivas del preprocesador como las instrucciones de decla-
racién se coloquen a través del programa, hacerlo asi produce una estructura de progra-
ma muy pobre.

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 309

Como una cuestion de buena forma de programacion, el siguiente ordenamiento de
instrucciones debera formar la estructura basica alrededor de la cual se construyan todos
sus programas en C++.

directivas del preprocesador
prototipos de funcién

int main()

{

constantes simbdlicas
declaraciones de variables

otras instrucciones ejecutables

return valor

definiciones de funcidn

Como siempre, pueden entremezclarse comentarios a las instrucciones en cualquier parte
dentro de esta estructura basica.

Cabos de funcion

Una alternativa para completar cada funcion requerida en un programa completo es escri-
bir primero la funcién main(), y agregar las funciones mas adelante, conforme se desa-
rrollan. El problema que surge con este enfoque, sin embargo, es el mismo que ocurrié con
el programa 6.1; es decir, el programa no puede ejecutarse hasta que todas las funciones
se han incluido. Por conveniencia a continuacion se ha reproducido el cédigo para el pro-
grama 6.1.

#include <iostream>
using namespace std;

void encontrarMax(int, int); // la declaracién de la funcidn
(prototipo)

int main()

{
int primernum, segundonum;
cout << "\nIntroduzca un namero: ";
cin >> primernum;
cout << "jEstupendo! Por favor introduzca un segundo numero: ";
cin >> segundonum;
encontrarMax (primernum, segundonum); // aquli se llama la fancidn
return 0;
}

www.FreelLibros.me

310

CAPiTULO 6 Modularidad con el uso de funciones

b Punto de Informacién| |

T = w3 17 N

Prueba de aislamiento

Uno de los métodos mas exitosos que se conoce para probar software es incorporar siempre el
codigo que se esta probando dentro de un ambiente de codigo funcional. Por ejemplo, suponga
que tiene dos funciones no probadas que son llamadas en el orden que se muestra a conti-
nuacion, y el resultado devuelto por la segunda funcion es incorrecto.

llama a o, Elvalor devuelto
funcion 1 funcion 2 es incorrecto

A partir de la informacion mostrada en esta figura, una de las funciones o quizds ambas podrian
estar operando en forma incorrecta. El primer paso para solucionar el problema es aislar una
funcion especifica.

Uno de los métodos mas potentes para llevar a cabo este aislamiento de codigo es desacoplar
las funciones. Esto se hace probando cada funcion en forma individual o probando una funcion
primero y, sélo cuando se sabe que estd operando en forma correcta, reconectarla a la segunda
funcion. Luego, si ocurre un error, lo habra aislado a la transferencia de datos entre funciones o a
la operacion interna de la segunda funcion.

Este procedimiento especifico es un ejemplo de la regla basica de la prueba, la cual establece
que cada funcion solo deberia probarse en un programa en el que se sabe que todas las demas
funciones son correctas. Esto significa que una funcion debe probarse primero por si misma,
usando cabos si es necesario para las funciones llamadas, y una segunda funcion deberia
probarse ya sea por si misma o con una funcion probada con anterioridad, y asi en forma sucesiva.
Esto asegura que cada funcion nueva es aislada dentro de una capa de prueba de funciones
correctas, con el programa final de codigo de funciones probadas construido de manera efectiva.

Este programa estaria completo si existiera una definicion de funcion para encontrar-
Max. Pero en realidad no se necesita una funcién encontrarMax correcta para probar
y ejecutar lo que se ha escrito, s6lo necesitamos una funcién que actite como si fuera una
encontrarMax “falsa” que acepte el nimero y tipos apropiados de parametros y devuel-
va valores de la manera apropiada para invocar la funcion es todo lo que se necesita pa-
ra permitir la prueba inicial. Esta funcion falsa se llama cabo. Un cabo es el comienzo de
una funcion final que se puede usar como un sustituto de la unidad final hasta que la uni-
dad esté completa. Un cabo para encontrarMax es como sigue:

void encontrarMax(int x, int y)

{
cout << "En encontrarMax()\n";
cout << "El valor de x es " << x << endl;
cout << "El valor de x es " << y << endl;
}

Esta funcion cabo puede ahora compilarse y vincularse con el codigo completado con ante-
rioridad para obtener un programa ejecutable. Entonces el codigo para la funcion puede de-
sarrollarse mas con el codigo “real” cuando es completado, reemplazando la porcién cabo.

El requerimiento minimo de una funcién cabo es que se compila y se vincula con el
moédulo que llama. En la practica, es una buena idea hacer que un cabo despliegue un
mensaje que se ha introducido con éxito y el valor o los valores de sus parametros recibi-
dos, como en el cabo para encontrarMax().

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 311

Conforme se depura la funcion, puede permitir que haya cada vez mas, quiza devol-
ver resultados intermedios o incompletos. Este refinamiento creciente, o por etapas, es un
concepto importante en el desarrollo eficiente de programas que le proporcionan el medio
para ejecutar un programa que todavia no satisface todos sus requerimientos finales.

Funciones con listas de parametros vacias

Aunque las funciones utiles que tienen una lista de parametros vacia son limitadas en ex-
tremo (se proporciona una de dichas funciones en el ejercicio 11), pueden ocurrir. El pro-
totipo de funcién para dicha funcién requiere escribir la palabra clave void o no poner
nada en absoluto entre los paréntesis que siguen al nombre de la funcion. Por ejemplo, am-
bos prototipos

int despliegue();

int despliegue(void);

indican que la funciéon despliegue () no tiene parametros y devuelve un nimero ente-
ro. Una funcion con una lista de parametros vacia es llamada por su nombre sin nada es-
crito dentro del paréntesis requerido después del nombre de la funcion. Por ejemplo, la
instruccion despliegue () ; llama en forma correcta a la funcion despliegue () cuyo
prototipo se proporciond antes.

Argumentos por omision’?

Una caracteristica conveniente de C++ es su flexibilidad para proporcionar argumentos
por omisiéon mediante una llamada a la funcion. El uso primario de los argumentos por
omision es extender la lista de parametros de funciones existentes sin requerir algiin cam-
bio en las listas de argumentos invocados que ya estan en su lugar dentro de un progra-
ma.

Los valores del argumento por omision se enlistan en el prototipo de funcién y son
transmitidos en forma automadtica a la funcion llamada cuando los argumentos correspon-
dientes son omitidos de la llamada a la funcién. Por ejemplo, el prototipo de funcién

void ejemplo (int, int = 5, double = 6.78);

proporciona valores por omision para los dltimos dos argumentos. Si alguno de estos argu-
mentos se omite cuando la funcién es llamada en realidad, el compilador de C++ suministra-
ra estos valores por omision. Por tanto, todas las siguientes llamadas a la funcion son validas:

ejemplo(7, 2, 9.3) // no se usan valores por omisién
ejemplo(7, 2) // igual que ejemplo(7, 2, 6.78)
ejemplo(7) // igual que ejemplo(7, 5, 6.78)

Cuando se usan parametros por omision deben seguirse cuatro reglas. La primera es que los

valores por omision deberian asignarse en el prototipo de funciéon.# La segunda es que si a
cualquier parametro se le da un valor por omision en el prototipo de funcion, a todos los

3Este tema puede omitirse en la primera lectura sin perder la continuidad de la materia.

4Algunos compiladores aceptan asignaciones por omision en la definicion de la funcién.

www.FreelLibros.me

312

CAPiTULO 6 Modularidad con el uso de funciones

parametros que siguen también deben asignarseles valores por omision. La tercera es que si
un argumento se omite en la llamada a la funcion real, entonces todos los argumentos a
su derecha también deben omitirse. Estas dos reglas le dejan claro de C++ cudles argumen-
tos se estan omitiendo y le permite suministrar valores por omision correctos para los argu-
mentos faltantes, empezando por el argumento de la extrema derecha y trabajando hacia la
izquierda. La ultima regla especifica que el valor por omision utilizado en el prototipo de
funcién puede ser una expresion consistente en constantes y variables declaradas con ante-
rioridad. Si se usa una expresion asi, debe pasar la verificacion del compilador para varia-
bles declaradas con validez, aun cuando el valor real de la expresion sea evaluado y asignado
en tiempo de ejecucion.

Los argumentos por omision son utiles en extremo cuando se extiende una funcion
existente para incluir mas caracteristicas que requieren argumentos adicionales. Agregar
los argumentos nuevos a la derecha de los argumentos existentes y proporcionarle a cada
argumento nuevo un valor por omisién permite que todas las llamadas a funciones exis-
tentes permanezcan como estan. Por tanto, el efecto de los cambios nuevos es aislado con-
venientemente del codigo existente en el programa.

Reutilizacién de nombres de funciéon (sobrecarga)’

C++ proporciona la capacidad de usar el mismo nombre de funcién para mas de una fun-
cién, lo cual se conoce como sobrecarga de funcién. El unico requisito para crear mas de
una funcién con el mismo nombre es que el compilador debe ser capaz de determinar cual
funcion usar con base en los tipos de datos de los pardmetros (no los tipos de datos del
valor devuelto, si es que hay alguno). Por ejemplo, considere las tres funciones siguientes,
todas nombradas cdabs () .

void cdabs(int x) // calcula y despliega el valor absoluto de un nGmero entero

cout << "El valor absoluto del nUimero entero es " << x << endl;

void cdabs(float x) // calcula y despliega el valor absoluto de un nimero de
punto flotante

cout << "El valor absoluto del ntGmero de punto flotante es " << x << endl;

void cdabs(double x) // calcula y despliega el valor absoluto de un namero
en doble precision

{

if (x<0)
X = -X;
cout << "El valor absoluto del numero de doble precisidén es " << x << endl;

SEste tema puede omitirse en la primera lectura sin que pierda la continuidad de la materia.

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 313

Cual de las tres funciones nombradas cdabs () se llama en realidad depende de los tipos
de argumento suministrados en el momento de la llamada. Por tanto, la llamada a la fun-
cién cdabs (10); causaria que el compilador utilizara la funcion nombrada cdabs ()
que espera un argumento de numero entero, y la llamada a la funcién cdabs (6.28f);
causaria que el compilador usara la funcién nombrada cdabs () que espera un argumen-
to de precision simple.6

Hay que observar que sobrecargar un nombre de funcién tan sélo significa usar el
mismo nombre para mds de una funcion. Cada funcioén que utiliza el nombre debe escri-
birse atn y existe como una entidad separada. El uso del mismo nombre de funcién no re-
quiere que el cédigo dentro de las funciones sea similar, aunque la buena practica de
programacion dicta que las funciones con el mismo nombre deberian ejecutar en esencia
las mismas operaciones. Todo lo que se requiere de manera formal para usar el mismo
nombre de funcion es que el compilador pueda distinguir cual funcion seleccionar con ba-
se en los tipos de datos de los argumentos cuando es llamada la funcion. Sin embargo, es
evidente que si todo lo que es diferente acerca de las funciones sobrecargadas son los ti-
pos de argumentos, una mejor solucion de programacion es tan s6lo crear una plantilla de
funcion. El uso de funciones sobrecargadas, sin embargo, es util en extremo con funcio-
nes constructoras, un tema que se presenta en la seccion 8.3.

Plantillas de funcion?’

En la mayor parte de los lenguajes de nivel alto, incluyendo C, el predecesor inmediato de
C++, cada funcién requiere su propio nombre tnico. En teoria esto tiene sentido, pero en
la practica puede conducir a una profusiéon de nombres de funcion, incluso para funcio-
nes que realizan en esencia las mismas operaciones. Por ejemplo, considere determinar y
desplegar el valor absoluto de un nimero. Si el nimero transmitido a la funcién puede ser
un numero entero, uno de precision simple o un valor de precision doble, deben escribir-
se tres funciones distintas para manejar en forma correcta cada caso. Por supuesto, podria
dérsele a cada una de estas funciones un nombre unico, como abs (), fabs() ydabs(),
respectivamente, teniendo los prototipos de funcion:

void abs(int);
void fabs(float);
void dabs(double);

Es evidente que cada una de estas funciones realiza en esencia la misma operacién, pero
con diferentes tipos de datos en los parametros. Una solucién mucho mas limpia y elegan-
te es escribir una funcion general que maneje todos los casos, pero cuyos pardmetros, va-
riables e incluso tipo devuelto puedan ser establecidos por el compilador basado en la
llamada a la funcion real. Esto es posible en C++ usando plantillas de funcién.

6Esto se logra por un proceso conocido como mutilaciéon del nombre. Usando este proceso el nombre de funcién genera-
do en realidad por el compilador de C++ difiere del nombre de funcién usado en el c6digo fuente. El compilador afiade infor-
maci6én al nombre de funcion del codigo fuente dependiendo del tipo de datos que se transmiten, y se dice que el nombre
resultante es una version mutilada del nombre del cédigo fuente.

7Este tema puede omitirse en la primera lectura sin perder la continuidad de la materia.

www.FreelLibros.me

314

CAPiTULO 6 Modularidad con el uso de funciones

Una plantilla de funcién es una funcion tnica completa que sirve como modelo para
una familia de funciones. Cual funcién de la familia se creara en realidad depende de las
llamadas a la funcion subsiguientes. Para hacer esto mas concreto, considere una plantilla
de funcion que calcule y despliegue el valor absoluto de un argumento transmitido. Una
plantilla de funcién apropiada es:

template <class T>
void mostrarabs(T numero)

{
if (numero < 0)
numero = -numero;
cout << "El valor absoluto del numero "
<< " es " << numero << endl;
return
}

Por el momento, ignore la primera linea template <class T>y observe la segunda li-
nea, la cual consiste del encabezado de funcién mostrarabs(T numero). Hay que
observar que esta linea de encabezado tiene la misma sintaxis que se ha usado para todas
las definiciones de funcion, excepto por la T en el lugar donde se coloca por lo general un
tipo de datos. Por ejemplo, si la linea de encabezado fuera void mostrarabs(int nu-
mero), lo reconoceria como una funcién llamada mostrarabs que espera que se le
transmita un argumento en nimero entero y que no devuelve ningun valor. Del mismo mo-
do, si la linea de encabezado fuera void mostrarabs(float numero), la reconoce-
ria como una funcién que espera que se transmita un argumento de punto flotante cuando
se llame a la funcion.

La ventaja al usar la T dentro de la linea de encabezado de la plantilla de funcion es
que representa un tipo de datos general que es reemplazado por un tipo de datos real, co-
mo int, float, double, etc., cuando el compilador encuentra una llamada a la fun-
cién real. Por ejemplo, si se encuentra una llamada a la funcién con un argumento en
numero entero, el compilador usara la plantilla de funcién para construir el codigo para
una funcién que espera un parametro en numero entero. Del mismo modo, si se hace una
llamada con un argumento de punto flotante, el compilador construird una funciéon que
espera un parametro en punto flotante. Como un ejemplo especifico de esto, considérese
el programa 6.3.

Primero observe las tres llamadas a funcion que se hacen en la funciéon main() mos-
trada en el programa 6.3, la cual llama a la funcién mostrarabs () con un valor entero,
flotante y doble, respectivamente. Ahora revise la plantilla de funcién para mostrarabs ()
y considere la primera linea template <class T>. Esta linea, la cual se llama prefijo
de plantilla, se usa para informar al compilador que la funcién que sigue inmediatamente
es una plantilla que usa un tipo de datos nombrado T. Dentro de la plantilla de funcién se
usa la T de la misma manera que cualquier otro tipo de datos, como int, float, double,
etc. Luego, cuando el compilador encuentra una llamada a la actual funcién para mostra-
rabs(), o el tipo de datos del argumento transmitido en la llamada es sustituido por T a
lo largo de la funcion. En efecto, el compilador crea una funcién especifica, usando la plan-
tilla, que espera el tipo de argumento en la llamada. En vista que el programa 6.3 hace tres
llamadas a mostrarabs, cada una con un tipo de datos diferente para el argumento, el
compilador creara tres funciones mostrarabs () separadas. El compilador sabe cual

www.FreelLibros.me

#include <iostream>
using namespace std;

template <clases T>
void mostrarabs (T nimero)

{

b

6.1 Declaraciones de funciones y parametros 315

> =

if (numero < 0)

numero = -numero;
cout << "El valor absoluto del numero es "
<< numero << endl;

return;

int main()

{

int numl = -4;

float num2 = -4.23f;
double num3 = -4.23456;

mostrarabs (numl);
mostrarabs (num2);
mostrarabs (num3);

return 0;

funcién usar con base en los argumentos transmitidos en el momento de la llamada. La
salida desplegada cuando el programa 6.3 se ejecuta es:

El valor absoluto del numero es 4
El valor absoluto del numero es 4.23
El valor absoluto del numero es 4.23456

La letra T usada en el prefijo de plantilla template <class T> tan sélo es un sustitu-
to para un tipo de datos que se define cuando la funcién es invocada en realidad. Puede

www.FreelLibros.me

316

CAPiTULO 6 Modularidad con el uso de funciones

utilizarse en cambio cualquier letra o identificador que no sea una palabra clave. Por tan-
to, la plantilla de la funcién mostrarabs () podria haberse definido también como:

template <class TIPOD>
void abs(TIPOD numero)
{
if (numero < 0)
numero = -numero;
cout << "El valor absoluto del nGmero es "
<< numero << endl;

return;

Asi, en ocasiones es mas simple y claro leer la palabra clase en el prefijo de plantilla que
las palabras tipo de datos. Por tanto, el prefijo de plantilla template <clases T> pue-
de leerse como “estamos definiendo una plantilla de funcién que tiene un tipo de datos
nombrado T”. Luego, dentro de la linea de encabezado y el cuerpo de la funcion definida
se usa el tipo de datos T (o cualquier otra letra o identificador definido en el prefijo) de la
misma manera que cualquier tipo de datos incorporado, como int, float, double,
etcétera.

Ahora suponga que se quiere crear una plantilla de funcién para incluir el tipo de
retorno y una variable declarada en forma interna. Por ejemplo, considere la siguiente
plantilla de funcion:

template <clase T> // prefijo de plantilla
T abs(T valor) // linea de encabezado

{

T numabs; // declaracion de variable

if (valor < 0)

numabs = -valor;
else
numabs = valor;

return numabs;

En esta definicion de plantilla, se ha usado el tipo de datos T para declarar tres elementos:
el tipo devuelto de la funcion, el tipo de datos de un parametro de funcién unico llamado
valor, y una variable declarada dentro de la funcién. El programa 6.4 ilustra como esta
plantilla de funcién podria utilizarse dentro del contexto de un programa completo.

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 317

>~

~ Programa 6.4

< o
,\SE > - ~>

\/\/\’/ W

.

35%
S

#include <iostream>
using namespace std;

template <class T> // prefijo de plantilla
T abs(T valor) // linea de encabezado

{

T numabs; // declaracion de variable

if (valor < 0)
numabs = -valor;
else
numabs = valor;

return numabs;
¥
int main()
{
int numl = -4;
float num2 = -4.23f;
double num3 = -4.23456;

cout << "El valor absoluto de " << numl
<< " es " << abs(numl) << endl;

cout << "El valor absoluto de " << num2
<< " es " << abs(num2) << endl;

cout << "El valor absoluto de " << num3
<< " es " << abs(num3) << endl;

return 0;

En la primera llamada a abs () hecha dentro de main (), se transmite un valor entero co-
mo un argumento. En este caso, el compilador sustituye un tipo de datos int para el ti-
po de datos T en la plantilla de funcién y crea la siguiente funcion:

int abs(int valor) // linea de encabezado
{

int numabs; // declaracion de la variable

if (valor < 0)

numabs = -valor;
else
numabs = valor;

www.FreelLibros.me

318

CAPiTULO 6 Modularidad con el uso de funciones

return numabs;

}

Del mismo modo, en la segunda y tercera llamadas a la funcién, el compilador crea dos
funciones mas, una en la que el tipo de datos T es reemplazado por la palabra clave
float, y otra en la que el tipo de datos T es reemplazado por la palabra clave double.
La salida producida por el programa 6.4 es:

El valor absoluto de -4 es 4
El valor absoluto de -4.23 es 4.23
El valor absoluto de -4.23456 es 4.23456

El valor de usar la plantilla de funcion es que se ha usado una definicién de funcién para
crear tres funciones diferentes, cada una de las cuales usa la misma logica y operaciones
pero opera sobre diferentes tipos de datos.

