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UNIDAD DIDÁCTICA 4 

UNIDAD DIDÁCTICA 3 



 

QUERIDOS ESTUDIANTES: 
Los arquitectos actuales, como si estuvieran evocando glorias pasadas, reeditan en sus proyectos las 

mismas tipologías morfológicas de los antiguos (como los egipcios y los romanos), o imitan las 

grandes superficies vidriadas de los vitreaux de las catedrales góticas; pero lo hacen de la mano de 

tecnologías de avanzada y de nuevos materiales. Es por eso que hoy, en todas las grandes capitales 

mundiales, surgen edificios tales como los polifuncionales, los deportivos, o las estaciones de 

transportación aérea o ferroautomotor, con esas características. 

En todos estos ejemplos y en muchos otros más, surgen como protagonistas principales las 

estructuras espaciales livianas para cubrir grandes luces con ventajas superadoras en cuanto a 

economía en costos y tiempos de ejecución. Aunque en nuestro país los ejemplos se dan en menor 

escala que a nivel mundial, es justamente en el semillero de los diseñadores arquitectónicos -la 

Universidad- donde debe profundizarse el tema, llegando no sólo a producir diseños formales sino 

también estructurales y tecnológicos. 

¿DE QUÉ TRATA ESTE LIBRO? 
Este libro está destinado a los alumnos de la carrera de Arquitectura y da una visión alternativa de que 

el diseño estructural y arquitectónico debe ser analizado desde el principio de su proceso. 

Podrán ver aquí principios básicos para el diseño de las estructuras de grandes luces, tipos 

estructurales sometidos a tracción, componentes superficiales rígidos y tipos estructurales con 

componentes lineales rígidos.  

Este es un material bibliográfico básico y fundamental sobre el que se sustenta el dictado presencial 

(2000-2005) y muy recientemente (2006 en adelante) con modalidad Semipresencial de la Cátedra de 

Estructuras III de la Facultad de Arquitectura y Urbanismo de la Universidad Nacional del Nordeste. 

En esas instancias se propone, como trabajo final del curso, un Taller de Análisis y Diseño Estructural, 

en el cual, y como herramienta principal, ofrecemos una base de datos gráfico-textuales del análisis 

comparativo de Grandes Obras de Arquitectura con Estructuras de Grandes Luces, que analiza desde 

todos los puntos de vista del Diseño y hace hincapié en el diseño estructural de las mismas. 

Además, se verán obras de los “grandes” de la arquitectura mundial, analizadas por los alumnos de la 

Cátedra de Estructuras III de la FAU-UNNE desde el año 2001 en adelante. 

Algunos de los trabajos analizados en años anteriores pueden encontrarse en la carpeta 

DOCUMENTOS del sitio de la cátedra de Estructuras_III_EnLínea sobre la Plataforma Claroline 

en el sitio del Politécnico de Turín (Italia), con servidor en el Departamento de Física 

http://ol-tutor.polito.it/claroline/claroline/course/index.php?cid=ESTIII  

PRÓLOGO 

Susana
Callout
EN ESTA AÑO 2010 LO SUBIREMOS A LA PLATAFORMA DE MOODLE



 

 

La Programación Didáctica de la cátedra se basa en un desarrollo temático que arranca desde los 

principios básicos de la equipartición del espacio y la geometría de las superficies, desarrollando una 

clasificación completa de las estructuras para edificios conocidas, incluyendo las tradicionales y las 

atípicas, tomando como tema principal aquéllas definidas como “Estructuras Espaciales Livianas”, 

que se desarrolla en profundidad. 

Para entender este proceso, la cátedra considera indispensable tener presente los conocimientos ya 

estudiados sobre las estructuras tradicionales, que deben estar internalizados por los alumnos, dado 

que ya han cursado previamente las tres asignaturas que preceden a Estructuras III en el área: 

Introducción a las Estructuras, Estructuras I y Estructuras II. En esta última instancia de la 

problemática de las estructuras se agrega un nuevo ingrediente, el estudio de la Estructuración del 

Espacio como base fundamental del Diseño Estructural, partiendo del aprovechamiento de campos 

específicos que resultan ser ricas fuentes de inspiración para el diseñador. Como complemento, en 

cada unidad temática, se realiza el análisis del comportamiento estructural básico. En este sentido, es 

preciso producir una integración interdisciplinaria entre las diversas cátedras para resolver los 

problemas que, en el esquema tradicional de la enseñanza de la Arquitectura, desde tiempo pretérito 

es común considerarlos por separado. Algunos de estos problemas se refieren a acondicionamientos 

ambientales, instalaciones especiales, detalles tecnológicos, materiales apropiados, etc. 

Luego del desarrollo de los principios básicos que rigen el comportamiento de las estructuras, los 

contenidos se ordenan en cuatro grandes grupos: 

 Los fundamentos del diseño estructural. 

 Las estructuras de tracción pura. 

 Las estructuras laminares. 

 Las estructuras reticuladas espaciales 

 

 

 

 

 

 

 

FUNDAMENTACIÓN PEDAGÓGICA 



 

OBJETIVOS 

Objetivos de la enseñanza 

Que el alumno: 

 Se capacite en el análisis de las estructuras elaborando críticas con criterio de razonamiento 

lógico. 

 Se apropie de un vocabulario técnico adecuado que le facilite la expresión de los conceptos en 

forma clara y precisa, oral, escrita y gráficamente. 

 Adquiera habilidades para la resolución de los problemas estructurales, tanto de 

dimensionamiento como los tecnológico-constructivos. 

 Desarrolle prácticas de investigación-acción en trabajos individuales y grupales de carácter 

interdisciplinario que lo preparen para su futura actividad profesional. 

Objetivos del aprendizaje 

Que el alumno: 

 Conozca y aprenda a resolver los procesos de diseño estructural. 

 Adquiera capacidad crítica con criterio de razonamiento. 

 Aplique métodos de resolución heurística de problemas de cálculo estructural, analítico y 

gráfico, para cada una de las estructuras analizadas en el programa de la asignatura. 

 Resuelva problemas estructurales analizando patologías y errores comunes en las estructuras 

de los edificios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CONTENIDO TEMÁTICO 

Unidad Didáctica 1: Principios básicos para el diseño de las estructuras. 

Organización del espacio. Configuraciones espaciales. Estudio de las formas. Leyes de equipartición 

del espacio. Geometría de las superficies. Clasificación de las estructuras. 

Unidad Didáctica 2: Tipos estructurales sometidos a esfuerzos de tracción. 

Nociones básicas. Cubiertas colgantes. Cubiertas infladas o neumáticas.  

Unidad Didáctica 3: Tipos estructurales con componentes superficiales rígidos. 

Nociones básicas. Estructuras de curvatura total nula. Estructuras de curvatura total positiva. 

Estructura de curvatura total negativa. 

Unidad Didáctica 4: Tipos estructurales con componentes lineales rígidos. 

Nociones básicas. Estructuras rígidas discontinuas espaciales.  

PRINCIPIOS DIDÁCTICOS 

Se pretende adoptar una modalidad de enseñanza y aprendizaje que se caracterice por ser novedosa, 

atractiva, individualizada y llevada a la práctica a través de múltiples medios de comunicación.  

Esta modalidad dará lugar a la socialización, a la creatividad y a la libertad, siempre basada en una 

toma de conciencia por parte de los alumnos sobre su responsabilidad.  

Posee dos subsistemas, a saber: 

Subsistema Didáctico, que consta de Objetivos - Contenidos - Relaciones de comunicación - Medios 

técnicos - Organización - Evaluación. 

Subsistema Psicológico, que ayuda a desarrollar un aprendizaje significativo basado en:  

 Las expectativas, intereses y falencias del alumno. 

 Ayudar a recordar conceptos previos. 

 Producir una elaboración gradual del aprendizaje. 

 Incentivar el trabajo participativo del alumno en el desarrollo del curso. 

 Ayudar a mantener la atención. 

 Hacer un seguimiento continuo del alumno en el desarrollo de su aprendizaje. 

 Producir retroalimentación de logros. 

 Promover la autoevaluación del alumno como paso intermedio de su proceso de aprendizaje. 

 

 



 

 

 

 

 

Objetivos de la Unidad: Ilustrar al  alumno en el  conocimiento de las formas 
naturales y artif iciales y las leyes de generación,  transformación,  crecimiento y 
organización espacial .  
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 “Principios básicos para el diseño de las estructuras” 

1.1. CONCEPTO DE ESPACIO 

 

 

“En esta clase abordaremos las leyes que rigen la organización de las formas en el espacio y de qué 

manera se relacionan entre sí, a partir de la Topología Combinatoria”. 

 

Concepción topológica del espacio 

Existen muchas maneras de interpretar y estudiar el espacio. 

Una de ellas es considerarlo desde el punto de vista de las dimensiones y las formas de las cosas. Se 

trata de un espacio que se extiende en las tres dimensiones básicas: alto, ancho y profundidad. Es un 

espacio dimensional, “mensurable”. 

Otro modo de entender el espacio es teniendo en cuenta los objetos que están contenidos en él, las 

relaciones entre sí, y relaciones entre sus partes. Es un espacio relacional, “relativo”. 

Es en esta segunda concepción del espacio donde nos detendremos en este análisis, tratando de 

descubrir la forma de distribución de los objetos contenidos en el espacio, de qué manera se sitúan en 

él, qué leyes rigen su organización y de qué manera se relacionen entre sí. 

Aquí no nos interesa la dimensión de los objetos, sino sus propiedades intrínsecas. 

En esta concepción, el espacio no tiene existencia por si, sino por lo que contiene. 

La rama de la Geometría que estudia al espacio según este criterio se conoce con el nombre de 

TOPOLOGÍA COMBINATORIA. Las propiedades cualitativas que abarca la Topología son aquellas 

que permanecen invariables a pesar de las deformaciones a que pueda estar sometida una figura o 

cuerpo, y son las llamadas “INVARIANTES TOPOLÓGICAS”. 

Para la topología combinatoria el espacio es válido en función de los objetos que contiene, y puede 

ser: 

Adimensional (espacio Vacío): PUNTO   (P) 

Unidimensional (1 dimensión): LÍNEA     (L) 

Bidimensional (2 dimensiones): REGIÓN (R) 

Tridimensional (3 dimensiones): SÓLIDO (S) 



 

La topología combinatoria es una rama de la geometría basada en las propiedades cualitativas de las 

figuras, sin hacer intervenir la noción de medida. 

En esta disciplina dos figuras son topológicamente equivalentes cuando ambas ocupan la misma 

situación en el espacio.  

 

 

 

 

 

 

 

Si, además, una resulta de la otra a través de una deformación continua, es decir, que en las sucesivas 

deformaciones se respete la continuidad, pasando por sucesivos homeomorfismos, Este proceso se 

conoce como TRANSFORMACIÓN TOPOLÓGICA. De esta manera, un círculo es equivalente a 

una elipse o a una curva cerrada cualquiera, pero no a un segmento de recta. 

El HOMEOMORFISMO es la propiedad que define la relación entre dos figuras, cuando entre ellas 

existe correspondencia BIUNÍVOCA y BICONTINUA. Dos figuras son homeomorfas cuando se 

pasa de una a otra por una transformación topológica u homeomorfismo. Las propiedades que 

permanecen invariables después de una deformación se denominan INVARIANTES 

TOPOLÓGICAS. 

Se dice que existe correspondencia UNÍVOCA entre dos figuras cualesquiera, cuando a cada punto 

de una de ellas se corresponde un punto y sólo uno de la otra. Cuando además, a cada punto de la 

segunda figura corresponde uno y sólo un punto de la primera, se dice que existe correspondencia 

BIUNÍVOCA entre ambas. 

Cuando a un punto cualquiera de una figura, y los infinitos puntos, infinitamente próximos a dicho 

punto, le corresponde un punto y sólo uno de la segunda figura, y a cada punto infinitamente próximo 

del primer punto, le corresponde en la segunda figura uno y sólo un punto infinitamente próximo al 

segundo punto, existe correspondencia CONTINUA de la segunda figura a la primera. 

 

 

 

 

 
 



 

 

 

 

 

 

Cuando además, al punto considerado de la segunda figura, y los infinitos puntos, infinitamente 

próximos al mismo, le corresponde un punto y sólo uno de la primera, y a cada punto infinitamente 

próximo al punto de la segunda figura, le corresponde en la primera uno y sólo un punto infinitamente 

próximo al primer punto, existe correspondencia BICONTINUA entre ambas. 

Decimos, entonces, que dos figuras son homeomórficas, cuando existe entre ambas correspondencia 

biunívoca y bicontinua. 

Con este concepto, un poliedro convexo simple  (fig. 1) puede deformarse topológicamente hasta 

llegar a convertirse en una esfera (fig. 2). Ambos cuerpos, y cada uno de los sucesivos pasos por los 

que se pasó desde el poliedro original hasta la esfera, son topológicamente equivalentes. 

 

 

 

 

 

 

 

No obstante, podemos igualmente tener dos figuras homeomorfas, pero no topológicamente 

equivalentes.  
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Figura 3 

                                      
     Figura 1 - ICOSAEDRO                                    Figura 2 - ICOSAEDRO ESFÉRICO 



 

 

Linqueo a Sitio Web con Imagen en 3D http://utenti.quipo.it/base5/geosolid/torus.htm  

Así, un toro (como el de la Figura 3) y un nudo, como los que se exponen más adelante, son 

homeomórficos, pero no equivalentes topológicamente, pues para pasar de uno a otro, debió 

interrumpirse en algún momento la secuencia topológica de la transformación. 

Cuando dos figuras son homeomorfas por existir entre ellas una correspondencia biunívoca y 

bicontinua, pero no tienen igual situación en el espacio, se dice que tienen “Propiedad Topológica 

Relativa”. 

 

 

 

 

 

Se hace un corte en la circunferencia, se anuda y se une nuevamente. 

Propiedades topológicas relativas 

Las propiedades topológicas relativas dependen de la situación en el espacio de la figura considerada. 

De las propiedades topológicas relativas dependen por lo menos dos nociones importantes: 

1. Homotopía: Una figura E es homótopa de otra F en el espacio, cuando, siendo homeomorfas, se 

debe pasar de E a F por una secuencia discontinua de transformaciones topológicas. 

 

 

 

 

 

 

 

 

 

 



 

2. Isotopía: Una figura E es isótopa de otra figura F en el espacio, si se puede pasar de E a F por una 

familia continua de homeomorfismos, de tal modo que en cada instante, la figura intermedia siempre 

sea homeomorfa con E. 

 

 

 

 

 

Dominio de las entidades básicas del espacio 

El dominio representativo de una configuración espacial es: 

a  = P (punto) 

b  = L  (línea) 

c  = R (región) 

 

Dominio de las entidades básicas: 

 

 

 

 

Uno de los principales hallazgos de la Topología es una fórmula que relaciona las tres entidades (P, L 

y R) de la siguiente manera: 

K = P – L + R 

Donde k es una constante para todas las figuras pertenecientes a una misma familia de equivalencia 

topológica. 

Esta fórmula fue descubierta  por Descartes y redescubierta por Euler años mas tarde, y se la conoce 

como FÓRMULA DE EULER o NÚMERO DE EULER. 

 
  

 

 

El valor de la expresión  P – L + R = 1  es igual para la red de triángulos que para un solo 
triángulo. 



 

 K es el valor característico de cada familia de configuraciones. Todas las configuraciones que poseen 

igual número de EULER, pertenecen a una misma familia. 

Para las configuraciones bidimensionales (Plano)  k = 1 

Para las configuraciones tridimensionales (Espacio) k = 2 

Ejemplos de configuraciones planas y aplicación del NÚMERO DE EULER: 

TRIANGULO P = 3 

L = 3 

R = 1 

CUADRADO P = 4 

L = 4 

R = 1 

 

CUADRADO P = 4 

L = 5 (con una diagonal) 

R = 2 

                            

 

 

 

 

 

 

 

k  = 3 – 3 + 1 = 1

k  = 4 – 4 + 1 = 1

k  = 4 – 5 + 2 = 1



 

Ejemplos de configuraciones espaciales y aplicación del NÚMERO DE EULER: 

 

1.  TETRAEDRO        P  =  4 

                                     L  =  6 

                                     R  =  4 

 

                                     k  = 4 – 6 + 4 = 2 

 

2.  CUBO        P  =  8 

                        L  =  12 

                        R  =  6 

 

                         k  = 8 – 12 + 6 = 2 

 

 

Esquema poligonal: es la representación del poliedro por un sistema de polígonos en el plano. 

 

Una cara del poliedro equivale a un polígono en el plano con igual número de lados que la cara 

correspondiente del poliedro. 

Al transformar un poliedro a una red plana, el número de vértices y aristas es el mismo que en un 

poliedro original; el número de caras es inferior a uno (quitamos una cara) para poder extender el 

poliedro sobre el plano. 

En ambos casos se cumple:  P – L + R =  1 

Si representamos aL tetraedro y al cubo en un esquema plano poligonal y aplicamos la fórmula de 

EULER para configuraciones de dos dimensiones, tenemos: 

 

 



 

1.  TETRAEDRO              P  =   4 

   L  =  6 

   R  =  3 

 

k  = 4 – 6 + 3 = 1 

 

2.  CUBO        P  =   8 

  L  =  12 

 R  =  5 

 

k  = 8 – 12 + 5 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

GLOSARIO 

 

Correspondencia Bicontinua: Cuando además, al punto considerado de la segunda figura, y los 

infinitos puntos, infinitamente próximos al mismo, le corresponde un punto y sólo uno de la primera, 

y a cada punto infinitamente próximo al punto de la segunda figura, le corresponde en la primera uno 

y sólo un punto infinitamente próximo al primer punto, existe correspondencia BICONTINUA entre 

ambas.    

Correspondencia Biunívoca: se dice que existe correspondencia unívoca entre dos figuras, cuando a 

cada punto de una de ellas se corresponde un punto y sólo uno de la otra. Cuando, además, a cada 

punto de la segunda figura corresponde uno y sólo un punto de la primera se dice que existe 

correspondencia biunívoca. 

Correspondencia Continua: cuando a un punto cualquiera de una figura y los infinitos puntos, 

íntimamente próximos a dicho punto, le corresponde un punto y sólo uno de la segunda figura y a 

cada punto infinitamente próximo del primero, le corresponde en la segunda figura uno y sólo un 

punto infinitamente próximo al segundo punto, existe correspondencia. 

Espacio: Desde el punto de vista de las dimensiones y las formas de las cosas, se lo define como la 

entidad mensurable que se extiende en las tres dimensiones básicas (alto, ancho y profundidad).   

Homeomorfismo: Es la propiedad que define la relación entre dos figuras, cuando entre ellas existe 

correspondencia (biunívoca y bicontinua).  

Un concepto muy usado en Topología es el de HOMEOMORFISMO, que M. Frechev y K. y Fan 

definen como “la deformación de una figura de caucho sin desgarramientos ni adherencias”, en el 

sentido que ellos definen a la Topología como “la geometría de las figuras de caucho”. 

Topología Combinatoria: Aunque el auge de la topología data de dos siglos atrás (mediados del XIX) 

hay descubrimientos anteriores, como la fórmula de Descartes (1640), redescubierta por Euler (1752) 

que tiene cabida en ella, y que se explica más adelante en este trabajo. La Topología o Análisis Situs 

es una rama de la geometría que estudia las propiedades cualitativas de las figuras y cuerpos, 

desechando las propiedades métricas y proyectivas, pertenecientes a las geometrías métrica y 

proyectiva respectivamente. Según la definen R. Courant y H. Robbins, “la Topología estudia las 

propiedades de las figuras geométricas que subsisten aún si esas figuras se someten a deformaciones 

tan radicales que las hagan perder todas sus propiedades métricas y proyectivas”.  

 



 

 “Tipos estructurales sometidos a esfuerzos de tracción” 

1.2. CONFIGURACIONES ESPACIALES 

- Espacios de dos y tres dimensiones - 

 

“En esta clase trataremos temas de geometría 

básica, con el objetivo de reconocer cómo lo 

simple puede llegar a resolver problemas 

complejos”. 

Los Polígonos en general 

Un polígono es una figura geométrica formada por segmentos de línea recta, unidos entre sí por sus 

extremos según un orden cíclico, de modo que cada uno esté conectado con sólo dos de ellos. 

Cada segmento representa el lado del polígono y el punto en que se unen dos de ellos se llama vértice. 

Un polígono es cerrado cuando todos sus lados están unidos a otros dos, no quedando ningún extremo 

libre. 

En todo polígono cerrado, al ángulo interior formado por dos lados consecutivos lo llamaremos 

ángulo interior perimetral. La suma de los ángulos interiores perimetrales de un polígono cerrado es 

siempre igual a ( )2nR2 −× , siendo n  el número de lados del polígono. 

Un polígono es convexo, cuando todos sus ángulos interiores perimetrales son inferiores a °180 . 

Polígonos destacados 

En este espacio, veremos algunos tipos de polígonos que se destacan por sus particulares 

características: 

1. algunos triángulos; 

2. los polígonos regulares; y, entre éstos, 

3. el pentágono regular. 

Triángulos especiales 

A modo de repaso de la geometría elemental del plano, recordaremos algunos conceptos. En el caso 

de los triángulos convexos debemos destacar, antes de todo otro concepto, que todos, sin excepción, 

son inscriptibles en una circunferencia, independientemente que sean o no regulares. Además, 

distinguimos tres clases de triángulos: rectángulos -tienen un ángulo recto- (figura 1), acutángulos 



 

 Figura 1 

-todos sus ángulos miden menos que °90 - (figura 2), y obtusángulos -uno de sus ángulos mide más 

de °90 - (figura 3).  

 

 

 

 

 

 

 

 

 

 

 

Por otra parte, existen otros tipos de triángulos, en función de sus lados: 

Triángulo Equilátero: es un triángulo regular, es decir, tiene todos sus lados y ángulos iguales (figura 

4). 

Triángulo Isósceles: es aquél que posee sólo dos lados iguales entre sí. Por el teorema respectivo, 

sabemos que los ángulos correspondientes a estos lados también son iguales entre sí. (Figura 5). 

