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ABSTRACT: Glacial cirques are widely used palaeoenvironmental indicators, and are key to understanding the role of glaciers in
shaping mountain topography. However, notable uncertainty persists regarding the rate and timing of cirque erosion. In order to
address this uncertainty, we analyse the dimensions of 2208 cirques in Britain and Ireland and model ice accumulation to investigate
the degree of coupling between glacier occupation times and cirque growth. Results indicate that during the last ~120ka, cirques
were glacier-free for an average of 52.0 = 21.2ka (43 + 18%); occupied by small (largely cirque-confined) glaciers for 16.2 +
9.9ka (14 + 8%); and occupied by large glaciers, including ice sheets, for 51.8 + 18.6 ka (43 = 16%). Over the entire Quaternary
(i.e. 2.6 Ma), we estimate that cirques were glacier-free for 1.1 = 0.5 Ma; occupied by small glaciers for 0.3 + 0.2 Ma; and occupied
by large glaciers for 1.1 = 0.4 Ma. Comparing occupation times to cirque depths, and calculating required erosion rates, reveals
that continuous cirque growth during glacier occupation is unlikely. Instead, we propose that cirques attained much of their size
during the first occupation of a non-glacially sculpted landscape (perhaps during the timeframe of a single glacial cycle). During
subsequent glacier occupations, cirque growth may have slowed considerably, with the highest rates of subglacial erosion focused
during periods of marginal (small glacier) glaciation. We propose comparatively slow rates of growth following initial cirque devel-
opment because a ‘least resistance’ shape is formed, and as cirques deepen, sediment becomes trapped subglacially, partly
protecting the bedrock from subsequent erosion. In support of the idea of rapid cirque growth, we present evidence from northern
British Columbia, where cirques of comparable size to those in Britain and Ireland developed in less than 140 ka. © 2019 John Wiley
& Sons, Ltd.
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Introduction

Glacial cirques (e.g. Figure 1) are armchair-shaped erosional
hollows formed in upland environments (Evans and Cox,
1974, 1995). They are widely used as palaeoenvironmental in-
dicators (Mindrescu et al., 2010; Barr and Spagnolo, 2015), and
are key to understanding the role of glaciers in shaping global-
scale mountain topography (Oskin and Burbank, 2005; Egholm
et al., 2009; Anders et al., 2010; Champagnac et al., 2012).
Cirques are thought to form where glacial ice comes to occupy,
erode and enlarge pre-existing mountainside depressions
(Evans, 2006; Turnbull and Davies, 2006), eventually evolving
to distinct shapes and relatively characteristic sizes (Barr and
Spagnolo, 2015; Evans and Cox, 2017). However, one of the
key uncertainties about cirque formation is how long they take
to develop fully, with current estimates ranging from ~125 ka to
a million years or more (Andrews and Dugdale, 1971; Ander-
son, 1978; Larsen and Mangerud, 1981; Sanders et al., 2013).

Many cirques have been repeatedly occupied by glaciers
during the Quaternary (Graf, 1976), but it remains unclear
whether their size is the product of cumulative erosion through
multiple glaciations, or is largely reached during a single glacial
cycle. It is also unclear whether cirque growth continues
throughout glacial occupation, even when small glaciers have
evolved into valley glaciers/ice caps/ice sheets, or is focused
during short windows of ‘active’ erosion when glaciers are
solely confined to their cirques (Barr and Spagnolo, 2013; Crest
etal., 2017). Addressing these issues is vital if cirques are to be
used as robust palaeoenvironmental indicators, and is funda-
mental to understanding planetary-scale landscape evolution
(Banks et al., 2008; Egholm et al.,, 2009; Mitchell and
Humphries, 2015). With this in mind, here we analyse the di-
mensions of cirques in Britain and Ireland, and model former
ice accumulation, to permit inferences about the rate and
timing of cirque growth, supported by evidence from northern
British Columbia.
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Figure 1. Example cirque (Choire Dheirg, Scotland, 58.197°N, 4.974°W), mapped as a blue polygon. Cirque length (L) is the line within the cirque
polygon that intersects the cirque threshold midpoint (TM — the threshold is marked as a dashed red line) and splits the polygon into two equal halves.
Cirque width (W) is the line perpendicular to the length and intersecting the length line midpoint. Cirque depth (H), not shown in the figure, is the
altitudinal difference between the minimum and maximum altitude within the cirque (i.e. Zyax — Zmin)- Spagnolo et al. (2017) provide further details
of how these cirque metrics are calculated using their GIS tool. Background shows a getmapping™ aerial image, viewed obliquely in Google Earth™.