Por ultimo, aunque los programas 6.3 y 6.4 definen una plantilla de funcién que usa
un solo tipo de datos sustituto, pueden definirse plantillas de funcién con mas de un tipo
de datos. Por ejemplo, el prefijo de plantilla

template <class TIPOD1l, class TIPOD2, class TIPOD3>

puede utilizarse para crear una plantilla de funciéon que requiere tres tipos de datos dife-
rentes. Como antes, dentro del encabezado y el cuerpo de la plantilla de funcién los tipos
de datos TIPOD1, TIPOD2 y TIPOD3 se usarian de la misma manera que cualquier tipo de
datos incorporado, como un int, float, double, etc. Ademds, como se senald antes,
los nombres TIPOD1, TIPOD2 y TIPOD3 pueden ser cualquier identificador que no sea
una palabra clave. De manera convencional, se usaria la letra T seguida por cero o mas di-
gitos, como T, T1, T2, T3, etcétera.

Ejercicios 6.1

1. Para los siguientes encabezados de funcion, determine el nimero, tipo y orden (se-
cuencia) de los valores que deben transmitirse a la funcion:

a. void factorial(int n)

. void voltios(int res, double induc, double cap)

void potencia(int tipo, double induc, double cap)

. void marcador(char tipo, double corriente, double tiempo)

void total(double cantidad, double tasa)

void roi(int a, int b, char c, char d, double e, double f)

. void obtener_valor(int elemento, int iter, char decmarcador,
char delim)

@aroangT

2. a. Escriba una funcién nombrada revisar () que tenga tres parametros. El pri-
mer parametro debera aceptar un nimero entero, el segundo parametro un nu-
mero de precision doble y el tercer parametro un nimero de precision doble. El
cuerpo de la funcién debera desplegar so6lo los valores de los datos transmitidos
a la funcién cuando es llamada. (NoTA: Cuando se rastrean errores en las fun-
ciones, es muy util hacer que la funcion despliegue los valores que se le han
transmitido. Con bastante frecuencia, el error no esta en lo que el cuerpo de la
funcién hace con los datos, sino en los datos recibidos y almacenados.)

www.FreelLibros.me

6.1 Declaraciones de funciones y parametros 319

. Incluya la funcién escrita en el ejercicio 2a en un programa que funcione. Ase-
gurese que su funcion es llamada desde main(). Pruebe la funcion transmi-
tiéndole varios datos.

. Escriba una funcién llamada encontrarAbs () que acepte un nimero trasmi-
tido de precision doble, calcule su valor absoluto y despliegue el valor absolu-
to. El valor absoluto de un nimero es el mismo numero si éste es positivo y el
negativo del namero si éste es negativo.

. Incluya la funcion escrita en el ejercicio 3a en un programa que funcione. Ase-
gurese que su funcion es llamada desde main (). Pruebe la funcion transmitién-
dole varios datos.

. Escriba una funcién llamada mult () que acepte dos numeros en punto flotan-
te como parametros, multiplique estos dos numeros y despliegue el resultado.
. Incluya la funcion escrita en el ejercicio 4a en un programa que funcione. Ase-
gurese que su funcion es invocada desde main(). Pruebe la funcién transmi-
tiéndole varios datos.

. Escriba una funcion llamada al_cuadrado () que calcule el cuadrado del va-
lor que se le transmite y despliegue el resultado. La funcién debera ser capaz de
elevar al cuadrado numeros con puntos decimales.

. Incluya la funcion escrita en el ejercicio Sa en un programa que funcione. Ase-
gurese que su funcion es llamada desde main (). Pruebe la funciéon transmitién-
dole varios datos.

. Escriba una funcién nombrada funpot () que eleve un nimero entero que se
le transmita a una potencia en nimero entero positivo y despliegue el resulta-
do. El nimero entero positivo debera ser el segundo valor transmitido a la fun-
cion. Declare la variable usada para almacenar el resultado como un tipo de
datos entero largo para asegurar suficiente almacenamiento para el resultado.
. Incluya la funcion escrita en el ejercicio 6a en un programa que funcione. Ase-
gurese que su funcion es llamada desde main (). Pruebe la funcion transmitién-
dole varios datos.

. Escriba un programa en C++ que devuelva la parte fraccionaria de cualquier nu-
mero introducido por el usuario. Por ejemplo, si se introduce el numero
256.879, deberia desplegarse el nimero 0.879. (Sugerencia: Use un int cast.)
. Introduzca, compile y ejecute el programa escrito para el ejercicio 7a.

. Escriba un programa en C++ que acepte un argumento en nimero entero y
determine si el entero transmitido es par o non. (Sugerencia: Utilice el ope-
rador %.)

. Introduzca, compile y ejecute el programa escrito para el ejercicio 8a.

. Escriba una funcién que produzca una tabla de los numeros del 1 al 10, sus cua-
drados y sus cubos. La funcion debera producir el mismo despliegue que el pro-
ducido por el programa 5.11.

. Incluya la funcion escrita en el ejercicio 9a en un programa que funcione. Ase-
gurese que su funcion es llamada desde main (). Pruebe la funcién transmitién-
dole varios datos.

www.FreelLibros.me

320

CAPiTULO 6

Modularidad con el uso de funciones

10. a. Modifique la funcion escrita para el ejercicio 9 para aceptar el valor inicial de

11.

12.

13.

14.

15.

la tabla, el nimero de valores que se van a desplegar y el incremento entre va-
lores. Si el incremento no se envia de manera explicita, la funcion debera usar
un valor por omisién de 1. Nombre su funcién selTab(). Una llamada a
selTab(6, 5, 2); deberd producir una tabla de cinco lineas, la primera
linea iniciando con el nimero 6 y cada numero subsiguiente incrementandose
en 2.

. Incluya la funcion escrita en el ejercicio 10a en un programa que funcione. Ase-

gurese que su funcion es llamada desde main (). Pruebe la funcién transmitién-
dole varios datos.

Puede construirse una funcion util que no utilice parametros para que devuelva un
valor para T que sea preciso al nimero maximo de lugares decimales permitido por
su computadora. Este valor se obtiene tomando el arco seno de 1.0, el cual es 1/2,
y multiplicando el resultado por 2. En C++, la expresion requerida es 2.0%
asin(1.0), donde la funcién asin() es proporcionada en la biblioteca matematica
estandar de C++ (recuerde incluir cmath). Usando esta expresion, escriba una fun-
cion en C++ llamada pi () que calcule y despliegue el valor de m.

a.

b.

Escriba una plantilla de funcién llamada despliegue () que despliegue el va-
lor del argumento tnico que se le transmite cuando es invocada la funcion.
Incluya la plantilla de funcion creada en el ejercicio 12a dentro de un progra-
ma en C++ completo que llame a la funcién tres veces: una con un argumento
de caricter, una con un argumento en ndmero entero y una con un argumento de
numero de precision doble.

Escriba una plantilla de funcién llamada entero() que devuelva el valor
entero de cualquier argumento que se le transmita cuando la funcién sea lla-
mada.

. Incluya la plantilla de funcion creada en el ejercicio 13a dentro de un progra-

ma en C++ completo que llame a la funcion tres veces: una con un argumento
de caracter, una con un argumento en ndmero entero y una con un argumento de
numero de precision doble.

. Escriba una plantilla de funcién llamada maximo () que devuelva el valor ma-

ximo de tres argumentos que se transmitan a la funcion cuando sea llamada.
Suponga que los tres argumentos seran del mismo tipo de datos.

. Incluya la plantilla de funcién creada para el ejercicio 14a dentro de un progra-

ma en C++ completo que llame a la funciéon con tres nimeros enteros y luego
con tres numeros de precision doble.

. Escriba una plantilla de funcién llamada al_cuadrado () que calcule y de-

vuelva el cuadrado del argumento tnico transmitido a la funcién cuando es
llamada.

. Incluya la plantilla de funcion creada para el ejercicio 15a dentro de un progra-

ma en C++ completo.

www.FreelLibros.me

6.2 Devolver un solo valor 321

6f DEVOLVER UN SOLO VALOR

Al utilizar el método de transmitir datos a una funcion presentado en la seccion anterior,
la funcién llamada sélo recibe copias de los valores contenidos en los argumentos en el
momento de la llamada (repase la figura 6.3 si no le ha quedado claro esto). Cuando se
transmite un valor a una funcién invocada de esta manera, el argumento transmitido se
conoce como transmitido por valor y es una ventaja distintiva de C++.8 En vista que la fun-
cion llamada no tiene acceso directo a las variables usadas como argumentos por la funcién
que llama, no puede alterar de manera inadvertida el valor almacenado en una de estas va-
riables.

La funcion que recibe los argumentos transmitidos por valor puede procesar los valo-
res que se le envian en cualquier forma deseada y devolver en forma directa cuando mu-
cho uno, y sélo un, valor “legitimo” a la funcién que llama (véase la figura 6.7). En esta
seccion se verd como se devuelve un valor asi a la funciéon que llama. Como podria espe-
rarse, dada la flexibilidad de C++, hay una forma de devolver mas de un solo valor, pero
éste es el tema de la siguiente seccion.

Una funcion puede recibir muchos valores

Sélo puede devolverse
en forma directa un valor

Figura 6.7 Una funcion devuelve en forma directa cuando mucho un valor.

Como ocurre con la llamada a una funcién, devolver en forma directa un valor requiere
que la interfaz entre la funcion llamada y la que llama se maneje en forma correcta. Des-
de el lado de la transaccion devuelta, la funcion llamada debe proporcionar los siguientes
elementos:

e el tipo de datos del valor devuelto
e ¢l valor real que se devuelve

Una funcién que devuelve un valor debe especificar, en su linea de encabezado, el tipo de
datos del valor que se devolvera. Recuérdese que la linea de encabezado de la funcion es
la primera linea de la funcion, la cual incluye tanto el nombre de la funcién como una lis-
ta de nombres de parametros. Como ejemplo, considérese la funcién encontrarMax ()
escrita en la seccion anterior. Determina el valor maximo de dos nimeros transmitidos a
la funcion. Por conveniencia, se enlista de nuevo el codigo encontrarMax() :

8Esto también se conoce como llamada por valor. Sin embargo, el término no se refiere a la llamada de la funcion en
conjunto, sino a la forma en que se transmite un argumento individual cuando se hace la llamada a una funcién.

www.FreelLibros.me

322 CAPiTULO 6 Modularidad con el uso de funciones

void encontrarMax(int x, int y)

{ // inicio del cuerpo de la funcion
int numMax; // declaracion de la variable
if (x >= vy) // encontrar el numero maximo
numMax = X;
else
numMax = y;

cout << "\nEl méximo de los dos numeros es "
<< numMax << endl;

} // fin del cuerpo de la funcion y fin de la funcion

Tal como esta escrito, la linea de encabezado de la funcién es

void encontrarMax(int x, int y)

donde x y y son los nombres elegidos para los parametros de la funcion.

Si ahora encontrarMax () va a devolver un valor, la linea de encabezado de la fun-
cion debe ser modificado para incluir el tipo de datos del valor que se devuelve. Por ejem-
plo, si se va a devolver un valor entero, la linea de encabezado de la funcién apropiada es

int encontrarMax(int x, int y)

Del mismo modo, si la funcién va a recibir dos parametros de precision simple y devolve-

ra un valor de precision simple, la linea de encabezado de la funcion correcta es

float encontrarMax(float x, float y)

y si la funcion va a recibir dos parametros de precision doble y a devolver un valor de pre-

cision doble, la linea de encabezado seria?®

double encontrarMax(double x, double y)

Ahora se modificara la funcién encontrarMax () para devolver el valor maximo de los dos
numeros que se le transmiten. Para hacer esto, primero se debe determinar el tipo de datos
del valor que se va a devolver e incluir este tipo de datos en la linea de encabezado de la fun-

cion.

En vista que el valor maximo determinado por encontrarMax () se almacena en la
variable de niimero entero numMax, es el valor de esta variable el que debera devolver
la funcion. Devolver un valor entero de encontrarMax () requiere que la declaracion de la

funcién sea

int encontrarMax(int x, int y)

Obsérvese que ésta es igual a la linea de encabezado de la funcién original para encon-
trarMax () con la sustitucion de la palabra clave int en lugar de la palabra clave void.

Kl tipo de datos devuelto sélo se relaciona con los tipos de datos de los pardmetros en la medida en que el valor devuelto
se calcula a partir de valores de pardmetros. En este caso, en vista que la funcion se usa para devolver el valor mdximo de sus
parametros, tendria poco sentido devolver un tipo de datos que no correspondiera con los tipos de pardmetros de la funcién.

www.FreelLibros.me

6.2 Devolver un solo valor 323

Habiendo declarado el tipo de datos que devolvera encontrarMax(), todo lo que
resta es incluir una instruccion dentro de la funciéon que cause la devolucion del valor co-
rrecto. Para devolver un valor, una funcion debe usar una instruccion de devolucién, la
cual tiene la forma:10

return expresion;

Cuando se encuentra la instruccion de devolucion, la expresion se evalta primero. El va-
lor de la expresion es convertido entonces de manera automatica en el tipo de datos de-
clarado en el encabezado de la funcion antes de ser enviado de regreso a la funciéon que
llama. Después que es devuelto el valor, el control del programa se revierte a la funcion
que llama. Por tanto, para devolver el valor almacenado en numMax, todo lo que se ne-
cesita hacer es agregar la instruccion return numMax; antes de la llave de cierre de la
funcion encontrarMax (). El codigo de la funcion completo es:

Estos deberdan — > int encontrarMax(int x, int y) // linea de encabezado

ser del mismo de la funcion
tipo de datos { // inicio del cuerpo de
la funcion
int numMax; // declaracién de la variable

if (x >=vy)
numMax = X;
else
numMax = y;

return numMax; // instruccion de devolucion

En este nuevo c6digo para la funcion encontrarMax () hay que observar que el tipo de da-
tos de la expresion contenida en la instruccion de devolucion corresponde en forma correcta
al tipo de datos en la linea de encabezado de la funcion. Le corresponde al programador ase-
gurar que esto sea asi en todas las funciones que devuelven un valor. Si hay una falla en ha-
cer que corresponda con exactitud el valor devuelto con el tipo de datos declarado en la
funcion, puede ser que no se produzca un error cuando su programa sea compilado, pero es-
to puede conducir a resultados indeseables debido a que el valor devuelto siempre es conver-
tido al tipo de datos declarado en la declaracion de la funcion. Por lo general esto es un
problema s6lo cuando la parte fraccionaria de un niumero de punto flotante o de precision do-
ble devuelta es truncada debido a que se declar6 que la funcion devolveria un valor entero.

Habiendo cuidado el lado emisor de la transaccion de devolucion, ahora se debe pre-
parar a la funcion que llama para recibir el valor enviado por la funcién llamada. En el la-
do que llama (receptor), la funciéon que llama debe

e ser alertada del tipo de valor a esperar

e usar de manera apropiada el valor devuelto

10Muchos programadores colocan la expresion entre paréntesis, produciendo la instrucciéon return (expresién) ;. Aun-
que puede usarse cualquier forma, por consistencia sélo se adoptard una.

www.FreelLibros.me

324

CAPiTULO 6 Modularidad con el uso de funciones

Para alertar a la funcién que llama acerca del tipo de valor devuelto que debe esperar se
utiliza el prototipo de funcién. Por ejemplo, incluir el prototipo de funciéon

int encontrarMax(int, int);

antes de la funcion main () es suficiente para alertar a main() que encontrarMax()
es una funcion que devolvera un valor entero.

Para usar en verdad un valor devuelto hay que proporcionar una variable para alma-
cenar el valor o usar el valor en forma directa en una expresion. Se logra almacenar el va-
lor devuelto en una variable usando una instrucciéon de asignacion estandar. Por ejemplo,
puede usarse la instruccion de asignacion

max = encontrarMax (primernum, segundonum);

para almacenar el valor devuelto por encontrarMax () en la variable llamada max. Esta ins-
truccion de asignacion hace dos cosas. Primera, el lado derecho de la instruccion de asigna-
cion llama a encontrarMax(), luego el resultado devuelto por encontrarMax() se
almacena en la variable max. En vista que el valor devuelto por encontrarMax () es un nu-
mero entero, la variable max debera declararse también como una variable en nimero en-
tero dentro de las declaraciones de variables de la funcion que llama.

El valor devuelto por una funcién no necesita almacenarse en forma directa en una
variable, pero puede usarse siempre que una expresion sea valida. Por ejemplo la expre-
sibn 2 * encontrarMax(primernum, segundonum) multiplica el valor devuelto
por encontrarMax () por dos, y la instruccion

cout << encontrarMax(primernum, segundonum);

despliega el valor devuelto.

El programa 6.5 ilustra la inclusion de instrucciones de prototipo y de asignacion pa-
ra que main() declare, llame y almacene en forma correcta un valor devuelto por en-
contrarMax (). Como antes, y para conservar la convencion de colocar primero la
funcion main (), se ha colocado la funcion encontrarMax () después de main().

Al revisar el programa 6.5 es importante sefialar los cuatro elementos que se han intro-
ducido en esta seccion. El primer elemento es el prototipo para encontrarMax (). Esta ins-
truccion, la cual termina con punto y coma, como todas las instrucciones de declaracion,
alerta a main() y a las funciones subsiguientes que usen encontrarMax () con el tipo
de datos que devolvera encontrarMax (). El segundo elemento que se puede observar en
main() es el uso de una instruccion de asignacion para almacenar el valor devuelto de la
llamada a encontrarMax () en la variable numMax. También se ha asegurado de declarar
en forma correcta numMax como un numero entero dentro de las declaraciones de variables
de main() de modo que concuerde con el tipo de datos del valor devuelto.

Los ultimos dos elementos que hay que observar conciernen a la codificacion de la
funcién encontrarMax (). La primera linea de encontrarMax () declara que la fun-
ciéon devolvera un valor entero, y la expresion en la instrucciéon de devolucion evalta un
tipo de datos que corresponda. Por tanto encontrarMax () es consistente internamente
en enviar un valor entero de vuelta a main(), y main() ha sido alertado en forma co-
rrecta para recibir y usar el nimero entero devuelto.