 

 

 

 

 

 

 

 

 

 

 

 

         Figura 2                                            Figura 3 

Figura 2 OBTUSÁNGULO                  Figura 3 ACUTÁNGULO 



 

Triángulo Escaleno: todos sus lados y ángulos son desiguales entre sí (figura 6). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 7 

Figura 4                        Figura5       

Figura 6  

 



 

Ahora pasemos a estudiar otros triángulos especiales que se destacan por determinadas características 

y usos: 

Triángulo Sagrado o Perfecto: es el triángulo rectángulo usado por los egipcios para el trazado de las 

pirámides, cuyos lados están en progresión aritmética 3, 4, 5. Actualmente es muy utilizado en 

albañilería para trazar ángulos rectos sin más recursos que una cinta métrica. Se lo conoce como 

Triángulo de Pitágoras o de Plutarco (figura 7). 

 

 

Triángulo Isósceles Áureo: Es un triángulo 

isósceles. Cuy ángulo menor mide 36º, y los 

dos restantes miden, 72º cada uno. Se lo 

encuentra en el pentágono regular estrellado. 

También sirve de base para el desarrollo de 

una espiral logarítmica de crecimiento 

armónico según el número de oro (figura 8). 

 

Triángulo de Price: es un triángulo rectángulo 

cuyos lados están en progresión geométrica. En él, 

la razón entre la hipotenusa y el cateto mayor es 

igual a la razón entre el cateto mayor y el cateto 

menor. Ambos cocientes son iguales a la raíz 

cuadrada del número de oro  (Figura 9). Se lo conoce 

con este nombre, por haber sido Price quién lo 

presentó como característico del semi  perfil de la 

Gran Pirámide. Es el único triángulo cuyos lados 

están en progresión geométrica. 

 

 

 

 

Figura 9 

 

Figura 8. Espiral logarítmica en base a bisectrices 

 



 

 

 

 

...,2721
x

y

y

z =Φ==
 

 

Φ==
n

m

x

z
 

 

2384951 "'°=α  

 

Polígonos regulares 

Un polígono regular es aquel polígono convexo que posee todos sus lados y ángulos interiores 

perimetrales respectivamente iguales entre sí y, además, es inscriptible en una circunferencia. El 

ángulo interior perimetral de un polígono regular vale . Entre los polígonos regulares, estudiaremos 

aquéllos más representativos y usados en arquitectura: 

 

 

 

 

 

 

 

 

 

 

Triángulo      Cuadrado        Pentágono Hexágono    Hexágono         Decágono 

 

 

 

 

 

 

 



 

 

Figura 10 - Pentágono regular y estrella pentámera inscripta

Pentágono regular 

Pasemos a analizar ahora al pentágono regular y la estrella pentámera que se inscribe en él. 

 

 

 

 

 

 

 

 

 

 

 

En el pentágono ABCDE , destacamos el triángulo ECA
Δ

, isósceles, donde α=EĈA  y 

β== AÊCEÂC . 

Pero como el DACECA
ΔΔ

= , también lo son sus ángulos correspondientes: EĈADÂC =  

Considerando ahora el triángulo CBA
Δ

, también isósceles, tenemos las siguientes relaciones entre sus 

respectivos ángulos: 

BÂCEĈA = , por alternos internos entre DABC  , y como BĈABÂC = , también lo son 

α== EĈABĈA    ;   luego, αβ 2=  

Como α  y β  son los ángulos internos de un triángulo, °=+ 1802βα , por lo tanto, °=°= 36
5

180α , y 

como °== 722αβ . 

Por otra parte, los triángulos BAE y BME son iguales, por serlo sus partes correspondientes, lados y ángulos; 

también DMCEMB
ΔΔ

= , por opuestos por el vértice; luego, los triángulos BME  y DMC
Δ

son semejantes y, 

por serlo, sus partes correspondientes son proporcionales entre sí: 



 

 

CM

ME

CD

BE =  (1); pero MECMCEBE +== , por lo tanto: Reemplazando en (1), tenemos: 

.....618,1
CM

ME

ME

MECM ===+ Φ  

 

 “Ahora trataremos la tridimensionalidad para reconocer cómo los poliedros nos acercan un poco más 

al concepto de espacio”. 

 

Los Poliedros en general 

Las configuraciones diédricas están formadas por dos superficies no congruentes vinculadas entre sí 

por medio de una arista. Estas superficies son las caras de la configuración. Si agregamos una nueva 

superficie, no congruente con las anteriores habremos obtenido una figura triédrica. 

De esta manera podemos proseguir en la generación de figuras poliédricas: tetraédricas, pentaédricas, 

hexaédricas, etc., según estén formadas por 4, 5, 6 o más superficies con la sola condición de que no 

sean congruentes entre sí y las aristas que forman cada dos de ellas, concurran todas a un mismo 

punto que llamaremos vértice. Al ángulo formado en la concurrencia de las caras llamaremos 

poliedro.  

El ángulo que forman dos caras consecutivas es el ángulo perimetral interior del poliedro. 

 

Poliedros convexos 

Cuando las caras del poliedro no poseen caras libres, es decir, cuando todas las caras están vinculadas 

por sus lados a sendas caras del poliedro, sin que aparezcan huecos intermedios, el poliedro es 

cerrado. 

Los poliedros cerrados, cuyos ángulos interiores perimetrales son todos inferiores a 180º, son 

llamados también poliedros convexos. 

Existe una variedad infinita de poliedros convexos. Aquí solo estudiaremos aquellos que 

corresponden a ciertas leyes geométricas y sus caras son superficies de curvatura nula en sus dos 

direcciones principales. 

 



 

Poliedros convexos regulares o Platónicos 

Cuando un poliedro está constituido por sólo una familia de polígonos iguales entre sí, reciben el 

nombre de polígonos regulares. Existen sólo cinco poliedros que cumplen esta condición, conocidos 

también como poliedros platónicos (por razones que aquí no vienen al caso). Sólo tres clases de 

polígonos regulares son capaces de formar poliedros regulares: ellos son, el triángulo equilátero, el 

cuadrado regular y el hexágono regular. Los cinco poliedros regulares reciben los nombres de 

tetraedro (4 caras triangulares), cubo (6 caras cuadradas), octaedro (8 caras triangulares, dodecaedro 

(12 caras pentagonales), e icosaedro (20 caras triangulares). Todos, sin excepción, son inscriptibles 

en la esfera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Actividades: 

Partiendo del valor topológico de los poliedros convexos, según Euler, verificar que sólo pueden 

construirse 5 (cinco) poliedros regulares, ni menos, ni más. 

 

Siendo “V”, el vértice, “A” la arista, y “C”, la cara del poliedro, y “v”,  “a” y “c” la cantidad de 

vértices, aristas y caras que lo conforman, aplicando la fórmula de Euler, tendremos: 

2cav =+− (2). 

Por definición, sabemos que a cada arista del poliedro, concurren sólo 2 caras, y cada lado de los 

polígonos que constituyen las caras del poliedro se conecta a través de sus 2 extremos con los 

vértices correspondientes. Quiere decir que, si calculamos la cantidad de aristas del poliedro a 

partir de multiplicar el número de caras por su número de lados (m), estaremos considerando dos 

veces el número real de aristas que posee el poliedro. Lo mismo sucederá si calculamos el número 

de aristas del poliedro a través de multiplicar el número de vértices por la cantidad de aristas (n) 

que concurren a él. 

Esto lo podemos expresar así: a2mc =× ; y a2nv =× ; o, lo que es lo mismo: m

a2
c=

;  y n

a2
v =

. 

Reemplazando en (2) los valores de c  y v , respectivamente, obtenemos:  

2
n

a2
a

m

a2 =+−
; 

Tomando a como factor común en el primer miembro, tenemos: 
2

n

2
1

m

2
a =






 +−

 

Despejamos “a”, y pasamos el término entre paréntesis al segundo miembro: n

2
1

m

2
2

a
+−

=

(3) 

Ahora, pasamos a considerar otro aspecto. Sabemos que para que se produzca un ángulo 

poliédrico, la suma de los ángulos internos perimetrales de los polígonos concurrentes debe ser 

menor a °360 .Sabemos, además, que los ángulos interiores perimetrales de un hexágono miden: 

°−×= 120
n

2n
R2α

, y °=× 3603α , o sea que si utilizamos hexágonos, no podríamos formar un 

ángulo triédrico. Esto nos está dando un límite: el pentágono regular. Como, por otra parte, el 

triángulo es la figura de menor número de lados posible, el valor de m  podrá variar entre 3 y 5. 



 

Considerando ahora la concurrencia a un vértice, tres también es el mínimo número de polígonos 

necesarios para conformar un ángulo poliédrico. Hemos visto que sólo podemos conformar 

ángulos poliédricos con triángulos, cuadrados y pentágonos. Tampoco podríamos hacerlo con 

cuatro cuadrados (sus ángulos concurrentes suman cada uno °90 , lo que sumaría un total de 

°360  en el punto de concurrencia), y mucho menos con cuatro pentágonos. Sí, en cambio, 

podemos adosar cuatro y cinco triángulos regulares. Adosando seis triángulos equiláteros (sus 

ángulos internos miden °60 ) nos llevaría nuevamente a una suma total de °360 . En resumen, el 

valor de n  podrá variar también entre 3 y 5. 

Reemplazando sucesivamente estos valores en (3), podemos construir la siguiente tabla: 

N ° M n v a c POLIEDRO 

1 3 3 4 6 4 TETRAEDRO 

2 4 3 8 12 6 OCTAEDRO 

3 5 3 20 30 12 ICOSAEDRO 

4 3 4 12 30 20 EXAEDRO o CUBO 

5 3 5 12 30 12 DODECAEDRO 

 

  

 

  

     

Poliedros semirregulares o arquimedianos 

 

 

4 

2 1 3 
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Aplicando ciertos mecanismos de transformación, a partir de los poliedros regulares, se obtienen 

otros poliedros, conocidos como semirregulares o arquimedianos, todos inscriptibles en una esfera y 

conformados a partir de polígonos regulares, aunque en este caso, con la participación de dos o más 

de diferente especie. 

Los poliedros semirregulares o arquimedianos se obtienen aplicando dos reglas de transformación 

sobre los poliedros regulares: 

Tomando los puntos medios de las aristas y uniéndolos entre sí. 

Tomando los tercios de las aristas y uniendo estos puntos entre sí. 

Debido a esta división, en cada vértice del poliedro original se formará un nuevo polígono regular de 

tantos lados como caras concurren al vértice. 

El caso del tetraedro es excepcional, puesto que, al aplicarle el primer procedimiento (dividir sus 

aristas por la mitad y uniendo estos puntos entre sí), se obtiene por resultado un octaedro. 

El cubo y el octaedro dan por resultado un mismo poliedro semirregular, denominado en virtud de 

esta situación, el CUBOCTAEDRO (Figura 11), y el dodecaedro y el icosaedro, por su parte, dan 

origen también a un mismo poliedro semirregular, el ICOSADODECAEDRO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Cubo              Cuboctaedro                     Octaedro 

 

POLIEDROS RELACIONADOS 

 



 

Arquimedianos 

 

 

Linqueo a Sitio Web con Imágenes en 3D: 

http://www.georgehart.com/virtual-polyhedra/archimedean-index.html  

 

 



 

Aplicando el primer procedimiento de transformación a estos dos nuevos poliedros, logramos otros 

tantos nuevos semirregulares: el Cuboctaedro da origen al ROMBICUBOCTAEDRO, y el icosaedro, 

al ROMBICOSADODECAEDRO. 

Tomamos ahora un segundo plano, donde figuran, además de los cinco poliedros regulares, los dos 

poliedros semirregulares obtenidos inicialmente, el cuboctaedro y el icosadodecaedro, y sobre ellos 

aplicamos el segundo criterio de transformación, es decir, dividir en tercios sus respectivas aristas, y 

unir entre sí estos puntos, logrando como resultado siete nuevos poliedros semirregulares, cuyos 

nombres resultan de anexarle a sus respectivos nombres el adjetivo “truncado”. 

Mediante un procedimiento que no corresponde a los ya enunciados, obtenemos los últimos dos 

nuevos poliedros semirregulares: el CUBO PLEGADO y el DODECAEDRO PLEGADO. Estos 

nuevos poliedros se construyen rodeando con triángulos regulares cada una de las caras del cubo y del 

dodecaedro, respectivamente. 

El cubo plegado está compuesto por seis caras cuadradas y 32 caras triangulares, y el dodecaedro 

plegado, por su parte, lo constituyen doce caras pentagonales y 80 caras triangulares. 

Para no prolongar la cuestión, en la tabla siguiente se exponen estos poliedros, y los que resultan de 

aplicar el segundo procedimiento, es decir, dividir por tercios las aristas: 

N° Poliedro Base 
División en ½ aristas División en 1/3 aristas 

N° Poliedro N° Poliedro 

1 Tetraedro 3 Octaedro 10 Tetraedro Truncado

2 Hexaedro 6 Cuboctaedro 11 Hexaedro Truncado

6 Octaedro 12 Octaedro Truncado

4 Dodecaedro 7 Icosadodecaedro 13 Dodecaedro Truncado

5 Icosaedro 14 Icosaedro Truncado

6 Cuboctaedro 8 Rombicuboctaedro 15 Cuboctaedro Truncado

7 Icosadodecaedro 9 Rombicosadodecaedro 16 Icosadodecaedro Truncado

17 Cubo Doblemente Truncado - -

18 Dodecaedro Doblemente Truncado - -

 

 

 

 

 



 

 

 

 

        

 

 

 

 

 

 

 

Existen numerosas familias de poliedros, que nombraremos aquí porque en algunas de ellas figuran 

individuos que poseen propiedades de interés para el diseño estructural. 

Si tomamos cualquier polígono y lo utilizamos como base y techo, simultáneamente, y unimos estos 

dos con cuadrados, obtenemos la familia de prismas. Cuando los polígonos que empleamos son todos 

regulares, la familia obtenida será la de los prismas regulares. A esta familia pertenece el exaedro o 

cubo. Resultan de particular interés, además del exaedro, el prisma regular triangular y el hexagonal, 

en razón de que los tres macizan el espacio por simple añadidura de poliedros de la misma especie. 

Si aplicamos este mismo procedimiento, pero en lugar de cuadrados empleamos triángulos, habremos 

conformado una nueva familia, la de los antiprismas. De la misma manera, si los polígonos 

empleados son todos regulares, la nueva familia será la de los antiprismas regulares. A esta familia 

pertenece el octaedro. 

Otra familia de poliedros que resulta de interés es la de los recíprocos, que se forman uniendo entre sí 

los puntos centrales de las caras que conforman el poliedro base. De esta familia, nos interesa, en 

particular, mencionar el dodecaedro rómbico, o rombidodecaedro, recíproco del cuboctaedro, por 

tratarse de un poliedro que maciza el espacio por simple añadidura de poliedros de la misma especie. 

El tetraedro es recíproco de si mismo. 

Podemos mencionar otras familias, como las de los diamantes y diamantoedros, pero no son de 

interés para nuestro trabajo. 

 

 

TETRAEDRO TRUNCADO 

Tomando los tercios de cada arista del poliedro base (tetraedro) y uniendo los nuevos vértices 
obtenidos 



 

El octaedro truncado (semirregular o arquimediano), también es conocido con un nombre un tanto 

estrafalario: tetrakaidecaedro, aunque resulta más cómo mencionarlo con el nombre de su 

descubridor: poliedro de Lord Kelvin (Figura 12). Junto a los ya mencionados, es un poliedro que 

maciza el espacio por simple añadidura de poliedros de la misma especie. 

 

 

 

 

 

 

 

 

 

 

Por último, tomando un tetraedro y adosándole un semioctaedro (o pirámide regular de base 

cuadrada), formamos un nuevo poliedro, conocido con el nombre de zueco irregular, interesante por 

ser el último de los seis poliedros que macizan el espacio por simple añadidura de poliedros de la 

misma especie. Es necesario destacar este caso, pues constituye la base de conformación de las 

estructuras reticuladas espaciales que se utilizan comúnmente para cubrir grandes luces. Además, 

ofrece la alternativa de un trazado en planta triangular, cuadrada o hexagonal. 

Resumiendo, los seis poliedros que macizan el espacio, mencionados precedentemente, son: exaedro 

o cubo, prisma regular triangular, prisma regular hexagonal, poliedro de Lord Kelvin, 

rombidodecaedro y zueco irregular. 

 

 

 

 

 

 

 

 

Figura 12 

 



 

Aquí te acercamos un cuadro para que los recuerdes mejor! 

Composición geométrica de los poliedros 

Poliedros regulares 

Tetraedro – 4 triángulos 

Hexaedro – 6 cuadrados 

Octaedro – 8 triángulos 

Dodecaedro – 12 pentágonos 

Icosaedro – 20 triángulos 

Poliedros semirregulares o arquimedianos (13 miembros) 

Cuboctaedro (8 triángulos + 6 cuadrados)  

Icosadodecaedro (20 triángulos + 8 pentágonos) 

Rombicuboctaedro (8 triángulos + 18 cuadrados) – utilizado en el diseño del nudo 

Rombicosadodecaedro (120 triángulos + 30 cuadrados + 12 pentágonos) 

Tetraedro Truncado (4 hexágonos + 4 triángulos) 

Octaedro truncado (8 hexágonos + 6 cuadrados) – Poliedro de Lord Kelvin 

Cubo Truncado (6 octógonos + 8 triángulos) 

Dodecaedro Truncado (12 pentágonos + 20 triángulos) 

Icosaedro Truncado (20 hexágonos + 12 pentágonos) – utilizado en el diseño de las 

Cuboctaedro Truncado (12 cuadrados + 8 hexágonos + 6 octágonos) 

Icosadodecaedro Truncado (12 pentágonos + 20 hexágonos) 

Cubo Plegado (6 cuadrados + 32 triángulos) 

Dodecaedro Plegado (12 pentágonos + 80 triángulos) 

Prismas regulares (infinitos miembros) 

2 caras poligonales regulares (base y techo)  cuadrados, siendo  el número de lados del 

Otros 

Zueco Irregular (1 cuadrado + 6 triángulos) 

Dodecaedro Rómbico (12 rombos) – recíproco del Cuboctaedro 

 

 

 

 



 

GLOSARIO 

Euler, Leonhard: Matemático suizo, nació el 15 de abril de 1707 en Basilea, Suiza. Hijo de un 

clérigo, cursó estudios en la Universidad de la ciudad con el matemático suizo Johann Bernoulli. A 

pesar de sufrir un grave problema de visión (perdió parcialmente la visión antes de cumplir 30 años y 

se quedó casi ciego al final de su vida), Leonhard Euler realizó contribuciones muy importantes a la 

matemática pura y aplicada. Se le conoce por su tratamiento analítico de las matemáticas y su 

discusión de conceptos del cálculo infinitesimal, pero también por su labor en acústica, mecánica, 

astronomía y óptica. En su Introducción al análisis de los infinitos (1748), realizó el primer 

tratamiento analítico completo del álgebra, la teoría de ecuaciones, la trigonometría y la geometría 

analítica. Trató el desarrollo de series de funciones y formuló la regla por la que sólo las series 

convergentes infinitas pueden ser evaluadas adecuadamente. También abordó las superficies 

tridimensionales y demostró que las secciones cónicas se representan mediante la ecuación general de 

segundo grado en dos dimensiones. Poseedor de una asombrosa facilidad para los números y el raro 

don de realizar mentalmente cálculos de largo alcance. Se recuerda que en una ocasión, cuando dos de 

sus discípulos, al realizar la suma de unas series de diecisiete términos, no estaban de acuerdo con los 

resultados en una unidad de la quincuagésima cifra significativa, se recurrió a Euler, éste repasó el 

cálculo mentalmente, y su decisión resultó ser correcta. Realizó también aportaciones a la 

astronomía, la mecánica, la óptica y la acústica. Entre sus obras más destacadas se encuentran 

Instituciones del cálculo diferencial (1755), Instituciones del cálculo integral (1768-1770) e 

Introducción al álgebra (1770). Regresó a San Petersburgo en 1766, donde murió el 18 de septiembre 

de 1783. 

Línea: sucesión de puntos alineados o no. 

Poliedro: porción de espacio limitada por un volumen cuyas caras son polígonos planos. Sus 

elementos característicos son: caras, aristas y vértices. 

Polígono: porción de plano limitada por una línea poligonal cerrada (serie de segmentos 

concatenados que no se cortan). Un polígono queda determinado por sus lados, que son los segmentos 

de la poligonal, y por sus ángulos, que son los que se forman cada dos lados consecutivos.  

Punto: adimensional (espacio vacío). 

Recta: sucesión de puntos alineados. 

 

 

 



 

“Principios Básicos para el Diseño de las Estructuras” 

1.3. ESTUDIO DE LAS FORMAS 
 

 

“En esta clase estudiaremos las formas en general, 

dedicándonos en particular al análisis de aquéllas 

que, por sus características de constitución 

interna y generación, son las que presentan mayor 

interés como fuentes de inspiración para el diseño 

de estructuras de grandes luces”. 

 

Introducción 
Existe una tendencia que, si bien no es reciente, es bastante joven aún, y consiste en considerar la 

forma como una geometría de ocupación del espacio, sustituyendo así las percepciones sensoriales 

imprecisas, por una más correcta noción de organización o arreglo, en ciertos casos particulares, 

también de medida. 

Observamos así, prescindiendo de la naturaleza misma de las cosas (sean éstas moléculas, átomos, 

electrones, etc.), que resulta mucho más importante el modo en que se arreglan u ordenan estas 

partículas y las características de los conjuntos que las agrupan. 

El estudio de los cristales, por ejemplo, nos muestra la asombrosa riqueza combinatoria que existe en 

esos arreglos, no sólo en el desarrollo de un motivo determinado, sino más aún, en la adaptación a 

ciertas condiciones dadas, a límites establecidos; y, lo que resulta más interesante, cómo se puede, 

además, llegar incluso a modificar dichos arreglos. 

Por otro lado, el binomio interactuante integrado por la geometría ilimitada y la geometría limitada, 

ha sido fuente de gran progreso para las ciencias en general. 

Complementando lo dicho con un ejemplo, las experiencias con sustancias jabonosas denotan esas 

respuestas a que se hace alusión, deduciéndose allí, justamente, que la observación de ciertas 

condiciones límites conducen al campo del dominio del misterio de la forma. 

Ese límite que se da, precisamente, en dos regiones separadas, produce el curioso fenómeno de la 

tensión que engendra la forma sin intervención humana, por el simple juego de fuerzas naturales. 

La explicación del fenómeno es conocida: las moléculas de la superficie, en número más limitado que 

las del seno del líquido, son atraídas hacia el interior, provocando de esta forma una tensión, 



 

manifestada por una especie de piel, simultáneamente delgada y elástica, con una tendencia (en virtud 

de su elasticidad) a formar una superficie tan reducida como sea posible, lo que significa una 

superficie mínima (ley de economía de la sustancia). 