[Colour figure can be viewed at wileyonlinelibrary.com]

Methods

We adopt three different methods to investigate cirques in
Britain and Ireland. First, we analyse cirque dimensions. Sec-
ond, we model the spatial extent of the zone of ice accumula-
tion within each cirque under different climate scenarios using
a positive degree-day (temperature-index) mass balance ap-
proach. Third, we run our ice accumulation/mass balance
model throughout the timespan of a typical glacial cycle, and
over the Quaternary as a whole, to estimate the duration and
style of former glacier occupation within each cirque.

Analysing cirque dimensions

This work focuses on all recognizable (n = 2208) cirques in Brit-
ain and Ireland that were mapped from remotely sensed data
(Barr et al., 2017; Clark et al., 2018). For each cirque, length
(L), width (W) and depth (H) are calculated using ACME, a ded-
icated GIS tool (Spagnolo et al., 2017) (Figure 1). We primarily
focus on H, since cirque depth is largely controlled by subglacial
erosion (Gordon, 1977), while controls on L and W are more
complex, and likely include both glacial and periglacial pro-
cesses (Sanders et al., 2012; Barr and Spagnolo, 2015).

Modelling former ice accumulation

To simulate the spatial extent of the zone of former ice accumu-
lation (Ac) within each cirque, we use a positive degree-day
(temperature-index) mass balance model (e.g. Laumann and
Reeh, 1993; Hock, 2003; Braithwaite, 2008). We do not model
glacier dimensions, nor allow ice to incrementally accumulate
(or ablate) year-on-year, but simply model the spatial extent
of the zone of net ice accumulation within each cirque at
the end of the balance year (i.e. in September) under different
temperature scenarios. To achieve this, we apply Equation (1)
to each (30 x 30m) pixel in a digital elevation model (DEM),
and calculate Ac for each cirque by summing the surface area
of the pixels that return positive values:

Y Pm(snow) — (X Tnx DDF) (M

where Y P,,(snow) is the annual sum of mean monthly precip-
itation (mm) for months with a mean near-surface temperature

© 2019 John Wiley & Sons, Ltd.

below a threshold value (T.;). >.T,, is the annual sum of
monthly positive degree-days (based on mean monthly temper-
atures above T,;), and DDF is the degree-day melt factor.

In our model, T; was set to 2°C (following Harrison et al.,
2014) and the DDF ranged from 2.6 to 4.1mm d~'°C™"' (fol-
lowing Braithwaite, 2008). These values are considered repre-
sentative of conditions within cirques, where melt is restricted
by notable topographic shading (Hannah et al., 2000). To ac-
count for the role of solar radiation (in addition to the role of
air temperature) in regulating melt, DDF varied on a pixel-by-
pixel basis, scaled according to modern annual solar radiation
(calculated using the ArcGIS Solar Radiation tool). Thus, the
pixel (across the entire dataset) with highest annual solar radia-
tion was assigned a DDF of 4.1, and the pixel with the lowest, a
value of 2.6. DDF was assumed to range linearly (with respect
to solar radiation) between these extremes. Present-day
monthly mean climatology (temperature and precipitation)
was derived from gridded data (WorldClim v.2; Fick and
Hijmans, 2017), which is representative of the period 1970 to
2000. Monthly climate grids were resampled from ~1km to
30m resolution using SRTM DEM data (vertical accuracy
~16m). For temperature, this resampling assumed an altitudi-
nal lapse rate of 6°C km™" (Rolland, 2003), whereas precipita-
tion was resampled (to 30 m) without applying a lapse rate. The
gridded climate data (Fick and Hijmans, 2017) were selected as
they incorporate observations from a dense array of weather
stations, and have been widely used for environmental
modelling. In each cirque, ice was allowed to accumulate on
all surfaces with gradients <30° (Harrison et al., 2014). Details
of model validation and sensitivity are presented in the online
Supporting Information.