Al escribir sus propias funciones debe tener en cuenta siempre estos cuatro elementos.
Como ejemplo, vea si puede identificar estos cuatro elementos en el programa 6.6.

www.FreelLibros.me

6.2 Devolver un solo valor 325

\ Programa 6.5

=

#include <iostream>
using namespace std;

int encontrarMax(int, int); // el prototipo de la funcidn

int main()

{

int primernum, segundonum, max;

cout << "\nIntroduzca un numero: ";
cin >> primernum;
cout << "jiEstupendo! Por favor introduzca un segundo nimero: ";
cin >> segundonum;

max = encontrarMax(primernum, segundonum); // aqui se llama a la funcidn

cout << "\nEl médximo de los dos nlGmeros es " << max << endl;

return 0;

}
int encontrarMax(int x, int y)
{ // inicio del cuerpo de la funcién
int numMax; // declaracién de variable
if (x >=vy) // encontrar el nimero madximo
numMax = X;
else

numMax = y;

return numMax; // instruccién de devolucidbn

www.FreelLibros.me

326

{

}

{

}

#include <iostream>
using namespace std;

double convertir temp(double); // prototipo de la funcidén

int main()

const CONVERSIONES = 4; // numero de conversiones que se haréan
int cuenta;

double fahren;

for(cuenta = 1; cuenta <= CONVERSIONES; cuenta++)

{
cout << "\nIntroduzca una temperatura en grados Fahrenheit: ";
cin >> fahren;
cout << "El equivalente en grados Celsius es "
<< convertir temp(fahren) << endl;
}
return 0;

// convertir Fahrenheit a Celsius
double convertir temp(double in temp)

return (5.0/9.0) * (in_temp - 32.0);

CAPiTULO 6 Modularidad con el uso de funciones

> Programa 6.6

Al revisar el programa 6.6, se analizard primero la funcién convertir temp (). La defini-
ciéon completa de la funcién comienza con la linea de encabezado de la funcién y termina
con la llave de cierre después de la instruccion de devolucion. La funcion es declarada co-
mo double; esto significa que la expresion en la instruccion de devolucion de la funcién
debe evaluar a un nimero de precision doble, lo cual hace. En vista que la linea de enca-
bezado de la funcién no es una instruccion sino el inicio del c6digo que define la funcion,
la linea de encabezado de la funcién no termina con punto y coma.

En el lado receptor, main() tiene un prototipo para la funcién convertir-
_temp () que concuerda con la definicién de la funcién de convertir temp().
No se declara una variable en main() para almacenar el valor devuelto de conver-
tir temp() porque el valor devuelto es transmitido de inmediato a cout para su
despliegue.

www.FreelLibros.me

6.2 Devolver un solo valor 327

Vale la pena mencionar un punto mds aqui. Uno de los propdsitos de las declaracio-
nes, como se aprendié en el capitulo 2, es alertar a la computadora de la cantidad de al-
macenamiento interno reservado para los datos. El prototipo para convertir temp()
ejecuta esta tarea y alerta al compilador del tipo de almacenamiento necesario para el va-
lor devuelto. En vista que se ha elegido siempre enlistar main () como la primera funcién
en un archivo, se deben incluir prototipos de funcién para todas las funciones llamadas
por main() y cualesquiera funciones subsiguientes.

Funciones inline'’

Llamar a una funcion pone una cierta cantidad de sobrecarga en la computadora, ya que
consiste en colocar valores de argumentos en una region de memoria reservada a la que la
funcion tiene acceso (esta region de memoria se conoce como pila), transmitir el control a
la funcidén, proporcionar una ubicacion de memoria reservada para cualquier valor devuel-
to (de nuevo, la region de pila de la memoria se usa para este propdsito) y por ultimo re-
gresar al punto apropiado en el programa que llama. Esta sobrecarga se justifica cuando
una funcion es invocada muchas veces, porque puede reducir de manera significativa el ta-
mafo de un programa. En lugar de repetir el mismo codigo cada vez que es necesario, el
codigo se escribe una sola vez, como una funcion, y se llama cada vez que es necesario.

Sin embargo, para funciones pequefias que no son llamadas muchas veces no se justi-
fica la sobrecarga de transmitir y devolver valores. No obstante, ain seria conveniente
agrupar las lineas repetitivas de cddigo bajo un nombre de funcién comin y hacer que el
compilador coloque este codigo en forma directa en el programa siempre que se llame a
la funcion. Esta capacidad es proporcionada por funciones inline.

Indicarle al compilador de C++ que una funcién es inline causa que una copia del
cédigo de la funcion sea colocada en el programa en el punto en que es invocada. la fun-
cién. Por ejemplo, considérese la funcion convertir temp() definida en el programa
6.6. En vista que ésta es una funcion relativamente corta, es ideal para ser una funcién in-
line. Para hacer a ésta, o a cualquier otra funcién, una funcién inline, tan sélo se re-
quiere colocar la palabra reservada inline antes del nombre de la funcion y definir la
funcién antes que se haga cualquier llamada. Esto se lleva a cabo para la funcién con-
vertir temp() en el programa 6.7.

11Esta seccién es opcional y puede omitirse en la primera lectura sin perder la continuidad de la materia.

www.FreelLibros.me

328

{

}

{

#include <iostream>
using namespace std;

inline double convertir temp(double in temp) // una funcién inline

return (5.0/9.0) * (in_temp - 32.0);

int main()
const CONVERSIONES = 4; // numero de conversiones que se haréan
int cuenta;

double fahren;

for(cuenta = 1; cuenta <= CONVERSIONES; cuenta++)

{

return 0;

CAPiTULO 6 Modularidad con el uso de funciones

~ Programa 6.7

cout << "\nIntroduzca una temperatura en grados Fahrenheit: ";
cin >> fahren;
cout << "El equivalente en grados Celsius es "

<< convertir temp(fahren) << endl;

En el programa 6.7 hay que observar que la funcién inline se coloca antes de cuales-
quier llamada a ella. Esto es un requisito de todas las funciones inline y evita la necesi-
dad de un prototipo de funcion antes de cualquier funcién subsiguiente que llama. En vista
que la funcién ahora es una inline, su c6digo sera expandido en forma directa siempre
que sea llamada en el programa.

La ventaja de usar una funcién inline es que aumenta la velocidad de ejecucion. En
vista que la funcién inline es expandida en forma directa e incluida en cada expresion
o instruccion que la llame, no se pierde tiempo de ejecucion debido a la sobrecarga de la
llamada y devolucion requeridas por una funcién que no es inline. La desventaja es el
aumento en el tamafo del programa cuando una funciéon inline es llamada en forma re-
petida. Cada vez que se hace referencia a una funcién inline, se reproduce el codigo
completo de la funcion y se almacena como una parte integral del programa. Una funcion
que no es inline, sin embargo, se almacena en la memoria una sola vez. Sin importar
cuantas veces sea llamada la funcién, se usa el mismo c6digo. Por consiguiente, las funcio-
nes inline s6lo deberdn usarse para funciones pequefias que no son llamadas en forma
eshaustiva en un programa.

www.FreelLibros.me

6.2 Devolver un solo valor 329

Ejercicios 6.2

1. Vuelva a escribir el programa 6.5 de modo que la funcién encontrarMax()
acepte dos argumentos de precision doble y devuelva un valor de precision doble
amain(). Asegurese de modificar main () a fin de transmitir dos valores de pun-
to flotante a encontrarMax () y aceptar y almacenar el valor de precision doble
devuelto por encontrarMax ().

2. Para los siguientes encabezados de funcion, determine el nimero, tipo y orden (se-
cuencia) de los valores que deberdn ser transmitidos a la funcién cuando sea lla-
mada y el tipo de datos del valor devuelto por la funcion.

Q@m"nanTy

int factorial(int n)

. double voltios(int res, double induc, double cap)

double potencia(int tipo, double induc, double cap)

. char marcador(char tipo, float corriente, float tiempo)

int total(float cantidad, float tasa)
float roi(int a, int b, char ¢, char d, float e, float f)

. void obtener valor(int elemento, int iter, char decmarcador,

char delim)

3. Escriba encabezados de funcion para lo siguiente:

a.

una funcién llamada verificar que tenga tres parametros. El primer para-
metro debera aceptar un numero entero, el segundo un nimero de precisioén do-
ble y el tercer parametro un nimero de precisiéon doble. La funcién no devuelve
ningun valor.

. una funcién nombrada encontrarAbs () que acepte un numero de precision

doble que se le transmite y devuelva su valor absoluto.

. una funcién nombrada mult que acepte dos nimeros de punto flotante como

parametros, multiplique estos dos nimeros y devuelva el resultado.

. una funcién nombrada al cuadrado() que calcule y devuelva el cuadrado

del valor entero que se le transmite.

. una funcién llamada funpot () que eleve un nimero entero que se le transmi-

ta a una potencia entera positiva (como un argumento) y devuelva el resultado
como un numero entero.

una funcién que produzca una tabla de los nimeros del 1 al 10, sus cuadrados
y sus cubos. Que no se transmitan argumentos a la funcion y la funcién no de-
vuelve ningun valor.

. Escriba una funcién llamada trianguloRectangulo() que acepte el largo

de dos lados de un tridngulo rectingulo como los argumentos a y b, respectiva-
mente. La subrutina debera determinar y devolver la hipotenusa, ¢, del tridngu-
lo. (Sugerencia: Use el teorema de Pitagoras, c2 = a2 + b2).

. Incluya la funcion escrita para el ejercicio 4a en un programa que funcione. La

unidad de funcién main() deberd llamar en forma correcta a triangulo-
Rectangulo() y desplegar el valor devuelto por la funcion.

www.FreelLibros.me

330

CAPiTULO 6

Modularidad con el uso de funciones

. Escriba una funcién en C++ llamada encontrarAbs () que acepte un nume-

ro de precision doble que se le transmite, calcule su valor absoluto y devuelva
el valor absoluto a la funcion que llama. El valor absoluto de un nimero es el
mismo namero si éste es positivo y el negativo del namero si éste es negativo.

. Incluya la funcién escrita en el ejercicio Sa en un programa que funcione. Ase-

gurese que su funcion es llamada desde main() y que devuelve en forma co-
rrecta un valor a main (). Haga que main() use una instrucciéon cout para
desplegar el valor devuelto. Pruebe la funcion transmitiéndole varios datos.

. El volumen, v, de un cilindro esta dado por la férmula

v =mr2l

donde 7 es el radio del cilindro y / es su largo. Usando esta férmula, escriba una
funcién C++ nombrada vol cil() que acepte el radio y el largo de un cilin-
dro y devuelva su volumen.

. Incluya la funcion escrita en el ejercicio 6a en un programa que funcione. Ase-

gurese que su funcion es llamada desde main () y devuelve en forma correcta
un valor a main (). Haga que main () use una instruccion cout para desple-
gar el valor devuelto. Pruebe la funcién transmitiéndole varios datos.

. El 4rea de la superficie, s, de un cilindro esta dada por la formula

s = 2mrl

donde 7 es el radio del cilindro y [su largo. Usando esta formula escriba una
funcién en C++ nombrada areasup () que acepte el radio y largo de un cilin-
dro y devuelva su superficie.

. Incluya la funcién escrita en el ejercicio 7a en un programa que funcione. Ase-

gurese que su funcion es llamada desde main() y devuelva en forma correcta
un valor a main (). Haga que main () use una instruccion cout para desple-
gar el valor devuelto. Pruebe la funcién transmitiéndole varios datos.

8. Un polinomio de segundo grado en x esta dado por la expresion ax? + bx + ¢, donde
a, b, y ¢ son nimeros conocidos y a no es igual a cero. Escriba una funcién en C++
nombrada poli_dos(a, b, ¢, x) que calcule y devuelva el valor de un polinomio de
segundo grado para valores transmitidos de a, b, c y x.

9. a.

La deflexion maxima permisible de una viga depende de su funcién. Para un
piso, la deflexion maxima permisible tipica, en pulgadas, es Dmax = L / 240,
mientras para una viga del techo Dmax = L / 180, donde L es el largo de la
viga en pulgadas. Usando estas férmulas, escriba y pruebe una funcion nom-
brada deflexMax () que acepte el largo de una viga, en pies, y el tipo de
viga (piso o techo) como un cédigo de caracter y devuelva la deflexion ma-
xima permisible.

. Incluya la funcién escrita en el ejercicio 9a en un programa que funcione. Ase-

gurese que su funcion es llamada desde main () y devuelve en forma correcta
un valor a main(). Haga que main () use una instrucciéon cout para desple-
gar el valor devuelto. Pruebe la funcion transmitiéndole varios datos.

www.FreelLibros.me

10. a. Lacarga, P

11.

12.

13.

6.2 Devolver un solo valor 331

«r» en unidades de kilolibras (klb), aplicada a una columna que cau-
sard que la columna se combe se conoce como la carga de combamiento criti-
ca. Esta carga puede determinarse usando la ecuacion

P,=mEA/(L/r?

donde E es el modulo de elasticidad del material usado en la columna, A es el
area de corte transversal, L es el largo de la columna y 7 es su radio de giro.
Usando esta formula, escriba una funcion en C++ llamada cargaC() que
acepte valores de E, A, L y r, y devuelva la carga critica.

. Incluya la funcién escrita en el ejercicio 10a en un programa que funcione. Ase-

gurese que su funcion es llamada desde main() y devuelve en forma correcta
un valor a main (). Haga que main() use una instrucciéon cout para desple-
gar el valor devuelto. Pruebe la funcién transmitiéndole varios datos.

. Un algoritmo de programacion util en extremo para redondear un nimero real

a n lugares decimales es

Paso 1: Multiplicar el numero por 10"

Paso 2: Sumar 0.5

Paso 3: Eliminar la parte fraccionaria del resultado
Paso 4: Dividir entre 10"

Por ejemplo, usar este algoritmo para redondear el numero 78.374625 a tres
lugares decimales produce:

Paso 1: 78.374625 X 103 = 78374.625
Paso 2: 78374.625 + 0.5 = 78375.125
Paso 3: Conservar la parte entera = 78375
Paso 4: 78375 dividido entre 103 = 78.375

Usando este algoritmo, escriba una funcién en C++ que acepte un valor intro-
ducido por un usuario y devuelva el resultado redondeado a dos lugares deci-
males.

. Introduzca, compile y ejecute el programa escrito para el ejercicio 11a.

. Escriba una funcién en C++ llamada entero() que devuelva la parte entera

de cualquier numero que se transmita a la funcién. (Sugerencia: Asigne el argu-
mento transmitido a una variable entera.)

. Incluya la funcién escrita en el ejercicio 12a en un programa que funcione. Ase-

gurese que su funcién es llamada desde main () y devuelve en forma correcta
un valor a main (). Haga que main () use una instruccion cout para desple-
gar el valor devuelto. Pruebe la funcion transmitiéndole varios datos.

. Escriba una funcion en C++ nombrada partefrac() que devuelva la parte

fraccionaria de cualquier ndmero transmitido a la funcién. Por ejemplo, si se
transmite el nimero 256.879 a partefrac(), deberia devolverse el nimero
0.879. Haga que la funcién partefrac () llame a la funciéon entero () que
escribio en el ejercicio 12. El nimero devuelto puede determinarse entonces co-
mo el nimero transmitido a partefrac () menos el valor devuelto cuando el

www.FreelLibros.me

332

CAPiTULO 6 Modularidad con el uso de funciones

mismo argumento es transmitido a entero(). El programa completo debera
consistir de main () seguido por partefrac () seguido por entero().

b. Incluya la funcion escrita en el ejercicio 13a en un programa que funcione. Ase-
gurese que su funcién es llamada desde main () y devuelve en forma correcta
un valor a main(). Haga que main() use una instruccién cout para desple-
gar el valor devuelto. Pruebe la funcién transmitiéndole varios datos.

14. Todos los afios que son divisibles entre 400 o son divisibles entre cuatro y no son
divisibles entre 100 son afios bisiestos. Por ejemplo, en vista que 1600 es divisible
entre 400, el afio 1600 fue un afio bisiesto. Del mismo modo, en vista que 1988 es
divisible entre cuatro pero no entre 100, el afio 1988 también fue un afio bisiesto.
Usando esta informacion, escriba una funcion en C++ que acepte el aflo como en-
trada de un usuario y devuelva un uno si el afio transmitido es un afio bisiesto o
un cero si no lo es.

/
/
/

6.3 > DEVOLVER VALORES MULTIPLES

En una invocacion de una funcion tipica, la funcion llamada recibe valores de la funcion
que la llama, almacena y manipula los valores transmitidos y devuelve en forma directa
cuando mucho un valor tnico. Cuando los datos son transmitidos en esta manera se co-
noce como transmisiéon por valor.

Llamar a una funcién y transmitir argumentos por valor es una ventaja distintiva de
C++. Permite que se escriban funciones como entidades independientes que pueden usar
cualquier nombre de variable o pardmetro sin preocuparse por que otras funciones pue-
dan usar también el mismo nombre. También alivia cualquier preocupacion de que alterar
un parametro o variable en una funciéon pueda alterar de manera inadvertida el valor de
una variable en otra funcion. Bajo este enfoque, los pardmetros pueden considerarse co-
mo variables inicializadas o variables a las que se les asignaran valores cuando se ejecute
la funcion. Sin embargo, en ningiin momento la funcién llamada tiene acceso directo a
cualquier variable definida en la funcion que llama, aun si la variable se usa como un ar-
gumento en la llamada a la funcion.

Hay ocasiones, sin embargo, en que es necesario alterar este enfoque dandole a una
funcion llamada acceso directo a las variables de su funcién que llama. Esto le permite a
la funcion, la cual es la funcion llamada, usen y cambien el valor de variables que se han
definido en la funcién que llama. Para hacer esto se requiere que la direccion de la varia-
ble se transmita a la funcion llamada. Una vez que la funcién llamada tiene la direccion
de la variable, “sabe donde vive la variable”, por asi decirlo, y puede tener acceso y cam-
biar el valor almacenado ahi en forma directa.

La transmision de direcciones se conoce como funcion de transmisiéon por referencia, 12
en vista que la funcion llamada puede hacer referencia, o tener acceso, a la variable cuya
direccion se ha transmitido. C++ proporciona dos tipos de parametros de direccion, refe-
rencias y apuntadores. En esta seccion se describe el método que usa parametros de refe-
rencia.

12También se conoce como llamada por referencia, donde, una vez mas, el término se aplica s6lo a los argumentos cuya di-
reccién se ha transmitido.

www.FreelLibros.me

6.3 Devolver valores multiples 333

Transmision y uso de parametros de referencia

Como siempre, al intercambiar datos entre dos funciones se deben atender los lados emi-
sor y receptor del intercambio de datos. Desde el lado emisor, sin embargo, llamar a una
funcion y transmitir una direccion como un argumento que se aceptard como parametro
de referencia es exactamente lo mismo que llamar a una funcién y transmitir un valor; la
funcién llamada es convocada a la accion proporcionando su nombre y una lista de argu-
mentos. Por ejemplo, la instrucciéon valnuevo (primernum, segundonum); llama a la
funciéon nombrada valnuevo y le transmite dos argumentos. Que se transmita en reali-
dad un valor o una direccion depende de los tipos de pardmetros declarados para val-
nuevo (). Ahora se escribird la funcion y el prototipo valnuevo de modo que reciban
las direcciones de las variables primernum y segundonum, las cuales se supondra que
son variables de precision doble, en lugar de sus valores.

Uno de los primeros requisitos al escribir valnuevo () es declarar dos parametros de
referencia para aceptar direcciones transmitidas. En C++ se declara un parametro de refe-
rencia usando la sintaxis

tipo-de-datos nombre-de-referencia

Por ejemplo, la declaracion de referencia

double& numl;

declara que num1 es un parametro de referencia que se utilizara para almacenar la direc-
cion de un double. Del mismo modo, int& segundonum declara que segundonum es
una referencia a un nimero entero y char& clave declara que clave es una referencia
a un caracter.

Se recordara de la seccion 2.4 que el simbolo ampersand, &, en C++ significa “la di-
reccion de”. Ademds, cuando se usa un simbolo & dentro de una declaracion se refiere a
“la direccion del” tipo de datos precedente. Usando esta informacion, declaraciones como
double& numl e int& segundonum a veces se entienden con mas claridad si se leen
al revés. Leer la declaracion double& numl de esta manera produce la informacién que
“numl es la direccion de un valor de precision doble”.