Es este fenómeno al que se debe la formación de pequeñas gotitas, más o menos esféricas, de un 

líquido cualquiera, manifestando cada una de ellas un estado de equilibrio entre un volumen máximo 

para una superficie periférica de película dada. Una experiencia tal demuestra que lo que vulgarmente 

se denomina 'forma’, es la consecuencia de una organización interna, resultante de la atracción que 

han provocado las moléculas que integran el grupo. 

El hábito nos ha insensibilizado ante el milagro del fenómeno sólido y de la paradoja existente entre 

la distribución molecular de un cuerpo y la estabilidad del mismo, que constituye, en realidad, el 

diagrama de equilibrio de las fuerzas internas. 

En una escala infinitamente más compleja se encuentra el fenómeno de la vida, resultado de arreglos 

que responden a la necesidad de un orden dado y prescripto. 

En el curso del presente trabajo se analizarán sistemáticamente las posibles combinaciones y arreglos 

del tipo de las enunciadas. Antes, sin embargo, resulta necesario investigar el campo de referencia del 

'espacio', tal como se lo pretende conocer; si bien nos resulta imposible definirlo correctamente, 

sabemos perfectamente cómo está poblado, ya se trate del  espacio  plano  o  llano  (o  plano  de  

sustentación, de proyección, etc.), o bien de un espacio de tres, cuatro o 'n' dimensiones. 

 

Concepto de Forma 
Una forma es inherente a una determinada cosa. Es aquello que conocemos de la cosa en primera 

instancia. Es así que el primer conocimiento formal que tenemos de una cosa es habitualmente 

sensorial y no inteligente. 

Más adelante tendremos oportunidad de ir conociendo otros aspectos, inclusive con la intervención 

de la razón, que nos dará una noción 'racional' de la cosa. 

Por eso decimos que una forma puede ser 'casual', 'real', 'deseada', pero de todos modos, nuestro 

conocimiento de la misma es subjetivo. Las formas son, para nosotros, visibles, audibles, explorables, 

e incluso gustables y odoras. 

La idea de forma se emplea más frecuentemente en el terreno de lo visible. Esto nos resulta más 

familiar. 

La forma visible, al parecer, se refiere no sólo a cuerpos sólidos, fluidos o gaseosos, sino también a 

los acontecimientos visibles inmateriales, como ser la forma de la luz, etc. Las formas visibles pueden 



 

representarse geométricamente; pueden ser lineales, planas o cúbicas, rectas, curvas o quebradas, etc. 

Conocemos planos abiertos, cerrados, calados, etc. Pero existen también formas en movimiento, que 

acontecen en el tiempo y en el espacio. 

Una forma es, la mayoría de las veces, el fruto de un acontecimiento anticipado. 

 

Generación de las formas 
Para el nacimiento de una forma podemos delimitar tres diferentes campos fundamentales: 

- la naturaleza muerta 

- la naturaleza viva 

- el mundo intelectual 

En el campo de la naturaleza se toman en cuenta formas compuestas de la materia. En el terreno de la 

naturaleza viva dominan el desarrollo y la evolución de las especies. 

La naturaleza muerta es estudiada sistemáticamente desde el comienzo por las ciencias físicas y 

naturales. Con la ayuda de estas ciencias se comienza a descubrir el mundo formal de la materia y su 

evolución, y de allí se deduce la ley orgánica del concepto o visión del mundo. 

La piedra fundamental de su estructura es el átomo. Se conocen hasta ahora muchas de sus 

propiedades, aunque no haya podido precisarse su forma específica. 

Las moléculas tampoco son visibles a simple vista, aunque pueden hacerse visibles gracias a recursos 

especiales (el microscopio electrónico, por ejemplo). Es posible obtener una más estrecha 

conformación de un cuerpo, integrado con moléculas, en las compactas soluciones de las figuras 

geométricas que acusan los cristales. 

La forma compleja de los cuerpos sólidos es ilimitada, aunque no así la máxima dimensión de 

determinada forma, bajo determinadas condiciones. El mundo de las formas de los cuerpos fluidos y 

gaseosos es estrecho y dependiente. 

Las formas en la naturaleza viva indican un cuadro radicalmente opuesto al de la naturaleza muerta. 

Ellas acusan otro mundo diferente dentro de una escala más pequeña, que abarca desde el 

microcosmos orgánico, hasta los más grandes animales y vegetales. 

Las formas de la naturaleza viva corresponden a la de los vegetales, animales y humanos, 

considerados individualmente, o como un todo constituido por los mismos elementos que también 

subsisten en la naturaleza muerta: átomos, moléculas, pero con otra organización. Aquí dominan el 

carbono, el hidrógeno y el oxígeno, acompañados de muchos otros elementos, como el fósforo, el 

silicio, el calcio, etc. 



 

La naturaleza muerta envejece, se transforma. La naturaleza viva, por el contrario, se desarrolla, 

evoluciona. Las formas de la naturaleza viva no presentan un cuadro envejecido, como el polvo de los 

desiertos, por ejemplo, donde todo ha quedado reducido a escombros. 

El cuadro actual de la naturaleza viva es sólo un traslado dentro de un largo desarrollo no acabado, en 

el cual no hay repeticiones. Es un cuadro que no es viejo. 

La naturaleza viva se renueva, salvando los más increíbles obstáculos. 

Mientras para la naturaleza muerta la constitución física de la estructura de los tejidos, las 

propiedades de la materia en reposo y en movimiento y el 'accidente' son formalmente determinados, 

así también, en la naturaleza viva, lo son las leyes del desarrollo. 

La naturaleza viva se sirve de la muerta, siempre que puede. Se sirve de la misma energía y está en 

constante lucha contra sí misma y contra los elementos de la naturaleza muerta. Esta lucha es el 

estímulo del desarrollo. Como vencedor, sobrevive en el tiempo la criatura más capaz. 

El mundo intelectual es, sin lugar a dudas, parte de la naturaleza viva; sin embargo, difieren en su 

mundo formal, ya que se rigen por leyes diferentes. 

 

Concepto de Eficacia 

Todas las criaturas que hoy existen han marchado hasta ahora a través de una más o menos larga 

prueba de eficacia, y cada ser, en el curso de su propia vida, enfrenta una prueba semejante, la que, 

junto con el accidente, decide sobre la propia existencia de los seres. 

Esto se aplica también para el hombre, el cual influye de manera importante a su favor, con razón y 

altruismo (amor a la especie, a la familia, al mundo que lo rodea y a la creación en general), en su 

lucha por la subsistencia. 

Haciendo una grosera interpretación de nuestro cuerpo, diremos que es un conjunto de elementos 

orgánicos y óseos, envueltos en una membrana o piel. 

Los elementos orgánicos constituyen el sector 'vital'. Los huesos el sector 'soportante', y la piel, el 

contorno 'contenedor' de todo aquello. 

Realmente, resulta grotesca esta interpretación tomada así, fríamente. Pero si analizamos las 

funciones de cada sector, veremos que no lo es tanto. Los órganos están coordinados de tal modo que 

la ausencia de uno solo de ellos podría llegar a producir una brecha por donde se escape la vida. Con 

todo, el cuerpo humano es sumamente fuerte y adaptativo,  superando en ciertos casos estas 

'ausencias', produciendo una pequeña metamorfosis imperceptible, y  manteniéndose vivo a pesar de 

aquéllas. 



 

Los huesos sirven de elementos soportantes, y le permiten al cuerpo mantenerse erguido. La piel le 

sirve de agente protector en primera instancia, y también, hasta cierto punto, de contenedor, de 

elemento de cierre, de membrana envolvente. 

Así interpretado nuestro cuerpo, es además un claro ejemplo del equilibrio de estos componentes que 

interaccionan entre sí y dan como respuesta una conformación exterior que nosotros identificamos 

inmediatamente con los sentidos. Esta conformación no es siempre la misma, porque las tensiones 

internas en el cuerpo humano se ven diversificadas por esa fuerza inmensamente superior, que es la 

propia vida, que le transmite una serie de impulsos que le producen transformaciones continuas, que 

se van dando en el tiempo, en sí mismo y en mutaciones propias de la especie. 

Nuestro cuerpo actual difiere del de nuestros primeros padres, y aún de cualquiera de nuestros 

semejantes contemporáneos. Encontramos personas gruesas y delgadas, altas y bajas, etc. ¿Y qué 

mejor ejemplo de transformación, desarrollo y evolución que el de la gestación de un nuevo ser en el 

propio seno de una madre? 

El fenómeno de tensión superficial 

Otro ejemplo, aunque parezca trivial, pero que encierra un inmenso poder de síntesis es la gota de un 

líquido cualquiera, comparada con una masa considerable del mismo líquido. Es necesario que 

derramemos parte de él sobre un plano horizontal para darnos cuenta inmediatamente que el 

comportamiento en ambos casos es totalmente diferente. 

Mientras una pompa de jabón, apoyada sobre una superficie, se mantiene casi esférica (figura 1), 

conservando una gran semejanza con forma de una gota, cuando cae libremente en el espacio (figura 

2), el líquido derramado, en cambio, se desparrama casi totalmente formando una superficie similar a 

un estanque o lago (figura 3). 

Para interpretar este fenómeno conviene que recordemos el concepto de cohesión molecular que 

tienen los fluidos. Las moléculas de un líquido ejercen cierta atracción sobre las demás que la rodean, 

produciendo un curioso fenómeno que pasaremos a verificar. 

 

    Figura 1                                Figura 2            Figura 3 



 

 

La atracción a que hacemos referencia se produce dentro de un campo relativamente pequeño, en 

todas las direcciones y en forma uniforme. Considerando que el punto A (figura 4), representa una 

molécula del interior de un líquido determinado, el campo de influencia de su atracción molecular  

está representado por el círculo 'a', que la rodea (aunque en realidad la forma de este campo se 

aproxima a lo esférico). 

 

Figura 4 

La atracción de la molécula A se ejerce en todas las direcciones. Si la representamos con la forma de 

un pequeño cubo (figura 5), las direcciones de la atracción que ejerce pueden referirse a los tres ejes 

coordenados. Todas las moléculas que rodean a la que estamos considerando serán atraídas por ella, 

con cierta intensidad, que irá disminuyendo a medida que nos acerquemos a los límites de su campo 

de influencia, y será nulo a partir de ese momento. 

 

Figura 5 

 

De esta manera, podemos también decir que las moléculas situadas dentro del campo de influencia de 

aquélla serán atraídas, no así las que se ubiquen fuera de los límites de ese campo (figura 6). Las 

moléculas B, C y D sienten la atracción ejercida por A; en cambio, las moléculas E, F y G ya están 

fuera de su alcance. 



 

 

Figura 6 

No obstante, tanto la molécula A, como las otras (B, C, D, E y F), tienen sus propios campos de 

influencia y, por lo tanto, la atracción que ejercen es mutua. De esta manera tenemos que, aún 

aquéllas que no se encuentran dentro del campo de influencia de la molécula A, lo estarán dentro del 

de algunas que están próximas a A, y el sistema, en un determinado momento, estará totalmente 

integrado (figura 7). El resultado es conocido como 'fenómeno de cohesión molecular'. 

 

 

 

 

 

 

 

 

 

 

Refiriéndonos ahora al límite del líquido en reposo, las moléculas ubicadas en su superficie son 

atraídas por las que se ubican inferiormente, pero sus respectivos campos de influencia trascienden 

aquel límite (figura 8). 

Figura 8 
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Esto produce un desequilibrio en la puja por atraerse mutuamente, ofreciendo una mayor cohesión en 

las moléculas de la superficie del líquido, que las convierte en una especie de piel. 

Si depositamos, en forma horizontal y muy suavemente, una hojita de afeitar sobre la superficie de un 

líquido (agua, por ejemplo), veremos que éste resiste el empuje ejercido  por  el  peso  de  la  hojita,  

impidiendo que aquélla se hunda, permitiéndole flotar libremente sobre la superficie, en un 

imperceptible lecho rehundido, fenómeno que se repite en el caso de un pequeño insecto posado sobre 

la superficie del agua, o cuando un animalito nada en el agua (figuras 9, 10 y 11). 

 

 

       

Figuras 9, 10 y 11 

 

Este extraño fenómeno se conoce con el nombre de 'tensión superficial'. 

La masa del líquido tiene un peso que supera en mucho la capacidad de tensión superficial de su 'piel'. 

Pero si reducimos su volumen de manera considerable, habrá un momento en que la piel será 

suficientemente apta como para contener la masa líquida en su interior. Éste es el caso de la gota. 

Un fuerte impacto producirá una tensión interior tal, que la tensión superficial será superada, y es 

cuando la gota que cae libremente en el espacio, choca contra el plano horizontal, produciéndose un 

fenómeno que conocemos como 'salpicadura', o sea que la gota se descompone en un sinnúmero de 

gotitas más pequeñas. 

La gota es la forma más económica que responde, para cada líquido, a la 'ley de economía de la 

sustancia' y del 'mínimo esfuerzo'. 

Algunas Leyes de Distribución 

Recordemos aquí el Principio de Dirichlet: 'para que el equilibrio de un sistema cerrado sea estable, 

bastará que su energía potencial pase por un mínimo''. La mínima energía potencial para un volumen 

dado corresponde a la superficie mínima compatible con sus vínculos. 



 

A este principio agregamos el enunciado de la ''Ley de Equipartición de la Energía', de Curie: 'un 

cuerpo tiende a adoptar la forma que presente una energía superficial mínima, compatible con las 

fuerzas de orientación'. 

Un ejemplo que aclara estos conceptos lo da la pompa de jabón, cuya forma es la respuesta de 

equilibrio, compatible con las fuerzas de orientación (sabemos que la presión neumática es isótropa, 

es decir, que ejerce su acción en forma uniforme, en todas las direcciones posibles). 

La membrana jabonosa presenta una respuesta más de la tensión superficial, suficientemente apta 

para atender la tensión interna del gas que contiene, adoptando una forma casi esférica, como en el 

ejemplo de la pompa de jabón (figura 12). 

Figura 12  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Unidad Didáctica Nº 1 

 “Principios básicos para el diseño de las estructuras” 

1.5. GEOMETRÍA DE LAS SUPERFICIES 

 

“En esta clase veremos cómo se genera una gran 

variedad de superficies en el espacio con las que 
podremos diseñar estructuras de grandes luces”. 

 

La geometría 

Desde la óptica de la geometría, el “punto” es el elemento básico de toda configuración. 

Un punto que se desplaza, va desarrollando en su recorrido una figura que se conoce como “línea”. 

Asimismo, una línea que se desplaza en sentido contrapuesto al de su generación, desarrolla una 

nueva figura conocida como “superficie”. 

Las líneas difieren sustancialmente unas de otras, según sea el orden en que se produce el 

desplazamiento del punto que les dio origen. Así, desde el alineamiento de todos sus puntos, que da 

como resultado una “recta”, pasamos por otras variantes. En concepto matemático, cualquiera de 

estas líneas se conoce genéricamente como “curva”: circunferencia, elipse, parábola, hipérbola, 

catenaria, etc. que forman parte de una familia infinita de individuos de diversas características. 

Las curvas, en cualquiera de sus puntos, tienen un radio de curvatura (r) cuyo valor está en función 

de la derivada primera y la derivada segunda de la curva en cuestión. En otros términos, en 

cualquier punto de la curva, el radio de curvatura coincide con el radio de su círculo osculatriz. El 

círculo osculatriz y la curva coinciden en ese punto en su derivada primera, es decir, tienen en 

común tres puntos infinitamente próximos, que representan la “pendiente” de ambas curvas en ese  

punto. 

 

Para cada una de ellas podemos calcular el RADIO DE CURVATURA, utilizando: 
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Considerando que el valor del radio es inverso al de la curvatura correspondiente, tenemos: 

 

 

 

 

La curvatura de una curva es el valor inverso del radio de curvatura. Así, si “r” es el radio de 

curvatura de la curva en un punto determinado, el valor de la curvatura (“C”) en ese punto, será: 

 

 

La línea recta, que hemos definido como una “curva cuyos puntos están alineados”, sería, en 

concepto matemático, una curva límite, cuyo radio de curvatura tendría un valor infinito (      ). 

Consecuentemente, al ser la curvatura el valor inverso del radio, y siendo éste de valor infinito, la 

curvatura de una recta tendría valor nulo (C = 0). 

Toda curva divide al plano en dos sectores, uno que es envuelto por la propia curva, y otro que 

queda exterior a la misma. Desde el punto de vista de un observador, si éste se encuentra  dentro del 

espacio envuelto por la curva, estaría viendo la “concavidad” de la curva. Por el contrario, si se 

encuentra “fuera” de ese sector, estaría contemplando la “convexidad” de la curva. El radio de 

curvatura siempre se ubica en el sector cóncavo de la curva. 

De este modo, podemos asignar un valor positivo a uno de los sectores y negativo al otro. Así, el 

radio de curvatura tendrá un valor positivo o negativo, según sea la convención que hayamos 

adoptado. Asimismo, la curvatura tendrá el mismo signo que se le haya asignado al radio de 

curvatura. Esto resulta importante tener presente cuando estudiemos la condición de “doble 

curvatura” de las superficies, y calculemos el valor de su “curvatura total”. 

La línea recta sería una excepción en este análisis, pues, si bien también divide al plano en dos 

sectores, ambos tienen iguales características, y no existe la posibilidad de que alguno de ellos sea 

“envuelto” por la recta. La concavidad y convexidad es una propiedad de las curvas con valor de 

curvatura real, y siendo que la recta tiene valor nulo de curvatura, carece de concavidad o 

convexidad. 
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Conceptos de Curvatura y de Radio de Curvatura 

Una superficie se define geométricamente en dos direcciones o sentidos y para definir su 

CURVATURA TOTAL se debe hallar la curvatura de ambas direcciones principales. 

En un punto 

cualquiera “A” de una línea, existe uno y sólo un radio “R”, correspondiente a dicha línea en ese 

punto. En toda línea, a excepción de la recta y la circunferencia (como veremos más adelante), la 

curvatura varía en cada punto de dicha línea. Tanto en la circunferencia como en la recta, el valor de 

sus respectivas curvaturas es constante en cualquier punto de las mismas. Como ya sabemos, el 

radio de curvatura de la recta tiene valor infinito en cualquier punto de dicha recta. 

Con respecto a la circunferencia, recurrimos a su definición geométrica: “lugar geométrico de todos 

los puntos que equidistan de otro, llamado “centro”. En otras palabras, la circunferencia es una 

curva que se desarrolla alrededor de un punto, centro de la misma, y consecuentemente, según un 

radio común y constante. 

 

Generación de superficies 

Cuando las líneas se desplazan en el espacio, desarrollan en 

su recorrido determinadas superficies, cuyas características 

están relacionadas con dicho desplazamiento. 

Para esto, vemos que la línea que se desplaza está 

generando la superficie en cuestión, y de allí recibe su nombre: “GENERATRIZ”. 

Ese desplazamiento sigue una dirección determinada, que le establece otra línea, llamada por esto 

“DIRECTRIZ”. 

 

 

  

                    

          Figura 1                                    Figura 2 



  

 

 

Concepto de cóncavo y convexo 

En toda superficie envolvente, concavidad es el espacio que encierra al observador; es decir, es 

aquel espacio en cuyo interior se encuentra el observador. Al contrario, cuando el observador se 

encuentra fuera de ese espacio, éste recibe el nombre de convexidad. 

 

 

 

 

 

 

 

Direcciones principales de una superficie 

Dado que, por definición, una superficie se construye a partir de dos líneas que se cruzan en un 

punto a 90°, determinando cada una de ellas una curvatura en particular, consideramos a toda 

superficie como de doble curvatura, una por cada dirección dada por la generatriz y la directriz, 

respectivamente. Decimos que éstas representan las direcciones principales de la superficie. 

Tendremos casos de excepción cuando entremos a considerar estas mismas superficies en el 

capítulo dedicado a las estructuras, donde las direcciones principales ya no estarán dadas por la 

generatriz y la directriz de la superficie, sino por aquéllas donde se localicen las tensiones máximas 

de trabajo (esto se da, por ejemplo, en el caso de las estructuras laminares; ver: E-III_U.1.6 - 

CLASIFICACIÓN DE LAS ESTRUCTURAS). 

Considerada de esta forma la superficie de doble curvatura, podemos decir también que, dado un 

punto cualquiera de la misma, si trazamos un plano π  tangente a la superficie (Figura 5), por el 

punto considerado pasan infinitos planos α normales a π que cortan a la superficie dada y cuya 

intersección son líneas curvas. 

De estos infinitos planos existen sólo dos, también normales entre sí, que identificaremos como los 

“PLANOS PRINCIPALES” por ser los que determinan las “CURVAS PRINCIPALES” de la 

superficie en su intersección con ella. 

 

 

  



  

 

 

 

Tenemos así dos direcciones 

principales. Debido a esta condición 

de doble direccionalidad, en función 

de las dos direcciones principales, 

decimos que todas las superficies son 

de doble curvatura, y es en ese 

sentido que las analizamos. 

 

 

 

 

 

 

 

 

 “Considerada la superficie en cuestión desde el punto 

de vista estructural, las curvas principales coincidirán 
con la dirección de las tensiones máximas” 
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En toda superficie se presentan tres casos posibles, según sus direcciones principales 

Cuando una o ambas líneas son rectas. 

Con concavidades coincidentes (curvatura coincidente). 

Con concavidades opuestas. 

Como primer paso, asignamos un valor (positivo y negativo, respectivamente) a cada sector en que 

la superficie divide al espacio, determinando de este modo la concavidad y convexidad respectiva. 

En la figura 6: “c” y “d” son, respectivamente, los radios de “a” y “b”. En una superficie de forma 

esférica tenemos igual radio para “a” y para “b”, lo que, en 

otras palabras, significa que tenemos un solo radio. 

En el primer caso (1), los radios están en el mismo sector en 

que la superficie dividió al espacio: 

Ca (+); Cb (+) 

Ca  (-); Cb  (-) 

En el segundo caso (2), los radios están en espacios 

opuestos:  

Ca (+); Cb (-) 

Ca  (-); Cb (+) 

En el tercer caso (3), una o ambas curvaturas es una recta:  

Ca = 0; Cb (“+” ó “-”); o también, 

Ca = 0; Cb = 0 

 

Curvatura Media 

Llamamos curvatura media (CM) de una superficie a la semisuma de las curvaturas de sus 

direcciones principales, en un punto determinado de dicha superficie. 

