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INTEGRALES  IMPROPIAS  (II) 

 
 
1.- PUNTOS SINGULARES DE LAS II 

 

Una forma de extender el concepto de Integral de Riemann  (IR) es establecer una nueva definición para  
los casos donde no se cumplan las dos condiciones previas: 

 
H1      d(a,b) < M1                           Intervalo acotado  
 
H2         | f | < M2                           Función acotada  

 
Se llaman puntos singulares de la función real a los puntos aislados del intervalo de integración donde 

no se cumplen las H1 y H2 de la Integral de Riemann. 
 
Def.:   

  s ∈∈∈∈  punto singular  (f[a,b])  := 




<<<<
<<<<∞∞∞∞−−−−∞∞∞∞++++

acotada) no (Función           M / | f |       H                  V
acotado) no (Intervalo       M/ b)d(a,      H       V,V

22s

11  

 
 
 
2.-  DEFINICION DE INTEGRALES  IMPROPIAS  Y CONVERGENCIA 
 
2.1.-  DEFINICION DE INTEGRALES  IMPROPIAS  
 
Suponiendo que en la Integral Impropia existe un único punto singular, se presentan los dos casos, 

cuando el intervalo no es acotado o la función no es acotada. 
 
 

Definición de Integral Impropia: Caso Intervalo no acotado  

 

H1        ∀∀∀∀ A        ∫
A

a
f(x) dx  ∈∈∈∈  IR 

           ∫
+∞

a
f(x) dx  := 

+∞+∞+∞+∞→→→→A
lim ∫

A

a
f(x) dx      

                                                       
 
 
 
 



 

 

 

Definición de Integral Impropia: Caso función no acotada 

 
H1       s  ∈∈∈∈  [a b]  

H2      ∀∀∀∀   (εεεε1  εεεε2 )            ∫∫∫∫
−−−− 1s

a

εεεε
f(x) dx ∈∈∈∈  IR       ∫∫∫∫ ++++

b

s 2εεεε
f(x) dx  ∈∈∈∈  IR 

         ∫
b

a
f(x) dx  := 

++++→→→→01

lim
εεεε

   ∫∫∫∫
−−−− 1s

a

εεεε
f(x) dx   + 

++++→→→→02

lim
εεεε

     ∫∫∫∫ ++++

b

s 2εεεε
f(x) dx 

 
Obs.1:  Las variables  εεεε1 y  εεεε2   son diferentes.  Más adelante se estudiará que sucede si definen como 

iguales.  
Obs.2: Las II sobre intervalo no acotado se pueden  transformar en II del tipo de funciones no acotadas 

por el cambio de variables  t = 1/(x-s).  
Por lo tanto para el estudio de las propiedades de las  II, es indiferente hablar de un tipo u otro. 

 
 
 
2.2.-  INTEGRALES  CONVERGENTES  DIVERGENTES  Y  OSCILANTES 
 
Las  II como límite de IR se clasifican según la existencia o no del límite y si es finito o infinito. 
Esta clasificación es análoga a la que se hace para las series. Se denomina entonces  II convergentes, 

divergentes y oscilantes, las que cumplen: 
 

Def 

∫II   ∈∈∈∈  CV   :=  ∃∃∃∃  lim ∫IR finito 

∫II   ∈∈∈∈  DV   :=  ∃∃∃∃  lim ∫IR infinito 



 

 

∫II   ∈∈∈∈  OSC :=  ////∃∃∃∃  lim ∫IR  

 
 Obs.: En algunos textos se usa el concepto de Divergente como contrario lógico de Convergente. La 

convención de este texto es que Integral No Convergente es Divergente u Oscilante.   
 
2.3.-  CONVERGENCIA  ABSOLUTA 
 
Se define en forma análoga a como se hace con las series la Convergencia Absoluta de las Integrales 

Impropias . Esto es la Convergencia de la Integral de | f | . 

 

Def:       ∫II f ∈∈∈∈  CA   :=  ∫II | f |  ∈∈∈∈  CV 
 
 
2.4.-  EJEMPLOS DE II 
 
Ejemplo 1 

 

∫∫∫∫
+∞+∞+∞+∞

0 2x1
1

++++
  dx 

  
 I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps     

 
/H1      [0,+∞[  /< M1       ⇒     Vps : V+∞ 
 H2           | f | < M2   
 

II.- Existencia de IR  
 

∫∫∫∫
A

0 2x1
1

++++
  dx   ⇐⇐⇐⇐   f∈∈∈∈  C/[0 A] 

 
III.- Cálculo por definición 

 

∫∫∫∫
A

0 2x1
1

++++
  dx  =  Arctg x  

0
A

= Arctg A  →→→→ +∞+∞+∞+∞→→→→A 2
ππππ  

 
El resultado final es: 

 

∫∫∫∫
+∞+∞+∞+∞

0 2x1
1

++++
  dx = 

2
ππππ                           ∫∫∫∫

+∞+∞+∞+∞

0 2x1
1

++++
  dx   ∈∈∈∈  CV 

 
 

 
Ejemplo 2 

 

∫∫∫∫
+∞+∞+∞+∞

0 )1x(x

1
2 −−−−

  dx 



 

 

  
I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps     

La función  
)1x(x

1
2 −−−−

  no está definida para el intervalo  x ∈  [0 1] por lo tanto no existe la Integral 

Impropia. 
 