Estimating the duration and style of glacier
occupation

The purpose of modelling the spatial extent of the zone of
former ice accumulation (Ac) within each cirque is to estimate
how long (during its history) each cirque has been: glacier-free
(tg; glacier-occupied (f); occupied by small (largely cirque-
confined) glaciers (tyagina); and occupied by large glaciers
(extending beyond cirque confines) (t,). Here, we assume that
the distinctions between these different conditions are approx-
imated by differences in the proportion of each cirque’s total
surface area that is accumulating ice. Specifically, if Ac < 10%
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(i.e. if less than 10% of a cirque’s surface area is accumulating
ice), we classify cirques as glacier-free (tz) and if Ac>10%, we
classify cirques as glacier-occupied (). In the latter case, if Ac=
10-90%, we classify cirques as occupied by small glaciers
(tmargina) and if Ac > 90%, we classify cirques as occupied by
large glaciers (t4,). The selection of 10% as a boundary within
this scheme is justified on the assumption that when Ac < 10%,
any ice within a cirque is unlikely to form a coherent and
rotationally flowing glacier. The selection of 90% as a bound-
ary is justified on the assumption that when Ac > 90%, any oc-
cupying glacier is likely to extend well beyond cirque confines.
To analyse the duration and style of ice occupation during the
last glacial cycle (i.e. 120 ka to present), we force Equation (1)
with distal temperature depression (AT) data from the Green-
land Ice Core Project (GRIP; Dansgaard et al., 1993), scaled
to account for precipitation reduction with cooling climate
(following Seguinot et al., 2018) for all 2208 mapped cirques
(Figure 2). To consider the duration and style of ice occupation
over the Quaternary as a whole (i.e. 2.6 Ma to present), we use
the composite benthic §'%0 stack from Lisiecki and Raymo
(2005), and treat this as a proxy for temperature (thereby in-
cluding the Mid-Pleistocene climate transition — Clark et al.,
2006). Though there are limitations to this approach (since
long-term records lack detail, and benthic 'O is not a direct
proxy for terrestrial temperature), the results provide first-order
estimates of Quaternary ice mass occupation times for British
and lIrish cirques.

Results
Cirque dimensions

For the entire population of cirques in Britain and Ireland (Fig-
ure 3a), L (mean = 1 standard deviation = 774 + 426 m) and W
(786 + 365 m) are comparable, but H is approximately three
times less (283 = 108 m). All cirque size metrics have approxi-
mately log-normal frequency distributions — shown for H in
Figure 3b.

Areas of former ice accumulation

Modelling the zone of ice accumulation indicates that for indi-
vidual cirques in Britain and Ireland the AT required for Ac >
10% ranges from —0.2°C (Coire an Laoigh, Scotland,

56.81°N, 4.88°W, labelled 1 in Figure 3a) to —10.2°C
(Keimeen, Ireland, 51.72°N, 9.27°W, labelled 2 in Figure 3a),
with a mean of —5.0 £ 2.1°C (i.e. £10) (Figure 4). The AT re-
quired for Ac > 90% ranges from —1.6°C (Sron a Gharbh-
Choire, Scotland, 56.76°N, 4.92°W, labelled 3 in Figure 3a)
to —12.3°C (Knocknahillan, Ireland, 53.52°N, 9.69°W, la-
belled 4 in Figure 3a), with a mean of —6.7 + 2.0°C (Figure 4).
The AT required for an individual cirque to transition from Ac =
10% to Ac = 90% ranges from —0.1°C (Fir Bhreugach, Scot-
land, 57.65°N, 6.28°W, labelled 5 in Figure 3a) to —6.9°C
(Coire nan Arr, Scotland, 57.42°N, 5.66°W, labelled 6 in
Figure 3a), with a mean of —1.7 + 0.9°C (Figure 4).

Duration and style of glacier occupation

Using ice accumulation modelling and published AT data, we
estimate that during the last glacial cycle, cirques in Britain
and Ireland were glacier-free (t;) for between 11.5ka (Coire
an Laoigh) and 93.6ka (Keimeen), with a mean of 52.0 +
21.2ka (43 + 18%) (Figure 5), and glacier-occupied (f) for be-
tween 26.4 and 108.5 ka, with a mean of 68.0 = 21.2ka (57
+ 18%). When occupied, cirques contained small (largely
cirque-confined) glaciers (tyargina) for between 0.9 ka (Lough
Sallagh, Ireland, 54.74°N, 8.67°W, labelled 7 in Figure 3a)
and 64.2 ka (Coire nan Arr, Scotland), with a mean of 16.2 +
9.9ka (14 + 8%) (Figure 5), and large glaciers (extending be-
yond cirque confines), including ice sheets (t,) for between
12.7ka (Knocknahillan, Ireland, 53.51°N, 9.70°W) and
101.0ka (Sron a Gharbh-Choire, Scotland, 56.76°N, 4.92°W),
with a mean of 51.8 + 18.6 ka (43 = 16%) (Figure 5). To inves-
tigate possible relationships between the duration and style of
glacier occupation and resulting cirque depth, H is compared
t0 tgp t, tmarginas and tg,y (Figure 6). These plots show a weak,
but statistically significant (p < 0.01), positive relationship
between tand H (# = 0.11; Figure 6a) and a statistically signif-
icant positive relationship between t,,aginar and H (? = 0.49;
Figure 6b). However, in the latter case, caution should be
applied when interpreting this relationship since it partly re-
flects the control that H exerts on t,aginar (i.€. due to altitudinal
controls on temperature, deep cirques take comparatively long
to transition from Ac = 10% to Ac = 90%), rather than vice
versa. The control that H exerts on tyaginas is demonstrated by
the statistically significant relationship between H and the AT
required for individual cirques to transition from Ac = 10% to