  

 

 

 

 

 

  

 



  

 

 

ba CCCT ×=

Curvatura Total  

Llamamos curvatura total (CT) de una superficie al producto de las 

curvaturas de sus direcciones principales, en un punto determinado de dicha 

superficie. 

  

 

Consecuentemente, podemos a partir del concepto de curvatura total, determinar tres tipos de 

superficie, según su curvatura total: 

El primer caso visto (1), determina superficies de curvatura total NULA 

CT = Ca (0) x Cb (“+” ó “-”) = 0 ; o también 

CT = Ca (0) x Cb (0) = 0 

El segundo caso visto (2), determina superficies de curvatura total POSITIVA 

CT = Ca (“+”) x Cb (“+”) > 0 

CT = Ca (“-”) x Cb (“-”) > 0 

El tercer caso visto (3), determina superficies de curvatura total NEGATIVA 

CT = Ca (“+”) x Cb (“-”) < 0 

CT = Ca (“-”) x Cb (“+”) < 0 

 

Desplazamientos que generan superficies: 

TRASLACIÓN - ROTACIÓN 

(Simples o Combinados) 

Superficies de traslación y de rotación 

Partiendo de una generatriz, que puede ser una recta 

o una curva, se construyen superficies por traslación 

(según una directriz) o rotación (alrededor de un eje) 

de dichas líneas. Dichas superficies se logran 

haciendo todas las combinaciones posibles según 

directrices que también pueden ser rectas o curvas. 

 

Figura 7 

 



  

 

 

Sabemos que las superficies pueden ser generadas por rectas y por curvas. Cuando en la generación 

de una superficie participan rectas, decimos que la superficie es reglada. Cuando en la generación 

de la superficie participan sólo curvas, la superficie es llamada no reglada.  

Dos rectas que se cortan en un punto, o son paralelas entre sí, son rectas coplanares, es decir, 

pertenecen al mismo plano. Cuando dos rectas que se cruzan en el espacio no son concurrentes, ni 

paralelas entre sí, son rectas alabeadas, es decir, pertenecen a planos diferentes. Cuando las rectas 

que generan la superficie son coplanares, la superficie es Desarrollable1. En el otro caso, tanto si 

las rectas que generan la superficie son alabeadas, como cuando es una superficie generada 

exclusivamente por curvas, la superficie es no desarrollable. Esto significa que, si queremos 

extender la superficie sobre un plano, sólo podríamos hacerlo desgarrando la superficie, o 

estirándola, como si fuera de goma. Esto se verifica en el caso de un planisferio, en el que se tuvo 

que deformar los territorios cercanos a los polos, para lograr que su extensión sea adecuada a la del 

Ecuador. 

Repasando lo expresado precedentemente, una superficie puede generarse de varias maneras, tanto 

por traslación como por rotación, según la combinación que se haga con la generatriz y la directriz: 

Veamos algunos ejemplos 

Superficies de Curvatura Total Nula ( )0CT =  

Cuando una generatriz recta se traslada sobre una directriz recta genera una superficie plana 

desarrollable, y cuando lo hace sobre una directriz curva, o también cuando una generatriz curva se 

desplaza sobre una directriz recta, generan una superficie cilíndrica desarrollable. 

Cuando una generatriz recta rota alrededor de un eje (directriz) manteniéndose paralela al eje, a una 

distancia constante, se conforma una superficie cilíndrica (superficie de rotación desarrollable). La 

superficie también puede generarse si la generatriz es una circunferencia que se traslada a lo largo 

de una directriz recta, manteniéndose en un plano normal a la directriz. En este caso podemos decir 

que la superficie puede ser tanto de rotación como de traslación. Figuras 8a y 8b. 

 

 

 



  

 

 

                                                

 

Cuando una generatriz recta se desplaza rotando alrededor de un eje con un punto común al eje, la 

superficie se denomina cónica (superficie de rotación desarrollable. Figura 9). 

 

 

 

 

 

 

 

 

Como se sabe, el cono es un cuerpo geométrico que puede ser generado por una línea recta que  se 

traslada por una circunferencia con un punto en común con el eje, y también puede ser generado por 

un triángulo rectángulo que gira en torno a uno de sus catetos. Cono CT = 0 

Figura 9 

 

 

                      Figura 8a                                                Figura 8b 



  

 

 

  

 

Para ver esta figura en 3D ingresá a: 

http://www.cidse.itcr.ac.cr/cursos-linea//MATEGENERAL/t5-

geometria/Geometria/software/cono.html 

Pero recuerda que para ver este tipo 

de archivos necesitas tener 

Plataforma JAVA. Para obtener más 
información sobre Java y examinar 

algunas buenas aplicaciones de Java, 

visite http://www.java.com  

 

Si analizamos su Curvatura total, veremos que:  

 

 

 

 

 

 

 

                                                    

Figura 10. – Superficie reglada 
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Superficies de Curvatura Total Positiva ( )0CT 〉  

Se dice que una superficie es de curvatura total POSITIVA cuando ambas secciones principales son 

líneas curvas cuyos radios de curvatura están ubicados de un mismo lado de la superficie. Son 

siempre No Desarrollables y No Regladas. 

Las superficies de Curvatura Total Positiva se generan de variadas formas, pero consideraremos a 

modo de ejemplo sólo una: 

Cuando una Generatriz curva se traslada sobre una Directriz también curva, ambas contenidas en 

planos normales entre sí. Cuando ambas curvas son parábolas, la superficie resultante recibe el 

nombre de PARABOLOIDE ELÍPTICO, por ser una elipse la traza que determina un plano normal 

a los otros dos que corta a la superficie (Figura 14). 

 

 

 

 

 

 

 

En general, todas las superficies de rotación, cuando la generatriz es una curva. Salvo la esfera, en 

el resto de las superficies, el nombre de la curva generatriz da el nombre a la superficie: elipse = 

ELIPSOIDE DE REVOLUCIÓN, parábola = PARABOLOIDE DE REVOLUCIÓN, catenaria = 

CATENOIDE DE REVOLUCIÓN, hipérbola = HIPERBOLOIDE DE UNA HOJA o 

HIPERBOLOIDE DE DOS HOJAS (aquí se produce esta variante puesto que se trata de una curva 

de dos capas, y según sea el eje de rotación, resulta en un sentido un Hiperboloide de Una Hoja, y 

en el otro, un Hiperboloide de Dos Hojas. El Hiperboloide de Una Hoja también se genera a partir 

de una generatriz recta que gira alrededor de un eje, con el cual guarda un alabeo, manteniéndose en 

su recorrido a una distancia constante del eje (Figuras 18 a 19). 

Las superficies de curvatura total positiva son NO DESARROLLABLES por cuanto no pueden 

extenderse en el plano. 
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En estas superficies la curvatura total será siempre positiva porque las curvaturas en ambas 

direcciones son coincidentes y por lo tanto los radios de curvatura tendrán el mismo signo: 

 

 

¡Error! Marcador no definido. 

 

Al ser ambas curvaturas simultáneamente positivas o negativas, la curvatura total será siempre  

       

 Figura 15   Figura 16   Figura 17 

    

 

Figura 18. Hiperboloide de Una Hoja - Planta y Perspectivas – Generación por rectas. 



  

 

 

 

 

POSITIVA . 

 

 

 

 

 

 

 

 

 

 

 

 

Existe un caso especial de superficie de rotación donde se da simultáneamente un movimiento de 

traslación, es decir, el movimiento total de la generatriz es de rotación traslatoria, o traslación 

rotatoria. Es el caso de la HELICOIDE (Figura 20 a, b, c). 

 

 

 

 

 

 

 

 

 

 

Figura 19. Hiperboloide de Una Hoja – Generación por curvas. 

 

 

 

  

Figura 20a.  Como se genera un Helicoide                        Figura 20b. Escalera caracol 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

Si querés ver algunas animaciones de cómo se 
generan superficies helicoidales abrí los archivos 

 “06_Anm_helicoide_cilindrica.gif” 

(que es una helicoide que se genera dentro de un 
cilindro); ó 

 “06_Anm_helicoide_conica” 

(helicoide que se genera dentro de un cono), y 

 “06_Anm_helicoide_esferica” 

(helicoide que se genera dentro de una esfera).  

           

   

 

  

    Figura 20c. Helicoide 



  

 

 

Superficies de Curvatura Total Negativa ( )0CT 〉  

Se dice que una superficie es de Curvatura Total Negativa cuando ambas direcciones principales 

son líneas curvas cuyos radios de curvatura están ubicados a ambos lados de la superficie, 

respectivamente, es decir, están en diferentes espacios. 

Al ser opuestas ambas curvaturas, sus radios serán de signo contrario y, por lo tanto, la Curvatura 

Total será NEGATIVA. 

CT = (+) C1 x C2 = - (< 0) 

Las superficies de Curvatura Total Negativa son siempre NO DESARROLLABLES, porque al 

igual que las de Curvatura Total Positiva, no pueden extenderse en el plano. 

La generación de superficies de Curvatura Total Negativa se puede lograr por Traslación y por 

Rotación, de variadas maneras: 

Por la traslación de una curva generatriz sobre una directriz también curva, cuyas curvaturas sean 

opuestas, y están contenidas en planos normales entre sí, y con sus ejes paramétricos paralelos 

entre sí. En el caso particular cuando estas curvas son parábolas, la superficie resultante recibe el 

nombre de Paraboloide Hiperbólico. El Paraboloide Hiperbólico es un caso particular de superficie 

de curvatura total negativa Reglada No Desarrollable, por cuanto también se la puede generar 

mediante una recta Generatriz apoyada en otras dos rectas alabeadas que son las Directrices de la 

superficie que generan. Existe un punto en la superficie en el que el vértice de la parábola directriz 

coincide con el vértice de la parábola generatriz. La superficie se identifica como hiperbólica 

porque al ser intersectada por un plano horizontal por encima o por debajo de dicho punto, se 

determina una hipérbola. En el caso en que este plano corte a la superficie en ese mismo punto, la 

traza resultante serán dos rectas, que representan las asíntotas de la hipérbola. 

 

 

 

 

 

 

  

Figura 21a. Paraboloide Hiperbólico – Radios, Parábolas y Asíntotas 



  

 

 

 

 

 

 

 

 

 

 

 

 Por la traslación de una parábola Generatriz que se traslada sobre otra parábola Directriz 

contenidas en planos normales entre sí, de tal forma que sus ejes paramétricos también lo son. 

La superficie así generada recibe el nombre de PARABOLOIDE PARABÓLICO, porque 

cualquier plano que sea normal a los dos que contienen a ambas curvas corta a la superficie 

según una parábola. Esta superficie tiene la particularidad de poseer curvatura total negativa en 

un sector, y curvatura total positiva en el otro, produciéndose la inversión en un punto 

intermedio. 

 

 

 

 

 

 

 

“Como ves, los medios digitales tienen un 

lenguaje especial que nos ayuda a ver mejor la 

geometría y los espacios !!!” 

 

 

Figura 21b -Parábolas Principales 

 

Figura 22 



  

 

 

GLOSARIO 

 

Alabeadas: son las rectas que se cruzan en el espacio sin tener un punto en común ni ser paralelas 

entre sí, es decir, pertenecen a planos diferentes. 

Asíntotas: línea recta asociada con una curva, que tiene la propiedad de que si un punto se mueve a 

lo largo de la curva hacia infinito, la distancia del punto a la recta tiende a cero.  

Cóncavo: espacio en el que se encuentra el observador y que lo envuelve. 

Convexo: espacio el observador se encuentra fuera del que envuelve la superficie. 

Coplanares: dos rectas que pertenecen a un mismo plano (pueden ser paralelas o dos que se 

cortan), por ende las No Coplanares: dos rectas que no pertenecen a un mismo plano (no son 

paralelas ni concurrentes en un punto y pueden intersectarse).  

Curva: sucesión de puntos no alineados. 

Desarrollable: es la superficie que generada por rectas coplanares. 

Directriz: es la línea que dirige el movimiento de la generatriz. 

Generatriz: es la línea que genera una superficie en su recorrido. 

 No desarrollable: es la superficie que requiere cortes para ser extendida en un plano.  

Reglada: es una superficie que se genera por líneas rectas coplanares y que generalmente es 

desarrollable, por ende las superficies que no son conformadas por retas se denominan No 

Regladas. 

Superficie: es una figura generada por una línea que se desplaza en sentido diferente al de su 

generación. Puede ser generada por rectas (reglada) y por curvas (no regladas).  

Parámetro: distancia desde el vértice de una curva al centro de ejes coordenados que la contienen. 

Eje paramétrico: coordenada donde se ubica el parámetro de una curva. 

Eje no paramétrico: coordenada normal al eje paramétrico. 

 



 

 “Principios básicos para el diseño de las estructuras” 

1.4. LEYES DE EQUIPARTICIÓN DEL ESPACIO 
 

 

 

“En esta clase veremos las leyes de equipartición 
del espacio con el objetivo de poder resolver 

problemas complejos en el diseño de los espacios 
arquitectónicos”. 

 

Tramas 
Las tramas son particiones del espacio que surgen de la combinación armónica de puntos (P), líneas 

(L) y regiones (R) destinadas a compactar dicho espacio. 

Pueden ser: 1. REGULARES – ej.: alambre, redes, etc. 

  2. IRREGULARES – ej.: mapa 

  3. AMORFAS – ej.: ovillo de lana 

Las que nos interesan son las regulares planas (bidimensionales) que se generan a partir de polígonos 

regulares y las regulares espaciales (tridimensionales) que se generan a partir de poliedros regulares y 

semirregulares o arquimedianos. 

Para lograr compactaciones del plano a partir de polígonos regulares es necesario que exista 

“coincidencia angular”. 

 

Coincidencia angular: hay coincidencia angular en un vértice, cuando la suma de los ángulos 

interiores periféricos de los polígonos concurrentes a dicho vértice es 360°. 

 

- Bidimensionales o planas 
- Tridimensionales o espaciales 



 

De esto se deduce que solo los polígonos regulares cuyo ángulo en el vértice es un submúltiplo de 

360° pueden satisfacer dicha condición, y obtenemos los ángulos de 60° (correspondiente al triángulo 

equilátero), de 90° (correspondiente al cuadrado) de 120° correspondiente al hexágono. 

Hay innumerables ejemplos de tramas o redes hexagonales en la naturaleza (tejidos celulares vivos, 

ojo de la mosca, colonias de madréporas, etc.). 

El contorno hexagonal, entre los 3 polígonos regulares que particionan el plano, es el que más se 

acerca al círculo y da por consiguiente, el máximo de superficie (o el mínimo de perímetro de cierre) 

compatible con las demás condiciones del sistema. 

Para que una trama sea extensible la coincidencia angular debe repetirse en los demás vértices. 

Existen 17 coincidencias angulares pero sólo mostraremos las que compactan el plano (es decir la 

coincidencia se hace extensible a los demás vértices). 

Nómina de tramas bidimensionales 

6 Triángulos 

4 Cuadrados 

3 Hexágonos 

3 Triángulos y 2 Cuadrados (2 variantes) 

2 Triángulos y 2 Hexágonos 

4 Triángulos y 1 Hexágono 

1 Triángulo y 2 Dodecágonos 

1 Cuadrado y 2 Octágonos 

1 Triángulo, 2 Cuadrados y 1 Hexágono 

1 Cuadrado, 1 Hexágono y 1 Dodecágono 

2 Triángulos, 1 Cuadrado y 1 Dodecágono 

1 Triángulo, 1 Heptágono y 1 Polígono de 42 lados 

1 Triángulo, 1 Octágono y 1 Polígono de 24 lados 

1 Triángulo, 1 Monágono y 1 Polígono de 18 lados 

1 Triángulo, 1 Decágono y 1 Polígono de 15 lados 

1 Triángulo y 2 Dodecágonos 

1 Cuadrado, 1 Pentágono y 1 Polígono de 20 lados. 

 



 

 

      1. Trama triangular                    2. Trama cuadrangular          3. Trama hexagonal 

 

 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tramas tridimensionales. 
Se generan tramas tridimensionales a partir de poliedros regulares, semirregulares o arquimedianos. 

El espacio es en potencia una estructura y desde ese punto de vista es posible estudiar las formas de 

compartimentarlo a partir de organizaciones en que sus partes son divisores iguales en todas 

direcciones. 

Las compartimentaciones del espacio que interesan son las que se generan a partir de poliedros de la 

misma especie o de combinaciones de poliedros entre sí que macizan el espacio totalmente (lo llenan 

sin dejar huecos). 

 

 

 

 

 

 



 

Nómina de equiparticiones tridimensionales con poliedros 

Unimembres 

Hexaedro (cubo) 

Poliedro de Kelvin (octaedro truncado) 

Prisma Triangular 

Prisma Hexagonal 

Dodecaedro Rómbico (recíproco del cuboctaedro) 

Zueco Irregular 

Bimembres 

Tetraedro (2) y Octaedro (1) 

Tetraedro Truncado (1) y Tetraedro (1) 

Hexaedro Truncado (1) y Octaedro (1) 

Cuboctaedro (1) y Octaedro (1) 

Cuboctaedro Truncado (1) y Prisma Octogonal (3) 

Prisma Triangular (2/2) y Hexaedro (1/1) 

Prisma Triangular (2/8) y Prisma Hexagonal (1/1) 

Prisma Triangular (2) y Prisma Dodecagonal (1) 

Hexaedro (1) y Prisma Octogonal (1) 

Trimembres 

Cuboctaedro (1), Octaedro Truncado (1) y Tetraedro Truncado (2) 

Rombicuboctaedro (1), Tetraedro (2) y Hexaedro (1) 

Rombicuboctaedro (1), Cuboctaedro (1) y Hexaedro (3) 

Cuboctaedro Truncado (1), Octaedro Truncado (1) y Hexaedro (3) 

Hexaedro Truncado (1), Cuboctaedro Truncado (1) y Tetraedro Truncado (2) 

Prisma Triangular (12), Hexaedro (3) y Prisma Dodecagonal (1) 

Prisma Triangular (2), Hexaedro (3) y Prisma Hexagonal (1) 

Hexaedro (3), Prisma Hexagonal (2) y Prisma Dodecagonal (1) 

Tetramembres 

Hexaedro Truncado (1), Prisma Octogonal (3), Rombicuboctaedro (1) y Hexaedro (3) 

Cuboctaedro (1), Dodecaedro (1), Prisma Triangular (1) y Prisma Dodecagonal (1) 

 

 

 



 

Módulo básico de crecimiento armónico 

Los módulos básicos de crecimiento armónico se generan a partir de una combinación de poliedros de 

la misma especie (unimembres), o de distinta especie (bimembres, trimembres o tetramembres), que 

conforman un MÓDULO espacial que en su crecimiento es capaz de saturar el espacio sin dejar 

intersticios. 

A continuación ejemplificamos 2 módulos básicos de crecimiento y la aplicación en ellos del Número 

de EULER para configuraciones de tres dimensiones: 

Suma de medio Octaedro o Pirámide de Base Cuadrada y 1 Tetraedro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

“Principios Básicos para el Diseño de las Estructuras” 

1.6. CLASIFICACIÓN DE LAS ESTRUCTURAS 
 

 

“Aquí veremos las características que identifican 

a las distintas tipologías estructurales, según 

diferentes criterios comparativos y clasificatorios, 

con referencia especial a las Estructuras de 

Grandes Luces”.  

Clasificación de las Superficies 
Antes de entrar al estudio de las estructuras en general, hagamos un repaso de cómo se generan las 
superficies que darán lugar a dichas estructuras. 

 

Acordate que lo escrito en azul y subrayado 

siempre te permite conectarte a otro sitio 

ampliatorio o con alguna imagen aclaratoria. 

MOVIMIENTO GENERATRIZ DIRECTRIZ SUPERFICIE DESPLAZAMIENTO REGLADA DESARROLLABLE 

TRASLACIÓN 

UNA RECTA 

UNA RECTA PLANA PARALELO SI SI 

DOS RECTAS 
ALABEADAS 

PARABOLOIDE 
HIPERBÓLICO (1) ALABEADO SI NO 

UNA CURVA CILÍNDRICA (2) PARALELO SI SI 

UNA CURVA Y 
UN PUNTO 

CÓNICA (3) 
CONCURRENTE EN 

EL PUNTO 
SI SI 

UNA PARÁBOLA 
UNA 

PARÁBOLA 

PARABOLOIDE 
HIPERBÓLICO (1) PARALELO SI NO 

PARABOLOIDE 
ELÍPTICO (4) 

PARALELO NO NO 
PARABOLOIDE 

PARABÓLICO (5) PARALELO NO NO 

ROTACIÓN 

UNA RECTA 

UN EJE RECTO CILÍNDRICA (2) PARALELO SI SI 

UN EJE RECTO 
Y UN PUNTO 

CÓNICA (3) 
CONCURRENTE EN 

EL PUNTO 
SI SI 

UN EJE RECTO HIPERBOLOIDE 
DE UNA HOJA (6) 

ALABEADO SI NO 

UNA HIPÉRBOLA 
SU EJE NO 

PARAMÉTRICO 
HIPERBOLOIDE 
DE UNA HOJA GIRATORIO SI NO 

UNA 
CIRCUNFERENCIA 

SU EJE ESFERA GIRATORIO NO NO 
UNA 

CIRCUNFERENCIA 
UN EJE 

EXTERNO 
TORO GIRATORIO NO NO 

UNA ELIPSE SU EJE 
ELIPSOIDE DE 
REVOLUCIÓN GIRATORIO NO NO 

UNA PARÁBOLA SU EJE 
PARABOLOIDE 

DE REVOLUCIÓN 
GIRATORIO NO NO 

UNA CATENARIA SU EJE 
CATENOIDE DE 
REVOLUCIÓN GIRATORIO NO NO 

UNA HIPÉRBOLA 
SU EJE 

PARAMÉTRICO 
HIPERBOLOIDE 
DE DOS HOJAS 

GIRATORIO NO NO 

ROTACIÓN Y 
TRASLACIÓN UNA RECTA UN EJE RECTO HELICOIDE  

ROTATORIO 
TRASLATORIO SI NO 



 

Clasificación de las Estructuras 
Cuando nos disponemos a establecer una clasificación de las estructuras en general, podemos hacerlo 

desde cuatro puntos de vista, o conceptos, no excluyentes entre sí: 

1. Por la conformación externa. 

2. Por los elementos resistentes constitutivos. 

3. Por los esfuerzos internos dominantes. 

4. Por las condiciones de vínculo. 

Antes de considerar en particular cada uno de éstos, recordemos el concepto de ESTRUCTURA: 

“Conjunto de elementos resistentes que accionan y reaccionan entre sí,  en forma 
mancomunada, bajo el efecto de una fuerza exterior al sistema”. 