 
 

 
 
Ejemplo 3 

 

∫∫∫∫
1

0
Lx  dx 

I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps     
 
 H1         d(0,1)  < M1             
/H2               | Lx |  /< M2      ⇒      Vps : V0+ 
 

 
II.- Existencia de IR  

∫∫∫∫
1

εεεε
Lx  dx ⇐⇐⇐⇐   f∈∈∈∈  C/[εεεε 1] 

 
III- Cálculo por definición 

 

∫∫∫∫
1

εεεε
Lx  dx =  x (L x – 1)

εεεε
1

= – 1  – εεεε (Lεεεε– 1)  →→→→ ++++→→→→0εεεε  – 1 

 
El resultado final es: 

 

∫∫∫∫
1

0
Lx  dx  = – 1                                     ∫∫∫∫

1

0
Lx  dx ∈∈∈∈  CV 

 
 

 
Ejemplo 4 

 

∫∫∫∫
+∞+∞+∞+∞

0
sin x  dx 

 
I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps         

 
/H1      [0,+∞[  /< M1       ⇒     Vps : V+∞ 
 H2           | sin x | < M2   
 

II.- Existencia de IR  

∫∫∫∫
A

0
sin x  dx   ⇐⇐⇐⇐   sin x∈∈∈∈  C/[0 A] 

 
III.- Cálculo por definición 

 



 

 

∫∫∫∫
A

0
sin x  dx  =  – cos x  

0
A

= – cos A + 1   →→→→ +∞+∞+∞+∞→→→→A  /∃∃∃∃  Lim 

 
El resultado final es: 

 

/∃∃∃∃  ∫∫∫∫
+∞+∞+∞+∞

0
sin x  dx                                          ∫∫∫∫

+∞+∞+∞+∞

0
sin x  dx∈∈∈∈  OSC 

 
 
 
Ejemplo 5 

∫∫∫∫
3

2 3x
1
−−−−

  dx 

  
I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps     

 
 H1         d(2,3)  < M1             

/H2              | 3x
1
−−−−

 |  /< M2      ⇒      Vps : V3- 

 
II.- Existencia de IR  

∫∫∫∫
−−−−εεεε3

2 3x
1
−−−−

  dx   ⇐⇐⇐⇐   f∈∈∈∈  C/[2   3–εεεε] 

 
III.- Cálculo por definición 

∫∫∫∫
−−−−εεεε3

2 3x
1
−−−−

  dx =  L|x–3| 
2

3 εεεε−−−−
=   Lεεεε   →→→→ ++++→→→→0εεεε  – ∞ 

 
El resultado final es: 

∫∫∫∫
−−−−εεεε3

2 3x
1
−−−−

  dx   →→→→ ++++→→→→0εεεε  – ∞                       ∫∫∫∫
−−−−εεεε3

2 3x
1
−−−−

  dx ∈∈∈∈  DV  

 
 
Ejemplo 6 

 

∫∫∫∫
5

2 3x
1
−−−−

  dx 

  
I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps         

 
 H1         d(2,5)  < M1             

/H2              | 3x
1
−−−−

 |  /< M2      ⇒      Vps : V3- V3+  

 
II.- Existencia de IR  

∫∫∫∫
−−−− 13

2

εεεε

3x
1
−−−−

  dx   ⇐⇐⇐⇐   f∈∈∈∈  C/[2   3–εεεε1] 

∫∫∫∫ ++++

5

23 εεεε 3x
1
−−−−

  dx   ⇐⇐⇐⇐   f∈∈∈∈  C/[3+εεεε2    5] 

 



 

 

III.- Cálculo por definición 

∫∫∫∫
−−−− 13

2

εεεε

3x
1
−−−−

  dx + ∫∫∫∫ ++++

5

23 εεεε 3x
1
−−−−

  dx  =  L|x–3| 
2

3 1εεεε−−−−
 +  L|x–3| 

23
5
εεεε++++

  

                                                             =   Lεεεε1  +  L5 – Lεεεε2   →→→→
++++→→→→
++++→→→→

02
01

εεεε
εεεε   /∃∃∃∃  Lim  

El resultado final es: 