En vista de que es necesario aceptar dos direcciones en la lista de parametros para
valnuevo (), pueden usarse las declaraciones double& numl, double& num2. Alin-
cluir estas declaraciones dentro de la lista de parametros para valnuevo(), y suponer
que la funcién no devuelve ningun valor (void), el encabezado de funcién para valnue-
vo() se vuelve:

void valnuevo(double& numl, double& num2)
Para la linea de encabezado de esta funcién, un prototipo de funcién apropiado es

void valnuevo(double&, double&);
Este prototipo y linea de encabezado se han incluido en el programa 6.8, el cual incorpo-
ra un cuerpo de funciéon valnuevo () completo que despliega y altera en forma directa

los valores almacenados en estas variables de referencia desde dentro de la funcién que se
ha llamado.

www.FreelLibros.me

334

#include <iostream>
using namespace std;

void valnuevo(double&, double&); // prototipo con dos parametros de referencia

CAPiTULO 6 Modularidad con el uso de funciones

. > Programa 6.8

int main()

{

double primernum, segundonum;

cout << "Introduzca dos numeros: ";

cin >> primernum >> segundonum;

cout << "\nEl valor en primernum es: " << primernum << endl;
cout << "El valor en segundonum es: " << segundonum << "\n\n";

valnuevo (primernum, segundonum); // llamada a la funcién

cout << "Ahora el valor en primernum es: " << primernum << endl;
cout << "Ahora el valor en segundonum es: " << segundonum << endl;
return 0;
}
void valnuevo(double& xnum, double& ynum)
{
ccout << "El valor en xnum es: " << xnum << endl;
cout << "El valor en ynum es: " << ynum << "\n\n";
xnum = 89.5;
ynum = 99.5;
return;
}

Al llamar a la funcién valnuevo() dentro del programa 6.8, es importante entender
la conexion entre los argumentos, primernumy segundonum, usados en la llamada a la
funcioén y los pardmetros, xnum y ynum, usados en el encabezado de la funcién. Ambos
se refieren a los mismos elementos de datos. La importancia de esto es que los valores en
los argumentos (primernum y segundonum) ahora pueden alterarse desde dentro de
valnuevo () usando los nombres de parametros (xnum y ynum). Por tanto, el para-
metro xnum y ynum no almacena copias de los valores en primernum y segundonum,
sino que tiene acceso directo a las ubicaciones en la memoria apartados para estos dos ar-
gumentos. La equivalencia de los nombres de argumentos en el programa 6.8, la cual es
la esencia de una transmision por referencia, se ilustra en la figura 6.8. Como se muestra
en esta figura, los nombres de argumentos y sus nombres de parametros correspondientes
tan s6lo son nombres diferentes que se refieren a las mismas areas de almacenamiento en la
memoria. En main() se hace referencia a estas ubicaciones de memoria por los nombres

www.FreelLibros.me

6.3 Devolver valores multiples 335

primernumy segundonum, respectivamente, mientras en valnuevo () se hace referencia
a las mismas ubicaciones con los nombres de pardmetro xnum y ynum, respectivamente.

En main() se hace referencia

y a los valores como ﬁ_

primernum segundonum
se almacena un valor se almacena un valor
Xnum ynum
\ En valnuevo() se hace \

referencia a los mismos
) valores como

Figura 6.8 La equivalencia de argumentos y parametros en el programa 6.8.

El siguiente ejemplo muestra la ejecucion que se obtuvo usando el programa 6.8:

Introduzca dos nameros: 22.5 33.0

El valor en primernum es: 22.5
El valor en segundonum es: 33

El valor en xnum es: 22.5
El valor en ynum es: 33

Ahora el valor en primernum es: 89.5
Ahora el valor en segundonum es: 99.5

Al revisar esta salida, hay que observar que los valores desplegados al principio para los pa-
rametros xnum y ynum son los mismos que los desplegados para los argumentos primer-
num y segundonum. Sin embargo, en vista que xnum y ynum son parametros de referencia,
valnuevo() ahora tienen acceso directo a los argumentos primernum y segundonum.
Por tanto, cualquier cambio a xnum dentro de valnuevo () altera en forma directa el valor
de primernum en main() y cualquier cambio a ynum cambia en forma directa el valor de
segundonum. Como lo ilustran los valores finales desplegados, la asignacion de valores a
xnum y ynum dentro de valnuevo () se refleja en main() como la alteracion de los valo-
res de primernum y segundonum.

La equivalencia entre los argumentos reales que llaman y los parametros de funcion
ilustrados en el programa 6.8 proporcionan la base para devolver valores multiples desde
adentro de una funcion. Por ejemplo, suponga que se requiere una funcion para aceptar tres
valores, calcular la suma y el producto de estos valores y devolver estos resultados calcula-
dos a la rutina que llama. Al nombrar a la funcién calcular () y proporcionar cinco pa-
rametros (tres para los datos de entrada y dos referencias para los valores devueltos), puede
usarse la siguiente funcion.

www.FreelLibros.me

336 CAPiTULO 6 Modularidad con el uso de funciones

void calcular(double numl, double num2, double num3, double& total, double& producto)
{

total = numl + num2 + num3;

producto = numl * num2 * num3;

return;

Esta funcion tiene cinco parametros, nombrados numl, num2, num3, total y pro-
ducto, de los cuales sélo los ultimos dos son declarados como referencias. Por tanto,
los primeros tres argumentos son transmitidos por valor y los tltimos dos argumentos
son transmitidos por referencia. Dentro de la funcion sélo se alteran los dos tltimos
parametros. El valor del cuarto parametro, total, se calcula como la suma de los pri-
meros tres parametros y el ultimo pardmetro, producto, se calcula como el producto
de los parametros numl, num2 y num3. El programa 6.9 incluye esta funciéon en un
programa completo.

~ Programa 6.9

yv‘y

\

x§:}
> > >

W
¥

A

#include <iostream>
using namespace std;

void calcular(double, double, double, double&, double&); // prototipo

int main()
{

double primernum, segundonum, tercernum, suma, producto;

cout << "Introduzca tres nGmeros: ";
cin >> primernum >> segundonum >> tercernum;

calcular(primernum, segundonum, tercernum, suma, producto); // llamada a la funcidn

cout << "\nLa suma de los nGmeros es: " << suma << endl;
cout << "El producto de los numeros es: " << producto << endl;

return 0;

void calcular(double numl, double num2, double num3, double& total, double& producto)
{

total = numl + num2 + num3;

producto = numl * num2 * num3;

return;

www.FreelLibros.me

6.3 Devolver valores multiples 337

Dentro de main(), la funciéon calcular() es llamada usando los cinco argumentos
primernum, segundonum, tercernum, suma y producto. Como se requiere, estos ar-
gumentos concuerdan en numero y tipo de datos con los parametros declarados por cal-
cular (). De los cinco argumentos transmitidos, s6lo a primernum, segundonum y
tercernumn se les han asignado valores cuando se hace la llamada a calcular(). Los
dos argumentos restantes no se han inicializado y se usaran para recibir valores devueltos
por calcular (). Dependiendo del compilador utilizado para compilar el programa, es-
tos argumentos contendran al principio ceros o valores “basura”. La figura 6.9 ilustra la
relacion entre los nombres reales y de parametro y los valores que contienen después de
ser devueltos de calcular().

nombres de argumentos usados en main()

v ! y ! y

Ly, Se & L
9 e 2

e 2 “2% e, S e

b &> &> . &>
785 6.0 10.0
main() : lt :
—— <«—Se transmite un valor —» ——— J— N

calcular() ! i i 18.5 150.0

285 6.0 10.0 ﬁt %OQ,
S

Y, R RS ‘91 “oy

t 1 f f !

nombres de parametros usados en calcular ()

Figura 6.9 Relacion entre los nombres de argumento y de parametro.

Una vez que es llamada calcular(), usa sus primeros tres parametros para calcular va-
lores para total y producto y luego devuelve el control a main (). Debido al orden de los
argumentos reales de la funcién que llama, main() conoce los valores calculados por
calcular() como suma y producto, los cuales son desplegados luego. A continuacion
se presenta una muestra de ejecucion usando el programa 6.9.

Introduzca tres ntGmeros: 2.5 6.0 10.0
La suma de los nUGmeros introducidos es: 18.5
El producto de los ntGmeros introducidos es: 150

Como un ejemplo final que ilustra la utilidad de transmitir referencias a una funcion lla-
mada, se construird una funcién llamada intercambio() que intercambia los valores
de dos de las variables de precision doble de main (). Una funcion asi es util cuando se
clasifica una lista de nameros.

En vista que es afectado el valor de mas de una variable, intercambio () no puede
escribirse como una funcién de transmision por valor que devuelve un valor tnico. El in-
tercambio deseado de las variables de main () por intercambio () sélo puede obtener-
se dandole a intercambio () acceso a las variables de main (). Una forma de hacer esto
es usar parametros de referencia.

www.FreelLibros.me

338 CAPiTULO 6 Modularidad con el uso de funciones

Ya se ha visto como transmitir referencias a dos variables en el programa 6.8. Ahora
se construird una funcién para intercambiar los valores en los argumentos de referencia
transmitidos. Intercambiar valores en dos variables se logra usando el algoritmo de inter-
cambio en tres pasos:

1. Guardar el valor del primer pardmetro en una ubicacioén temporal (véase la figu-
ra 6.10a).

2. Almacenar el valor del segundo parametro en la primera variable (véase la figura
6.10b).

3. Almacenar el valor temporal en el segundo pardmetro (véase la figura 6.10c).

temp numl num?2

u' |
)
Figura 6.10a Guardar el primer valor.

temp numl num2

u' |
)
Figura 6.10b Reemplazar el primer valor con el segundo valor,

temp numl num2

Y \

Figura 6.10c Cambiar el segundo valor.

A continuacion esta la funcion intercambio () escrita de acuerdo con estas especificaciones:

void intercambio(double& numl, double& num2)

{
double temp;

temp = numl; // guarda el valor de numl

numl = num2; // almacena el valor de num2 en numl
num2 = temp; // cambia el valor de num2

return;

}

Hay que observar que el uso de referencias en la linea de encabezado de intercambio()
le da acceso a intercambio() a los argumentos equivalentes en la funcién que llama. Por

www.FreelLibros.me

#include <iostream>
using namespace std;

void intercambio(double&, double&); // la funcidén recibe dos referencias

int main()

{

void intercambio(double& numl, double& num2)

{

. —

6.3 Devolver valores multiples 339

tanto, cualquier cambio a los dos pardmetros de referencia en intercambio() de mane-
ra automadtica cambia los valores en los argumentos de la funciéon que llama. El programa
6.10 contiene intercambio () en un programa completo.

~ Programa 6.10

double primernum = 20.5, segundonum = 6.25;

cout << "El valor almacenado en primernum es: " << primernum << endl;
cout << "El valor almacenado en segundonum es : " << segundonum << "\n\n";

intercambio(primernum, segundonum); // llama a la funcidén con referencias
cout << "Ahora el valor almacenado en primernum es: "

<< primernum << endl;
cout << "Ahora el valor almacenado en segundonum es: "

<< segundonum << endl;

return 0;

double temp;

temp = numl; // guarda el valor de numl

numl = num2; // almacena el valor de num2 en numl
num2 = temp; // cambia el valor de num2

return;

La siguiente muestra de ejecucion se obtuvo usando el programa 6.10:

El valor almacenado en primernum es: 20.5
El valor almacenado en segundonum es: 6.25

Ahora el valor almacenado en primernum es: 6.25
Ahora el valor almacenado en segundonum es: 20.5

www.FreelLibros.me

340

CAPiTULO 6 Modularidad con el uso de funciones

Como lo ilustra su salida, los valores almacenados en las variables de main () se han mo-
dificado desde dentro de intercambio(), lo cual fue posible por el uso de parametros
de referencia. Si se hubiera utilizado una transmision por valor, el intercambio dentro de
intercambio () s6lo habria afectado los parametros de intercambio () y no lograria
nada con respecto a las variables de main (). Por tanto, una funcién como intercam-
bio () s6lo puede escribirse usando referencias o algin otro medio que proporcione ac-
ceso a las variables de main () (este otro medio se llava a cabo por apuntadores, tema del
capitulo 12).

Al usar argumentos de referencia, es necesario mencionar dos precauciones. La prime-
ra es que los argumentos de referencia deben ser variables (es decir, no pueden usarse pa-
ra cambiar constantes). Por ejemplo, llamar a intercambio () con dos constantes, como
en la llamada intercambio(20.5, 6.5) transmite dos constantes a la funcién. Aun-
que intercambio () puede ejecutarse, no cambiara los valores de estas constantes.!3

La segunda precaucion es que una llamada a funcién en si no da indicio de que la fun-
cion llamada usara parametros de referencia. La opcion por omision en C++ es hacer trans-
misiones por valor en lugar de transmisiones por referencia, precisamente para limitar la
capacidad de una funcion llamada para alterar variables en la funcién que llama. Este pro-
cedimiento de llamada deberd acatarse siempre que sea posible, lo cual significa que los pa-
rametros de referencia s6lo deberian usarse en situaciones muy restringidas que en realidad
requieran multiples valores devueltos, como en la funcién intercambio () ilustrada en el
programa 6.10. La funcién calcular (), incluida en el programa 6.9, aunque util con pro-
positos ilustrativos, también podria ser escrita como dos funciones separadas, cada una de-
volviendo un valor tnico.

Ejercicios 6.3

1. Escriba declaraciones de parametros para lo siguiente:

a. un parametro nombrado cantidad que serd una referencia a un valor de preci-
sion doble.

b. un parametro nombrado precio que serd una referencia a un numero de preci-
sion doble.

€. un parametro nombrado minutos que serd una referencia a un nimero entero.

d. un parametro nombrado clave que serd una referencia a un cardcter.

e. un parametro nombrado rendimiento que serd una referencia a un nimero
de precision doble.

2. Se van a usar tres argumentos en numero entero en una llamada a una funcién
denominada tiempo (). Escriba un encabezado de funciéon adecuado para tiem-
po (), suponiendo que tiempo () acepte estas variables como los parametros de
referencia seg, min y horas, y no devuelva ningun valor a la funcion que llama.

3. Vuelva a escribir la funcion encontrarMax () del programa 6.5 de modo que la
variable max, declarada en main (), se use para almacenar el valor maximo de los
dos numeros transmitidos. El valor de max debera establecerse en forma directa
desde dentro de encontrarMax(). (Sugerencia: encontrarMax () tendrd que
aceptar una referencia a max.)

13Muchos compiladores tomaradn esto como un error.

www.FreelLibros.me

4.

6.3 Devolver valores muiltiples 341

Escriba una funcién nombrada cambio () que tenga un pardmetro en nimero ente-
ro y seis parametros de referencia en nimero entero nombrados cien, cincuenta,
veinte, diez, cinco y uno, respectivamente. La funcion tiene que considerar el
valor entero transmitido como una cantidad en ddlares y convertir el valor en el nu-
mero menor de billetes equivalentes. Usando las referencias, la funcion debera alterar
de manera directa los argumentos respectivos en la funcion que llama.

. Escriba una funcién nombrada tiempo () que tenga un parametro en nimero ente-

ro llamado segundos y tres parametros de referencia enteros nombrados horas, min
y seq. La funcion es convertir el nimero de segundos transmitido en un nimero equi-
valente de horas, minutos y segundos. Usando las referencias la funcion debera alte-
rar de manera directa los argumentos respectivos en la funcién que llama.

. Escriba una funcién nombrada calc afios() que tenga un pardmetro entero que

represente el numero total de dias desde la fecha 1/1/1900 y pardmetros de referencia
nombrados afio, mes y dia. La funcion es calcular el afio, mes y dia actual para el
nimero dado de dias que se le transmitan. Usando las referencias, la funcion debera
alterar en forma directa los argumentos respectivos en la funcion que llama. Para es-
te problema suponga que cada afio tiene 365 dias y cada mes tiene 30 dias.

. El siguiente programa usa los mismos nombres de argumento y parametro tanto

en la funcion que llama como en la funcién llamada. Determine si esto causa al-
gun problema para la computadora.

#include <iostream>
using namespace std;

void tiempo(int&, int&); // prototipo de la funcidn

int main()

{

int min, hora;
cout << "Introduzca dos nlGmeros :";
cin >> min >> hora;

tiempo(min, hora);

return 0;

void tiempo(int& min, int& hora) // acepta dos referencias

{

int seg;

seg = (hora * 60 + min) * 60;

ccout << "El numero total de segundos es " << seg <<
endl;

return;

www.FreelLibros.me

342

CAPiTULO 6 Modularidad con el uso de funciones

M,m‘

Gy APLICACIONES

Preparar un programa de computadora bien disefiado es muy parecido a preparar un re-
porte semestral bien diseiado; ambos deben comenzar con un esquema, el cual puede ser
escrito o, para programas muy pequeiios, puede tan s6lo mantenerse en la mente confor-
me se desarrolla el programa. Sin embargo, como sucede con un esquema para un repor-
te semestral, el cual enumera los temas principales del reporte, el esquema inicial de un
programa de computadora debe proporcionar un listado de las tareas primarias que debe
cumplir el programa.

En forma escrita, el esquema inicial de un programa de computadora por lo general
es una descripcion en seudocodigo (véase la seccion 1.3) o un diagrama de estructura de
primer nivel (véase la seccion 1.2). Este esquema inicial comienza el proceso de definir un
problema mas complicado en un conjunto de tareas mas pequenias y mas manejables. Ca-
da una de estas tareas puede subdividirse o depurarse mads, en tareas atin mds pequefias,
si se requiere. Una vez que las tareas estan bien definidas, el trabajo real de codificacion
puede comenzar, iniciando con cualquier tarea, en cualquier orden. Si hay mas tareas de
las que puedan ser manejadas por un programador, pueden distribuirse entre tantos pro-
gramadores como se requiera. Esto es equivalente a tener a muchas personas trabajando
en un proyecto de investigacion grande, con cada persona responsable de un tema indivi-
dual. Un esquema general aplicable a muchas tareas de ingenieria y cientificas es el siguien-
te algoritmo:

Obtener las entradas del problema
Calcular el resultado deseado
Reportar los resultados del cdlculo

Estas tres tareas son las responsabilidades primarias de todo programa, y se hara referen-
cia a este algoritmo como el algoritmo para resolver problemas. Un diagrama de estructu-
ra de primer nivel de este algoritmo se muestra en la figura 6.11.

Algoritmo
para resolver
problemas
1
l l
Obtener Calcular Desplegar
entradas el resultado el resultado

Figura 6.11 Diagrama de estructura de primer nivel del algoritmo para resolver problemas.

Cada tarea en el algoritmo para resolver problemas puede trabajarse en forma indepen-
diente como una funcién, una especie de “mini” programa en C++ que de manera tipica
es mas ficil de completar que un programa entero. Cada una de estas tareas de funcion
puede refinarse y codificarse en cualquier orden deseado, aunque completar primero la
seccion de entrada por lo general hace mas facil la prueba y el desarrollo. Ahora aplicare-
mos este procedimiento de desarrollo a un problema de programacion real.

www.FreelLibros.me

6.4 Aplicaciones 343

Aplicacion 1: Conversion de coordenadas rectangulares a polares

Suponga que debemos escribir un programa en C++ para convertir las coordenadas rec-
tangulares (x,y) de un punto en forma polar. Es decir, dada una posiciéon x y y en un sis-
tema de coordenadas cartesiano, como se ilustra en la figura 6.12, se debe calcular la
distancia desde el origen, 7, y el angulo desde el eje x, 6, especificado por el punto. Los va-
lores de 7 y 8 se conocen como las coordenadas polares del punto.

Ejey A}

Eje x

Figura 6.12 Correspondencia entre coordenadas polares (distancia y dngulo) y cartesia-
nas (x,y).