También repasemos el concepto de ELEMENTO RESISTENTE: 

“Todo elemento capaz de oponer una reacción al efecto de cualquier fuerza 
externa que actúe sobre él (principio de acción y reacción)”. 

Para una mejor y más acertada clasificación de las estructuras, destacamos previamente la diferencia 

que existe entre las partes y el todo: 

 En razón del concepto de estructura, y de acuerdo a la definición de elemento resistente, vemos 

que toda parte de una estructura, o elemento resistente que la compone constituye, en sí mismo, 

una estructura (vigas, columnas, losas, etc.). 

 Por otra parte, independientemente del comportamiento particular de cada una de las partes que 

componen una estructura, el conjunto de estas partes o componentes estructurales, pasa a 

comportarse como una unidad, y la estructura así constituida se comporta como un ELEMENTO 

RESISTENTE, más complejo, que llamaremos SISTEMA. Cada elemento resistente 

perteneciente a este sistema pasa a ser un SUBSISTEMA del mismo. 

De este modo, distinguimos al elemento resistente básico del sistema estructural, que es un conjunto 

de elementos resistentes. 

Para hacer una clasificación de los elementos resistentes hacemos una consideración de los mismos 

desde dos conceptos: una desde el punto de vista geométrico, el otro teniendo en cuenta su calidad 

resistente. Aquí, considerar la calidad y no la capacidad, tiene sentido, como veremos a continuación: 

a. Por su condición geométrica, clasificamos al elemento según sea lineal (una dimensión), o 

superficial (dos dimensiones). 



 

b. Por su calidad resistente: el elemento puede ser rígido (resiste la acción de fuerzas externas 

manteniendo su forma), o no rígido (resiste la acción de fuerzas externas adoptando formas 

compatibles con la orientación de las mismas). 

 

Haciendo una combinación de todos los conceptos precedentes, estamos en condiciones de realizar la 
siguiente clasificación de las estructuras: 

 

1. Por sus elementos resistentes 

a. Sistemas 

Estructurales Discontinuos (lineales) 

 Estructuras rígidas (barras) 

 Estructuras no rígidas (tensores) 

b. Sistemas 

Estructurales Continuos (superficiales) 

 Estructuras rígidas (cáscaras o láminas)

 Estructuras no rígidas (membranas) 

2. Por los esfuerzos internos dominantes 

a. Estructuras de Tracción Pura 

b. Estructuras de Compresión Pura 

c. Estructuras de Flexión: Simple o Compuesta 

3. Por sus condiciones de vínculo 

d. Estructuras Isostáticas 

e. Estructuras Hiperestáticas 

 

La clasificación que proponemos, y vamos a analizar a continuación, se basa en una integración de 

todos estos conceptos. 

Primeramente, veamos qué pasa cuando consideramos a las estructuras según sus elementos 

constitutivos. 

Para ello, tenemos en cuenta, ante todo, los elementos resistentes que las conforman, para formar el 

cuadro siguiente: 

1. Sistemas Lineales Rígidos: el elemento resistente lineal rígido recibe el nombre de barra 

(aunque también suele conocerse por el nombre que lo identifica según su comportamiento 

estructural: viga, columna, arco, etc.). Los materiales aptos para este fin, son aquellos de 

caracteres rígidos: madera, metales, hormigón armado, etc. 

2. Sistemas Lineales No Rígidos: el elemento resistente lineal no rígido recibe el nombre de tensor. 

Los materiales aptos son: cables, sogas, cadenas, etc. 



 

3. Sistemas Superficiales Rígidos: el elemento resistente es la lámina, también llamada cáscara. 

Los materiales aptos son: madera, metales, plásticos, hormigón armado, etc. 

4. Sistemas Superficiales No Rígidos: el elemento resistente superficial no rígido recibe el nombre 

de membrana. Los materiales aptos son: lonas, tejidos densos, láminas sintéticas no rígidas, 

poliéster, etc.). No entran es esta clasificación las redes y las mallas abiertas, que corresponden al 

primer sistema, por tratarse de conjuntos de elementos lineales no rígidos. 

También podemos agrupar los dos primeros sistemas en una sola familia, considerándolos como 

Sistemas Discontinuos, y del mismo modo, los dos siguientes (el 3 y el 4), como Sistemas Continuos. 

Por otro lado, estableciendo una relación entre las capacidades resistentes de estos grupos, los 

podemos agrupar de esta otra manera: 

1. Estructuras de Tracción Pura: agrupa a los dos sistemas de estructuras no rígidas de tensores y 

de membranas (cubiertas colgantes y estructuras neumáticas). 

2. Estructuras de Compresión Pura: agrupa algunos tipos estructurales basados en el uso de 

barras y algunos casos de estructuras laminares o de cáscara (columnas, arcos y cúpulas). 

3. Estructuras de Flexión (Simple y Compuesta): agrupa a estructuras que se desarrollan con 

elementos rígidos, y generalmente, son lineales. Las estructuras laminares son una combinación 

de esfuerzos de tracción y de compresión (losas, vigas, bases, pórticos, etc.). 

Es este estado de cosas, vemos la necesidad de incluir una nueva acepción, la de ubicación del sistema 

en el espacio, según sus dimensiones, para interpretar de una manera más clara el concepto de las 

estructuras lineales rígidas: 

a. Unidimensionales: bases, vigas, columnas, arcos. 

b. Bidimensionales: reticulados planos, vigas de celosía, pórticos. 

c. Tridimensionales: reticulados espaciales o estéreo estructuras, esqueletos de edificios. 

Estas mismas consideraciones podemos hacerlas para el caso de las estructuras de elementos lineales 

no rígidos: 

a. Unidimensionales: tensores propiamente dichos. 

b. Bidimensionales: mallas abiertas, tejidos abiertos, redes. 

c. Tridimensionales: mallas y redes espaciales. 

 

4. Por su Conformación Externa (según su Curvatura Total) 

Por último, tanto las estructuras de tracción pura (lineales y superficiales no rígidas), como las 

restantes (lineales y superficiales rígidas, bi- y tridimensionales), permiten una clasificación según su 



 

conformación externa, teniendo en cuenta su extensión superficial (aún en el caso de los reticulados y 

las redes espaciales), y con ello las estudiamos según su curvatura total. 

Conviene acá repasar el concepto de curvatura, y de aquí, pasar al análisis de las superficies, ya 

estudiado en generación de las superficies.  

Por un lado, tenemos líneas (curvas o rectas), que ofician de directrices y, por el otro, aquéllas que 

adoptan la función de generatrices. Éstas son precisamente las que marcan las direcciones principales 

de la superficie, y por ellas pasarán las tensiones máximas que solicitan a la estructura en cuestión. 

Aprovecharemos esta circunstancia para estudiar qué sucede en esas dos direcciones principales (la 

que da la directriz y la correspondiente a la generatriz), que son, además, perpendiculares entre sí (en 

el caso de tratarse de líneas curvas, las perpendiculares consideradas son las rectas tangentes a las 

curvas en el punto de intersección de las mismas). 

Tenemos así dos direcciones principales, y para cada una de ellas podemos calcular el radio de 

curvatura, utilizando la siguiente ecuación: 
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Considerando que el valor del radio es inverso al de la curvatura correspondiente, tenemos: 
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Debido a esta particularidad de poseer dos direcciones principales, consideramos a que todas las 

superficies como de doble curvatura y en ese sentido las analizamos. 

Llamamos curvatura media, al valor que resulta de sumar los valores de las curvaturas 

correspondientes a cada una de las direcciones principales dividido 2: 
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Llamamos curvatura total, al valor que resulta de multiplicar entre sí los valores de las curvaturas 

correspondientes a cada una de las direcciones principales: 

2C1Total CC ×=  

Aquí debemos rescatar dos conceptos ya vistos, el de concavidad y el de convexidad. Los radios de 

curvatura siempre se ubican dentro de la concavidad de la curva a la que pertenecen. Debemos 

recordar que, en el caso de la línea recta, su radio de curvatura tiene un valor infinito ( )∞ . 



 

En el caso de las líneas rectas, el valor de la curvatura es nulo, por cuanto su valor es el inverso del 

radio, y éste vale infinito: 
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Atendiendo a estas cuestiones, hemos visto en “Generación de las Superficies” que pueden darse tres 

alternativas en el cruzamiento de las direcciones principales: 

1. Curvatura Total Nula: es el caso en que una de las líneas, o ambas (generatriz y directriz) sea 

una recta, donde el producto de sus curvaturas será siempre nulo, por ser uno de los factores (o 

ambos), iguales a cero. 

2. Curvatura Total Positiva: cuando las dos direcciones son líneas curvas y sus concavidades 

coincidentes en un mismo sector de espacio, sus radios de curvatura tendrán el mismo signo. En 

este caso, el producto de sus curvaturas será positivo, pues el producto de dos valores del mismo 

signo, positivos o negativos, es siempre positivo. 

3. Curvatura Total Negativa: cuando las dos direcciones son líneas curvas y sus concavidades son 

opuestas en relación a los sectores en que dividen al espacio, sus radios de curvatura estarán 

ubicados en cada uno de estos sectores y, consecuentemente, serán de signo contrario. El producto 

de sus curvaturas será negativo, pues el producto de dos valores de signos contrarios, positivo y 

negativo, es siempre negativo. 

De esta manera, tenemos los tres sistemas estructurales según su curvatura total: 

1. Sistemas Estructurales de Superficie de Curvatura Total Nula 

2. Sistemas Estructurales de Superficie de Curvatura Total Positiva 

3. Sistemas Estructurales de Superficie de Curvatura Total Negativa 

 

 

 

 

 

 

 



 

 

 

Objetivos de la Unidad: Adiestrar al alumno en el manejo de los principios básicos que 
rigen el  dominio espacial y el  comportamiento estructural de los tipos estructurales 
sometidos a esfuerzos de tracción. 

 
 

UNIDAD DIDÁCTICA 2 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.1. NOCIONES BÁSICAS 
 

“En este módulo nos dedicaremos a analizar los 

principios básicos que rigen el comportamiento de 

las estructuras de tracción pura en general”. 

 

El hilo colgado de un extremo 

Los retículos, las mallas y los tejidos tienen al hilo (o cable) como componente básico generador. 

Aún cuando los tejidos presentaren la apariencia de una superficie continua, si los observamos 

detenidamente, y con la ayuda de una lente de aumento, nos sorprenderemos al comprobar que 

siempre están presentes hilos que se cruzan unos con otros, por tupida que sea la trama. 

No sucede lo mismo con las membranas (sean éstas de goma, plástico, agua jabonosa o cualquier otra 

sustancia), donde no se podrá distinguir direcciones de terminadas por elementos lineales (hilos o 

cables). En este caso, la similitud la encontramos en las láminas o placas, determinando sobre su 

superficie dos fajas virtuales a lo largo de la dirección de las tensiones principales (o máximas), y las 

trataremos como elementos lineales de 1 m de ancho. 

 

 

 

Figura 1       Figura 2 

 



 

Analizando el elemento estructural básico, el hilo (Figura 1), podemos compararlo con el componente 

básico de las estructuras rígidas discontinuas o de barras (Figura 2). 

La diferencia en ambos casos radica en que la relación longitud / espesor (esbeltez del componente), 

es mucho mayor en los hilos que en las barras. 

Como consecuencia de esta situación los hilos no resisten momentos flectores, y cualquier carga 

transversal N  produce en ellos esfuerzos de tracción pura. 

Los hilos tampoco resisten esfuerzos de compresión. Su escasa rigidez hace que no puedan resistir su 

propio peso y si se pretende apoyarlos en su extremo inferior, pierdan de inmediato su estabilidad, 

precipitándose al suelo. De hecho, en esta posición tampoco resisten sobrecarga alguna. 

No obstante, adquieren capacidad resistente si el caso es el opuesto, es decir, en vez de intentar 

apoyarlos sobre su extremo inferior, se los suspende del extremo superior. 

En este caso, si el hilo es suficientemente flexible, aún sólo sometido a su propio peso, adoptará de 

inmediato una forma recta, perpendicular a la superficie terrestre, en razón de la atracción de la 

gravedad. 

La forma natural de un hilo colgando de su extremo superior, y sometido a una determinada fuerza se 

expresa en la Figura 3. 

Aquí podemos establecer la tensión de trabajo ( )trabσ  en la relación entre la carga actuante ( )P  y la 

sección del hilo ( )F : 

F

P
trab =σ  

Figura 3  

Cuando esta acción tiende a separar las partículas del material que compone el cuerpo, se dice que se 

ha producido internamente un estado tensional que recibe el nombre de TRACCIÓN. 

No obstante, tampoco es necesario que exista una fuerza externa para que se produzca internamente 

un estado tensional de tracción. 



 

Cuando colgamos un hilo de uno de sus extremos, el propio peso del hilo causa internamente una 

tensión similar, debido a la tendencia del cuerpo (en este caso, el hilo) a precipitarse hacia abajo por 

efecto de la gravedad. 

El alargamiento de un hilo o alambre bajo la acción de cargas es típico de la tracción. Cuando las 

tensiones no sobrepasan el régimen de elasticidad, el alargamiento depende sólo de la sección 

transversal, de su longitud y de la magnitud de la carga. A mayor diámetro del cable, menor 

alargamiento unitario; el alargamiento es proporcional a la carga por unidad de área de la sección 

del cable, o a la tensión de tracción del cable. 

No debemos confundir este esfuerzo con el fenómeno de dilatación que, si bien también produce un 

alargamiento de la dimensión del objeto, ésta se debe a la expansión molecular interna por efecto de la 

temperatura, al contrario de la tracción, que produce la separación de las mismas moléculas entre sí. 

Recordemos las condiciones sine qua non del caso típico de un hilo o alambre sometido al esfuerzo de 

tracción: 

cuando las tensiones no sobrepasan el régimen de elasticidad, el alargamiento depende sólo de la 

sección transversal, de su longitud y de la magnitud de la carga; 

a mayor diámetro del cable, menor alargamiento unitario;  

el alargamiento es proporcional a la carga por unidad de área de la sección del cable, o a la tensión de 

tracción del cable; 

el alargamiento no es la única deformación que acompaña a la tracción; la medición del cable antes y 

después de aplicar la carga pone de manifiesto que el aumento de ésta determina el alargamiento del 

cable y una disminución de su diámetro. Esto es fácil de explicar, si se tiene en cuenta que lo que se 

produce es un alargamiento del cuerpo, y no un aumento de su volumen. 

 

 

 

 

 

 

 

 



 

 

Actividades: 

En función de estos conceptos, 

¿cuál sería la carga necesaria para que el hilo se corte? 

¿cuáles son los datos necesarios para resolver este problema? 

¿qué incidencia tiene la sección del hilo en esta situación? 

 

El peso propio del hilo es despreciable cuando actúa una carga exterior, y la tensión es 

independiente de la longitud del hilo. Para contrarrestar los efectos de la carga deberemos adecuar 

la sección del hilo, aumentándola hasta que equilibre la tensión de trabajo con la tensión 

admisible. 

Muy distinta es la situación de un hilo suspendido de un extremo, cuyo largo excesivo haría 

significativo su peso propio. Aquí veremos que la tensión de trabajo aumentará en forma 

proporcional a la longitud del hilo, en razón de que el peso propio es una función del peso 

específico por el volumen respectivo: 

FlVolPprop ××=×= γγ
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Actividades: 

Teniendo en cuenta estos conceptos, 

¿qué sucedería si la carga actuante fuere solamente el peso propio del hilo? 

¿en qué condiciones se cortaría el hilo sometido a su peso propio? 

Supongamos que se trata de un hilo suspendido de su extremo, desde un avión que sobrevuela la 

ciudad, y sometido a su propio peso. 

Si =rotσ 12.480 
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¿cuál sería la longitud necesaria para que el hilo se corte? 

¿qué influencia tiene en este caso la sección del hilo? 

La tensión, en este caso, es independiente de la sección (o del diámetro) del hilo, y está en función 

directa de su longitud por su peso específico. La longitud de rotura será aquélla que resulte de 

equilibrar la tensión de rotura con el producto entre la longitud y el peso específico del hilo. 
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El hilo colgado de sus dos extremos 

Coloquemos ahora el hilo suspendido de sus extremos. Adoptará una determinada forma 

geométrica que se identifica con lo que pasaría si, en lugar de ser un hilo, fuera una cadena. La 

forma lograda sería la del equilibrio del peso propio de la cadena (o el hilo, en el caso anterior), y 

de allí surge su nombre: “catenaria”. 

El hilo (o la cadena) soporta una carga repartida uniformemente sobre sí mismo, su propio peso. 

No obstante, el peso propio de los hilos es generalmente despreciable ante las cargas exteriores 

actuantes (permanentes y sobrecargas). 

 

Figura 4 

Si aplicamos una fuerza P en el centro del cable, éste quedará tensado y, despreciando el peso 

propio, se formarán dos líneas rectas AC y BC (Figura 4). 

Por medio del polígono de fuerzas obtenemos T, que es la tensión que está soportando el hilo 

(esfuerzo de tracción). 

Si la carga estuviera ubicada en el centro del hilo, las tensiones se repartirían por partes iguales 

entre AB y BC. En cambio, si se ubicara a uno u otro lado del centro, el tramo más corto sufriría 

un esfuerzo menor que el más largo (Figura 5). 

      

Figura 5 

Para una distancia dada entre los apoyos, la flecha óptima es igual a la mitad de esa distancia y 

corresponde a una configuración de la carga y un empuje igual a la mitad de ésta.  



 

 

La tensión máxima de tracción que soporta el cable en ambos extremos es “T” y se descompone en 

una tensión horizontal “H” y una tensión vertical “V”.  

 

La carga máxima es:   

  

Las condiciones de equilibrio son:  V = 0;         H = 0;         M = 0 

  

 

La reacción V en los extremos 

será: 

 

 

 

V = 0   se cumple porque:  

  

H = 0   se cumple porque:  

 

 

Para que se cumpla ∑ M = 0: tomamos momentos con respecto al punto de inflexión máxima (C), y 

consideramos las cargas actuantes a la izquierda de la sección. Tomamos momentos con respecto a 

“C” y consideramos las cargas actuantes a la izquierda de la sección:  
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Pasamos fH ×  al primer término:  
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y luego, pasando f al segundo, obtenemos:  
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El valor de H  es equivalente al momento flector máximo de una viga simplemente apoyada sometida 

a carga uniformemente repartida, dividido por la flecha.  

La flecha aparece porque estamos en presencia de un elemento lineal no rígido.  
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Con una o varias cargas concentradas, la forma del cable cambia, adoptando la de un polígono 

funicular. A mayor número de cargas, el polígono toma un número creciente de lados, más pequeños 

cada vez, aproximándose a una curva continua.  

A medida que aumentamos el número de cargas, observamos que la deformación del hilo se adapta a 

un funicular de las mismas, lo que nos conduce a la siguiente observación: el estado de equilibrio de 

un hilo colgado de sus extremos, cargado con cargas concentradas, es el funicular de las cargas 

dadas (Figura 6). 
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 Figura 6 



 

El polígono funicular es la forma natural de equilibrio de un gran número de cargas iguales separadas 

horizontalmente a distancias iguales, aproximándose a una curva parabólica.  

Si el número de cargas aumenta cada vez más, en el límite nos encontraremos con el estado tensional 

de un hilo sometido a carga uniformemente repartida sobre sí mismo. 

Estados tensionales. 

En ambos sistemas estructurales las cargas producen simples tensiones normales: tracción o 

compresión. La forma de estos sistemas estructurales coincide -en el caso ideal-, con el flujo de 

esfuerzos, que se canalizan hacia los apoyos. 

En el caso del cable colgado de sus extremos (sistema de tracción), la forma estará dada por el 

funicular de las cargas actuantes. La línea de tracciones se halla determinada, de un lado, por las 

fuerzas que trabajan en el sistema, y del otro, por la flecha y la distancia entre los extremos.  

Cualquier cambio en la forma de sustentación o las condiciones de carga afectará a la curva funicular 

y dará origen a una nueva forma estructural.  

Un cable colgado de sus extremos, o apoyos fijos, con una carga aplicada en su punto medio, adoptará 

una forma simétrica triangular, distribuyéndose la carga por mitades a cada extremo del cable.  

Si la flecha disminuye, aumentará la tensión y llegará un momento ideal en que, si la flecha se hace 

nula, el esfuerzo “T” del cable y la P reacción P horizontal “H” coincidirían, alcanzando valores 

infinitos; es obvio imaginar que esto no sería posible, por cuanto el cable no podría ya resistir la carga, 

porque sobrepasaría su resistencia a la tracción, y terminaría colapsando antes de llegar a esta 

situación. 

De esta manera, las tensiones de tracción en el cable son inversamente proporcionales a la flecha, lo 

que nos pone ante la evidencia de que, si ésta disminuye a la mitad, la tensión del cable se duplica y, 

como consecuencia, ocurrirá lo mismo con respecto al empuje transversal en los apoyos.  

Parábola y catenaria 

Un cable colgado de sus extremos se comporta como una cadena, en la que cada eslabón representa 

una carga distribuida a lo largo de la curva que adopta. De allí, la curva recibe el nombre de catenaria. 

Supongamos ahora que la carga, en lugar de repartirse uniformemente sobre la curva, lo hace sobre la 

línea horizontal que une los extremos del hilo. 

Dividimos la carga, ahora repartida sobre la horizontal, en zonas iguales de ancho a , y aplicamos 

fuerzas concentradas aqN ×= , todas iguales, en los baricentros de cada una de las zonas. 

Construimos el polígono de fuerzas y el funicular, y determinamos los valores de AT  y BT . 



 

Si a  tendiese a cero, el polígono funicular se transformaría en una parábola, como justificaremos 

más adelante. 

El trazado de la parábola es más sencillo que el de la catenaria porque no es necesario trazar primero 

la curva (para poder distribuir la carga sobre ella). Por otra parte, al saber que se trata de una parábola, 

dado que conocemos el mecanismo de su trazado, su construcción resultará más sencilla. 

Dada la flecha f , construimos la parábola correspondiente y, representando las cargas N , trazamos 

paralelas a las tangentes extremas, determinando así directamente, en el polígono de fuerzas, los 

valores de AT  y BT . 

Puede suceder que la flecha no sea la requerida. En este caso deberemos rectificar el diagrama, según 

se explica en el procedimiento de construcción de la parábola (ver, más adelante, “Construcción de 

una parábola por método gráfico”). 