∃∃∃∃  ∫∫∫∫
5

2 3x
1
−−−−

  dx                                       ∫∫∫∫
5

2 3x
1
−−−−

  dx∈∈∈∈  OSC  

 
 
Ejemplo 7 

 

∫∫∫∫
+∞+∞+∞+∞

0
 k  dx 

I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps         
 
/H1      [0,+∞[  /< M1       ⇒     Vps : V+∞ 
 H2           | f | < M2   
 

II.- Existencia de IR  
 

∫∫∫∫
A

0
k  dx   ⇐⇐⇐⇐    f∈∈∈∈  C/[0 A] 

 
III.- Cálculo por definición 

 

∫∫∫∫
A

0
k  dx  =  k x  

0
A

= k A  →→→→ +∞+∞+∞+∞→→→→A +∞           k > 0                      ∫∫∫∫
A

0
k  dx∈∈∈∈  DV 

                                          →→→→ +∞+∞+∞+∞→→→→A  0              k = 0                      ∫∫∫∫
A

0
k  dx∈∈∈∈  CV 

                                         →→→→ +∞+∞+∞+∞→→→→A – ∞            k < 0                      ∫∫∫∫
A

0
k  dx∈∈∈∈  DV 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
2.5. INTEGRALES IMPROPIAS CON UN NUMERO FINITO DE SINGULARIDADES 

 
              La II cuando tiene un número finito de puntos singulares se define como una suma de II cada una de 
ellas con un solo  punto singular. 
 

 

∫∫∫∫
+∞+∞+∞+∞

∞∞∞∞−−−−
f(x) dx  := 

+∞+∞+∞+∞→→→→B
lim ∫∫∫∫−−−−

1a

B
f(x) dx  + 

                         +
++++→→→→01

lim
εεεε

   ∫∫∫∫
−−−− 11s

1a

εεεε
f(x) dx   + 

++++→→→→02

lim
εεεε

  ∫∫∫∫ ++++

2a

1s 2εεεε
f(x) dx + 

                         +
++++→→→→03

lim
εεεε

   ∫∫∫∫
−−−− 32s

2a

εεεε
f(x) dx   + 

++++→→→→04

lim
εεεε

  ∫∫∫∫ ++++

3a

42s εεεε
f(x) dx + 

                         ... 

                         +
+∞+∞+∞+∞→→→→A

lim ∫
A

a
f(x) dx 

               
La II resultante es entonces un límite múltiple 

  
 

2.6.-   EJEMPLOS DE  INTEGRALES  IMPROPIAS  PARA  TABLA DE COMPARACION  
 
Algunas integrales impropias que su usarán más adelante para estudiar la CV por comparación son: 
 
Ejemplo (Tabla 1) 



 

 

 

∫∫∫∫ ∞∞∞∞++++V ααααx
1   dx               ∫∫∫∫

+∞+∞+∞+∞

a ααααx
1   dx       a > 0 

  
 I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps           

 
/H1      [0,+∞[  /< M1       ⇒     Vps : V+∞ 

 H2           | ααααx
1  | < M2   

 
II.- Existencia de IR  

∫∫∫∫
A

a
 

ααααx
1   dx ⇐⇐⇐⇐   f∈∈∈∈  C/[a  A] 

 
III.- Cálculo por definición 

∫∫∫∫
A

a
 

ααααx
1   dx   →→→→ ≠≠≠≠1a  =   

1
x 1

++++−−−−

++++−−−−

αααα

αααα
 

a
A

=  
1

aA 11

++++−−−−
−−−− ++++−−−−++++−−−−

αααα

αααααααα
 →→→→

>>>>
+∞+∞+∞+∞→→→→

1
A
αααα 1

a 1

++++−−−−
−−−− ++++−−−−

αααα

αααα
 

                                                                                 →→→→
<<<<

+∞+∞+∞+∞→→→→
1

A
αααα

+ ∞ 

            →→→→ ====1a  =           L x 
a
A

=  LA -  La  →→→→ +∞+∞+∞+∞→→→→A  + ∞ 

 
El resultado final es: 

∫∫∫∫
+∞+∞+∞+∞

a ααααx
1   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα > 1  

 
 

 Ejemplo (Tabla 2) 
 

∫∫∫∫ ++++0V ααααx
1   dx               ∫∫∫∫

a

εεεε ααααx
1   dx       a > 0 

  
I.- Análisis de existencia de la función sobre el intervalo de Integración y puntos singulares  Vps         

 
H1         d(0,a)  < M1             

/H2               | ααααx
1  |  /< M2      ⇒      Vps : V0+ 

 
II.- Existencia de IR  

∫∫∫∫
a

εεεε
 

ααααx
1   dx ⇐⇐⇐⇐   f∈∈∈∈  C/[εεεε a] 