AT(°C)

20 40 60
Age (ka)

— Glacier-free

1 Marginal
glaciation

| Ful
glaciation

80 100 120

Figure 2. Temperature offset (AT), relative to present, through the last glacial cycle (i.e. 120 ka to present), derived from the Greenland Ice Core Pro-
ject (GRIP; Dansgaard et al., 1993), scaled to account for precipitation reduction with cooling climate (following Seguinot et al., 2018). This dataset is
used to force Equation (1). Colours show periods of glacier-free conditions (white), marginal glaciation (light blue) and full glaciation (dark blue) for an
example cirque (Cwm Marchlyn Mawr, Wales, 53.14°N, 4.07°W). [Colour figure can be viewed at wileyonlinelibrary.com]

© 2019 John Wiley & Sons, Ltd.
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Figure 3. Cirques in Britain and Ireland (a) coloured according to
depth (H) (scale plotted according to the natural breaks method, which
best illustrates spatial differences in these data) and (b) with H plotted as
a frequency distribution. Note: In (b) the x-axis is plotted on a logarith-
mic scale. Numbers in (a) refer to cirques mentioned in the text: 1 =
Coire an Laoigh, 2 = Keimeen, 3 = Sron a Gharbh-Choire, 4 =
Knocknahillan, 5 = Fir Bhreugach, 6 = Coire nan Arr, 7 = Lough
Sallagh. [Colour figure can be viewed at wileyonlinelibrary.com]

Ac =90% (7 = 0.51; Figure 6d). There is no relationship be-
tween H and t;,; (7 = 0.00; Figure 6c).

There are clear regional patterns in t and t,, (Figure 7), with
cirques in Scotland, for example, having experienced ice occu-
pation for most (>100 ka) of the last glacial cycle, and those in
SW lIreland and south Wales having experienced occupation
for a far shorter period (<40ka) (Figure 7a). Notably, H does
not show a correspondingly clear spatial pattern across Britain
and Ireland (Figure 3a).

When considering the Quaternary as a whole (based on
Lisiecki and Raymo, 2005), we estimate that cirques in Britain
and Ireland were glacier-free (t) for 1.1 £ 0.5 Ma and glacier-

© 2019 John Wiley & Sons, Ltd.
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Figure 4. Modelled temperature offset (AT), relative to present, re-
quired to accumulate ice within the cirques of Britain and Ireland. This
figure shows the AT required for between 10 and 90% of each cirque’s
surface area to be accumulating ice. The example indicated by arrows
is Coire nan Arr, Scotland (57.42°N, 5.66°W; labelled 6 in Figure 3a),
which is the cirque that requires the greatest AT (i.e. —6.9°C) to transi-
tion from Ac = 10% to Ac = 90%. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Cirques ordered by duration of ice-free conditions

Figure 5. Cirques in Britain and Ireland, classified according to the
duration of the last glacial cycle (120 ka to present), that our modelling
suggests they were glacier-free (i.e. ty; Ac < 10%); occupied by small
(marginal), largely cirque-confined, glaciers (i.e. tyaginas Ac = 10—
90%); and occupied by large glaciers (extending beyond cirque con-
fines) (i.e. tgy; Ac > 90%). [Colour figure can be viewed at
wileyonlinelibrary.com]

occupied (9 for 1.5 £ 0.5Ma. When occupied, cirques
contained small (largely cirque-confined) glaciers (tyargina) for
0.3 = 0.2 Ma and large glaciers, including ice sheets (tz;) for
1.1 £ 0.4Ma. Given the long time period considered, these
estimates are less precise than those based on the last glacial
cycle alone.