Cuando se conocen las coordenadas x y y de un punto, las coordenadas r y 6 equivalen-
tes pueden calcularse usando las férmulas:

r ijxz +y2

0= tan_l(y/ x) x#0

Se inicia el desarrollo del programa con un esquema de lo que éste ha de lograr. Puede
construirse una descripcion primaria en seudocodigo del programa deseado usando el al-
goritmo para resolver problemas en lo que se refiere a los detalles de esta aplicacion. Las
entradas requeridas son una coordenada x y una coordenada y, el cdlculo es convertir los
valores introducidos en su forma de coordenadas polares, y el despliegue son las coorde-
nadas polares calculadas. Por tanto, la descripcion de seudocddigo inicial es

Obtener los valores de las coordenadas x y y
Calcular los valores de las coordenadas polares (r y 0)

Desplegar los valores de las coordenadas polares

El diagrama de estructura de primer nivel o nivel superior equivalente para este algoritmo
se ilustra en la figura 6.13.

www.FreelLibros.me

344

CAPiTULO 6 Modularidad con el uso de funciones

Conversion de

coordenadas
rectangulares
a polares
]
l l
Introducir Calcular Desplegar
coordenadas x y y ry®o rye

Figura 6.13 Diagrama de estructura de nivel superior.

Como éste es un programa relativamente simple y cada tarea descrita por el algoritmo es-
ta bien definida, se puede iniciar la codificacion de cada tarea. Para ilustrar que cada ta-
rea puede ser codificada de manera independiente de cualquier otra tarea, se comenzara
de manera arbitraria con la codificacion de la funcion que realiza el cdlculo de las coorde-
nadas polares. Como una caracteristica adicional, esta funcién devolvera el dngulo 6 en
grados en lugar de la medida radianes devuelta por la funcion intrinseca atan(). En vis-
ta que esta funcion debe recibir dos entradas, las coordenadas x y vy, y devolver dos sali-
das, las coordenadas 7 y 6, se le proporcionan a la funcién cuatro parametros, dos para
sus entradas y dos para sus salidas. Seleccionando de manera arbitraria los nombres de pa-
rametros de x, y, r, y theta, y nombrando a la funcion polar (), el siguiente codigo lle-
va a cabo el calculo requerido de coordenadas polares.

void polar(double x, double y, double& r, double& theta)

{
const double A GRADOS = 180.0/3.141593;

r =sqrt(x * x +y * y);
theta = atan(y/x) * A GRADOS;

return;

La funcion polar () es bastante sencilla. La linea de encabezado de la funcién declara
que la funcion no devolvera en forma directa ningun valor y cada uno de sus parametros
es declarado como un tipo de datos en precision doble. Los primeros dos pardmetros se
usaran para aceptar un valor x y uno y, mientras los ultimos dos parametros, los cuales
son parametros de referencia, se usaran para transmitir los valores de distancia y angulo
convertidos de vuelta a la funcion que llama. Dentro del cuerpo de la funcion se define
una constante llamada A_GRADOS como el factor 180.0/3.142593. Las siguientes dos ins-
trucciones de asignacion usan los dos pardmetros, x y y, para asignar valores a los para-
metros r y theta. La constante nombrada A_GRADOS se usa para convertir el valor en
radianes devuelto de la funcién atan () a grados. Como esta escrita, la funcion polar ()
puede ser complicada para verificar cualquier error en tiempo de compilacion.

Para entender como se transmiten los valores devueltos es util pensar en los pardame-
tros de referencia r y theta como recipientes (o variables) a través de los cuales pueden
transmitirse valores en cualquier direccion. Esta situacion se muestra en la figura 6.14, la

www.FreelLibros.me

6.4 Aplicaciones 345

cual es util para entender las caracteristicas fundamentales de los parametros de referen-
cia: tan sélo proporcionan la capacidad para que una funcion llamada y una que llama
tengan acceso a la misma drea de almacenamiento usando nombres diferentes.

%, 5
N Q
g, Sy
b @
main() main()
polar() 5.0 525 (E2)0)]] polar ()
z tbe

5
Figura 6.14 Valores de los parametros cuando se llama a polar ().

Como se muestra en la figura 6.14, la funcion que llama puede tener acceso a los valores asig-
nados a r y theta dentro de polar () usando los nombres de argumento distanciay
angulo, o cualesquier otros nombres de argumentos seleccionados por el programador.

Probar la funcion

Una vez que se ha escrito polar (), puede probarse en forma independiente de cualquier
otra funcion. Esto se hace escribiendo una funcién controladora dedicada que sélo llame
a polar (), como se hace en el programa 6.11.

Programa 6.11
. .

>

#include <iostream>
#include <cmath>
using namespace std;

void polar(double, double, double&, double&); // prototipo de la funcidn

int main()
{
double distancia, angulo;
polar (3.0, 4.0, distancia, angulo);

cout << "r = " << distancia << endl;
cout << "angulo = " << angulo << endl;
return 0;

(Continiia)

www.FreelLibros.me

346 CAPiTULO 6 Modularidad con el uso de funciones

(Continuacion)

void polar(double x, double y, double& r, double& theta)

{
const double A GRADOS = 180.0/3.141593;

r = sqgqrt(x * X +y * y);
theta = atan(y/x) * A _GRADOS;

return;

Hay que observar que en main () se transmitieron las constantes 3.0 y 4.0 a polar().
La funcidon acepta estas entradas como los pardmetros x y y, y usa estos parametros para
calcular valores para los parametros r y theta. Dentro de main (), estos dos tltimos pa-
rametros se conocen como distancia y angulo, cuyos valores se despliegan inmediatamen-
te después que se hace la llamada a polar (). La salida producida cuando se ejecuta el
programa 6.11 es

r =5
angulo = 53.1301

Estos son los mismos resultados que se obtendrian por medio de un cilculo manual. Cé-
mo la funcién lleva a cabo sélo dos calculos, y el resultado desplegado por el programa
de prueba concuerda por medio del obtenido con el cdlculo manual, la funciéon ha sido
probada por completo por si misma. Adn resta probarla en grupo con las dos funciones
restantes requeridas por el programa completo para asegurar que los valores de argumen-
tos correctos se intercambian entre cada funcion.

Completar el Programa

El diagrama de estructura para el programa completo (figura 6.13) requiere que también
se escriban funciones para aceptar dos coordenadas rectangulares y desplegar las coorde-
nadas polares calculadas, respectivamente. La siguiente funcién, obtrec (), puede uti-
lizarse para aceptar los datos de entrada.

void obtrec(double& x, double& y)
{
cout << "Programa de conversién de coordenadas"
<< " rectangulares a polares\n" << endl;
cout << "Introduzca la coordenada x: ";
cin >> x;
cout << "Introduzca la coordenada y: ";
cin >> y;

return;

www.FreelLibros.me

e
SN
>

#include <iostream>
using namespace std;

void obtrec(double&, double&); // prototipo de la funcidn

int main()

{

void obtrec(double& x, double& y)

{

6.4 Aplicaciones 347

En esta funcion se usan los parametros de referencia x y y para devolver los valores que
se introducen en respuesta a los dos indicadores cin. Como con la funciéon polar (), es-
ta funcion puede probarse por si misma usando un pequefio programa controlador dedi-
cado. La funcién con su programa controlador se ilustra en el programa 6.12.

\

v

\\\,/
—

By

—

double xcoord, ycoord;

obtrec(xcoord, ycoord);

cout <<
cout <<

return 0;

cout <<

<<
cout <<
cin >>
cout <<
cin >>

return;

“Programa 6.12

=

.
>

"El valor introducido para x es " << xcoord << endl;
"El valor introducido para y es " << ycoord << endl;

"Programa de conversién de coordenadas"
" rectangulares a polares\n" << endl;
"Introduzca la coordenada x: ";

X;

"Introduzca la coordenada y: ";

yi

Observe que el programa controlador dedicado, el cual también se conoce como contro-
lador de “aplicacion para el usuario” o “de interfaz”, se ha usado tanto para llamar a ob-
trec () como para desplegar los valores devueltos por esta funcion. La siguiente salida
producida por el programa 6.12 verifica la operacion correcta de la funciéon obtrec():

Programa de conversién de coordenadas rectangulares a
polares

Introduzca la coordenada x: 3
Introduzca la coordenada y: 4

www.FreelLibros.me

348

SN

=

CAPiTULO 6 Modularidad con el uso de funciones

El valor introducido para x es 3
El valor introducido para y es 4

De una manera similar, se construye la funcion para desplegar las coordenadas polares. El
programa 6.13 contiene tanto la funcion, la cual se ha nombrado mostrarlo(), como
un controlador de interfaz usado para probar la funcion. Hay que observar que los nom-
bres de parametros usados en la linea de encabezado para mostrarlo() no necesitan ser
iguales que los usados en cualquier otra funcion. mostrarlo() se construye tan solo pa-
ra desplegar los valores en sus dos parametros, los cuales en este caso se han nombrado
radioy angulo.

:l—\ Programa 6.13

< =

-
=

-

4
S

, /)\
W

VA

> >

#include <iostream>
using namespace std;

void mostrarlo(double, double); // prototipo de la funcidn

int main()

{

mostrarlo(5.0, 53.1301);

return 0;

}

void mostrarlo(double radio, double angulo)

{

cout << "\nLas coordenadas polares son:

" << endl;

cout << " Distancia desde el origen:

" << radio << endl;

cout << " Angulo (en grados) respecto al eje x:

" << angulo << endl;

return;

La salida del programa 6.13, la cual se muestra a continuacién, verifica que mostrar-
lo() despliega en forma correcta los valores que se le transmiten.

Las coordenadas polares son:

Distancia desde el origen: 5

Angulo (en grados) respecto al eje x: 53.1301
Ahora falta crear un programa main () que llame a cada una de las funciones desarrolla-
das en el orden correcto. Esto se hace en el programa 6.14, el cual también incluye las fun-
ciones obtrec (), polar() y mostrarlo().

www.FreelLibros.me

Vi

& R =
. >//> §\ >
// Este programa convierte coordenadas rectangulares en coordenadas polares
// Funciones usadas: obtrec() - obtener las coordenadas rectangulares
// : polar() - calcular las coordenadas polares
// : mostrarlo() - desplegar las coordenadas polares
//

5

.
2>

6.4 Aplicaciones 349

"Programa 6.14

#include <iostream>
#include <cmath>
using namespace std;

void obtrec(double&, double&);
void polar(double, double, double&, double&);
void mostrarlo(double, double);

int main()

{

}

double x, y, distancia, angulo;

obtrec(x, y);
polar(x, y, distancia, angulo);
mostrarlo(distancia, angulo);

return 0;

void obtrec(double& x, double& y)

{

cout

cout
cin
cout
cin

<<
<<
<<
>>
<<
>>

return;

"Programa de conversién de coordenadas"
" rectangulares a polares\n" << end;
"Introduzca la coordenada x: ";

X;

"Introduzca la coordenada y: ";

yi

www.FreelLibros.me

// prototipo de la funcién
// prototipo de la funcién
// prototipo de la funcién

(Continiia)

350

CAPiTULO 6 Modularidad con el uso de funciones

(Continuacion)

{

{

void polar(double x, double y, double& r, double& theta)

const double A GRADOS = 180.0/3.141593;

theta = atan(y/x) * A GRADOS;

return;

void mostrarlo(double radio, double angulo)

cout << "\nLas coordenadas polares son: " << endl;

cout << " Distancia desde el origen: " << radio << endl;

cout << " Angulo (en grados) respecto al eje x: " << angulo << endl;
return;

= sqrt(x * x +y * y);

La siguiente salida se produjo con una ejecucion utilizando el programa 6.14:

Programa de conversién de coordenadas rectangulares
a polares

Introduzca la coordenada x: 3
Introduzca la coordenada y: 4

Las coordenadas polares son:
Distancia desde el origen: 5
Angulo (en grados) respecto al eje x: 53.1301

Antes de dejar el programa 6.14, hay que sefialar que una alternativa al escribir progra-
mas controladores para cada subrutina conforme se desarrollan las subrutinas es escribir
primero un programa main() y agregar después las subrutinas conforme se desarrollan.
Esto se logra utilizando cabos para cada funcion (véase la seccion 6.1) y luego reempla-
zando cada cabo, uno a la vez, con la funcién completada.

Aplicacion 2: Simulacidon

Hay muchos problemas de simulacién cientificos y de ingenieria en los que hay que con-
siderar la probabilidad o deben utilizarse técnicas de muestreo estadistico. Por ejemplo, al
simular el flujo de trafico de automoviles o los patrones de uso de teléfono, se requieren
modelos estadisticos. Ademas, aplicaciones como juegos de computadora simples y esce-
narios mas vinculados con la ingenieria s6lo pueden describirse en forma estadistica. To-
dos estos modelos estadisticos requieren la generacién de numeros aleatorios; es decir,
una serie de nimeros cuyo orden no pueda predecirse.

En la practica, no hay numeros que en verdad sean aleatorios. Los dados nunca son
perfectos; las cartas nunca se barajan en forma completamente aleatoria; los movimientos
de las moléculas que se suponen aleatorios son influidos por el ambiente; y las computado-

www.FreelLibros.me

6.4 Aplicaciones 351

ras digitales s6lo pueden manejar nimeros dentro de un rango finito y con precision limi-
tada. Lo mejor que puede hacerse es generar nimeros seudoaleatorios, los cuales son sufi-
cientemente aleatorios para la tarea a realizar.

Algunos lenguajes de computadora contienen una funcion de biblioteca que produce
numeros aleatorios; otros no. Las funciones proporcionadas por C++ se llama rand (), la
cual genera ntimeros aleatorios, y srand (), la cual establece valores “semilla” aleatorios
iniciales. Se presentaran estas dos funciones y luego se usaran en una aplicacién que simu-
la el lanzamiento de una moneda para determinar el nimero de caras y cruces resultante.

Generacion de niumeros seudoaleatorios

Los compiladores de C++ proporcionan dos funciones para crear nimeros aleatorios:
rand() y srand (). La funcién rand () produce una serie de nimeros aleatorios en el
rango 0 < rand() < RAND MAX, donde la constante RAND MAX se define en el archivo de
encabezado cmath. La funcién srand() proporciona un valor “semilla” inicial para
rand(). Si no se usa srand() o alguna otra técnica de “sembrado” equivalente,
rand () producirad siempre la misma serie de niumeros aleatorios.

El procedimiento general para crear una serie de #» nimeros aleatorios usando funcio-
nes de biblioteca de C++ se ilustra con el siguiente codigo:

srand(time(NULL)); // esto genera el primer valor "semilla"

for (int i = 1; i <= N; i++) // esto genera N nimeros aleatorios
{

rvalor = rand();

cout << rvalor << endl;

Aqui, el argumento para la funcién srand () es una llamada a la funcién time() con
un argumento NULL. Con este argumento la funcion time () lee el tiempo del reloj inter-
no de la computadora, en segundos. Entonces la funcién srand() usa este tiempo, con-
vertido a un int sin signo para inicializar la funcion generadora de nimeros aleatorios
rand().'4 El programa 6.15 usa este codigo para generar una serie de 10 nameros alea-
torios.

14De manera alternativa, muchos compiladores de C++ tienen una rutina randomize () que se define usando la funcién
srand (). Siesta rutina estd disponible, la llamada randomize () puede usarse en lugar de la llamada srand (time (NULL)) .
En cualquier caso, la rutina “semilla” de inicializacion es llamada una sola vez, después de lo cual se usa la funcién rand () pa-
ra generar una serie de nimeros.

www.FreelLibros.me

352 CAPiTULO 6 Modularidad con el uso de funciones

_ = Programa 6.15

—

#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>
using namespace std;

// este programa genera diez numeros seudoaleatorios
// usando la funcion rand() de C++

int main()

{
const int NUMEROS = 10;

double valor azar;
int i;

srand(time (NULL));
for (i = 1; i <= NUMEROS; i++)
{

valor azar = rand();

cout << valor_azar << endl;

return 0;

La siguiente es la salida producida por una ejecucion del programa 6.15:

20203
21400
15265
26935

8369
10907
31299
15400

5074
20663

Debido a la llamada a la funcién srand () en el programa 6.15, la serie de diez ntimeros
aleatorios diferira cada vez que se ejecute el programa. Sin el efecto de “sembrado” alea-
torizador de esta funcion, siempre se produciria la misma serie de numeros aleatorios.

www.FreelLibros.me

6.4 Aplicaciones 353

Noétese también la inclusion de los archivos de encabezado cmath y ctime. El archivo
cmath contiene los prototipos de funcion para las funciones srand() y rand(), mien-
tras el archivo de encabezado ctime contiene el prototipo de funcion para la funcion ti-
me().

Escalamiento

En la practica por lo general debe hacerse una modificacion al numero aleatorio produci-
do por la funciéon rand (). En la mayor parte de las aplicaciones, se requiere que los nu-
meros aleatorios sean valores de punto flotante dentro del rango 0.0 a 1.0 o que sean
numeros enteros dentro de un rango especificado, como 1 a 100. El método para ajustar
los nimeros aleatorios producidos por un generador de nimeros aleatorios para que resi-
dan dentro de dichos rangos se llama escalamiento.

El escalamiento de niimeros aleatorios para que residan dentro del rango 0.0 a 1.0 se
logra con facilidad dividiendo el valor devuelto de rand () entre RAND MAX. Por tanto,
la expresion double (rand())/RAND MAX produce un nimero aleatorio en precision
doble entre 0.0 y 1.0.

El escalamiento de un nimero aleatorio como un valor entero entre 0 y N-1 se logra
usando cualquiera de las expresiones rand () % No int(double(rand())/RAND MAX
* N). Por ejemplo, la expresion int (double(rand())/RAND MAX * 100) produce
un numero entero aleatorio entre 0 y 99.

Para producir un nimero entero aleatorio entre 1 y N puede usarse la expresion 1 +
rand () % N. Por ejemplo, al simular el lanzamiento de un dado, la expresion 1 + rand()
% 6 produce un numero entero aleatorio entre 1 y 6. Puede usarse la expresion de escala-
miento mas general a + rand() % (b + 1 — a) para producir un nimero entero aleato-
rio entre los nimeros a y b.

Un uso comun de los niimeros aleatorios es simular eventos usando un programa, en
lugar de dedicar tiempo y costo a construir un experimento real. Por ejemplo, la teoria es-
tadistica indica que la probabilidad de obtener cara en un solo lanzamiento de una mone-
da es 1. Del mismo modo, hay una probabilidad de 50% de obtener cruz en un solo
lanzamiento de una moneda.

Usando estas probabilidades se esperaria que una sola moneda que es lanzada 1000
veces produzca 500 caras y 500 cruces. En la practica, sin embargo, esto no se realiza nun-
ca con exactitud en un solo experimento consistente de 1000 lanzamientos. En lugar de
lanzar en realidad una moneda 1000 veces, podemos usar un generador de numeros alea-
torios para simular esos lanzamientos.

Paso 1 Analizar el problema

Para este problema se requieren dos salidas: el porcentaje de caras y el porcentaje de cru-
ces que resultan cuando se simula que una moneda es lanzada 1000 veces. No se requeri-
rd ningun elemento de entrada para la funcién del generador de nimeros aleatorios.

www.FreelLibros.me

354

CAPiTULO 6 Modularidad con el uso de funciones

Paso 2 Desarrollar una solucion

El porcentaje de caras y cruces se determina como

numero de caras

percentaje de caras = x 100%
1000
¥ d
percentaje of cruces = Humero de cruees o 100%
1000

Para determinar el ndmero de caras y cruces, se tienen que simular 1000 nimeros aleato-
rios de tal manera que se pueda definir un resultado de “caras” o “cruces” de cada nume-
ro generado. Hay diversas formas de hacer esto.