 
III.- Cálculo por definición 

∫∫∫∫
a

εεεε
 

ααααx
1   dx   →→→→ ≠≠≠≠1a  =   

1
x 1

++++−−−−

++++−−−−

αααα

αααα
 

εεεε
a

=  
1

a 11

++++−−−−
−−−− ++++−−−−++++−−−−

αααα
εεεε αααααααα

 →→→→
<<<<

++++→→→→
1
0

αααα
εεεε 1

a 1

++++−−−−

++++−−−−

αααα

αααα
 

                                                                                 →→→→
>>>>

++++→→→→
1
0

αααα
εεεε + ∞ 



 

 

            →→→→ ====1a  =           L x 
εεεε
a

=   La -  Lεεεε  →→→→ ++++→→→→0εεεε  + ∞ 

 
El resultado final es: 

∫∫∫∫ ++++0V ααααx
1   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα < 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

3.- VALOR PRINCIPAL DE UNA INTEGRAL IMPROPIA 
 
En el caso de  una  II oscilante que depende de un límite doble o múltiple, este límite no existe. 
Pero con una restricción en el pasaje al límite, tomando todas las variables de la siguiente manera: 

 

B
1

−−−−
 =  εεεε1  = εεεε2  =  εεεε3 = ... = εεεεn-1  = εεεεn = 

A
1  

 
puede darse el caso de que  sí exista el límite nuevo.  Esta convención genera una nueva definición de 

integral, que se llama Valor Principal de la Integral. 
 
Se retoma el  Ejemplo 5  visto anteriormente: 

∫∫∫∫
5

2 3x
1
−−−−

  dx 

∫∫∫∫
−−−− 13

2

εεεε

3x
1
−−−−

  dx + ∫∫∫∫ ++++

5

23 εεεε 3x
1
−−−−

  dx  =  L|x–3| 
2

3 1εεεε−−−−
 +  L|x–3| 

23
5
εεεε++++

  

                                                             =   Lεεεε1  +  L5 – Lεεεε2   →→→→
++++→→→→
++++→→→→

02
01

εεεε
εεεε   /∃∃∃∃  Lim  

∫∫∫∫
5

2 3x
1
−−−−

  dx∈∈∈∈  OSC  

 
Sin embargo si se toma    εεεε1 = εεεε2  =  εεεε 

∫∫∫∫
−−−−εεεε3

2 3x
1
−−−−

  dx + ∫∫∫∫ ++++

5

3 εεεε 3x
1
−−−−

  dx  =  Lεεεε  +  L5 – Lεεεε   →→→→ ++++→→→→0εεεε   L5 

 
Entonces 

∃∃∃∃  VP ∫∫∫∫
5

2 3x
1
−−−−

  dx  =  L5  

  
La definición de valor principal de una II con  n+2 puntos singulares es entonces: 

 
Definición de Valor Principal de una Integral Impropia con un número finito de singularidades 

∫∫∫∫
+∞+∞+∞+∞

∞∞∞∞−−−−
f(x) dx  := 

++++→→→→0
lim

εεεε
 {   ∫∫∫∫−−−−

1a

/1 εεεε
f(x) dx  + 

                                     +  ∫∫∫∫
−−−−εεεε1s

1a
f(x) dx    +   ∫∫∫∫ ++++

2a

1s εεεε
f(x) dx + 

                                     +   ∫∫∫∫
−−−−εεεε2s

2a
f(x) dx   +  ∫∫∫∫ ++++

3a

2s εεεε
f(x) dx + 

                                      ... 

                                     + ∫∫∫∫
εεεε/1

a
f(x) dx } 

               
El VP de la II resultante es entonces un límite simple en contraposición de la Integral Impropia con un 

número finito de singularidades que era un límite múltiple de n+2 puntos singulares: 
 
 { –∞∞∞∞ , εεεε1 , εεεε2  , εεεε3 = ... = εεεε2n-1  = εεεε2n  = +∞∞∞∞ } 
 

tomando: 

B
1

−−−−
 =  εεεε1  = εεεε2  =  εεεε3 = ... = εεεεn-1  = εεεεn = 

A
1  



 

 

3.2.- EJEMPLO DE ANÁLISIS DE VALOR PRINCIPAL PARA TABLA DE COMPARACIÓN 
 

Una  Integral impropia 

����
b

a ααααx
1   dx            a < 0 <  b       αααα∈∈∈∈  R 

 
I.- Existencia de la función en el intervalo de integración  [a b]   y análisis de los puntos singulares  en 