Discussion
Evidence against continuous cirque growth

Ice accumulation modelling suggests that during the last gla-
cial cycle, cirques in Britain and Ireland experienced
glacier/ice-sheet occupation (f) for an average of 68.0 +
21.2ka. Over the Quaternary as a whole (based on Lisiecki
and Raymo, 2005), modelling suggests 1.5 + 0.5 million
years of glacier/ice occupation. Given a mean cirque depth
of 283 = 108 m, and assuming a fluvial valley head with an
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Figure 6. Cirque depth (H) in Britain and Ireland plotted against the duration of the last glacial cycle (120 ka to present) that our modelling suggests
were: (a) glacier-occupied (#); (b) occupied by small (largely cirque-confined) glaciers (t;,a5ina); and (c) occupied by large glaciers (extending beyond
cirque confines) (). (d) H plotted against the AT required for individual cirques to transition from Ac = 10% to Ac = 90%. Note: In all examples, the

y-axes are plotted on logarithmic scales.

initial depth of 50-100m (Lewis, 1949), continuous cirque
growth throughout this period of occupation would imply
an average vertical erosion rate of ~0.14mm a~'. Such an
erosion rate is possible, but lies towards the low end of pub-
lished estimates, and modern cirque glaciers suggest that ver-
tical erosion rates can be an order of magnitude higher
(Table 1). In addition, since our estimate of cirque erosion is
based on H — that is, the altitudinal difference between the
minimum and maximum altitude of a cirque (Figure 1) — it
likely represents the maximum erosion rate per cirque, since
other parts of the cirque have lower maximum and/or higher
minimum elevations, and therefore require the excavation of
less bedrock. Importantly, if cirque growth is continuous dur-
ing ice occupation, then cirque depth would be expected to
scale linearly with t and match clear spatial patterns in t
However, the relationship between H and t is weak (Fig-
ure 6a) and the match in spatial patterns is not present (Fig-
ure 7a vs. Figure 3a). Thus, our results indicate that
constant and continuous vertical erosion of cirques through-
out glacier occupation is an unlikely scenario.

Evidence for episodic cirque growth

There is evidence from published literature (Barr and
Spagnolo, 2013; Crest et al., 2017) to suggest that during gla-
cier occupation, the rate of cirque growth fluctuates consider-
ably. This suggest that cirque erosion predominantly occurs
during periods of marginal glaciation and may reduce (or
even stop) when the landscape is occupied by larger ice
masses (Barr and Spagnolo, 2013; Crest et al., 2017). The
logic behind this assumption is that when glaciers are small,

© 2019 John Wiley & Sons, Ltd.

subglacial erosion is focused at the cirque floor and the base
of the cirque headwall (Barr and Spagnolo, 2015). By con-
trast, larger glaciers and ice sheets extend well beyond cirque
confines, and focus erosion further down-valley (Derbyshire
and Evans, 1976). Under such conditions, cirques themselves
may become occupied by cold-based, low-gradient and
therefore minimally erosive glacial ice (Cook and Swift,
2012; Barr and Spagnolo, 2013, 2015; Crest et al., 2017),
as the glacier surface slope becomes decoupled from the
bed slope, and basal sheer stresses are reduced (Pedersen
et al., 2014). At present, the only observational evidence to
support this idea comes from the east-central Pyrenees,
where Crest et al. (2017) found erosion rates during periods
of cirque-type glaciation to be notably greater than when
cirques were occupied by an extensive icefield (i.e. 0.03—
0.35 vs. 0-0.03mm a~') — though still generally low when
compared to the values in Table I. In Britain and Ireland,
ice accumulation modelling suggests that during the last gla-
cial cycle, cirques experienced marginal glacial conditions
for an average of 16.2 + 9.9ka and full (extensive) glacial
conditions for 51.8 + 18.6ka. If erosion rates from the east-
central Pyrenees (Crest et al., 2017) are applied to Britain
and Ireland, and we focus on cirque deepening alone, this
implies that during the last glacial cycle, cirque depth in-
creased by 3.1 £ 1.9 m during periods of marginal glaciation
and only 0.8 = 0.3 m during full glacial conditions. The min-
imal impact of full glacial conditions might explain the clear
lack of a relationship between t;,;; and cirque size (Figure 6¢).
Over the Quaternary as a whole, this approach implies a cu-
mulative 66 £ 40m of cirque deepening during periods of
marginal glaciation, and 23 + 8 m of deepening during full
glacial conditions. Assuming a fluvial valley head with an

Earth Surf. Process. Landforms, (2019)
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Figure 7.

Spatial variability in the duration of the last glacial cycle (120 ka to present) that our modelling suggests cirques in Britain and Ireland were:

(a) glacier-occupied (1); (b) occupied by small (largely cirque-confined) glaciers (tyaginai); and (c) occupied by large glaciers (extending beyond cirque

confines) (t). [Colour figure can be viewed at wileyonlinelibrary.com]

initial depth of 50100 m (Lewis, 1949), these estimates of cu-
mulative Quaternary erosion result in cirque depths lower than
the mean cirque depth of 283 + 108 m observed in Britain and
Ireland. This might indicate that overall cirque erosion rates in
Britain and Ireland were higher than in the Pyrenees, though
cirque depths in these regions are typically comparable
(Delmas et al.,, 2014). An alternative explanation is that
erosion rates from ‘recent’ glaciations are not representative
of earlier periods, and that cirque growth slows as they
age. Thus, using erosion rates from ‘recent’ glaciations to

© 2019 John Wiley & Sons, Ltd.

extrapolate throughout the Quaternary is likely to underesti-
mate total cirque erosion.