Una forma es usar la funcién rand () para generar nimeros enteros entre 0 y RAND-
_MAX. Sabiendo que cualquier lanzamiento individual tiene una probabilidad de 50% de
ser cara o cruz, podria designarse una “cara” como un nimero aleatorio par y una “cruz”
como un numero aleatorio non. Otro método seria escalar el valor devuelto de rand ()
para que resida entre 0.0 y 1.0 como se describié antes. Entonces se podria definir una
“cara” como cualquier nimero mayor que 0.5 y cualquier otro resultado como una
“cruz”. Este es el algoritmo que se adoptara.

Habiendo definido cémo se creara un solo lanzamiento que tiene una probabilidad de
50% de producir caras o cruces, la generacion de 1000 lanzamientos es bastante simple:
se usa un ciclo de cuenta fija que genera 1000 nimeros aleatorios. Para cada generacion
se identifica el resultado como cara o cruz y se acumulan los resultados en un contador de
caras y cruces. Por tanto, el algoritmo de simulacion completo esta dado por el seudoco-
digo

Inicializar un contador de caras en cero
Inicializar un contador de cruces en cero
For 1000 veces
generar un numero aleatorio entre 0y 1
If el niimero aleatorio es mayor que 0.5
considérelo como cara y
sume uno a la cuenta de caras
Else
considérelo cruz y
sume uno a la cuenta de cruces
Endif
Endfor
Calcular el porcentaje de caras como el nitmero de caras dividido entre 1000 x 100%
Calcular el porcentaje de cruces como el niimero de cruces dividido entre 1000 X 100%
Imprimir el porcentaje de caras y cruces obtenido

Paso 3 Codificar la solucion

El programa 6.16 codifica este algoritmo en C++.

www.FreelLibros.me

6.4 Aplicaciones 355

—\ Programa 6.16

= o

>
Y
=
#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>

using namespace std;

// un programa para simular el lanzamiento de una moneda NUMLANZ veces
int main()

{
const int NUMLANZ = 1000;

int caras = 0; // inicializa el contador de caras
int cruces = 0; // inicializa el contador de cruces
int i;

double volado, porcaras, porcruces;

// simular los lanzamientos de NUMLANZ de una moneda
srand(time(NULL));
for (i = 1; i <= NUMLANZ; i++)
{
volado = double(rand())/RAND MAX; // escala el nlmero entre 0 y 1
if (volado > 0.5)
cabezas = cabezas + 1;
else
cruces = cruces + 1;

}
porcaras = (caras / double (NUMLANZ)) * 100.0; // calcula el porcentaje de caras
porcruces = (cruces / double (NUMLANZ)) * 100.0; // calcula el porcentaje de cruces

cout << "\nCaras salio " << porcaras << " por ciento de las veces";
cout << "\nCruces salio " << porcruces << " por ciento de las veces";

return 0;

A continuacion hay dos muestras de ejecuciones usando el programa 6.16.

Caras salio 50.9 por ciento de las veces
Cruces salio 49.1 por ciento de las veces

Caras salio 49.7 por ciento de las veces
Cruces salio 50.3 por ciento de las veces

www.FreelLibros.me

356

CAPiTULO 6 Modularidad con el uso de funciones

Por supuesto es mas facil escribir y ejecutar el programa 6.16 que lanzar una moneda 1000
veces en forma manual. Debe sefialarse que la validez de los resultados producidos por el
programa depende de cuan aleatorios son en realidad los ntimeros producidos por
rand().

Paso 4 Probar y depurar el programa

En realidad hay dos pruebas que el programa 6.16 debe pasar. La prueba mds importan-
te se refiere a la aleatoriedad de cada niimero generado. Esta, por supuesto, es en realidad
una prueba de la funcion de nimeros aleatorios. Para nuestros propdsitos, se ha usado una
funcion escrita con anterioridad suministrada por el compilador. Asi que en este punto
aceptamos la “aleatoriedad” del generador. (Véase el ejercicio 13 para un método de ve-
rificacion de la aleatoriedad de la funcion.)

Una vez que se ha resuelto la cuestion del generador de numeros aleatorios, la segun-
da prueba requiere que se generen en forma correcta 1000 niimeros y acumular una cuen-
ta de caras y cruces. Que esto se logra en forma correcta se verifica de manera adecuada
con una simple verificacion de escritorio del ciclo for dentro del programa 6.16. Ademas,
sabemos que el resultado de la simulacion debe estar cerca del 50% de caras y 50% de
cruces. Los resultados de la simulacion verifican que esto fue asi.

Ejercicios 6.4

1. El volumen, v, y el area superficial, s, de un cilindro estan dados por las férmulas
v=mr2ly s =2nrl, donde es el radio del cilindro y [es su largo. Usando estas
formulas, escriba y pruebe una funcion nombrada cilindro() que acepte el ra-
dio y el largo de un cilindro y devuelva su volumen y su area superficial.

2. Escriba y pruebe una funcion en C++ que calcule el radio, 7, y el area, a, de un circulo
cuando se da su circunferencia, c. Las formulas relevantes son 7 = ¢/(2n) y a = nr2. Prue-
be su funcién usando un programa que tenga una funcion controladora dedicada.

3. Un liquido puede fluir por un tubo con un flujo en un patrén suave conocido co-
mo flujo laminar o en un patrén violento conocido como flujo turbulento. Las ve-
locidades que produce cada tipo de flujo dentro del tubo pueden determinarse
usando las formulas:

Vlam = 21001 / p d and v, = 4000u / p d,

donde

V)., €s la velocidad del liquido, en pies/s, que produce un flujo laminar determinado
Uy €8 la velocidad del liquido, en pies/s, que produce un flujo turbulento determinado
W es la viscosidad del liquido, en libras-pie por s/pie?

p es la densidad del liquido, en slug/pies?

d es el diametro interior del tubo, en pies

Usando estas férmulas, escriba y pruebe una funcion en C++ llamada £1lujo()
que devuelva tanto la velocidad de flujo laminar, v,,,, y la velocidad de flujo tur-
bulento, v,,,, usando parametros de referencia. La funciéon debera calcular estas ve-
locidades para el agua, la cual tiene una viscosidad, u, de 1.9 X 105 libras-pie por

s/pie? y una densidad, p, de 1.94 slug/pies3. El didametro del tubo debera ser trans-
mitido por valor en la funciéon £lujo().

www.FreelLibros.me

6.4 Aplicaciones 357

4. La viscosidad y densidades de tres liquidos comunes se enumeran a continuacion:

Viscosidad Densidad

(libras-pies s/pies?) (slug/pies®)
Alcohol etilico 2.29 x 10° 1.527
Alcohol metilico 1.17 x 105 1.531
Alcohol propilico 4.01 x 10° 1.556

Usando estos datos, escriba y pruebe una funciéon en C++ llamada viscDen()
que devuelva la viscosidad y la densidad del liquido seleccionado usando parame-
tros de referencia. El tipo de liquido deberd introducirse a la funcién como un ca-
racter que es transmitido por valor.

5. Escriba un programa en C++ que acepte las coordenadas rectangulares de dos puntos
(x; ¥1) ¥ (x5, ¥»), calcule la distancia de cada punto a partir del origen y la distancia
bl . . z z
entre los dos puntos. La distancia entre dos puntos, d, estd dada por la formula

d= -\l(xz—x1)2 +(—y1)

6. Modifique el programa 6.16 de modo que solicite el nimero de lanzamientos del
usuario. (Sugerencia: Asegurese de hacer que el programa determine en forma co-
rrecta los porcentajes de caras y cruces obtenidas.)

7. Se han desarrollado muchos algoritmos para generar nimeros seudoaleatorios. Al-
gunos de estos algoritmos utilizan un esquema de conteo, como contar bits comen-
zando en alguna ubicacion arbitraria en una memoria cambiante. Otro esquema,
el cual crea nameros seudoaleatorios realizando un calculo, es el método del resi-
duo de potencias.

El método del residuo de potencias comienza con un numero entero non de 7 di-
gitos, el cual se conoce como en nimero “semilla”. La semilla se multiplica por el
valor (1072 — 3). Usar los n digitos inferiores del resultado (el “residuo”) produce
una nueva semilla. Continuar este procedimiento produce una serie de nimeros
aleatorios, con cada nuevo nimero usado como la semilla para el siguiente nume-
ro. Si la semilla original tiene cuatro o mas digitos (7 igual a 0 mayor que 4) y no
es divisible entre dos ni cinco, este procedimiento produce 5 X 10(-2) numeros
aleatorios antes que una secuencia de nimeros se repita. Por ejemplo, si se comien-
za con una semilla de seis digitos (7 = 6), como 654321, puede generarse una se-
rie de 5 X 104= 50000 numeros aleatorios.

Como un algoritmo, los pasos especificos en la generacion de nimeros seudoalea-
torios usando un procedimiento de residuo de potencias son los siguientes:

Paso 1: Hacer que un usuario introduzca una semilla en numero entero de seis di-
gitos que no sea divisible entre 2 ni 5; esto significa que el numero debe-
ra ser un numero non que no termine en 5.

Paso 2: Multiplicar el nimero semilla por 997, lo cual es 103 - 3.

Paso 3: Extraer los seis digitos inferiores del resultado producido por el paso 2.
Use este namero aleatorio como la siguiente semilla.

Paso 4: Repita los pasos 2 y 3 para tantos niimeros aleatorios como sean necesarios.

www.FreelLibros.me

358

CAPiTULO 6 Modularidad con el uso de funciones

Por tanto, si el numero semilla introducido por el usuario es 654321 (paso 1), el
primer nimero aleatorio generado se calcula como sigue:

Paso 2: 654321 * 997 = 652358037
Paso 3: Extraer los seis digitos inferiores del nimero obtenido en el paso 2. Esto
se logra usando un “truco” de programacion estandar.

El truco implica:

Paso 3a: Dividir el nimero entre 106 = 1000000.
Por ejemplo, 652358037 / 1000000 = 652.358037
Paso 3b: Tomar la parte entera del resultado del paso 3a.
Por ejemplo, la parte entera de 652.358037 = 652
Paso 3c: Multiplicar el resultado anterior por 106
Por ejemplo, 652 X 106 = 652000000
Paso 3d: Restar este resultado del namero original.
Por ejemplo, 652358037 — 652000000 = 358037

La parte entera de un ntimero en punto flotante puede tomarse asignando el nime-
ro en punto flotante a una variable en nimero entero, o mediante un molde de C++
(véase la seccion 3.3). En nuestro procedimiento se utilizara el mecanismo de molde.
Por tanto, el algoritmo para producir un numero aleatorio puede lograrse usando el
siguiente codigo:

i = int(997.0 * x / 1l.e6); // tomar la parte entera
x =997.0 * x - 1 * 1l.e6;

Usando esta informacidn,

a. Cree una funcion llamada numalea () que acepte una “semilla” en punto flo-
tante como un parametro y devuelva un nimero aleatorio en punto flotante en-
tre Oy 1.e6.

b. Incorpore la funcion numalea () creada en el ejercicio 7a en un programa en
C++ que produzca diez numeros aleatorios entre 0 y 1.e6.

C. Pruebe la aleatoriedad de la funciéon numalea () creada en el ejercicio 7a usan-
do el método descrito en el ejercicio 13. Inténtelo con algunos valores semilla
pares y algunos valores semilla nones que terminen en 5 para determinar si es-
to afecta la aleatoriedad de los numeros.

. Escriba una funcién en C++ que determine en cual cuadrante reside una linea tra-

zada desde el origen. La determinacion del cuadrante se hace usando el angulo que
forma la linea con el eje x positivo como sigue:

Angulo desde el eje x positivo Cuadrante

Entre 0 y 90 grados 1

Entre 90 y 180 grados

2
Entre 180 y 270 grados 3
4

Entre 270 y 360 grados

www.FreelLibros.me

10.

11.

12.

6.4 Aplicaciones 359

NoOTA: Si el dngulo tiene exactamente 0, 90, 180 o 270 grados la linea correspon-
diente no reside en ningiin cuadrante sino que se encuentra en un eje. Para este ca-
so su funcion deberd devolver un cero.

. Escriba un programa para simular el lanzamiento de dos dados. Si el total de los

dos dados es 7 u 11 usted gana; de lo contrario pierde. Adorne este programa tan-
to como quiera, con apuestas, posibilidades diferentes, combinaciones diferentes
para ganar o perder, dejar de jugar cuando no le quede dinero o alcance el limite
de la casa, desplegar los dados, etc. (Sugerencia: Calcule los puntos que se mues-
tran en cada dado con la expresién puntos = (int) (6.0 * numero alea-
torio + 1), donde el nimero aleatorio esté entre 0y 1.)

Un valor que a veces es ttil es el maximo comin divisor de dos nimeros enteros
nl y n2. Hace mas de dos mil afios un matematico famoso, Euclides, descubrié un
método eficiente para hacer esto. Sin embargo, por ahora nos conformaremos con
un cabo. Escriba la funcién en nimero entero stub ged(nl, n2). Tan solo ha-
ga que devuelva un valor que sugiera que recibi6 sus parametros en forma correc-
ta. (Sugerencia: n1 + n2 es una buena eleccion de valores de devolucion. ¢Por qué
n1/n2 no es una buena eleccion?)

El método de Euclides para encontrar el maximo comun divisor (GCD, por sus si-

glas en inglés) de dos nimeros enteros positivos consiste en los siguientes pasos:

a. Divida el nimero mayor entre el menor y conserve el residuo.

b. Divida el namero menor entre el residuo, conservando de nuevo el residuo.

c. Continte dividiendo el residuo anterior entre el residuo actual hasta que el re-
siduo sea cero, punto en el cual el dltimo residuo diferente de cero es el maxi-
mo comun divisor.

Por ejemplo, suponga que los dos nimeros enteros positivos son 84 y 49, tenemos:

Paso a: 84/49 produce un residuo de 35
Paso b: 49/35 produce un residuo de 14
Paso ¢: 35/14 produce un residuo de 7
Paso d: 14/7 produce un residuo de 0

Por tanto, el dltimo residuo diferente de cero, el cual es 7, es el maximo comun di-
visor de 84 y 49.

Utilizando el algoritmo de Euclides, reemplace la funcion cabo escrita para el ejer-
cicio 10 con una funcion real que determine y devuelva el GCD de sus dos para-
metros en nimero entero.

El siguiente programa usa los mismos nombres de variables tanto en la funcién que
llama como en la funciéon llamada. Determine si esto causa algtin problema para el
compilador.

#include <iostream.h>

int tiempo(int, int); // prototipo de la funcién

int main()

www.FreelLibros.me

360 CAPiTULO 6 Modularidad con el uso de funciones

{
int min, hora, seg;
cout << "Introduzca dos nlGmeros: ";
cin >> min, hora;
seg = tiempo(min, hora);
cout << "El numero total de segundos es " << seg <<
endl;
return 0;
}
int tiempo(int min, int hora)
{
int seg;
seg = (hora * 60 + min) * 60;
return seg;
}

13. Escriba un programa que pruebe la efectividad de la funcién de biblioteca rand ().
Empiece inicializando en cero 10 contadores, como cuentacero, cuentauno,
cuentados,. .., cuentanueve. Luego genere un numero grande de nimeros
enteros seudoaleatorios entre 0 y 9. Cada vez que ocurra un 0 incremente cuen-—
tacero, cuando ocurra un 1 incremente cuentauno, etc. Por tltimo, imprima el
numero de 0, 1, 2, etc., que ocurrieron y el porcentaje de veces que ocurrieron.

14. El determinante de la matriz de 2 por 2

411 A12

A1 422
€S a11dzz — a21a12-

Del mismo modo, el determinante de una matriz de 3 por 3

a1l a12 213
ajzy azyajzsl=
a3 a3y ass
d223a23 a12 a13 412 213
a — +az;
a32a33 432233 a22 223

Utilizando esta informacion, escriba y pruebe dos funciones, llamadas det2 () y
det3 (). La funcion det2 () debera aceptar los cuatro coeficientes de una matriz
de 2 por 2 y devolver su determinante. La funcion det3 () debera aceptar los nue-
ve coeficientes de una matriz de 3 por 3 y devolver su determinante llamando a
det2 () para calcular los determinantes 2 por 2 requeridos.

www.FreelLibros.me

6.5 Alcance de una variable 361

G.y ALCANCE DE UNA VARIABLE

Ahora que hemos comenzado a escribir programas que contienen mas de una funcién, se
pueden observar con mas detenimiento las variables declaradas dentro de cada funcién y
su relacion con las variables en otras funciones.

Por su misma naturaleza, las funciones en C++ estan construidas como modulos inde-
pendientes. Como se ha visto, los valores se transmiten a la funcién usando la lista de pa-
rametros de la funcién y se devuelve un valor usando una instrucciéon de devolucién. Visto
desde esta perspectiva, una funcién puede considerarse como una caja cerrada, con ranu-
ras en la parte superior para recibir valores y una sola ranura en la parte inferior de la ca-
ja para devolver un valor (véase la figura 6.15).

Valores que entran en la funcién

4

' 4

Un solo valor devuelto en
forma directa por la funcion

Figura 6.15 Una funcion puede considerarse una caja cerrada.

La metafora de una caja cerrada es util porque enfatiza el hecho que todo lo que va den-
tro de la funcién, incluyendo todas las declaraciones de variables dentro del cuerpo de la
funcion, esta oculto de la vista de todas las demas funciones. Dado que las variables crea-
das dentro de una funcién estan disponibles de manera convencional s6lo para la funcion
en si, se dice que son locales para la funcién o variables locales. Este término se refiere al
alcance de un identificador, donde alcance se define como la seccion del programa donde
el identificador, como una variable, es valido o “conocido”. Se dice que esta seccion del
programa es donde la variable es visible. Una variable puede tener alcance local o global.
Una variable con un alcance local es aquella a la que una instruccion de declaracion he-
cha dentro del cuerpo de una funcién le ha designado ubicaciones de almacenamiento. Las
variables locales s6lo son significativas cuando se usan en expresiones o instrucciones den-
tro de la funcion que las declaré. Esto significa que el mismo nombre de variable puede
declararse y usarse en mas de una funcién. Para cada funcion que declara la variable, se
crea una variable separada y distinta.

Todas las variables que se han utilizado hasta ahora han sido variables locales. Este es
un resultado directo de colocar las instrucciones de declaracion dentro de las funciones y
usarlas como instrucciones de definicion que causan que la computadora reserve almace-
namiento para la variable declarada. Como se vera, las instrucciones de declaracién pue-
den colocarse fuera de las funciones y no necesitan actuar como definiciones para que se
reserven nuevas areas de almacenamiento para la variable declarada.

Una variable con alcance global, por lo general denominada variable global, el alma-
cenamiento se crea mediante una instruccion de declaracion localizada fuera de cualquier

www.FreelLibros.me

362 CAPiTULO 6 Modularidad con el uso de funciones

funcion. Estas variables pueden ser utilizadas por todas las funciones que se colocan fisi-
camente después de la declaracion de la variable global. Esto se muestra en el programa
6.17, donde se utiliza a proposito el mismo nombre de variable dentro de ambas funcio-
nes contenidas en el programa.