Vps 
Estudiando ésta integral que en su intervalo de integración incluye al  0. Aquí debe analizarse la 

existencia de la función en el Vecinal de cero pues no existe para todos los valores de α cuando x < 0: 
La función f  existe solamente  si  αααα es fraccionario con denominador impar 

 
f: [a,b] –  {0} →→→→ R 

                  x →→→→ 
ααααx

1              αααα =
q
p ∈∈∈∈  Q    ∧∧∧∧    (p,q)∈∈∈∈  Primos entre si   ∧∧∧∧    q∈∈∈∈ Impar 

H1         d(a,b)  < M1             

/H2               | ααααx
1  |  /< M2      ⇒      Vps : V0- V0+ 

 
II.- Existencia de IR  

∫∫∫∫
−−−−εεεε

a ααααx
1  dx + ∫∫∫∫++++

b

εεεε
 

ααααx
1   dx   ⇐⇐⇐⇐     f∈∈∈∈  C/[a  –εεεε]∪∪∪∪  [+εεεε b] 

 
III.- Cálculo del VP por definición 

∫∫∫∫
−−−−εεεε

a ααααx
1  dx + ∫∫∫∫++++

b

εεεε
 

ααααx
1   dx  →→→→ ≠≠≠≠1a  = 

1
x 1

++++−−−−

++++−−−−

αααα

αααα

a
εεεε−−−−

 +
1

x 1

++++−−−−

++++−−−−

αααα

αααα
 

εεεε
b

= 

                                                            = 
1
a)( 11

++++−−−−
−−−−−−−− ++++−−−−++++−−−−

αααα
εεεε αααααααα

 + 
1

b 11

++++−−−−
−−−− ++++−−−−++++−−−−

αααα
εεεε αααααααα

 

                                                            =  →→→→

∈∈∈∈
<<<<====

++++→→→→

parImq
1q/p

0
αααα
εεεε 1

a 1

++++−−−−
−−−− ++++−−−−

αααα

αααα
+

1
b 1

++++−−−−

++++−−−−

αααα

αααα
  

                                                 =  →→→→

∈∈∈∈
∈∈∈∈

>>>>====
++++→→→→

Parp
parImq

1q/p
0

αααα
εεεε

 –∞∞∞∞ 

                                                 =  →→→→

∈∈∈∈
∈∈∈∈

>>>>====
++++→→→→

parImp
parImq

1q/p
0

αααα
εεεε

 
1

a 1

++++−−−−
−−−− ++++−−−−

αααα

αααα
+

1
b 1

++++−−−−

++++−−−−

αααα

αααα
 

                                   →→→→ ====1a  =      L|x|
a
εεεε−−−−

 +  L x
εεεε
b

= Lεεεε – L|a| + Lb – Lεεεε  →→→→ ++++→→→→0εεεε  Lb – L|a| 

IV.-  El resultado final es: 
 
 a < 0 <  b       αααα∈∈∈∈  R 
 

∫∫∫∫
b

a ααααx
1   dx  ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα =

q
p ∈∈∈∈  Q    ∧∧∧∧    (p,q)∈∈∈∈  Primos entre si   ∧∧∧∧    p < q  ∧∧∧∧    q∈∈∈∈ Impar 

                                 ⇔⇔⇔⇔   αααα =
q
p ∈∈∈∈  Q    ∧∧∧∧    (p,q)∈∈∈∈  Primos entre si   ∧∧∧∧    p ≥≥≥≥ q  ∧∧∧∧    q∈∈∈∈ Impar ∧∧∧∧    p∈∈∈∈ Impar 

 



 

 

4.- CRITERIOS DE CV 
 
 El análisis del  Convergencia de las II se hace por medio de criterios (teoremas) que nos permitan 

asegurar su tipo  (CV, DV, OSC, ∃  VP).  
En todos los criterios se analiza un sólo punto singular que puede ser tanto de intervalo no acotado o de 

función no acotada, en forma indiferente, sabiendo que un tipo de  II  siempre se puede transformar en la otra. 
 

 
 
4.1.- ANALISIS DE LA DEFINICIÓN 
 
La definición de la Integral  Impropia en el caso de Intervalo no acotado  puede presentarse de otra 

forma  
 

Def             ∫∫∫∫
+∞+∞+∞+∞

a
∈∈∈∈  CV      ⇔⇔⇔⇔     | ∫∫∫∫ sV

|  <<<< εεεε             

 

∫
A

a
 → +∞→A ∫

+∞

a
  :=   ∀ε  > 0     ∃ A0   :  ∀  A > A0   ⇒⇒⇒⇒    | ∫

A

a
– ∫

+∞

a
|  < ε 

 

                                                                                   ⇒⇒⇒⇒    | ∫
+∞

A
|  < ε   =:    | ∫ sV

|  < ε 

 
Análogamente  se puede presentar la Definición de II  Vs  cuando el intervalo es  finito (s es finito) 

 
 
 
 