A conceptual model for cirque growth

Evidence from the present study supports the idea that cirque
growth is episodic, focused during periods of marginal glacia-
tion and slowing considerably during full glacial conditions.
However, we also propose that when cirques first initiate (i.e.
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Table I. A global dataset of published cirque erosion rates, modified from Barr and Spagnolo (2015)

Vertical erosion

Headward erosion

Sidewall erosion
1

Location (mm aq) (mma ) (mm a71) Citation
Marie Byrd Land, Antarctica 0.4 5.8 0.8 Andrews and LeMasurier (1973)
Arapaho Glacier, Front Range, Colorado, USA 0.095-0.17 - - Reheis (1975)
Pangnirtung Fiord, Baffin Island, Canada 0.008-0.076 - - Anderson (1978)
Krakenes, Norway 0.5-0.6 0.1 - Larsen and Mangerud (1981)
Rocky Mountains 0.147-1.811 - - Olyphant (1981)
Ivory Lake, Southern Alps, New Zealand 5.3-5.9 - - Hicks et al. (1990)
Ovre Beiarbreen, Norway 0.18 - - Bogen (1996)
Ben Ohau Range, New Zealand 0.29 0.44 - Brook et al. (2006)
Nisqually Glacier, Washington, USA 5.0 - - Mills (1979)
Canadian Rocky Mountains, British Columbia 0.5-0.9 1.2 - Sanders et al. (2013)

when sizable glaciers first come to occupy a non-glacially
sculpted landscape), erosion rates are likely to be particularly
rapid, allowing cirques to attain much of their size very quickly.
Our suggestion is that as cirques grow rapidly from pre-existing
topographic depressions (driven by high erosion rates), they
start to attain ‘least-resistance’ shapes (i.e. armchair-shaped
hollows), which allow ice to be evacuated efficiently with min-
imal erosional impact. In attaining ‘least-resistance’ shapes,
cirques often become overdeepened, thereby trapping subgla-
cial sediment at their floors (Cook and Swift, 2012). This sedi-
ment may further reduce cirque erosion (deepening) by acting
as a protective layer between the ice and bedrock at the cirque
floor (Hooke, 1991; Gadek et al., 2015). In this scenario, spatial
differences in the duration of glacier occupation become less
important in regulating cirque size. This might explain why
there is a limited spatial pattern in cirque depth across Britain
and Ireland (Figure 3a), despite clear, and order of magnitude,
differences in t (Figure 7a). However, cirque depth does vary lo-
cally, and this variability might reflect: differences in tyarginas;
differences in glacier dynamics during periods of marginal
glaciation; differences in the efficiency of sediment evacuation;
and/or other factors such as bedrock structure and lithology
(Barr and Spagnolo, 2015).

Evidence to support the notion that cirques grow rapidly (as
suggested above) is rare, often because the timing of cirque
initiation is extremely difficult to constrain (Turnbull and
Davies, 2006; Barr and Spagnolo, 2015). Developments in
surface exposure dating potentially allow the timing of cirque
deactivation (i.e. deglaciation) to be determined (Barth et al.,

Cirque B

Cirque A

2016, 2017). However, there are very few locations where
the timing of cirque initiation can be constrained with any cer-
tainty. One circumstance where chronologies of cirque initia-
tion can be constrained is where cirques are eroded into
tuyas (flat-topped volcanoes formed subglacially), which often
have a clear and chronologically constrainable history. A clas-
sic example is Tuya Butte, northern British Columbia, which
formed c. 140ka (Smellie and Edwards, 2016). Two glacial
cirques are present at its northern end (Mathews, 1947; Allen
et al., 1982) (Figure 8) which, given the tuya’s history, must
have formed within the past 140ka (i.e. during a single glacial
cycle). These cirques have depths of 185 and 210 m. The lithol-
ogy of this area is not directly comparable to that of the cirques
of Britain and Ireland, which comprise 34 distinct geological
units, ranging in strength from granites to mudstones (Barr
et al., 2017). However, it is not obviously much weaker, as
Tuya Butte is composed of weak palagonitized hyaloclastite ag-
glomerate capped by ~80 m of thick, massive lava flow basalt,
likely comparatively resistant to glacial erosion (Allen et al.,
1982; Smellie, 2017). If cirques in Britain and Ireland attained
similar dimensions to those at Tuya Butte during a single glacial
cycle (from an initial depression depth of 50—100 m), this would
suggest erosion rates (during this period) of 1.0-3.4mm a~", if
continuous during ice occupation and 3.3-25.4 mma~', if con-
fined to periods of marginal glaciation. Attaining such sizes dur-
ing a single glacial cycle would also imply that cirque erosion
rates were an order of magnitude lower over the rest of the Qua-
ternary (i.e. 0.05-0.16 mm a~', if continuous during ice occu-
pation and 0.16-1.24mm a~', if confined to periods of