> z
S

& :' Programa 6.17
P -

>
=
-~

#include <iostream>
using namespace std;

int primernum; // crea una variable global llamada primernum

void valfun(); // prototipo de la funcidén (declaraciédn)
int main()
{
int segundonum; // crea una variable local llamada segundonum

primernum = 10; // almacena un valor en la variable global
segundonum = 20; // almacena un valor en la variable local

cout << "De main(): primernum = " << primernum << endl;
cout << "De main(): segundonum = " << segundonum << endl;

valfun(); // llama a la funcidén valfun

cout << "\nDe main() de nuevo: primernum = " << primernum << endl;
cout << "De main() de nuevo: segundonum = " << segundonum << endl;

return 0;
void valfun() // no se transmiten valores a esta funcién
{
int segundonum; // crea una segunda variable local llamada segundonum

segundonum = 30; // esto sélo afecta al valor de esta variable local

cout << "\nDe valfun(): primernum = " << primernum << endl;
cout << "De valfun(): segundonum = " << segundonum << endl;

primernum = 40; // esto cambia primernum para ambas funciones

return;

www.FreelLibros.me

6.5 Alcance de una variable 363

La variable primernum en el programa 6.17 es una variable global debido a que su al-
macenamiento fue creado por una instruccion de definicion localizada fuera de una fun-
cién. En vista que ambas funciones, main() y valfun(), siguen a la definicion de
primernum, ambas funciones pueden usar esta variable global sin que necesiten ninguna
otra declaracion.

El programa 6.17 también contiene dos variables locales separadas, ambas nombra-
das segundonum. El almacenamiento para la variable segundonum nombrada en
main() es creado por la instruccion de definicion localizada en main (). Un drea de al-
macenamiento diferente para la variable segundonum en valfun() es creada por la ins-
truccion de definicion localizada en la funcion valfun(). La figura 6.16 ilustra las tres
areas de almacenamiento distintas reservadas por las tres instrucciones de definicién que
se encuentran en el programa 6.17.

primernum
main()

segundonum
| —

almacenamiento para
un numero entero

valfun()
segundonum

(—)

almacenamiento para
un nUmero entero

Figura 6.16 Las tres dreas de almacenamiento creadas por el programa 6.17.

Cada una de las variables nombradas segundonum es local para la funcion en la que se
crea su almacenamiento, y cada una de estas variables s6lo puede usarse desde dentro de
la funcién apropiada. Por tanto, cuando se usa segundonum en main(), se tiene acceso
al area de almacenamiento reservada por main() para su variable segundonum, y cuan-
do se usa segundonum en valfun(), se tiene acceso al area de almacenamiento reser-
vada por valfun() para su variable segundonum. La siguiente salida se produce
cuando se ejecuta el programa 6.17:

De main(): primernum = 10
De main(): segundonum = 20
De valfun(): primernum = 10

De valfun(): segundonum = 30

www.FreelLibros.me

364

CAPiTULO 6 Modularidad con el uso de funciones

De main() de nuevo: primernum = 40
De main() de nuevo: segundonum = 20

Vamos a analizar esta salida. En vista que primernum es una variable global, las funcio-
nesmain() y valfun() pueden usar y cambiar su valor. Al principio, ambas funciones
imprimen el valor de 10 que almacené main() en primernum. Antes de devolver, val-
fun() cambia el valor de primernum a 40, que es el valor que corresponde cuando a con-
tinuacion la variable primernum se despliega desde dentro de main().

Debido a que cada funcion sélo “conoce” sus propias variables locales, main () sélo
puede enviar el valor de su segundonum al objeto cout. Por tanto, siempre que se obtie-
ne segundonum desde main () se despliega el valor 20, y siempre que se obtiene segun-
donum desde valfun() se despliega el valor 30.

C++ no confunde las dos variables sequndonum porque s6lo puede ejecutarse una
funcién en un momento determinado. Mientras se ejecuta una funcidn, s6lo se puede te-
ner acceso a aquellas variables y parametros que estan “al alcance” de esa funcion (global
y local).

El alcance de una variable de ninguna manera influye o restringe el tipo de datos de
la variable. Del mismo modo en que una variable local puede ser un caracter, numero en-
tero, booleano, de precision doble o cualquiera de los otros tipos de datos (largo/corto)
que se han introducido, asi también pueden ser las variables globales de estos tipos de da-
tos, como se ilustra en la figura 6.17. El alcance de una variable es determinado por la co-
locacion de la instruccion de definicion que reserva almacenamiento para ella y de manera
opcional por una instruccion de declaracion que la hace visible, mientras el tipo de datos
de la variable se determina usando la palabra clave apropiada (char, int, bool, dou-
ble, etc.) antes del nombre de la variable en una instruccion de declaracién.

Alcance

A

local global

char I int I bool Idoublel char I int I bool Idouble

\ "GN)

-

Tipos de datos

Figura 6.17 Relacion del alcance y el tipo de una variable.

Operador de resolucién de alcance

Cuando una variable local tiene el mismo nombre que una variable global, todas las refe-
rencias al nombre de la variable hechas dentro del alcance de la variable local se refieren
a esta variable local. Esta situacion se ilustra en el programa 6.18, donde se define el nom-
bre de la variable numero como una variable global y como una local.

www.FreelLibros.me

6.5 Alcance de una variable 365

>

)
¥

\‘; Programa 6.18

v

> >
>

vﬁ7'x
i

#include <iostream>
using namespace std;

double numero = 42.8; // una variable global llamada numero

int main()

{
double numero = 26.4; // una variable local llamada namero
cout << "El valor de nUimero es " << nGmero << endl;
return 0;
}
Cuando se ejecuta el programa 6.18, se despliega la siguiente salida.
El valor de nGmero es 26.4
Como lo muestra esta salida, el nombre de la variable local toma precedencia sobre la va-
riable local. En tales casos, atin se puede tener acceso a la variable global utilizando el ope-
rador de resolucion de alcance de C++. Este operador, el cual tiene el simbolo ::, debe
colocarse inmediatamente antes del nombre de la variable, como en :: nimero. Cuando
se usa de esta manera, :: le indica al compilador que use la variable global. Como un
ejemplo, se usa el operador de resolucion de alcance en el programa 6.18a.
R .~ ~Program 6.18a
?;N’\/t T, o i>>
~ \/&\?3 : =

#include <iostream>
using namespace std;

double numero = 42.5; // una variable global nombrada nimero

int main()
{
double numero = 26.4; // una variable local nombrada nimero

cout << "El valor de numero es " << ::nUmero << endl;

return 0;

www.FreelLibros.me

366

CAPiTULO 6 Modularidad con el uso de funciones

La salida producida por el programa 6.18a es:
El valor de nuamero es 42.5

Como lo indica esta salida, el operador de resolucion de alcance causa que se tenga acce-
so a la variable global en lugar de a la local.

Mal uso de las variables globales

Las variables globales permiten al programador “brincarse” las salvaguardas normales pro-
porcionadas por las funciones. En lugar de transmitir variables a una funcion, es posible ha-
cer que todas las variables sean globales. No haga esto. Al hacer todas las variables globales
de manera indiscriminada, al instante destruye las salvaguardas que C++ proporciona para
hacer que las funciones sean independientes y aisladas entre si, incluyendo la necesidad de
designar con cuidado el tipo de argumentos que necesita una funcion, las variables usadas
en la funcion y el valor devuelto.

Usar solo variables globales puede ser desastroso, en especial en programas mds gran-
des que tienen muchas funciones creadas por el usuario. En vista que todas las variables
en una funcion deben ser declardas, crear funciones que utilicen variables globales requie-
re recordar escribir las declaraciones globales apropiadas al principio de cada programa
que use la funcion; ya no se encuentran junto con la funcién. Sin embargo, mds devasta-
dor que esto es tratar de rastrear un error en un programa grande que utiliza variables glo-
bales. Dado que cualquier funcion que siga a la declaracion global puede tener acceso a
una variable global y cambiarla, localizar el origen de un valor erréneo es una tarea frus-
trante y que consume tiempo.

Sin embargo, las definiciones globales, en ocasiones son ttiles para crear variables y cons-
tantes que deben ser compartidas entre muchas funciones. En lugar de transmitir la misma
variable a cada funcion, es mas facil definir la variable una vez como global. Hacer esto aler-
ta a cualquiera que lea el programa respecto a que muchas funciones usan esta variable. La
mayor parte de los programas grandes casi siempre usan unas cuantas variables o constantes
globales. Sin embargo, los programas mas pequefios que contienen solo algunas funciones ca-
si nunca deben contener variables globales.

El mal uso de las variables globales no se aplica a los prototipos de funciones, los cuales
por lo general son globales. Debe senalarse que todos los prototipos de funciéon que hasta
ahora se han usado han sido de alcance global, declaran el prototipo para todas las funcio-
nes subsiguientes. Colocar un prototipo de funcién dentro de una funcién hace del prototipo
una declaracion local disponible s6lo para la funcién que se declara adentro.

Ejercicios 6.5

1. a. Para la siguiente seccion de codigo, determine el tipo de datos y el alcance de
todas las funciones declaradas. Para hacer esto, utilice una hoja de papel sepa-
rada y anote los tres encabezados de columna que siguen (se han llenado las en-
tradas para la primera variable):

Nombre del a variable | Tipo de datos Alcance

voltios int global para main, roi y paso

www.FreelLibros.me

6.5 Alcance de una variable 367

#include <iostream>
using namespace std;

int voltios;
long int resistencia;
double corriente;

int main()
{
int potencia;
double factor, tiempo;

return 0;

double roi(int matl, int mat2)
{

int cuenta;

double peso;

return peso;

int paso(double primero, double ultimo)
{

int horas;

double partefrac;

return 1l0*horas;

. Dibuje cuadros alrededor de la seccion apropiada del c6digo anterior para en-
cerrar el alcance de cada variable.

. Determine el tipo de datos de los parametros que esperan las funciones roi y
paso, y el tipo de datos del valor devuelto por estas funciones.

. Para la siguiente seccion de codigo, determine el tipo de datos y el alcance de
todas las variables declaradas. Para hacer esto, use una hoja de papel separada
y anote los tres encabezados de columna que siguen (se han llenado las entra-
das de la primera variable):

Nombre de la variable | Tipo de datos | Alcance

clave char global para main, funcl y func2

www.FreelLibros.me

368

CAPiTULO 6 Modularidad con el uso de funciones

#include <iostream>
using namespace std;

char clave;
long int numero;

int main()

{
int a,b,c;
double x,y;

return 0;

double segundonum;

int funcl(int numl, int num2)
{

int o,p;

float q;

return p;

}

double func2(double primero, double ultimo)
{

int a,b,c,0,p;

double r;

double s, t,x;

return s * t;

b. Dibuje un cuadro alrededor de la seccion apropiada del cédigo anterior para
encerrar el alcance de las variables clave, segundonum, y y r.

c. Determine el tipo de datos de los argumentos que esperan las funciones func1l
y func2, y el tipo de datos del valor devuelto por estas funciones.

3. Ademas de hablar sobre el alcance de una variable, también se puede aplicar el tér-
mino a los parametros de una funcién. ¢Cual piensa que es el alcance de todos los
parametros de funcion?

www.FreelLibros.me

6.5 Alcance de una variable 369

4. Considere la siguiente estructura de programa:

#include <iostream>
using namespace std;

int a, b;
double Uno(float);
void Dos(void);
int main()
{

int ¢, d;

double e, f;

return 0;

}

double Uno(double p2)
{

char m, n;

}
void Dos(void)
{

int p, d;

double q, r;

}

Defina el alcance del parametro p2 y las variables a, b, ¢, d, m,n, p,d, gy r.
5. Determine los valores desplegados por cada instruccién cout en el siguiente pro-
grama:

#include <iostream>
using namespace std;

int primernum = 10; // declara e inicializa una variable
global
void desplegar(); // prototipo de la funcién
int main()
{
int primernum = 20; // declara e inicializa una variable
local
cout << "\nEl valor de primernum es " << primernum << endl;

desplegar();

return 0;

www.FreelLibros.me

370 CAPiTULO 6 Modularidad con el uso de funciones

void desplegar(void)
{
cout << "Ahora el valor de primernum es " << primernum

<< endl;
return;

6.6 » CLASES DE ALMACENAMIENTO DE VARIABLES

El alcance de una variable define la ubicacion dentro de un programa donde ésta puede
usarse. Dado un programa, se podria tomar un ldpiz y trazar un cuadro alrededor de la
seccion del programa donde es vélida cada variable. El espacio dentro del cuadro repre-
sentaria el alcance de una variable. Desde este punto de vista, el alcance de una variable
puede considerarse como el espacio dentro del programa donde es valida la variable.

Ademas de la dimension espacial representada por su alcance, las variables también
tienen una dimension temporal. La dimension temporal se refiere al tiempo que las ubica-
ciones de almacenamiento son reservadas para una variable. La dimension temporal se co-
noce como la “vida” de la variable. Por ejemplo, todas las ubicaciones de almacenamiento
de la variable se devuelven a la computadora cuando un programa termina su ejecucion.
Sin embargo, mientras un programa aun estd en ejecucion, las areas de almacenamiento
de la variable provisional se reservan y en lo subsiguiente se devuelven a la computadora.
Puede determinarse donde y cuanto se conservan las dreas de almacenamiento de una va-
riable antes que sean liberadas por la clase de almacenamiento de la variable.

Ademas de tener un tipo de datos y un alcance, cada variable tiene también una clase
de almacenamiento. Las cuatro clases de almacenamiento disponibles se llaman auto,
static, extern y register. Si se usa uno de estos nombres de clase, debe colocarse
antes del tipo de datos de la variable en una instruccion de declaracion. Son ejemplos de
instrucciones de declaracion que incluyen una designacion de clase de almacenamiento:

auto int num; // clase de almacenamiento auto y tipo de datos int
static int millas; // clase de almacenamiento static y tipo de datos int
register int dist; // clase de almacenamiento register y tipo de datos int
extern int voltios; // clase de almacenamiento extern y tipo de datos int
auto float cupon; // clase de almacenamiento auto y tipo de datos float
static double afios; // clase de almacenamiento static y tipo de datos double
extern float resultado; // clase de almacenamiento extern y tipo de datos float
auto char tecla_en; // clase de almacenamiento auto y variable char

Para entender lo que significa la clase de almacenamiento de una variable, se consideraran
primero las variables locales (aquellas variables creadas dentro de una funcién) y luego las
variables globales (aquellas variables creadas fuera de una funcion).

Clases de almacenamiento de variables locales

Las variables locales s6lo pueden ser miembros de las clases de almacenamiento au-
to, static o register. Sino se incluye una descripcion de clase en la instruccion de de-
claracion, la variable es asignada de manera automatica a la categoria auto. Por tanto, auto

www.FreelLibros.me

6.6 Clases de almacenamiento de variables

es la clase por omision usada por C++. Todas las variables locales que se han usado, en vista

que se omitio la designacion de la clase de almacenamiento, han sido variables auto.

El término auto es una abreviatura de automatico. El almacenamiento para variables
automaticas locales es reservado o creado en forma automatica cada vez que se llama una
funcion que declara variables automaticas. En tanto la funcion no haya regresado el con-
trol a la funcién que la llama, todas las variables automaticas locales para la funcién es-
tan “vivas”; es decir, el almacenamiento de las variables estd disponible. Cuando la
funcion devuelve el control a la funcién que la llama, sus variables automaticas locales
“mueren”; es decir, el almacenamiento para las variables es devuelto a la computadora.
Este proceso se repite cada vez que es llamada una funcién. Por ejemplo, considere el pro-

grama 6.19, donde se llama tres veces a la funcion probarauto () desde main().

.~ Programa 6.19

-

#include <iostream>
using namespace std;

void probarauto(); // prototipo de la funcién
int main()
{
int cuenta; // cuenta es una variable automédtica local

for(cuenta = 1; cuenta <= 3; cuenta++)
probarauto();

return 0;
}
void probarauto()
{
int num = 0; // num es una variable automdtica local

// inicializada en cero
cout << "El valor de la variable automatica num es "
<< num << endl;
num++;

return;

La salida producida por el programa 6.19 es:

El valor de la variable automatica num es 0
El valor de la variable automatica num es 0
El valor de la variable automatica num es 0

www.FreelLibros.me

372

CAPiTULO 6 Modularidad con el uso de funciones

Cada vez que es llamada probarauto (), se crea e inicializa en cero la variable automa-
tica num. Cuando la funcion devuelve el control a main(), la variable num se destruye
junto con cualquier valor almacenado en num. Por tanto, se pierde el efecto de incremen-
tar num en probarauto(), antes de la instrucciéon de devolucién de la funcién, cuando
se regresa el control a main().

Para la mayor parte de las aplicaciones, el uso de variables automadticas funciona bien.
Sin embargo, hay casos en los que nos gustaria que una funcién recordara valores entre
las llamadas a la funcién. Este es el propésito de la clase de almacenamiento static. Una
vez creadas, las variables static locales permanecen en existencia durante la vida del
programa. Esto significa que el ultimo valor almacenado en la variable cuando termina de
ejecutarse la funcion esta disponible para la funcion la proxima vez que es llamada.

static int rate;
static double resistance;
static char inKey;

Una variable local static no se crea y se destruye cada vez que se llama a la funcion que
declara dicha variable. Una vez creadas, las variables locales static siguen existiendo du-
rante la vida del programa. Esto significa que el valor menor almacenado en la variable
cuando termina la funcién, queda disponible cuando la funcién vuelve a ser llamada.

Debido a que las variables static locales conservan sus valores, no se inicializan den-
tro de una instruccion de declaracion en la misma forma que las variables automaticas. Pa-
ra entender por qué, considérese la declaracion automatica int num = 0; la cual causa que
se cree la variable automatica num y se coloque en cero cada vez que se encuentra la decla-
racion. Esto se llama inicializaciéon en tiempo de ejecucion porque la inicializacion ocurre
cada vez que se encuentra la instruccion de declaracion. Este tipo de inicializacion seria de-
sastroso para una variable static, porque reestablecer el valor de la variable en cero cada
vez que se llama la funcion destruiria el valor mismo que se esta tratando de guardar.

La inicializacion de las variables static (tanto locales como globales) solo se hace
una vez, cuando el programa se compila por primera vez. En tiempo de compilacién se
crea la variable y se coloca cualquier valor de inicializacién en ella.!5 A partir de enton-
ces, el valor en la variable es conservado sin mayor inicializacion. Para ver como funcio-
na esto, considere el programa 6.20.

15Algunos compiladores inicializan las variables static locales la primera vez que se ejecuta la instruccioén de definicién en
vez de hacerlo cuando se compila el programa.

www.FreelLibros.me

#include <iostream>
using namespace std;

void probarstat(); // prototipo de la funcién

int main()

{

void probarstat()

{

int cuenta; // cuenta es una variable auto local

for(cuenta = 1; cuenta <= 3; cuenta++)
probarstat();

return 0;

static int num = 0; // num es una variable static local
cout << "El valor de la variable static num ahora es "

num++;

return;

6.6 Clases de almacenamiento de variables 373

>

<< num << endl;

La salida producida por el programa 6.20 es

El valor de la variable static num ahora es 0
El valor de la variable static num ahora es 1
El valor de la variable static num ahora es 2

Como lo ilustra esta salida, la variable static num se pone en cero sélo una vez. Lue-
go la funcién probarstat () incrementa esta variable justo antes de regresar el control
amain(). El valor que tenia num cuando deja la funcién probarstat () es conservado
y desplegado cuando se vuelve a llamar a la funcion.

A diferencia de las variables automaticas que pueden ser inicializadas por constantes
0 por expresiones que usan tanto constantes como variables inicializadas con anterioridad,
las variables static s6lo pueden inicializarse usando constantes o expresiones constan-
tes, como 3.2 + 8.0. Ademas, a diferencia de las variables automaticas, todas las varia-
bles static se colocan en cero cuando no se da una inicializacién explicita. Por tanto, en
el programa 6.19 no se requiere la inicializacion especifica de num en cero.

www.FreelLibros.me

374

CAPiTULO 6 Modularidad con el uso de funciones

La clase de almacenamiento restante disponible para variables locales, la clase re-
gister, no se usa en forma tan extensa como las variables auto o static. Son
ejemplos de declaraciones de variable register

register int tiempo;
register double diferencia;
register float cupon;

Las variables register tienen la misma duracion que las variables auto; es decir, una
variable register local se crea cuando se introduce la funcion que la declara y se des-
truye cuando la funciéon completa su ejecucion. La unica diferencia entre las variables re-
gister y auto es donde se localiza el almacenamiento para la variable.