Retomando los conceptos ya vistos, la catenaria es la forma de equilibrio que adopta un hilo sometido 

a una carga uniformemente distribuida sobre sí mismo. En cambio, la parábola lo es de las cargas 

uniformemente distribuidas sobre la línea horizontal que une ambos extremos del hilo. 

Para cada caso, éstas son las ecuaciones explícitas de ambas curvas: 

parábola: ay = + 
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catenaria: 
c

x
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Si desarrolláramos en serie (según Mc Laurin) la ecuación de la catenaria, veríamos que, hasta  la 

derivada segunda es igual a la ecuación de la parábola: 
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Suponiendo: ac = , tenemos:  
a2

x
ay

2

+=  

Esto significa que, en el dimensionamiento de un hilo colgado de sus extremos, podemos reemplazar 

el caso de la catenaria por el de una parábola, con suficiente aproximación. Esto, no obstante, siempre 

que la relación flecha / luz esté dentro de estos límites:  150l
f050 ,,   

Esto es porque entre ambas curvas existe un contacto de 2 ° orden, y por esta razón, la parábola es 

considerada osculatriz de la catenaria. 

Puede hallarse gráficamente el valor de T en una catenaria si se conoce la curva, pero este trazado no 

puede lograrse de modo inmediato, como se ha visto precedentemente. Debe trazarse por puntos, 

interviniendo en el trámite funciones hiperbólicas (ver RUBIO: “Cálculo funicular del hormigón 

armado”, op. cit.). 

Lo mismo sucede si se pretende realizar el cálculo en forma analítica. Si bien este procedimiento no 

es complicado, resulta mucho más simple si acudimos a hacerlo utilizando la parábola. 

Comparando ahora ambos cables, notaremos lo siguiente: en el caso de la parábola tendremos una 

mayor concentración de cargas en la parte central del cable (punto de mayor inflexión), que en sus 

extremos (figura 7). Por el contrario, la catenaria ofrece un pequeño abultamiento en los sectores 

próximos a sus extremos, y un acortamiento de la flecha en el sector medio (figura 8). 
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Figura 7 (parábola) 
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Figura 8 (catenaria) 



 

 

 

1a  = longitud del cable en el extremo (proyección un sector de un metro en sentido horizontal sobre el 

cable) 

2a  = longitud del cable en el punto de mayor inflexión (proyección un sector de un metro en sentido 

horizontal sobre el cable) 

q  = carga repartida uniformemente sobre la línea horizontal que une los extremos del cable, dada en 

kg/m 

En base a estos datos, la carga actuante sobre el cable (parábola), será: 

en los extremos: ( ) 1parábola1 aqq ×=  

en la zona central: ( ) 2parábola2 aqq ×=  

siendo: ( ) ( )parábola2parábola1 qq =  

En la catenaria, en cambio, el esquema de distribución de las cargas es así: 

Superponiendo ambos gráficos, el resultado será el que vemos en la figura (8). 

La carga actuante sobre el cable, en este caso, será: 

en los extremos: ( ) 1catenaria1 bqq ×=  

en la zona central: ( ) 2catenaria2 bqq ×=  

Siendo: ( ) ( )catenaria2catenaria1 qq   

Relacionando ambos casos (parábola y catenaria), tenemos: 

( ) ( )catenaria1parábola1 qq    y  ( ) ( )catenaria2parábola2 qq ≅  

Si consideramos el caso particular de dos cables de igual longitud, uno cargado uniformemente sobre 

la línea horizontal que une sus extremos (parábola), y el otro sobre sí mismo (catenaria), 

comprobaremos que se manifiesta una mayor depresión en los extremos de la catenaria, con respecto 

a los de la parábola, y, en cambio, será en la zona central de ésta donde la catenaria sufrirá una 

reducción de su flecha, produciéndose una mayor depresión en la parábola. 



 

Catenaria
     (lc) 

Parábola 
    (lp)  

Figura 9 (superposición de ambas curvas) 

 

Comentarios 

En la realidad, no podría subsistir un cable sin flecha, por cuanto siempre soportaría la influencia de 

su peso propio ( Q ), cuya reacción en los extremos, en combinación con el esfuerzo horizontal ( H ) 

que tiende a separarlos, conforman un sistema de fuerzas normales entre sí que dan por resultado una 

tensión oblicua ( T ). En los apoyos, la descomposición en dos direcciones (una vertical, 

correspondiente a la mitad de las cargas actuantes sobre el cable –V -, y otra horizontal – H -), hace 

imposible alcanzar la horizontalidad total del cable, puesto que la tensión T  alcanzará un valor tan 

alto (a medida que se reduce la flecha), que se producirá mucho antes el colapso del cable. 

Actividades: 

¿Qué sucedería si, dejando invariable la carga, estiramos el hilo, tratando de convertir su forma en 

una recta? 

A medida que aumentamos la tensión en cada extremo, veremos que la flecha se reduce, y que tanto 

AT  como BT  crecen. Vemos entonces que debemos seguir estirando para lograr una flecha cada vez 

menor. Ahora bien, 

¿Esto significa que llegará un momento en que f = 0? 

Esto es prácticamente imposible porque el hilo no es de resistencia infinita y terminará por cortarse 

cuando el esfuerzo que se aplique supere su tensión de rotura. 

Sólo podríamos lograrlo si 0N = , es decir, si estuviera descargado, y su peso propio fuera 

despreciable. 

Si tenemos en cuenta el peso propio, en el caso de un hilo de considerable longitud y peso, se romperá 

antes de lograrse la horizontalidad total, debido ala influencia del peso propio, que en este caso tendrá 

incidencia en la composición de fuerzas vertical, horizontal y tangencial. 



 

Supongamos el caso de un remolcador que se encuentra arrastrando río arriba un tandem de barcazas 

cargadas, lo cual significa que, prácticamente, no existe resistencia por fricción, dado que las 

barcazas se deslizan si dificultad sobre la superficie del agua. 

Si el peso del cable es: 3m
Kg7500 , y su diámetro es: mm30=θ , y la distancia entre el remolcador y 

la primer barcaza es: m80l = ,  

¿cuál sería la tensión máxima que soportaría el cable, considerando que la fuerza de tracción 

horizontal de la barcaza es: Kg5400H =  

¿cuál sería la flecha que presentaría el cable? 

Podemos aplicar las propiedades del polígono funicular al cable cargado con su propio peso. 

Dividiendo la carga en partes iguales a , en proyección horizontal, obtenemos trozos diferentes na  

sobre la curva. De esta forma obtenemos n cargas concentradas: 

qxaN nn =  

Construimos el polígono funicular de fuerzas = nNN , y trazamos paralelas a las tangentes en los 

extremos. A continuación obtenemos AT  y BT  y determinamos O . 

Para hallar el valor de la tensión sT  en el punto s , trazamos la tangente en ese punto a la curva. La 

paralela a la tangente, trazada por O , nos dará sT . 

Si completamos el polígono de fuerzas y trazamos el funicular, éste debiera ser tangente a la curva 

(catenaria). Cuanto menor sea a , más próximo a la curva será el funicular que logremos. 

 

Amarres desnivelados 

Los casos analizados se refieren a cables cuyos puntos de amarre están al igual nivel. Cuando el 

desnivel no es muy grande, podemos continuar utilizando la parábola como caso general, puesto que 

de esta forma las fórmulas son sencillas. 

Como paso previo, supongamos que se trata de un cable colgado de sus extremos a igual nivel, 

sometido a carga uniformemente distribuida sobre la línea horizontal, y trazamos el funicular 

correspondiente (Figura 10). 

Ahora, sobre ese mismo esquema, trasladamos A  hacia abajo y B  hacia arriba, en forma 

proporcional. Haciendo pasar por O , obtendremos un nuevo funicular con los apoyos en desnivel, y 

la nueva ubicación de la resultante ( lqQRR ×===' ), a una distancia a  de A , y b  de B . Asimismo, 



 

vemos que el nuevo polígono de fuerzas determina la distribución de las reacciones en los apoyos 

'' BA VV  , y las correspondientes tensiones máxima '' BA TT  . Recordemos que, en todos los casos, H  

se mantiene constante. 

Debemos hacer notar que los valores de 'AV  y 'BV , y 'AT  y 'BT  son inversamente proporcionales a 

a  y b , respectivamente (Figura 11). 

Tomamos momentos respecto a C  (sabiendo que su sumatoria debe ser 0 ), de las fuerzas a la 

izquierda y a la derecha. 

0aV
2

a
aqfH Aa =×+××−×−    (1)   ;      0bV

2

b
bqfH Bb =×−××+×       (2) 

Si sumamos miembro a miembro (1) y (2), tenemos: 

0bVaV
2

b
q

2

a
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22
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22
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Figura 10  

 

Construcción de una parábola por el método gráfico  

Se traza una línea horizontal y sobre ella se ubican los dos puntos ( A  y B ) de donde colgará el cable, 

distanciados la luz ( L ) correspondiente. 

Sobre esta línea horizontal se distribuye uniformemente la carga actuante sobre el cable, 

fraccionándola en valores unitarios q 






m
Kg . 

Se dibujan las líneas de fuerza representativas de cada fracción de carga unitaria, para luego  

tomar las cargas ( )721 PPP ,...,,  a la izquierda de la sección central 1-1’, y se dibuja el polígono de 

fuerzas correspondiente. 

A continuación se debe dibujar un polígono funicular auxiliar, que permitirá ubicar la resultante de 

las fuerzas a la izquierda de la sección 1-1’. Para esto se toma un punto cualquiera ( )O  que será el 

punto de concurrencia del haz de rayos auxiliar, y luego se trazan los rayos desde el extremo de cada 

fuerza, hasta la fuerza 7P (inclusive). 



 

Con estos rayos, tomados como líneas de referencia, se traza un polígono funicular auxiliar, de las 

fuerzas 1P  a 7P . 

La intersección del primer rayo con el último nos dará el punto por donde pasará la resultante 






2
Q  

de las fuerzas consideradas. 

El funicular definitivo de la parábola debe pasar por 3 puntos: dos corresponden a los extremos del 

cable  ( A  y B ) y el tercero coincidirá con el punto de inflexión máxima ( )C , determinado por la 

flecha de la parábola. 

Con este objeto definimos el valor de la flecha. Si bien el valor óptimo de la flecha sería el 1/5 de la 

Luz,  para nuestro caso tomamos un valor mayor para facilitar la comprensión del gráfico, y se hace 

pasar por este último punto ( )C  una línea horizontal hasta intersectar la resultante de las fuerzas a la 

izquierda de la sección 1-1’. 

Este nuevo punto de intersección ( )N  junto al origen del funicular ( )A  nos indica la inclinación del 

primer rayo del polígono funicular definitivo de la parábola, que nos permitirá dibujar con precisión 

la curva definitiva. 

Desde el extremo superior del polígono de fuerzas (inicio de la fuerza P1) se traza el primer rayo del 

haz correspondiente, paralelo al obtenido en el paso anterior. 

En la intersección de este primer rayo con la línea horizontal que pasa por el punto medio del 

polígono de fuerzas obtendremos el nuevo centro de concurrencia ( )'O  del haz de rayos del polígono 

funicular definitivo. 

Se traza el nuevo haz de rayos, uniendo el extremo de cada fuerza del polígono con el nuevo centro de 

concurrencia ( )'O , y, a partir de acá, se procede a construir el polígono funicular definitivo. 

Tomando la escala de fuerzas, se determina el valor de H  y, con este valor, y el de V , se calcula el 

valor de T . 

Con el valor de T , en función de la tensión admisible del material seleccionado para el cable, se 

calcula la sección necesaria del mismo, y con ésta, se determina el diámetro correspondiente. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

GLOSARIO 

Carga uniformemente repartida: hipótesis de que existe la misma carga repartida en toda la estructura 

(ya sea lineal, superficial, etc.) 

Catenaria: forma de equilibrio de un cable colgado de sus extremos, en el que las cargas se 

distribuyen uniformemente a lo largo del mismo. 

Flecha: distancia vertical entre la línea horizontal que une ambos extremos y el punto más bajo del 

cable. 

Luz: separación entre los puntos de apoyo de una pieza estructural. 

Parábola: forma de equilibrio de un cable colgado de sus extremos, en el que las cargas se distribuyen 

uniformemente sobre la línea horizontal que los une. 

Reacción: fuerza opuesta que ejerce una pieza estructural, de igual intensidad y sentido contrario, a 

toda carga aplicada sobre ella.. 

Tracción: estado de tensión en que las partículas del material, tienden a separarse. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.2.    SUPERFICIES DE CURVATURA TOTAL NULA 

 

 

“En este módulo haremos una primera 

clasificación de las cubiertas colgantes, en general, 

para luego pasar al estudio de las estructuras de 

tracción resueltas con superficies de curvatura 

total nula”. 

 

Clasificación de las Estructuras de Tracción 

Las estructuras de tracción pura se distinguen principalmente por su especial característica de estar 

conformadas exclusivamente con materiales no rígidos, capaces de soportar únicamente esfuerzos de 

tracción. 

No obstante, debemos reconocer que estas estructuras no podrían subsistir sin la ayuda de 

componentes rígidos, de los cuales colgar, o por lo menos fijarse para su estabilidad. 

Además, encontramos en esta familia de estructuras un caso muy especial de comportamiento que 

distingue dos conjuntos perfectamente diferenciados. 

Por un lado, se ubican las cubiertas colgantes, que soportan cargas del mismo modo que todas las 

estructuras conocidas hasta el momento, es decir, que las  cargas actúan sobre ellas produciendo un 

efecto que tiende a arrastrarlas hacia el suelo, al igual que la acción de la gravedad terrestre sobre los 

cuerpos en general. 

Al contrario de las cubiertas colgantes, entre las estructuras de tracción encontramos un conjunto de 

cubiertas que se comportan en forma totalmente opuesta a la acción de la gravedad, por efecto de la 

acción de una presión interior ejercida por el aire que se les introduce a presión, lográndose así la 

estabilización del sistema. Es el conjunto conocido como estructuras infladas, o arquitectura 

neumática, que ocupará un capítulo especial aparte, dentro de este esquema de trabajo de Estructuras 

III. 

Volviendo ahora al primer grupo, podemos aplicar cualquiera de dos criterios para diseñar cubiertas 

colgantes, según sea la complejidad de la estructura que queramos construir, utilizando los elementos 

resistentes que ya hemos mencionado en U.1.6 CLASIFICACIÓN DE LAS ESTRUCTURAS: 



 

sistemas de cables (conformados a partir de elementos resistentes lineales no rígidos o tensores), y 

sistemas de membrana (generados a partir de elementos resistentes superficiales no rígidos). 

Hemos visto ya que según su curvatura total se pueden clasificar en nulas, positivas y negativas. 

Tanto las cubiertas colgantes como las neumáticas se distinguen por poseer un peso reducido (entre 

25 y 50 Kg/m2, considerando la cubierta, las aislaciones, etc.), lo que las hace muy expuestas a la 

acción del viento, que ejerce sobre ellas una serie de situaciones críticas, que van desde el peligro de 

desprenderlas de sus anclajes, hasta el propio colapso del conjunto por la fatiga que le significa el 

flameo que pudiere producirse cuando no estás suficientemente tensas o estabilizadas. 

El comportamiento de estas estructuras se favorece con la resistencia máxima a tracción de los 

materiales utilizados, aunque, por otra parte, son inaptos para resistir otros tipos de esfuerzos, como 

compresión, flexión, corte o torsión). Las membranas son láminas semejantes a una piel, y se utilizan, 

al igual que los cables, en los sistemas estructurales de tracción. 

Sólo pueden estar solicitados por esfuerzos de tracción que actúan en la superficie, donde se originan 

las llamadas comúnmente tensiones de membranas (obviamente, esto sólo en el caso de tratarse de 

componentes superficiales). 

 

Acción del viento 

Cuando el peso propio de la cubierta es inferior a las solicitaciones exteriores dirigidas hacia arriba 

(succión del viento), la estructura se debe resolver con dos familias de cables: la primera de 

sustentación, resuelta con cables llamados cables principales, y la otra de estabilización o 

rigidización, con cables llamados cables secundarios. 

Dada la liviandad que caracteriza a estas estructuras, el viento va a cobrar una importancia 

fundamental para su cálculo. Se han dado casos en que un viento muy fuerte puede poner en peligro 

una estructura e incluso llegar a invertir su curvatura o provocar el colapso de la misma. 

El problema de la acción del viento en las estructuras es fundamentalmente un problema de cargas. 

Así como hay diferentes tipos de cargas (por ejemplo, el peso propio), así también existen cargas 

producidas por la acción del viento. La carga del viento es accidental y la del peso propio es estable. 

Los mayores inconvenientes producidos por la acción del viento son: la vibración y el flameo. 

Para lograr un comportamiento adecuado y efectivo en los sistemas de tracción, tanto si son resueltos 

con cables, como si lo son con membranas, es necesario conferirles cierta estabilidad mediante 

determinados mecanismos de estabilización, que pueden ser: 



 

• Aumentando el peso de la estructura mediante una sobrecarga adicional que elimine la 

inestabilidad debida a cargas negativas o accidentales, como el viento. En determinados casos, 

estas cargas son tales que logran invertir la curvatura de la cubierta. 

• Arriostrando el sistema de cables principales a una red de cables secundarios o de estabilización. 

• Aplicando una tensión previa (Tp) que estabilice el sistema y le confiriera la rigidez necesaria 

para contrarrestar los embates del viento y, de esta manera, evitar el flameo de la estructura. La 

tensión previa es una tensión adicional que se aplica al sistema a través de los cables secundarios, 

y éstos, a su vez, lo transmiten a los cables principales. En las estructuras de superficie de 

curvatura total nula, donde si bien se les reconoce su condición de doble curvatura, una de ellas es 

nula, por ser producto de una generatriz recta (este caso se estudiará más adelante en este mismo 

capítulo), es necesario incorporar al sistema una familia de cables secundarios (que no forman 

parte de la estructura de la cubierta), y acudir a conectores que vinculen estos cables secundarios 

con los principales. Son precisamente estos conectores los encargados de transmitir la acción de 

la Tp desde los cables secundarios hacia los principales. El valor de la Tp se calcula en forma 

inversamente proporcional al peso propio  de la estructura, lo que hace que a menor peso propio, 

habrá que adicionar mayor tensión previa. 

Debemos destacar también que el peso total de la estructura debe oponer una inercia suficiente para 

absorber los esfuerzos debidos a los efectos de la presión del viento y de las cargas asimétricas sin 

deformación perjudicial. 

Las diferentes velocidades del viento están establecidas en las normas correspondientes (Norma 

IRAM  11.700, Part. I y II). 

En cuanto a las normas que consideran la acción del viento sobre las estructuras, el Reglamento 

Argentino se basó oportunamente en el Reglamento Francés, publicado en 1965. 

En el ejemplo de la figura 1 (Aeropuerto de Dulles), la estructura (de tracción pura de curvatura total 

nula) se resuelve con una cubierta de losetas premoldeadas de hormigón, de peso considerable, y 

sobrecarga, que resulta superior a las solicitaciones del viento y, por lo tanto, permite prescindir del 

sistema de estabilización secundario. 

Los reglamentos toman valores promedios. Aún tratándose de un viento suave, el efecto dinámico 

podría hacer colapsar una estructura, dado que no es un problema de resistencia, sino de 

deformación). Cuando el viento es fuerte, se produce el denominado efecto estático, y a mayor fuerza, 

mayor peligro. 



 

Toda estructura tiene un período de oscilación propia, por más suave que sea un viento, y cuando las 

frecuencias oscilatorias coinciden, pueden ocasionar el derrumbe de la estructura (ver el ejemplo 

fílmico del colapso de un puente convertido en arpa eólica). 

 

 

 

 

 

 

 

 

 

 

 

Tensión previa 

En el caso específico de las estructuras de tracción, la tensión previa desempeña un papel 

fundamental. 

Los cables principales portantes reciben la carga de los cables secundarios o de estabilización, que 

son los que reciben la tensión previa. 

La tensión previa es, en esencia, una carga adicional, repartida uniformemente, ejercida por los 

cables tensores (secundarios) en los nudos, como carga previa, y transmitida a los cables portantes 

(principales). 

La carga de tensión previa actúa de un modo similar a un aumento del peso propio (en Kg/m2). 

La tensión previa se logra, no tanto por la tensión dada a los cables, sino por la acción que ejercen 

unos sobre otros, y que determinan tensiones en la misma estructura antes de recibir las cargas. 

Por medio de la tensión previa se logra mayor seguridad en la resistencia a tracción de la estructura, 

cualesquiera sean las cargas exteriores. 

A menor carga, mayor será el porcentaje de tensión previa. Por ejemplo: si tenemos una carga q = 50 

Kg/m2, podemos optar por una tensión previa cuyo valor esté entre el 50 y100 % del valor de la carga 

considerada. 

Figura 1 - Aeropuerto DULLESde Eero Saarinen, en Virginia 



 

 

Tabla que permite determinar los porcentajes 

de tensión previa en base a los valores de carga 

considerada. 

 

 

 

 

 

 

q  Kg/m2 Tp: % q 

Hasta .......... 10 

Hasta .......... 50 

Hasta .......... 100 

Hasta .......... 150  

Hasta .......... 200 

Más de ....... 200 

100 – 300 

50 – 100 

10 – 40 

7 – 15 

5 – 10 
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Cables principales y cables secundarios estabilizadores 

Los sistemas de estabilización en los casos de curvatura nula pueden solucionarse de la siguiente 

manera: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

GLOSARIO 

Cable principal: cable de sustentación de una estructura de tracción (soporta el peso propio y la 

sobrecarga, cuando la hubiere, y la tensión previa). 

Cable secundario: cable de estabilización de una estructura de tracción (soporta la carga de viento y 

la tensión previa, transmitiéndola a los cables principales por medio de los conectores). 