Cirque A Cirque B

Figure 8. Tuya Butte, northern British Columbia. (a) Landsat image viewed obliquely (from the northwest) in Google Earth™. (b) PlanetScope satellite
image, clearly showing the two cirques (A = 59.136°N, 130.570°W; B = 59.137°N, 130.560°W) eroded into the tuya’s northern flank. [Colour figure

can be viewed at wileyonlinelibrary.com]

© 2019 John Wiley & Sons, Ltd.
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marginal glaciation). It is worth emphasizing, since these
erosion rates are based on H, that they likely represent the
maximum values per cirque.

Implications for understanding cirque erosion rates

The conceptual model we propose here is that cirques grow
quickly when they first initiate — perhaps attaining much of
their size, and reaching a least-resistance shape, during a single
glacial cycle. Thereafter (i.e. during subsequent phases of glaci-
ation), cirque growth slows by an order of magnitude, and is
perhaps focused during periods of marginal glaciation. This
model is partly supported by broader-scale glacial erosion rate
data (i.e. not derived from cirques explicitly) (Hallet et al.,
1996; Koppes and Montgomery, 2009) and modelling of glacial
erosion over multiple glacial-interglacial cycles (MacGregor
et al., 2009; Egholm et al., 2012). For example, Koppes and
Montgomery (2009) note that both fluvial and glacial erosion
rates are typically highest for landscapes forced out of equilib-
rium (e.g. following volcanic eruptions, or during glacial
retreat). We suggest that the first glacial occupation of a non-
glacially sculpted landscape is an extreme example of a shift
in equilibrium state — explaining high erosion rates during such
periods. Koppes and Montgomery (2009) report that modern
temperate tidewater glaciers (i.e. retreating glaciers, not in
climatic equilibrium) typically have erosion rates in the 10—
100mm a ' range. In Britain and Ireland, we suggest that
erosion rates of comparable magnitude (i.e. 3.3-25.4mm a”~")
would be required to allow cirques the size of those at Tuya
Butte to form during a single glacial cycle (if erosion was con-
fined to periods of marginal glaciation) — such rates are up to
an order of magnitude higher than observed for modern cirque
glaciers (Table I). Over the rest of the Quaternary, we suggest
erosion rates (i.e. 0.16-1.24mm a~ ') that are generally compa-
rable with estimates from the Pyrenees (Crest et al., 2017) and
derived from modern cirque glaciers globally (Table 1), with
some exceptions that are notably higher (i.e. up to 6.0 mm
a~'; Table 1). However, these exceptionally high published
erosion rate estimates are often based on sediment volumes
within proglacial streams/forelands (Reheis, 1975; Anderson,
1978; Larsen and Mangerud, 1981; Hicks et al., 1990; Bogen,
1996; Sanders et al., 2013), and some of this sediment may
have been stored under glaciers for a considerable period (as
noted by Koppes and Montgomery, 2009). It is therefore possi-
ble that such estimates are a measure of the rate at which sed-
iment is being evacuated from the cirque, rather than the rate at
which bedrock is being eroded.

In all, we suggest that erosion rate estimates derived from
modern cirque glaciers are representative of periods of mar-
ginal glaciation, rather than longer-term averages, and may be
biased by temporal decoupling of bedrock erosion and sedi-
ment evacuation.

Implications for understanding landscape evolution

The discussion above supports the idea that cirque erosion
largely occurs during comparatively short periods of marginal
(small-scale) glacier occupation, and that cirques attain much
of their size during the first occupation of a non-glacially
sculpted landscape (particularly susceptible to erosion). This
raises questions about the role of glaciers in long-term land-
scape evolution, particularly in relation to the buzzsaw hypoth-
esis, which suggests that glacial erosion can keep pace with
rates of tectonic uplift, and act as a fundamental limit to moun-
tain height at a near-global scale (Brozovi¢ et al., 1997; Egholm

© 2019 John Wiley & Sons, Ltd.