El almacenamiento para todas las variables (locales y globales), con excepcion de las va-
riables register, se reserva en el drea de memoria de la computadora. La mayor parte de
las computadoras tienen unas cuantas areas de almacenamiento de alta velocidad adicionales
localizadas en forma directa en la unidad de procesamiento de la computadora que también
pueden usarse para almacenamiento de variables. Estas areas de almacenamiento de alta ve-
locidad especiales se llaman registros. Dado que los registros se localizan fisicamente en la uni-
dad de procesamiento de la computadora, también puede tenerse acceso a ellos con mas
rapidez que a las dreas de almacenamiento de memoria normales localizadas en la unidad de
memoria. Ademads, las instrucciones de computadora que hacen referencia a registros por lo
general requieren menos espacio que las instrucciones que hacen referencia a ubicaciones de
memoria debido a que hay menos registros a los que se pueda tener acceso que ubicaciones
de memoria. Cuando el compilador sustituye la ubicacién de un registro por una variable du-
rante la compilacion del programa, se necesita menos espacio en la instruccion del que se re-
quiere para dirigirse a una memoria que tiene millones de ubicaciones.

Ademais de disminuir el tamafio de un programa en C++ compilado, usar variables re-
gister puede aumentar la velocidad de ejecucion de un programa en C++ si su computado-
ra admite este tipo de datos. Los programas de aplicaciones que estan pensados para ser
ejecutados en varias computadoras no deberan usar registros. Los intentos de hacerlo por lo
general serdn frustrados por el compilador cambiando de manera automatica las variables de-
claradas con la clase de almacenamiento register a una clase de almacenamiento auto.

La tnica restriccion al usar la clase de almacenamiento register es que no se pue-
de utilizar la direccion de una variable register con el operador de direccionamiento &.
Esto se comprende con facilidad cuando se recuerda que los registros no tienen direccio-
nes de memoria estandares.

Clases de almacenamiento de variables globales

Las variables globales son creadas por instrucciones de definicion externas a una funcion.
Por su naturaleza, estas variables definidas en forma externa no llegan y se van con la lla-
mada de cualquier funcion. Una vez que se crea una variable global, existe hasta que el
programa en el que se declaré termina de ejecutarse. Por tanto, las variables globales no
pueden declararse como variables auto o register que se crean y destruyen conforme
se ejecuta el programa. Ademas, las variables globales pueden declararse como miembros
de las clases de almacenamiento static o extern (pero no de ambas). Son ejemplos de
instrucciones de declaracion que incluyen estas dos descripciones de clases

extern int suma;
extern double voltios;
static double corriente;

www.FreelLibros.me

6.6 Clases de almacenamiento de variables 375

Las clases static y extern s6lo afectan el alcance, no la duracion, de variables globa-
les. Como con las variables static locales, todas las variables globales se inicializan en
cero en tiempo de compilacion.

El proposito de la clase de almacenamiento extern es extender el alcance de una va-
riable global m4s alld de sus limites normales. Para entender esto, primero hay que obser-
var que todos los programas que se han escrito hasta ahora siempre se habian contenido
en un solo archivo. Por tanto, cuando guardaba o recuperaba programas solo necesitaba
darle a la computadora un nombre para su programa. Esto no se requiere en C++.

Los programas mas grandes por lo general consisten en muchas funciones que son al-
macenadas en multiples archivos. Un ejemplo de esto se muestra en la figura 6.18, donde
las tres funciones main (), funcl() y func2() se almacenan en un archivo y las dos
funciones func3 () y func4 () se almacenan en un segundo archivo.

archivol archivo2
int voltios; double factor;
double corriente; int func3()
static double potencia; {
int main() }
{ int func4d()
funcl();
func2();
func3();
func4(); }
}
int funcl()
{
}
int func2()
{
}

Figura 6.18 Un programa puede estar almacenado en mas de un archivo.

Para los archivos ilustrados en la figura 6.18, las variables globales voltios, corrien-
te y potencia declaradas en archivol s6lo pueden ser usadas por las funciones main (),
funcl() y func2() en este archivo. La variable global unica, factor, declarada en ar-
chivo2 sélo puede ser usada por las funciones func3 () y func4 () en el archivo2.

www.FreelLibros.me

376

CAPiTULO 6 Modularidad con el uso de funciones

Aunque la variable voltios se ha creado en el archivol, se puede utilizar en el archi-
vo2. Colocar la instruccion de declaracion extern int voltios;en el archivo2, como
se muestra en la figura 6.19, nos permite hacerlo. Poner esta instruccion en la parte superior
de archivo2 extiende el alcance de la variable voltios al archivo2 de modo que pueda usar-
se tanto en func3 () como en func4 (). Por tanto, la designacion extern tan sélo decla-
ra una variable global que es definida en otro archivo. Asi, colocar la instruccion extern
double corriente;en func4 () extiende el alcance de esta variable global, creada en
archivol, a la func4 (), y el alcance de la variable global factor, creada en archivo2, se
extiende a funcl () y func2 () por la instruccion de declaracion extern double fac-
tor; colocada antes de funcl (). Hay que observar que factor no estd disponible para
main().

archivol archivo?2

int voltios; double factor;
double curriente;

)) extern int voltios;
static double potencia;

int func3()

. {
int main() .
{ .
funcl(); }
func2(); int funcé4()
func3();
func4(); {
} extern double corriente;

extern double factor;
int funcl()

{ .
: }

}

int func2()

{

}

Figura 6.19 Extension del alcance de variables globales.

Una instruccion de declaracion que contiene de manera especifica la palabra extern es di-
ferente de todas las otras instrucciones de declaracion porque no origina una variable nueva
reservando nuevo almacenamiento para la variable. Una instruccion de declaracion extern
tan sblo informa a la computadora que ya existe una variable global y que ahora puede
usarse. El almacenamiento real para la variable debe crearse en alguna otra parte del pro-
grama usando una, y s6lo una, instruccion de declaracion global en la que no se ha usado

www.FreelLibros.me

6.7 Errores comunes de programacion 377

N Punto de informacion| | |
LR L LJ

Clases de almacenamiento

Las variables del tipo auto y register siempre son variables locales. Solo variables globales no
estaticas pueden declararse usando la palabra clave extern. Hacerlo asi extiende el alcance de la
variable a otro archivo o funcion.

Hacer static una variable global reduce una variable privada del archivo en el que se
declara. Por tanto, las variables static no pueden utilizar la palabra clave extern. Excepto para
variables static, todas las variables son inicializadas cada vez que ingresan a un alcance. Las
variables static sélo se inicializan una vez cuando se definen.

la palabra extern. La inicializaciéon de la variable global puede hacerse, por supuesto,
con la declaracion original de la variable global. La inicializacién dentro de una instruc-
cion de declaracion extern no se permite y causara un error de compilacion.

La existencia de la clase de almacenamiento extern es la razon por la cual se ha te-
nido tanto cuidado en distinguir entre la creacion y declaracion de una variable. Las ins-
trucciones de declaracion que contienen la palabra extern no crean nuevas areas de
almacenamiento; s6lo extienden el alcance de variables globales existentes.

La ultima clase global, las variables globales static, se utilizan para prevenir la ex-
tension de una variable global a un segundo archivo. Las variables globales static se de-
claran en la misma forma que las variables locales static, excepto que la instruccion de
declaracion se coloca afuera de cualquier funcion.

El alcance de una variable global static no puede extenderse mas alla del archivo
en el que es declarada. Esto proporciona un grado de privacidad para las variables globa-
les static. Dado que s6lo son “conocidas” y solo pueden usarse en el archivo en el que
son declaradas, otros archivos no pueden tener acceso a ellas ni cambiar sus valores. Por
tanto, las variables globales static no pueden extenderse después a un segundo archivo
usando una instruccion de declaracion extern. Intentar hacerlo producird un error de
compilacion.

Ejercicios 6.6

1. a. Enumere las clases de almacenamiento disponibles para variables locales.
b. Enumere las clases de almacenamiento disponibles para variables globales.

2. Describa la diferencia entre una variable local auto y una variable local static.

3. ¢Cual es la diferencia entre las siguientes funciones?

void initl()

{
static int afos = 1;
cout << "El valor de anios es " << ahos << endl;
anos = anos + 2;

}

www.FreelLibros.me

378

CAPiTULO 6

Modularidad con el uso de funciones

void init2()

{

static int ahos;

anios = 1;
cout << "El valor de ahos es " << ahos << endl;
anos = ahos + 2;

. Describa la diferencia entre una variable global static y una variable global

extern.

. Si una variable es declarada con una clase de almacenamiento extern, ¢qué

otra instruccion de declaracion debe estar presente en alguna otra parte del pro-
grama?

5. La instruccion de declaracion static double resistencia; puede usarse
para crear ya sea una variable local o una global. ;Qué determina el alcance de la
variable resistencia?

6. Para las declaraciones de funcion y variable ilustradas en la figura 6.20, coloque
una declaracién extern para lograr de manera individual lo siguiente:

a.
b.

n

@m0 a

Extender el alcance de la variable global eleccion a todo el archivo2.
Extender el alcance de la variable global marcador sélo a la funcién prome-
dio().

Extender el alcance de la variable global fecha a promedio() y varian-
cia().

. Extender el alcance de la variable global fecha sélo a roi().

Extender el alcance de la variable global factor séloa roi().
Extender el alcance de la variable global tipo b a todo el archivol.

. Extender el alcance de la variable global resistencia a vatios() y empu-

Je().

16En 1a préctica deberd usarse un buen programa depurador.

www.FreelLibros.me

6.7 Errores comunes de programacion 379

archivol archivo2
char eleccion; char tipo b;
int marcador; double resistencia;
long fecha, tiempo; double roi()
int main() {
{ .
. }
} double promedio()
double factor; {
ddouble vatios () .
{ .
. }
. double variancia()
¥ {
double empuje() .
{ .
. }
}

Figura 6.20 Archivos para el gjercicio 6.

/
’HI“
/

G.y ERRORES COMUNES DE PROGRAMACION

Un error de programacion demasiado comun relacionado con las funciones es transmitir
tipos de datos incorrectos. Los valores transmitidos a una funciéon deben corresponder a
los tipos de datos de los pardmetros declarados para la funcion. Una forma de verificar
que se han recibido valores correctos es desplegar todos los valores transmitidos dentro
del cuerpo de una funcién antes que se hagan calculos. Una vez que ha tenido lugar esta
verificacion, puede prescindirse del despliegue.!6

Otro error comun puede ocurrir cuando se declara la misma variable en forma local
dentro de la funcién que llama y la funcién que es invocada. Aun cuando el nombre de la
variable es el mismo, un cambio a una variable local no altera el valor en la otra variable
local.

Un error relacionado con esto puede ocurrir cuando una variable local tiene el mismo
nombre que una variable global. Dentro de la funcién que la declara, el uso del nombre
de la variable s6lo afecta al contenido de la variable local a menos que se utilice el opera-
dor de resolucién de alcance, ::.

www.FreelLibros.me

380

CAPiTULO 6 Modularidad con el uso de funciones

Otro error comun es omitir el prototipo de la funcion llamada ya sea antes o dentro
de la funcion que llama. La funcién invocada debe ser alertada del tipo de valor que se de-
volvera, y esta informacion es proporcionada por el prototipo de la funcién. El prototipo
puede omitirse si la funcién llamada esta colocada fisicamente en un programa antes de la
funcion que la llama. Aunque también es permisible omitir el prototipo y el tipo de devo-
lucion para funciones que devuelven un niimero entero, es una mala practica de documen-
taciéon hacerlo de esta manera. El valor real devuelto por una funcién puede verificarse
desplegandolo antes y después de que es devuelto.

Los ultimos dos errores comunes son terminar una linea de encabezado de una funcioén
con un punto y coma, y olvidar incluir el tipo de datos de los parametros de una funcion den-
tro de la linea de encabezado.

4
1

RESUMEN DEL CAPIiTULO

. Una funcién es invocada dando su nombre y transmitiéndole cualesquier datos

que haya en el paréntesis que sigue al nombre. Si una variable es uno de los
argumentos en una llamada a la funcién, la funcién llamada recibe una copia del
valor de la variable.

. La forma usada de una funcion escrita por el usuario por lo general es

tipo-de-datos-a-devolver nombre-de-funcion(lista de pardmetros)

{

declaraciones vy otras instrucciones de C++;

return expresion;

/

La primera linea de la funcién se llama encabezado de la funcion. Las llaves

de apertura y cierre de la funcion y todas las instrucciones entre estas llaves
constituyen el cuerpo de la funcion. El tipo de datos devuelto, por omision, es un
numero entero cuando no se especifica ningun tipo de datos devuelto. La lista de
parametros es una lista de declaraciones de parametros separadas por comas.

. El tipo de devolucién de una funcion es el tipo de datos del valor devuelto por la

funcién. Si no se declara ningtn tipo se asume que la funcion devuelve un valor
entero. Si la funcién no devuelve un valor debera declararse como un tipo void.

. Las funciones pueden devolver en forma directa cuando mucho un valor de un

solo tipo de datos a las funciones que las llaman. Este valor es el valor de la
expresion en la instruccion de devolucion.

www.FreelLibros.me

5.

©

6.7 Errores comunes de programacion 381

Usando argumentos de referencia, se puede transmitir a una funcion la direccion
de una variable. Si a una funcion llamada se le transmite una direccion tiene la
capacidad de tener acceso directo a la variable de la funcion que llama respecti-
va. Usar direcciones transmitidas permite que una funcién llamada devuelva de
manera efectiva multiples valores.

. Las funciones pueden declararse a todas las funciones que llaman por medio de

un prototipo de funcién. El prototipo proporciona una declaraciéon para una
funcion que especifica el tipo de datos devuelto por la funcién, su nombre y los
tipos de datos de los argumentos esperados por la funciéon. Como con todas las
declaraciones, un prototipo de funcion se termina con un punto y coma y puede
incluirse dentro de declaraciones de variable local o como una declaracion
global. La forma mas comun de un prototipo de funcion es:

tipo-de-datos nombre-de-funcion(lista de tipos de datos de los pardmetros);

Si la funcion llamada es colocada fisicamente arriba de la funcién que llama, no
se requieren mas declaraciones porque la definicion de la funcién sirve como una
declaracion global para todas las funciones que siguen.

. Todas las variables usadas en un programa tienen un alcance, el cual determina

en qué parte del programa puede utilizarse la variable. El alcance de una variable
es local o global y esta determinado por el lugar donde se coloca la instruccion
de definicion de la variable. Una variable local se define dentro de una funcion y
s6lo puede usarse dentro de la funcién o bloque que la define. Una variable
global se define fuera de una funcién y puede usarse en cualquier funcién que
siga a la definicion de la variable. Todas las variables globales que no son
inicializadas de manera especifica por el usuario son inicializadas en cero por el
compilador y pueden ser compartidas entre archivos que usen la palabra clave
extern.

Todas las variables tienen una clase. La clase de una variable determina cuanto
se conservara el valor en la variable, lo cual también se conoce como la duracion
de la variable: las variables auto son variables locales que s6lo existen mientras
se estd ejecutando la funcion que las define; las variables register son
similares a las variables auto pero son almacenadas en los registros internos de
una computadora y no en la memoria; las variables static pueden ser globales
o locales y conservan sus valores mientras dura la ejecucion de un programa.
Todas las variables static se colocan en cero cuando se definen si no son
inicializadas de manera explicita por el usuario.

www.FreelLibros.me

382 CAPiTULO 6 Modularidad con el uso de funciones

A
Consideracion de opciones de carrera

o R ek R AR

Ingenieria quimica

La ingenieria quimica es la aplicacion del conocimiento o técnicas de la ciencia, en particular
de la quimica, a la industria. Los ingenieros quimicos son responsables del disefio y operacion de
plantas manufactureras, a gran escala, para materiales que experimentan cambios quimicos en su
produccion. Estos materiales incluyen todos los productos nuevos y mejorados que han afectado
en forma tan profunda a la sociedad, como petroquimicos, hules y polimeros, nuevas aleaciones
de metales, sustancias quimicas industriales y refinados, alimentos, pinturas, detergentes, cemen-
tos, pesticidas, gases industriales y medicinas. Los ingenieros quimicos también desempefian un
papel importante en el abatimiento de la contaminacién y la administracion de los recursos ener-
géticos existentes. Debido a que el campo de la ingenieria quimica ha crecido tanto, es dificil cla-
sificar las actividades de los ingenieros quimicos. A grandes rasgos pueden dividirse en sistemas
de produccioén a gran escala, o procesamiento quimico, y en sistemas a escala mas pequefia, 0 mo-
leculares.

Procesamiento quimico

El procesamiento quimico tiene que ver con todos los aspectos del disefio y operaciéon de plantas
de procesamiento quimico grandes. Incluye las siguientes areas:

1. Petroquimicos. La destilacion y refinacion de combustibles como gasolina, gas natural sintéti-
co, licuefaccion y gasificacion del carbon, y la produccion de una variedad infinita de produc-
tos hechos de petréleo, desde cosméticos hasta productos farmacéuticos.

2. Materiales sintéticos. El proceso de polimerizacién, la unién de moléculas mas simples en mo-
léculas complejas grandes, es responsable de muchos materiales modernos como el nailon, hu-
les sintéticos, poliestireno, y una gran variedad de plasticos y fibras sintéticas.

3. Ingenieria de alimentos y bioquimica. La manufactura de alimentos empacados, aditivos ali-
menticios mejorados, esterilizacion y la utilizacion de bacterias, hongos y levaduras industria-
les en procesos como la fermentacion.

4. Operaciones unitarias. El analisis del transporte de calor o liquidos, como el bombeo de sus-
tancias quimicas a través de una tuberia o la transferencia de calor entre sustancias. Esta area
incluye también el efecto de la transferencia de calor en reacciones quimicas como la oxida-
cion, la clorinacion, etcétera.

5. Ingenieria criogénica. El disefio de plantas que operan a temperaturas cercanas al cero absoluto.

6. Ingenieria electroquimica. El uso de electricidad para alterar reacciones quimicas, como el elec-
trochapado, o el disefio de baterias o celdas de energia.

7. Control de la contaminacién. Un campo que ha tenido un crecimiento rapido que busca vigi-
lar y reducir los efectos perjudiciales del procesamiento quimico en el ambiente. Sus dreas de
interés son el control del desperdicio de agua, el abatimiento de la contaminacion del aire y los
aspectos economicos del control de la contaminacion.

(continta)

www.FreelLibros.me

6.8 Resumen del capitulo 383

||
Consideracion de opciones de carrera

| R kA ARRR

Sistemas moleculares

Este campo implica la aplicacion de técnicas de laboratorio en procesos en gran escala. Incluye las
siguientes areas:

1. Ingenieria bioquimica. Aplicacién de enzimas, bacterias u otros microorganismos para mejo-
rar los procesos quimicos a gran escala.

2. Sintesis de polimeros. La base molecular de las propiedades de los polimeros y la sintesis qui-
mica de nuevos polimeros adaptados a la produccion a gran escala.

3. Investigacion y desarrollo en todas las areas del procesamiento quimico.

La preparacion para una carrera en la ingenieria quimica requiere una educacion solida en fisica,
quimica y matematicas y un conocimiento de termodinamica y quimica fisica, analitica y organica.
Aunque con una capacitacion extensa en quimica, los ingenieros quimicos difieren de los quimicos,
ya que su principal interés es la adaptacion de las técnicas de laboratorio a plantas manufactureras
a gran escala.

www.FreelLibros.me

www.FreelLibros.me