Tensión previa: tensión adicional que se aplica a los cables secundarios para estabilizar al sistema, 

evitando el flameo de la estructura como consecuencia de los efectos del viento. Se transmite al cable 

principal a través de los conectores. Es inversamente proporcional al peso propio de la estructura. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 “Tipos estructurales sometidos a esfuerzos de tracción” 

2.2. ESTRUCTURAS DE CURVATURA TOTAL NULA 

2.2.2. Trabajo Práctico 

 

El procedimiento para el predimensionamiento de una estructura de estas características es el 

siguiente: 

1. Cálculo  de Tensiones y Dimensionamiento de CABLES PRINCIPALES 

1.1. Análisis de cargas. 

1.2. Determinación de tensiones H, V y T. 

1.3. Dimensionamiento. 

2. Cálculo de Tensiones y Dimensionamiento de CABLES SECUNDARIOS 

2.1. Análisis de cargas. 

2.2. Determinación de tensiones H, V y T. 

2.3. Dimensionamiento. 

3. Cálculo de CONECTORES VERTICALES 

3.1. Análisis de cargas. 

3.2. Dimensionamiento. 

4. Cálculo de TENSORES 

 

 

 



 

 

DATOS: 

Pp (Kg/m2) = peso propio L  (m) = luz longitudinal 

Tp (Kg/m2) = tensión previa h  (m) = altura total 

V  (Kg/m2) = viento f  (m) = flecha de cables 

principales y secundarios 

σa (Kg/cm2) = tension del acero d  (m) = distancia entre tensores

l   (m) = luz transversal α y� β =  ángulo de inclinación 

del tensor 



 

 

 

1. Cálculo de Tensiones y Dimensionamiento de CABLES PRINCIPALES 

 
1.1. Análisis de cargas�  

 

 

 
1.2. Determinación de tensiones:  V1, H1 y T1 

 

( )Kg
2

lq
V1

×=  ( )Kg
f8

lq
H

2

1 ×
×=  ( )( )KgHVT 22

1 +=  

q1 = Pp + Tp = Kg/m2  q1 = Pp + Tp - V = Kg/m2  

despreciando el efecto reductor 
del viento 

q1/m = q1 * 2m (sep. de cables) 



 

 
1.3. Dimensionamiento. 
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2. Cálculo de Tensiones y Dimensionamiento de CABLES SECUNDARIOS 

 
2.1. Análisis de cargas 

  

 

 
2.2. Determinación de tensiones:  V2, H2 y T2 

 

( )Kg
2

lq
V 2
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2.3. Dimensionamiento. 
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3. Cálculo de CONECTORES VERTICALES: entre cables principales y secundarios. 
3.1. Determinación de Áreas de cargas:   

 

 

 

q2 = Tp + v = Kg/m2 q2 = Pp + Tp - V = Kg/m2  

Despreciando el efecto reductor 
del peso propio 

q2/m = q2 * 2m (sep. de cables) 

(a*b) = 3.75m * 2m = 7.5m Q3: se adopta el mayor entre q1 y q2 



 

3.2. Cálculo de cargas  q3 = (v (Kg/m2) + Tp (Kg/m2) ) * 7.5m2 = Kg 

 
3.3. Dimensionamiento 

 

 
 

 
 
4. Cálculo de TENSORES: cada tensor absorbe el esfuerzo de 5 cables principales, excepto los de 

los extremos que absorben los de 3. 

 

Si tenemos en cuenta que los esfuerzos verticales V se canalizan en las columnas o muros 

perimetrales, los que tenemos que equilibrar con los tensores son los esfuerzos producidos por las 

cargas H. 

Por lo tanto: 
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“Tipos estructurales sometidos a esfuerzos de tracción” 

2.3.    CURVATURA TOTAL POSITIVA 

2.3.1. Trabajo Práctico 

 

“En este módulo continuaremos con el estudio de 

las cubiertas colgantes, ingresando al campo de 

las estructuras resultas con superficies de 

curvatura total positiva, conocidas como “rueda 

de bicicleta”, por su semejanza con ella.”. 

 

Nociones generales 

Las estructuras de tracción de calificadas en el grupo de las superficies de curvatura total positiva son, 

en su mayoría, superficies de rotación, basadas en una curva genérica conocida: parábola, catenaria, 

etc., lo que les asigna un nombre característico: paraboloide de revolución, catenoide de revolución, 

etc. 

Se trata, en todos los casos, de cubiertas colgadas de un aro rígido externo, soportado por columnas 

ubicadas en su perímetro. 

En general, las cubiertas de tracción conformadas según una superficie de curvatura total positiva, se 

logran a partir de una Cercha Jaewerth que gira alrededor de su eje central. 

Es por este motivo que se cumplen en ella todos los aspectos técnicos ya vistos en el capítulo 

dedicado a las estructuras de superficie de curvatura total nula. 

No obstante, por tratarse de superficies de revolución, se incorpora en ellas un nuevo factor, conocido 

como envolvente cilíndrica, que permite resolver el conjunto sin intervención de tensores adicionales, 

dado que el equilibrio estático se logra por la composición de las fuerzas concurrentes en una acción 

centrípeta hacia el centro de rotación, representado por la acción de cada cable concurrente (Fig. 1). 



 

 

Fig. 1 

Podemos obviar el uso de una Cercha Jaewerth, es decir, eliminar la presencia de cables secundarios 

estabilizadores, si aplicamos sobrecargas que aumenten considerablemente el peso de la cubierta, de 

modo de contrarrestar de esa forma la acción del viento en cuyo caso, debemos unir 

convenientemente los cables paralelos con los meridianos para lograr aproximarnos a la forma 

deseada. 

Consideremos una estructura reticulada de cables, según se expresa en la Fig. 2, sometida a una carga 

determinada, repartida uniformemente sobre aquélla, colgada de un aro que está rígido apoyado sobre 

columnas y sigue el criterio expuesto en el párrafo anterior. 

Si el polígono meridiano fuera el funicular de las cargas actuantes, entonces estaríamos frente a un 

sistema de sólo cables meridianos, dado que los cables paralelos no tendrían ninguna participación. 

Cada meridiano estaría soportando una carga equivalente a lo que se indica como zona rayada en la 

Fig. 2. 



 

 

Fig. 2 

Si aumentamos las cargas actuantes, pero queremos mantener la forma del polígono meridiano, para 

lograr el equilibrio de la estructura, los paralelos comenzarán a participar impidiendo que el polígono 

meridiano se deforme (fig. 3). 

 

Fig. 3 

La forma del funicular de las cargas en los meridianos no es ninguna de las curvas conocidas, por 

cuanto la carga actuante no es uniformemente repartida, sino que está distribuida sobre una superficie 

cuya forma se aproxima a un triángulo esférico. 

El resultado es otra curva, diferente de las conocidas, en cuya conformación la presencia de los 

paralelos tiene especial importancia. 

 

 



 

SISTEMA ESTRUCTURAL de CURVATURA TOTAL POSITIVA - 

CÁLCULO 

Calcular y predimensionar una estructura de tracción pura de curvatura total positiva de plata circular 

con cables unidos en uno de sus extremos a un anillo rígido (exterior) que descansa sobre columnas, y 

en el otro a un anillo de Cable Interior. 

DATOS: 

D = (m) diámetro mayor 

d = (m) diámetro menor 

h = (m) altura 

f = (m) flecha  

q = (Kg/m2) peso propio más sobrecarga 

σ a= (Kg/cm2) tensión cable de acero 

s = (m) separación entre cables meridianos en 

anillo de borde exterior 

s = (m) separación entre paralelos 

 
Para obtener con precisión la distancia entre meridianos se procede de la siguiente manera: 

P =  π * D   (obtenemos el perímetro) 

N° de cables = P / S  (obtenemos el número de meridianos) 

Sep. Merid. = P / N° merid. (obtenemos la separación real entre meridianos) 

 

El funicular de las cargas de los meridianos no es ni la catenaria ni la parábola, por cuanto la carga 

actuante no es uniformemente repartida sino aproximadamente triangular esférica. 

 

 
Fig. 4 

 En el caso de que el meridiano fuera el funicular de las cargas actuantes en su zona de influencia, los 

paralelos no trabajarían, por cuanto aquellos absorberían por sí solo, los esfuerzos existentes. Si el 



 

polígono es otro, bajo la acción de cargas los meridianos tenderían a posición funicular, acción que 

será impedida por los paralelos; en este caso los paralelos trabajarían. 

 
ESQUEMA de CÁLCULO: 

 

Análisis de CARGAS 

Dimensionamiento de CABLES MERIDIANOS 

Dimensionamiento de CABLES PARALELOS 

 

1. Análisis de CARGAS 

 

Realizados los gráficos de planta y corte a escala podemos determinar las áreas de carga. 

En cada punto de cruce de meridianos y paralelos, actuará una carga P, cuyo valor se obtiene del 

producto entre la carga q (Kg/m2) y el área F (m2):  

P (Kg) = q (Kg/m2) * F (m2) 

 

Para obtener las superficies F correspondientes a cada una de las cargas I, asimilamos el sector de 

planta considerado a un polígono, en este caso un trapecio, y determinamos la superficie de dicha 

figura geométrica por la fórmula ya conocida: 

F (m2) =  (B + b) * h  

             2 

 

El valor de la altura h lo obtenemos en el corte, de esta manera operamos con valores más exactos que 

si trabajásemos con las alturas h tomadas en planta. 

A las bases mayor y menor de los trapecios en vez de tomarlas directamente en planta, las podemos 

determinar con mayor exactitud de la siguiente manera: 

Base =   π * 2 R * α  =  2 π R   

                                    360°             N° meridianos 

 



 

 

En este caso en que la planta está dividida en 43 sectores, a α le corresponde un valor de 7,5°|. 

A continuación obtenemos los valores de las cargas P: 

P1 (Kg) = q (Kg/m2) * F1 (m2) 

 

De la misma manera se procede con P2, P3, P4, P5, P6, P7 y P8. 

 

 

 

 

 

 

 

 

 

2. Dimensionamiento de CABLES MERIDIANOS 



 

 

 
 

Se dimensionan en base al valor máximo que representa la tensión en el meridiano Tm (Kg) y cuyo 

valor se obtiene del polígono de fuerzas midiendo en escala el rayo I. 

Fm =    Tm (Kg)   = cm2 

σ a (Kg/m2) 

d (cm2) = √ [ ( F (cm2) * 4) / π]= cm2 

 



 

Para construir el polígono funicular se colocan las cargas P con los valores que les corresponden en 

cada caso de acuerdo a lo obtenido en el punto 1, en la escala de fuerzas adoptada, y se van trazando 

las paralelas a las tangentes a la curva, en el punto de incidencia de las cargas. 

Los valores de H representan los esfuerzos que deberán absorber los paralelos y los de los rayos I, II, 

etc. los esfuerzos en los meridianos.  

Hc representa el esfuerzo de compresión que soporta el anillo de borde exterior. 

 

Dimensionamiento de CABLES PARALELOS 

 

Los paralelos se dimensionan con los valores de las tensiones H (Kg) del polígono funicular. 

Lo que interesa conocer en cada caso es la tensión del paralelo Tp para lo cual aplicamos la Teoría 

de la envolvente cilíndrica que dice que las fuerzas radiales, uniformemente 

distribuidas(centrífugas o centrípetas), H producen una fatiga anular cuyo valor es igual al producto 

de la fuerza y el radio respectivo. 

 

Tp (Kg) = h (Kg/m) * R (m) 

 

Las tensiones H se reemplazan por una carga distribuida en el arco del paralelo correspondiente: 

 

H (Kg/m) =  H (Kg) 

                   B (m) 

En base al mayor valor de Tp dimensionamos las paralelos: 

 

Fp (cm2) =       Tp (Kg)      = cm2 

     σ a (Kg/cm2) 

d = √ [ ( F (cm2) * 4) / π]= cm 

 



 

 
 
 
 
 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.4. CURVATURA TOTAL NEGATIVA 

 

 

 

“En esta clase estudiaremos los tipos estructurales 

sometidos a esfuerzos de tracción, resueltos con 

superficies de curvatura total nula”. 

 

Nociones generales 

Un capítulo muy especial y particular de las estructuras de tracción pura, consideradas también como 

cubiertas colgantes, lo ocupan los tipos estructurales de curvatura total negativa. Las formas 

resultantes son diversas, y en todos los casos responden fielmente al funicular de las cargas actuantes, 

sean éstas debidas exclusivamente al peso propio, o también aquéllas en que se recurre a la aplicación 

de alguna sobrecarga adicional para reducir el riesgo de colapso por la acción del viento. 

Esta particular situación ya ha sido analizada en el módulo “Nociones Básicas”, cuando establecimos 

una analogía estructural entre la parábola y la catenaria. Debido a que las cargas actuantes siempre se 

distribuyen uniformemente sobre la superficie, la forma resultante responde siempre a las 

características de la catenaria. No obstante, en función de la referida analogía, podemos asimilar 

todos los casos a una conformación parabólica y encarar de este modo el dimensionamiento de la 

estructura. 

Avanzando en el tema, dentro de los sistemas estructurales de tracción pura de curvatura total 

negativa, dedicaremos un apartado especial al estudio de Paraboloide Hiperbólico (PH) por ser una 

de las formas más conocidas y utilizadas en la resolución de cubiertas colgantes. 

De acuerdo a lo ya visto en el módulo “Generación de Superficies”, el PH es una superficie de doble 

curvatura que se puede generarse de dos maneras: por la traslación de una parábola generatriz, 

siguiendo la dirección que le impone otra parábola directriz, o también por medio de una recta 

generatriz que se desplaza apoyada sobre otras dos rectas directrices, alabeadas, es decir, no 

coplanares. De esta construcción extraemos un sector cuadrilátero, y obtenemos así un PH de planta 

cuadrada, que será el modelo que nos servirá para el estudio que sigue. 



 

Tengamos en cuenta que, además, las superficies de curvatura total negativa son las que mayor 

estabilidad presentan, ya que en ellas ambas familias de cables tienen concavidades opuestas y 

ejercen simultáneamente una acción y reacción permanente en los puntos de unión de los cables. 

La familia de cables principales está determinada por las parábolas con concavidad hacia arriba, que 

soportan las cargas de peso propio (y las sobrecargas, si las hubiere), y la de cables secundarios, que 

contrarrestan la acción del viento y reciben la tensión previa, constituida por las parábolas con 

concavidad hacia abajo. 

La estabilización del PH se logra no sólo por la tensión previa aplicada a los cables secundarios y, a 

través de éstos, a los principales, sino también, y principalmente, por producirse entre ambas familias 

un permanente intercambio de tensiones originadas en la misma estructura por su característica 

formal de concavidad y convexidad simultánea. 

Los cables principales soportan los esfuerzos estáticos del peso propio y la tensión previa y 

constituyen el elemento sobre el cual se apoya la cubierta. Los cables secundarios son los que dan 

rigidez al sistema y reducen los esfuerzos provocados por las cargas verticales, absorbiendo las cargas 

de viento. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

La 

solución estructural del PH tiene variadas respuestas, según sea el sistema de bordes que se adopte, 

pudiendo ser éstos rígidos o no. 

PH con bordes no rígidos 

Un PH con bordes no rígidos debe ser resuelto necesariamente con columnas de sostén de los dos 

extremos superiores del sistema, debiendo anclarse los otros dos extremos inferiores al terreno. 

La columna, en este caso, deberá estabilizarse, para lo cual se recurre a tensores que la vinculen al 

terreno, conformando entre éstos y los cables de borde del PH un sistema de fuerzas que determine 

una resultante que será absorbida por la columna, que estará soportando esfuerzos de compresión 

pura. 

Podemos obviar los tensores, en cuyo caso deberá empotrarse la columna en el terreno, y los 

esfuerzos ahora serán de flexocompresión. 

 

 

 

 

 

 

 

PH con bordes rígidos 

 



 

Cuando se utilizan bordes rígidos, las columnas ya no son necesarias. 

Los bordes rígidos en un PH se comportan como una viga, donde uno de los apoyos está constituido 

por el terreno, y el otro se conforma en la vinculación de los extremos superiores de las vigas de 

borde, y un tensor que vincula este punto con el terreno, conformando de igual manera que en el caso 

de bordes no rígidos, un sistema de fuerzas que se equilibran entre sí. En este caso, los bordes actúan 

como vigas simplemente apoyadas, sometidas a esfuerzos de flexión simple. 

Podemos, igualmente que en el caso de bordes no rígidos, obviar el uso de tensores, para lo cual 

deberemos empotrar las vigas de borde en el terreno, las que ahora estarán sometidas a esfuerzos de 

flexocompresión, comportándose como voladizos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En el caso del paraboloide hiperbólico, la interacción entre cables principales y secundarios se da 

directamente en la unión de unos con otros, por la particular distribución de los mismos. Esto es así, 

dado que los cables principales actúan colgados de sus extremos, y son los portadores del peso propio 

 

 



 

de la estructura y de la cubierta, mientras que los secundarios se apoyan en los primero, y son los 

encargados de soportar la acción del viento. 

De este modo, la tensión previa, aplicada sobre los cables secundarios, se transmite directamente a los 

cables principales, proporcionando al conjunto la rigidización necesaria para mantener su estabilidad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.4. SUPERFICIES DE CURVATURA TOTAL NEGATIVA 

2.4.1. Trabajo Práctico 
 

“En esta clase desarrollaremos el trabajo práctico 
correspondiente al Módulo 4 de la Unidad Didáctica 2” 

 

Guía del Trabajo Práctico 

Predimensionar un paraboloide hiperbólico de tracción pura, de planta cuadrada y apoyado en dos 

extremos sobre columnas y en los otros anclado a tierra. 

DATOS: 

a  = (m) ...........lado del P.H. máxima q  = (Kg/m2) ... peso propio más sobrecarga 

L  = (m) ...........luz de las parábolas V  = (Kg/m2) ... viento 

f1 = (m) .......... flechas de los cables 
principales y secundarios 

α  = 45° .......... ángulo de inclinación del tensor 

f3 = (m) .......... flecha del cable de 
bode 

ht = (m) ........ altura total 

Tp = % de q ... tensión previa S  = (m) ........ separación entre cables principales y 
secundarios 

 

1. ESQUEMA DE CÁLCULO: 

1.1. Cálculo de CABLES PRINCIPALES 

1.1.2. Análisis de cargas. 

1.1.3. Cálculo de tensiones H, V y T. 

1.1.4. Dimensionamiento. 

1.2. Cálculo de CABLES SECUNDARIOS 

1.2.1. Análisis de cargas. 

1.2.2. Cálculo de tensiones H, V y T. 

1.2.3. Dimensionamiento. 

1.3. Cálculo de CABLES de BORDE 

1.3.1. Análisis de cargas. 

1.3.2. Cálculo de tensiones H, V y T. 

1.3.3. Dimensionamiento. 

4. Cálculo de TENSORES 

1.4.1. Cálculo de cargas. 

1.4.2 Dimensionamiento. 

 
 



 

 
 
 
 

Cálculo de CABLES PRINCIPALES 

1.1.2 Análisis de cargas: q1 = Pp (Kg/m2) + Tp (Kg/m2) = Kg/m2 * 1m (sep. 
Cables) = Kg/m2 



 

              

 
 
1.1.3. Determinación de tensiones:  V1, H1 y T1 
 

V1 =  q * L  = Kg 
2 

H1 =  q * L2  = Kg 
8 * f 

T1 =  √ (V2 + H2) = Kg 

 

Donde L= a √2, porque sen β= a / L, de donde L = a / sen β, así L = a √2 

 
1.1.4. Dimensionamiento: 
 

F1 =    T1  = cm2 

σa 

entonces ∅1 = √  ((F*4) / π)) = cm o mm

 
 

1.2. Cálculo de CABLES SECUNDARIOS 
 
1.2.1. Análisis de cargas: q2 = V (Kg/m2) + Tp (Kg/m2) = Kg/m2 * 1m (sep. Cables) = Kg/m 
 
 
 
 



 

1.2.2. Determinación de tensiones:  V2, H2 y T2 

V2 =  q * L  = Kg 
2 

H2 =  q * L2  = Kg 
8 * f 

T2 =  √ (V2 + H2) = Kg 

 
Dimensionamiento: 
 

F2 =    T2  = cm2 

σa 

entonces ∅2 = √  ((F*4) / π)) = cm o mm

 
 

               

 
 

1.3. Cálculo de CABLES de BORDE 
 

1.3.1. Análisis de cargas: q3 =  √ (T12 + T22)  = Kg 

q´3 = q3  (Kg/m) * √2 = Kg/m  

 
1.3.2. Determinación de tensiones:  V, H y T 

Hallar la longitud de borde: Lb = √ a2 + h2 = m 



 

 
 
 
 
 
 
 
 
 
 

V3 =  q * Lb  = Kg 
2 
carga de columna 

H3 =  q * Lb2  = Kg 
8 * f 
carga del tensor 

T3 =  √ (V2 + H2) = Kg 

 
carga total 

 
1.3.3. Dimensionamiento: 
 

F3 =    T3  = cm2 

σa 

entonces ∅3 = √  ((F*4) / π)) = cm o mm

 
 
4. Cálculo de TENSORES: T4 (esfuerzo que deberá absorber el tensor) 
 

q4 = T3 * √2 = Kg/m 
 

T4 =   q4 * cos β  = Kg 

                     Cos α 

 
entonces 
F4 =    T4  = cm2 

�����������a

 
 

∅4 = √  ((F*4) / π)) = cm o 

mm 

 

 
 
 
 
 
 
 

 



 

Soluciones de BORDE 

α es dato y  β se halla:  α =  α´ por alternos internos entre paralelas y 

β  =  β´ por correspondientes entre paralelas. 

 

Cos β´ =   H3                                                y 

                  q4 
Cos α´ =   H3                     

                  q4 

Cos β´ =  H3   *   T4   =   T4                         así: 

Cos α´      q4        H3       q4  

T4 =   q4 cos β´  

           Cos α´      

 

β  si:  sen α =  C4   entonces: C4 = T4 sen α T4 

 

 

Si tg β =    H    =   h * 2  =  tg β

         a √2        a √2 

                        2 

Entonces: β = arctg h * 2   

                                  a √2 

 

 

La otra posibilidad es tener bordes rígidos. En ese caso la carga del borde (qb) sería = Tb/Sc * √2 

distribuido en un elemento rígido igual a una viga apoyada en sus vértices uniformemente 

distribuida pero con ubicación inclinada. 
Pero tiene una doble flexión por su peso propio y por los cables que la solicitan. 

También tendría armadura por peso propio, además de las de flexión y acción de los cables. 

El punto bajo es un apoyo fijo y en el punto alto se coloca una barra articulada y la reemplazo por 

un tensor rígido o no rígido, pero necesariamente trabaja a la tracción y se excluye. 



 

 
 
 
Descomposición de una fuerza en dos direcciones es el caso de la viga de borde de H° A° en un 
Paraboloide Hiperbólico con borde rígido. 
El otro caso es empotrar el apoyo bajo y eliminar el tensor. 
En este caso lleva un refuerzo porque los bordes tienden a cerrarse. 
Los mayores peligros de estas estructuras se dan por las grandes diferencias de temperaturas que 
producen fisuras por dilatación. 
 