et al., 2009; Pedersen et al., 2010; Mitchell and Humphries,
2015). The suggestion that cirque erosion is largely focused
during an early phase of glaciation is difficult to reconcile with
the buzzsaw hypothesis; however, the suggestion that subse-
quent erosion may be episodic is not. For example, during pe-
riods of marginal glaciation, rates of erosion may (in some
cases) be comparable to uplift rates (e.g. Crest et al., 2017).
By contrast, during full glacial conditions, rates of erosion are
likely to be significantly lower but, during such periods, tec-
tonic uplift is also likely to be reduced due to glacio-isostatic
depression. Thus, a cycle might develop whereby low erosion
rates are tied to periods of low uplift, and vice versa, allowing
the glacial buzzsaw to operate, limiting mountain height,
throughout cycles of Quaternary glaciation.

Implications for interpreting cirque depth

Spatial variability in cirque depth (within and between regions)
has been used previously to infer palaeoenvironmental condi-
tions, on the assumption that cirque size is largely dictated by
the duration of glacier occupation and by ice dynamics (i.e.
the intensity of erosion) during such periods (e.g. Barr and
Spagnolo, 2015). However, results from the present study sug-
gest that cirque size is largely determined during an early stage
of glaciation and (to a lesser degree) during short phases of sub-
sequent active erosion when glaciers are small. Given the sug-
gestion that growth continues, but slowly, following an initial
phase of glaciation, it is likely that the ergodic principle,
whereby variation in feature size can be substituted (to some
degree) for variation with time, can still be applied to cirques
(Olyphant, 1981; Evans, 2006). However, spatial differences
in cirque depth will reflect differences in bedrock lithology
and structure (Barr and Spagnolo, 2015), as well as differences
in conditions (e.g. differences in glacier dynamics) during the
initial phase of glaciation, and perhaps during short (active) pe-
riods during subsequent glacier occupation. Thus, spatial differ-
ences in cirque depth may reflect the complex interplay of
controls, leading to difficulties with using cirque depth as a ro-
bust source of palaeoenvironmental information.

Conclusions

In this study, we analyse the size characteristics of cirques in
Britain and Ireland, to reveal information about the rate and
timing of their growth. Ice accumulation modelling indicates
that the temperature depression, relative to present, required
for > 10% of a cirque’s surface area to be accumulating ice
ranges from —0.2 to —10.2°C, with a mean of —5.0 + 2.1°C.
These temperature depression data suggest that during the last
glacial cycle (i.e. 120ka to present), cirques in Britain and
Ireland were glacier-free for an average of 52.0 + 21.2 ka, oc-
cupied by small (largely cirque-confined) glaciers for 16.2 +
9.9 ka and occupied by large glaciers for 51.8 + 18.6 ka. Over
the Quaternary as a whole, modelling indicates that cirques
were glacier-free for 1.1 £ 0.5 Ma, occupied by small glaciers
for 0.3 + 0.2Ma and occupied by large glaciers for 1.1 =
0.4 Ma. We suggest that continuous cirque growth during pe-
riods of glacier occupation is unlikely, since spatial patterns
in cirque size fail to match patterns in glacier-occupation time.
A more realistic proposition is that during glacier occupation
cirque growth is episodic, maximized during periods of mar-
ginal glaciation and greatly reduced, or even stopped, when
the landscape is occupied by larger ice masses. We propose a
conceptual model for cirque growth, whereby cirques attain
much of their size when they first initiate (i.e. when glaciers first
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come to occupy a non-glacially sculpted landscape). This
might occur during a single glacial cycle. Following this period
(and despite potentially repeated glacier occupation), cirque
growth slows by an order of magnitude and, even then, is
largely focused during periods of marginal glaciation. We pro-
pose generally slow rates of growth following initial cirque de-
velopment, because a least-resistance shape is likely to form
and, as cirques deepen, sediment becomes trapped subgla-
cially, partly protecting the bedrock from subsequent erosion.
In support of the idea that much of a cirque’s growth can occur
during a single glacial cycle, we present evidence from north-
ern British Columbia, where cirques are eroded into Tuya Butte
— a flat-topped, formerly subglacial, volcano formed c. 140 ka.
Based on this evidence, we suggest that erosion rates derived
from modern cirque glaciers are unlikely to be representative
of longer-term conditions and primarily measure the rate at
which sediment is being evacuated from cirques, which relates
only indirectly to the rate at which bedrock is being eroded.
Finally, our modelling suggests that palaeoenvironmental infer-
ences made from cirque depth should be treated with caution,
as cirque characteristics are primarily controlled by the initial
phase of glaciation and are perhaps modified during short pe-
riods of marginal glaciation.
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