4.2.- CRITERIO DE BOLZANO CAUCHY 
 

T1 .-  [ ∀∀∀∀εεεε>>>>0  ∃∃∃∃ Vs  :∀∀∀∀ (x1 x2)∈∈∈∈ Vs
2 ∩∩∩∩D  ⇒⇒⇒⇒ | ∫∫∫∫

2x

1x
 f(x) dx| < εεεε ]        ⇔⇔⇔⇔        ∫Vs

 f  ∈∈∈∈  CV 

           
D.-   Aplicando el Criterio de Bolzano-Cauchy para la existencia del límite de funciones  
 

ax
lim

→→→→
F(x) = L    ⇔⇔⇔⇔    ∀∀∀∀εεεε>>>>0  ∃∃∃∃ Va :∀∀∀∀ (x1 x2)∈∈∈∈ (Va

2 ∩∩∩∩D)    ⇒⇒⇒⇒   |F (x1 ) – F(x2)| < εεεε 

 
Como 

F(A) = ∫∫∫∫
A

a
f(x) dx 

 

+∞+∞+∞+∞→→→→x
lim ∫∫∫∫

A

a
 f(x) dx  = ∫∫∫∫

+∞+∞+∞+∞

a
f(x) dx    ⇔⇔⇔⇔    ∀∀∀∀εεεε>>>>0  ∃∃∃∃ V+∞∞∞∞ :∀∀∀∀ (x1 x2)∈∈∈∈  V+∞∞∞∞

2   ⇒⇒⇒⇒   | ∫∫∫∫
1A

a
 – ∫∫∫∫

2A

a
| < εεεε 

                                                                                                               ⇒⇒⇒⇒   | ∫∫∫∫
2A

1A
| < εεεε 

 
Un resultado equivalente se obtiene para  Vs  con   s   finito. 

 
 
 
 
 



 

 

 
4.3.- CRITERIO DE COMPARACION 
   
4.3.1.- CASO GENERAL 
 

T1 .-    H1         g1  ≤≤≤≤  f  ≤≤≤≤  g2 

          H2     ∫Vs
 g2   ∈∈∈∈  CV             ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈  CV 

          H3     ∫Vs
 g1   ∈∈∈∈  CV       

 
D.- 
                         g1      ≤       f       ≤          g2 
 

            ∫Vs
 g1       ≤     ∫Vs

f     ≤     ∫Vs
 g2 

 

-ε    ≤   ∫Vs
 g1       ≤     ∫Vs

f     ≤     ∫Vs
 g2    ≤    ε 

 
 
TCR        H1  
                /T     ⇒⇒⇒⇒     /H2 
               H3  
 
 

 
4.3.2.- CRITERIO DE COMPARACION: CASOS PARTICULARES 

 
T’1      H1          0  ≤≤≤≤   f  ≤≤≤≤  g2 

           H2     ∫Vs
 g2   ∈∈∈∈  CV      ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈  CV 

         
 
TCR            H1  
                    /T     ⇒⇒⇒⇒     /H2 
 
 
T’’1    H1       –  g2  ≤≤≤≤   f  ≤≤≤≤  g2 

          H2     ∫Vs
 g2   ∈∈∈∈  CV      ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈  CV 

 
También se demuestra a partir de  T’’2    y  la  tautología   – |  f |  ≤≤≤≤  f  ≤≤≤≤  |  f  |       [ que satisface a H1 ] 

 

  ∫Vs
 |  f  |   ∈∈∈∈   CV      ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈   CV 

            Es decir 

T’’’1                    ∫Vs
  f   ∈∈∈∈   CA     ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈   CV 

 
 
 



 

 

 
4.4.- CRITERIO DE COMPARACION POR LIMITE 

   
4.4.1.- COMPARACION POR LIMITE: TEOREMA I 

 

T2      H1            g
f  → →sx  λλλλ :   λλλλ≠≠≠≠0   ∧∧∧∧   λλλλ≠≠≠≠±±±±∞∞∞∞ 

         H2     ∫Vs
 g   ∈∈∈∈  CV      ⇔⇔⇔⇔      T    ∫Vs

 f  ∈∈∈∈  CV 

         

  

D [⇒⇒⇒⇒]      Por definición de límite 
 

|
g
f  - λ | < ε 

λ - ε  <  
g
f   <  λ + ε 

g > 0   ⇒    (λ - ε) g  <   f  <  (λ + ε) g   ∪   g < 0   ⇒    (λ - ε) g  >  f  >  (λ + ε) g 
 

En ambos casos aplicando el  Criterio de Comparación 
 

∫Vs
 g  ∈  CV      ⇒      ∫Vs

 f  ∈  CV 

 
[⇐⇐⇐⇐ ] 
 

g
f  → →sx   λ :  λ≠0  ∧   λ≠±∞    ⇔    

f
g

 → →sx λ
1  :  

λ
1 ≠0   ∧   

λ
1 ±∞ 

 
Por lo tanto aplicando la demostración anterior 

 

∫Vs
 f  ∈  CV      ⇒      ∫Vs

 g  ∈  CV 

 
 
 

4.4.2.- COMPARACION POR LIMITE: TEOREMA II 
 

T’2      H1         g
f  → →sx  λλλλ=0 

           H2     ∫Vs
 g   ∈∈∈∈  CV      ⇒⇒⇒⇒      T    ∫Vs

 f  ∈∈∈∈  CV 

         



 

 

 

 D [⇒⇒⇒⇒]   Es la misma demostración de la condición suficiente del 
teorema anterior, tomando λ=0 
 

∫Vs
 g  ∈  CV      ⇒      ∫Vs

 f  ∈  CV 

 
No es válido la condición necesaria 

 
4.4.3.- COMPARACION POR LIMITE: TEOREMA III 

 

T’’2      H1          g
f  → →sx  λλλλ=±±±±∞∞∞∞ 

             H2     ∫Vs
 g   ∈∈∈∈  CV      ⇐⇐⇐⇐       T    ∫Vs

 f  ∈∈∈∈  CV 

         

 D [⇐ ]  

g
f  → →sx   λ = ±∞    ⇔    

f
g

 → →sx λ
1  = 0   

 
Entonces estamos en las condiciones del teorema anterior  

∫Vs
 f  ∈  CV      ⇒      ∫Vs

 g  ∈  CV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
4.5.- CRITERIO DE COMPARACIÓN  CON SERIES POSITIVAS   
 

Estos criterios de Comparación  muestran la íntima relación entre las Integrales Impropias y las Series en 
cuanto a los estudios de Convergencia. 

En particular se tiene: 

 
T3.-    Comparación con Series No negativas monótonas No crecientes  
 
H1          f   ≥≥≥≥   0         
H2          f ’ ≤≤≤≤   0 

H3     ∑∑∑∑
+∞+∞+∞+∞

====1n

 f(n)   ∈∈∈∈   CV       ⇔⇔⇔⇔          ∫∫∫∫
+∞+∞+∞+∞

1
 f(x)  dx  ∈∈∈∈  CV 

 
D.-       

0  ≤    f(2) . 1       ≤   ∫∫∫∫
2

1
 f      ≤   f(1) . 1 

0  ≤    f(3) . 1       ≤   ∫∫∫∫
3

2
 f      ≤   f(2) . 1 

... 

0  ≤    f(n+1) . 1   ≤   ∫∫∫∫
++++1n

n
 f    ≤   f(n) . 1 

Sumando 

0  ≤    ∑∑∑∑
++++

====

1n

2k

 f(k)    ≤   ∫∫∫∫
++++1n

1
 f    ≤  ∑∑∑∑

====

n

1k

 f(k)  

Pasando  al  límite cuando n tiende a  +∞ .  

0  ≤    ∑∑∑∑
+∞+∞+∞+∞

====2k

 f(k)    ≤   ∫∫∫∫
+∞+∞+∞+∞

1
 f    ≤  ∑∑∑∑

+∞+∞+∞+∞

====1k

 f(k)  

Por una parte si 

∑∑∑∑
+∞+∞+∞+∞

====1k

 f(k)   ∈   CV      ⇔     ∑∑∑∑
+∞+∞+∞+∞

====2k

 f(k)   ∈   CV 

Pues difieren en una  constante.  Entonces por comparación: 

∑∑∑∑
+∞+∞+∞+∞

====1k

 f(k)   ∈   CV      ⇔    ∑∑∑∑
+∞+∞+∞+∞

====2k

 f(k)   ∈   CV   ⇒  ∫∫∫∫
+∞+∞+∞+∞

1
 f(x)  dx  ∈  CV 

Asimismo por comparación si 



 

 

∫∫∫∫
+∞+∞+∞+∞

1
 f(x)  dx  ∈  CV  ⇒ ∑∑∑∑

+∞+∞+∞+∞

====1k

 f(k)   ∈   CV 

pues está acotada inferiormente por  0. 
 
 
4.6.- CRITERIO DE ABEL 
 

T4.-       H1        f:    | f |  ≤≤≤≤ M 
                                  f   ≥≥≥≥  0         
                                  f ’ ≤≤≤≤  0 
                                  f    →→→→ +∞+∞+∞+∞→→→→x  0 

            H2     ∀∀∀∀ (p q)    | ∫∫∫∫
q

p
 g(x) dx  |  ≤≤≤≤ M1         ⇒⇒⇒⇒          ∫∫∫∫ ∞∞∞∞++++V

 f(x)  g(x)  dx  ∈∈∈∈  CV 

 

D.- 
 

∫∫∫∫
A

a
 f(x)  g(x)  dx   =     f(x) ∫∫∫∫

x

a
 g(t)  dt A

a      −    ∫∫∫∫
A

a
  f ’(x)  ∫∫∫∫

x

a
 g(t)  dt   dx 

                              =     f(A) ∫∫∫∫
A

a
 g(t)  dt          −    ∫∫∫∫

A

a
  f ’(x)  ∫∫∫∫

x

a
 g(t)  dt   dx 

 
El primer término tiende a cero pues: 

 

|  f(A) ∫∫∫∫
A

a
 g(t)  dt  |  ≤  |  f(A) |  M1  →→→→ +∞+∞+∞+∞→→→→A  0 

 
El segundo  término  
 

| ∫∫∫∫
A

a
  f ’(x)  ∫∫∫∫

x

a
 g(t)  dt   dx  |   ≤  ∫∫∫∫

A

a
 | f ’(x) |   | ∫∫∫∫

x

a
 g(t)  dt |    dx  

                                                ≤  M1   ∫∫∫∫
A

a
 | f ’(x) |  dx  

                                                ≤  M1   ∫∫∫∫
A

a
  f ’(x)   dx  

                                                ≤  M1   [ f (A)  −  f(a) ] 
 

 
 
4.7.- CRITERIO DE COMPARACION POR SERIES ALTERNADAS 

   
Cuando se tiene una función con infinitos ceros     {ζk} se puede igualar una Integral impropia con una 

Serie Alternada  
 



 

 

 

∫∫∫∫
+∞+∞+∞+∞

0ζζζζ
 f     =  ∫∫∫∫

1ζζζζ

ζζζζ 0

 +  ∫∫∫∫
2ζζζζ

ζζζζ 1

+  ∫∫∫∫
3ζζζζ

ζζζζ 2

+  ... 

 
                       +           -          + 
 
donde cada término de la SA es una integral 
 
Recordando  el Teorema de Leibnitz de Series Alternadas 
 

Teorema de Leibnitz. Convergencia de Series Alternadas 
 
un  ≥≥≥≥  un+1  ≥≥≥≥ 0 

un   →→→→ +∞+∞+∞+∞→→→→n  0       ⇔⇔⇔⇔        ∑∑∑∑
+∞+∞+∞+∞

====0k

(-1)n  un   ∈∈∈∈  CV 

se tiene el siguiente Criterio de CV 
 
 
T5.-  Criterio de Convergencia de Funciones oscilantes 

 

H.- Sea una función alternada con infinitos ceros 

               un = ∫∫∫∫
++++1nζζζζ

ζζζζ n

 

H1             | un |  ≥≥≥≥  | un+1 |  

H2           un   →→→→ +∞+∞+∞+∞→→→→n  0       ⇔⇔⇔⇔        ∑∑∑∑
+∞+∞+∞+∞

====0k

(-1)n | un |  ∈∈∈∈  CV     ⇔⇔⇔⇔     ∫∫∫∫
+∞+∞+∞+∞

0ζζζζ
 f ∈∈∈∈  CV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
5.- TABLA DE INTEGRALES IMPROPIAS 

 
 

1.- ∫∫∫∫ ∞∞∞∞++++V ααααx
1   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα > 1  

2.- ∫∫∫∫ ++++0V ααααx
1   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα < 1  

3.- ∫∫∫∫ 0V ααααx
1   dx ∈∈∈∈  CV   ⇔⇔⇔⇔  αααα =

q
p ∈∈∈∈  Q   ∧∧∧∧   (p,q)∈∈∈∈  Primos entre si  ∧∧∧∧   p < q  ∧∧∧∧    q∈∈∈∈ Impar 

                                        ⇔⇔⇔⇔  αααα =
q
p ∈∈∈∈  Q   ∧∧∧∧   (p,q)∈∈∈∈  Primos entre si  ∧∧∧∧   p ≥≥≥≥ q  ∧∧∧∧    q∈∈∈∈ Impar ∧∧∧∧   p∈∈∈∈ Impar 

4.- ∫∫∫∫ ∞∞∞∞++++V ααααx
Lx   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα > 1  

5.- ∫∫∫∫ ++++0V ααααx
Lx   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα < 1  

6.- ∫∫∫∫ ∞∞∞∞++++V
 

ααααx
)x(sin   dx ∈∈∈∈  CV   ⇔⇔⇔⇔   αααα > 0 

7.- ∫∫∫∫ ∞∞∞∞++++V
e-x  xαααα  dx ∈∈∈∈  CV        ⇔⇔⇔⇔   ∀∀∀∀αααα ∈∈∈∈ R 

 
 

 