 

 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.5. MATERIALES APTOS 

 

“En esta clase estudiaremos los materiales 

apropiados que se utilizan más comúnmente en la 

construcción de estructuras de tracción”. 

Materiales 

A los elementos resistentes lineales no rígidos de los sistemas estructurales de tracción se los 

denominan genéricamente cables o cuerdas, y se los clasifica según sus características en: 

1. Metálicos 

2. De origen vegetal 

3. Sintéticos 

4. Metálicos 

a. Alambre (preferentemente de acero) 

b. Haces de alambres (paralelos o retorcidos) 

c. Cintas de acero 

d. Redondos de acero 

e. Perfiles de acero 

f. Tubos 

g. Cadenas 

5. De origen vegetal 

a. Madera 

b. Cáñamo 

c. Sisal 

d. Lino 

 

 



 

6. Sintéticos 

a. Nylon 

b. Tergal 

c. Dracón 

d. Acetatos 

7. Fibra de vidrio 

8. Cables y membranas no metálicos 

Los cables sintéticos, a pesar de ser muy resistentes, no son muy utilizados por su poca resistencia al 

fuego. 

En general, los cables y membranas no metálicas se usan solamente en las tiendas o carpas, aunque 

hoy día, el teflón es el material predilecto utilizado para cubrir espacios de grandes luces, como son 

los estadios deportivos. 

Los criterios que se usan para la selección de los materiales a utilizar se basan en: 

Resistencia mecánica elevada 

Resistencia a la corrosión 

Resistencia al fuego 

Elevado módulo de elasticidad 

Economía 

Facilidad de fabricación y montaje 

Cables de acero 

Todo material capaz de soportar tracción puede emplearse en estas estructuras; el más racional es el 

cable de acero de alta resistencia (con torzones, liso, galvanizado o con vaina de plástico) para los 

sistemas discontinuos y las lonas y las láminas de material plástico para los continuos. 

Los cables o cuerdas de acero son los materiales más apropiados para cubrir grandes luces con 

economía de material. 

El papel de los cables puede ser desempeñado por cualquier otro material, siempre que sea flexible y 

resistente a la tracción. 

Cabe recordar que un cable de acero puede soportar esfuerzos de tracción, hasta el máximo de la 

capacidad del material, lo mismo ocurre con los tejidos sintéticos. 



 

Los cables de acero utilizados en los sistemas estructurales de tracción deben poseer: 

 resistencia mecánica elevada 

 resistencia a la corrosión  

 débil relajación. 

Según sean las aplicaciones y condiciones de trabajo a que estarán sometidos, se construyen 

empleando alambres de acero de distintas resistencias. 

Un cable se forma por un núcleo central llamado alma y por una o varias capas de cordones situados 

helicoidalmente alrededor de la misma. 

El alma puede ser un forro fibroso (generalmente cáñamo) o una serie de alambres arrollados. 

En consecuencia la estructura del cable depende de las combinaciones que se efectúen con los 

elementos siguientes: alma, torones o cordones, forma de trenzado y arrollamiento. 

Los cordones, en general, se emplean como integrantes del cable (un cordón o torón se forma por uno 

o varios alambres arrollados en hélice) pero pueden usarse solos (monotrón). Entonces el número de 

alambres puede ser elevado y se llaman cables monotorones o cables espirales. 

El alma del cable constituye el soporte sobre el cual se arrollan los cordones, cuando los cables 

estarán sometidos a grandes presiones se emplean almas metálicas pero esta presentan el 

inconveniente de disminuir flexibilidad y aumentar el peso del cable. 

La flexibilidad de un cable depende del número de alambres que lo componen y de la resistencia del 

acero empleado. 

A mayor cantidad de alambres por cordón mayor flexibilidad del cable y a mayor resistencia menor 

flexibilidad. 

Cables Cerrados: es una especie de monotorrón en el que la última o las dos últimas capas de 

alambres se hacen con alambres perfilados en forma de z. Dan una superficie lisa y estanca pero 

presentan dificultades en los empalmes. 



 

 

Arrollamiento: es el sentido en que los cordones están arrollados alrededor del alma o núcleo 

central, en general los alambres de los cordones se arrollan en sentido inverso al de los cordones en el 

cable. 

En los cables comunes los alambres de las distintas capas se cruzan entre sí. 

Según los cordones se arrollan en un sentido o en otro se obtiene el arrollamiento a al derecha o a la 

izquierda. 

En los arrollamientos tipo Long los alambres de los cordones se trenzan en el mismo sentido que los 

cordones ene l cable, los cables de este tipo son más flexibles pero tienen mayor tendencia a 

destorcerse. 

Trenzado: hay dos clases de trenzado: 

Cruzado: el núcleo del trenzado cruzado está generalmente constituido por 6 (seis) alambres 

arrollados en hélice alrededor de un alambre central (siguiendo las sucesivas operaciones se obtienen 

cordones con 19, 37, 61 y 91 alambres a medida que se agregan 2, 3, 4 y 5 capas respectivamente, 

cruzándose los alambres de las distintas capas). 

Paralelo: en el trenzado paralelo los cordones de las distintas capas están trenzados con el mismo 

sentido alrededor del alambre central, de modo que los alambres de la capa exterior calzan 

exactamente en las cavidades formadas por los alambres de la capa inferior. Se emplean generalmente 

alambres de distintos diámetros y según las disposiciones se obtienen los cables conocidos como 

SEALE, WARRINGTON, FILLER, etc. 



 

En los cordones del trenzado SEALE, hay una capa de alambres exteriores más gruesos colocados en 

las ranuras o valles formados por los alambres interiores más fino, estando estos últimos trenzados 

alrededor de un núcleo formado por uno de los alambres.  

En los cordones del trenzado denominado WARRINGTON, la capa de alambres exteriores está 

constituida por alambres gruesos y finos, dispuestos en forma alternada sobre una capa interior, de tal 

manera que los alambres gruesos se sitúan en las ranuras o valles y los finos en las crestas formadas 

por los alambres de la capa interior. 

 

 

En los cordones del trenzado relleno o FILLER, las capas de alambres principales son del mismo 

diámetro, rellenándose los espacios intermedios que aparecen al trenzar dos capas, con alambres finos 

cuya función es la de permitir obtener una sección más compacta. 

Se deben mencionar los cables denominados “pre-formados”, así llamados porque los alambres o 

cordones son: previa y mecánicamente formados a al misma forma helicoidal que asumirán luego el 

cable. Esto permite que los alambres y cordones se ubiquen en sus respectivas cavidades con ausencia 

casi total de tensiones internas. 

Ligaduras y uniones de cables 

Empalme: es el trenado que se realiza entre los alambres que componen los cordones de ambos 

cables, la longitud del empalme es de aproximadamente 25 (veinticinco veces el diámetro). La unión 

se hace generalmente con alambre. 



 

El empalme puede ser: 

Empalme longitudinal 

Largo: se unen los cabos de los dos cables entrecruzando los cordones correspondientes, sin 

aumentar el espesor en la zona del empalme. 

Corto: se unen los cabos de ambos cables entrecruzando los cordones pero con aumento del espesor 

en esa zona, se usa bandaje. El bandaje es la ligadura entre cables para evitar que se desaten, hechas 

con alambre de atar. 

Con mordazas: se unen los cabos de ambos cables por medio de pinzas, cuñas, collares a presión (de 

acero o metal ligero). 

 

Empalme extremo 

De Ojo: consiste en doblar el extremo del cable formando un ojal y haciendo un bandaje. 

Con Guardacabos: consiste en doblar el extremo del cable formando un ojal pero protegiendo 

mediante un guardacabos. La cuerda se doble alrededor del guardacabos y su extremo corto se 

empalma con la de origen. 

Hay diferentes tipos de guardacabos: 

Con Bridas de Presión: tiene la ventaja de la facilidad que presenta para su montaje. 

Bolsa Acuñada: es un sistema de empalme poco usado, tienen una pérdida de carga de hasta un 30%. 

Con Manguitos de Fijación de Aluminio. 



 

 

Manguitos de Tracción: en redes de cuerdas ligeras son muy usados los manguitos de tracción (en 

cables de hasta 16mm). El extremo de la cuerda se hace entrar en el taladro del manguito, y éste con 

una máquina de tracción hidráulica se estira a través de una hilera que lo aprieta. 

Los manguitos de tracción tienen una forma ideal y simple, van provistos en sus extremos de una 

rosca o un ojo. La pérdida de carga es de 1,5 hasta 9% de la resistencia de la cuerda. 

 

Acoplamiento Fundido: se usan en sistemas de tracción cuando las cuerdas se hallan sometidas a 

grandes esfuerzos, consiste en colocar el extremo del cable, convenientemente preparado y suelto en 

forma de escoba, en un manguito de vertido cónico, mediante metales apropiados, aleaciones o 

productos de colada. 

El procedimiento es el siguiente: se deshace la cuerda en sus alambres, en su extremo, se cortan ésos 

para igualar el largo y luego se unen con alambre. 

Para la fundición se quitan las ataduras de alambre, se abre a la manera de escoba el extremo de la 

cuerda luego de pasar un manguito cónico de acero de la pieza de unión y finalmente se vierte en él la 



 

masa fundida que lo rellena. El acoplamiento de metal fundido es ligero y de ejecución segura y no 

influye en la resistencia de las cuerdas. Muchas veces se hace en fábrica y las cuerdas se suministran 

cortadas y con las piezas acopladas en sus extremos. 

 

 

Caquillo Hilado y Fileteado: tiene la ventaja de que presenta un volumen mínimo, su longitud no 

excede de 12 veces el diámetro del cable y su diámetro el doble de dicho diámetro. La puesta en 

tensión es fácil, mediante un gato hidráulico de tracción. 

La longitud del cable se regula gracias al fileteado del manguito. 

El anclaje tiene lugar por hilado en frío de un manguito sobre un cable o torón. La extremidad del 

cable se coloca en el manguito y el conjunto cable-manguito se pasa por un a hilera tronco-cónica 

gracias a un gato de presión. 

Tras esa operación el manguito se filetea. 

Este tipo de manguito permite el anclaje de cables plastificados. Los anclajes pueden ser de acero 

inoxidable o estar protegidos contra la corrosión por metalización, cincado o cadmiado. 

 

 

 

 

 

 



 

Empalme entre cables: numerosas piezas metálicas, tales como valvas de chapa plegada y forros 

para sujetar uno o varios cables; sistemas de placas y contra-placas que permiten el ensamble de 

cables ortogonales; nudillos de acero, para asegurar la unión de ambos cables y el agarre de cubiertas. 

 

 

 

 

 



 

Ejemplo de ensamble de dos cables paralelos por medio de nudillos de acero matrizados para asegurar 

la unión de ambos cables y el agarre de la cubierta 

 

 

 

Ejemplo de pieza de agarre tridireccional de chapa doblada 

 

 

Anclajes: la función de los anclajes es la de unir el sistema estructural de tracción al suelo de 

fundación a través del empleo de diferentes soluciones tecnológicas según las características del 

terreno y las tensiones de tracción a equilibrar. 

Anclaje por gravedad: consiste en introducir y aprisionar las cuerdas en un bloque de hormigón que 

por su peso y resistencia al rozamiento transmite al suelo de fundación los esfuerzos de tracción de las 

cuerdas. 

Este tipo de anclaje se utiliza en terrenos de mala calidad o cuando hay peligro de inundación. 

En general el bloque de hormigón es suficiente para absorber la componente horizontal de tracción, 

en caso contrario se colocan tensores que unan los bloques para contrarrestar dicho efecto.  



 

 

 

Anclaje en estacas: las estacas se utilizan en sistemas de tracción ligeros y transitorios (caso de 

carpas o cubiertas colgantes que requieren cuerdas tensores provisorias durante su construcción). 

 

 



 

 

Las estacas generalmente son aptas cuando las inclinaciones de las cuerdas con respecto al suelo 

forman ángulos pequeños, sin embargo en casos de cargas reducidas se aceptan ángulos de hasta 50°. 

Las estacas son muy económicas pero tienen el inconveniente de deteriorarse rápidamente con la 

humedad del suelo, esto puede mejorarse recubriendo de hormigón la cabeza de las estacas. 

 

Anclaje en taladros abiertos: se usa en suelos rocosos, consiste en recubrir el extremo de la cuerda 

con metal blando para adicionarle peso y deshacer la cuerda en sus alambres hasta una distancia de 

aproximadamente 5 (cinco) diámetros, se introduce luego dentro del taladro y se inyecta cemento o 

mortero a gran presión. 

 



 

Anclaje de Arpón: están capacitados para resistir grandes cargas, consiste en un tubo de acero con 

una plaqueta o ancla vertical en el extremo y otras 2 (dos) plegadas que se abren luego de hincado el 

pilote en el suelo por medio de un pequeño estiramiento o tracción hacia arriba. 

Otro sistema similar utiliza una sombrilla metálica en vez de las paletas. 

Los anclajes tipo arpón una vez usados deben considerarse perdidos ya que no pueden sacarse sin 

destruirlos. 

 

Anclaje con hierros de taladrar suelos: se usan en suelos de fundación sueltos o cuando las cuerdas 

trabajan muy verticalmente. 

Se hacen penetrar en el terreno girándolos a mano o con máquinas. 

Se pueden utilizar como anclajes permanentes, en cuyo caso habrá que proteger el herro de la 

corrosión, o solamente a efectos de taladrar el suelo, en cuyo caso para sacarlos se hace girar el 

taladro al revés. 

 



 

“Tipos estructurales sometidos a esfuerzos de tracción” 

2.6. TIPOS DE CUBIERTAS 

 

 

 

“En esta clase veremos distintas soluciones de 

cubiertas aplicadas a las estructuras de tracción, 

más comúnmente conocidas como cubiertas 

colgantes”. 

 

Introducción 

La forma de solucionar las cubiertas en los sistemas estructurales de tracción puede adoptar diferentes 

variantes. 

El elemento de cubierta debe ser auto-sustentante de cable a cable y ser capaz de afrontar las cargas 

climáticas (aislante térmico e hidráulico) y en determinadas circunstancias el peso de una persona. Se 

debe tener en cuenta la resistencia al fuego y a la corrosión y la duración a la intemperie. 

Las cubiertas más usuales son loas de elementos prefabricados, éstos pueden ser placas de hormigón, 

asbesto cemento, chapas de aluminio nervadas o dobladas, láminas galvanizadas, onduladas, de 

material sintético (P.V.C., metacrilato, poliéster armado con fibra de vidrio, plexiglás, placas de 

resina acrílica, etc.), o utilizando hormigón vaciando el material sobre la estructura. 

Cubiertas metálicas 

Cobre / Zinc / Aluminio: se adaptan perfectamente a los sistemas estructurales de tracción de simple 

curvatura y a los de doble curvatura de superficie alabeada, generados por recatas (superficies 

regladas), caso del paraboloide hiperbólico. 

Las cubiertas metálicas (aunque resultan caras en algunos casos), tienen la ventaja de su duración casi 

ilimitada. 

En este tipo de cubiertas hay que tener en cuenta el diseño de la junta para evitar la posibilidad de 

filtraciones. Las planchas deben estar muy bien unidas a las redes entre sí, y deben colocarse en fajas 

transversales a la dirección de los cables portantes en la zona horizontal de la parte central. 



 

A modo de ejemplo podemos mencionar el sistema ZIP-RIB (KICSA) de cubiertas de aluminio que 

se adapta a sistemas estructurales de tracción. 

El sistema consiste básicamente en el uso de paneles de aluminio conformados que se aseguran a 

correas o entablonados por un dispositivo de sujeción oculto. 

Los paneles de aluminio pueden utilizarse en curvaturas convexas pero no se las recomienda en las 

cóncavas. En superficies alabeadas generadas por líneas rectas, tales como el paraboloide 

hiperbólico, es posible utilizar el sistema ZIP-RIB. Las chapas de aluminio se comercializan en 

anchos de 630cm y de largas de hasta 25mts (según las características del proyecto) y espesores de 0,8 

a 1mm. 

La unión entre las chapas se realiza por medio de clips de sujeción (ver gráfico), se evita toda 

perforación y por lo tanto toda posibilidad de filtraciones. El sistema cuenta con varios accesorios 

para cierres de cumbreras, limatesas, quiebres de techos, abrazaderas, etc. 

Cuando se utilizan en sistemas estructurales de tracción de superficie alabeada, es posible torsionar 

levemente cada panel y separar las alas ligeramente para adaptarlos a la curvatura de la superficie sin 

que el funcionamiento del panel ZIP-RIB se vea afectado. 

Datos técnicos del sistema ZIP-RIB: 

1. Peso de la cubierta:  a. En chapas de 0,80mmm: 3,50Kg/m 

    b. En chapas de 1,00mmm: 4,34Kg/m 

2. Pendiente aconsejada: 4%  

 Cubiertas de hormigón: las cubiertas de hormigón en los sistemas estructurales de tracción, se 

pueden ejecutar de diferentes formas. 

Cubiertas de hormigón no pre-tensado: se tiende una malla de alambre (o tela metálica) sobre la 

red y se aplica una capa de hormigón de aproximadamente 2cm. La técnica usual es la de inyección o 

proyección. 

Cuando se da una capa de hormigón muy delgada, la forma de una tela colgante, resulta de una gran 

rigidez. Dicha capa tomo una curvatura con la convexidad hacia abajo (constituirá lo que se denomina 

comúnmente como membrana no pre-tensada de hormigón). 

En un caso la membrana cuelga de una red de cables y la cubre en el otro, pasa por encima de la red 

cuyos cables quedan visibles desde el interior (los cables no pueden colocarse en el pequeño espesor 

de la capa de hormigón). 



 

Este tipo de cubierta es muy ligera y con pre-tensado de menos de 25% presentaría grandes 

deformaciones (se usa en redes fuertemente pre-tensadas). 

Cuando la capa de hormigón no supera los 2cm no hay problemas de alargamiento de las cuerdas 

portantes ni pérdidas significativas de tensión en las tensoras. 

Su espesor es tan delgado que siguen sin dificultad no solo la curvatura general de la cubierta, sino 

también las bolsas que forma la tela metálica entre las mallas, además son suficientemente elásticas 

para adaptarse a los ligeros movimientos de las redes de cables. 

Cubiertas de hormigón pre-tensado: consiste en extender una capa de hormigón (de más de 3cm) 

sobre la red de cables. Este método presenta el inconveniente de que los alargamientos que se 

producen en las cuerdas portantes al aumentar la carga y disminuir, a consecuencia de ellas las 

tensiones iniciales de la red, producen deformaciones a las que no puede adaptarse una superficie de 

cubierta rígida. 

Es posible ejecutar una cubierta de hormigón de 3 y 10cm de espesor si durante el proceso de trabajo 

se van pre-tensando gradualmente los cables (portantes y tensores de estabilización), de modo que, a 

pesar del aumento de carga, no se modifiquen la longitud de los cables ni la tensión. Este sistema 

requiere que los cables lleven tensores de ambos extremos. 

El procedimiento en la ejecución es el siguiente:  

Se cuelga un encofrado por debajo de la red de cables (puede ser una tela metálica tupida enlucida con 

mortero). 

Se tiende un enrejado de acero, de mallas gruesas, diagonalmente sobre los cables de la red y luego se 

proyecta el hormigón o se extiende en estado semi fluido, en varias capas sucesivas. Simultáneamente 

se van tensando los cables, y se tensan aún más luego de fraguado el hormigón, introduciendo 

tensiones de compresión en las direcciones principales. La capa de hormigón recibe así un 

pre-tensado de compresión; una capa de estas características resulta muy elástica y no tiene grietas. 

Constituye una cubierta curva muy rígida a la flexión y con tensiones previas de compresión, 

conformando una cáscara colgante de hormigón pre-tensado. 

El pre-tensado de cables y de hormigón se hace por procedimientos usuales en el hormigón 

pre-tensado. Se envuelven los cables en fundas y luego del pre-tensado se inyecta una lechada de 

cemento que rellena los espacios entre el cable y la funda. 

Placas prefabricadas de hormigón poroso: con el uso de elementos prefabricados por métodos 

industriales mecanizados se logra una solución de cubierta rápida, precisa y fácil de colocar con 

elevadores móviles.  



 

Las placas se cuelgan de los cables por medio de unas manillas de acero. Luego de cubrir totalmente 

la red se cubre la junta cuidadosamente (puede ser una tela metálica revocada con mortero a base de 

fibras). 

Como las cubiertas con curvas, la red tiene puntos en diferentes planos y por lo tanto las manillas de 

agarre deben poder torcerse algo, o las placas tener una junta de dilatación diagonal (se obtiene 

rayando el hormigón con un elemento cortante antes de que haya endurecido, esta junta divide la 

placa en dos triángulos iguales). En la fabricación de las placas hay que tener en cuenta que éstas 

presentan pequeñas variaciones en sus dimensiones. 

Cubiertas prefabricadas de hormigón pesado: más simple es la fabricación de placas de hormigón 

sin manillas de acero, entre cuatro reglas movibles. Como las placas descansan en sus ángulos se 

arman diagonalmente. 

Los nudos de chapa torculada sirven de apoyo a las placas, las que se aseguran por medio de ataduras 

de alambre. 

Una pequeña placa de acero, con cuatro pernos atornillados, oprime los cables contra los nudos de 

chapa e impide el movimiento de los cables en los nudos. 

Estas placas pueden colocarse sobre la red o colgarse por debajo de la misma. 

Placas prefabricadas de hormigón alivianado con luceras: se usan en los casos en que se requiera 

la entrada de luz a través de la superficie de la cubierta. 

Son placas de hormigón ligero en las que se deja una lucera central que se acristala con una o dos 

capas de vidrio. La capa de cristal exterior puede ser abovedada o plana. 

Las luceras pueden ser circulares, rectangulares, cuadradas, etc. Actualmente se usan las moldeadas 

en materiales plásticos, muy adecuadas para cubiertas colgantes. 

Las placas transparentes o traslúcidas se atornillan sobre anillos de goma contra marcos metálicos. 

Se usan también placas de cubierta con acristalamiento en forma de diente de sierra. El aventamiento 

se hace en forma coincidente con la dirección de las cuerdas tensoras o portante, o en forma diagonal 

dividiendo cada placa en dos triángulos, uno de los cuales es curvado y el otro plano (ver gráfico). 

Cubiertas de materiales sintéticos: a medida que se desarrollan nuevas resinas, adecuadas a los 

crecientes requerimientos del mercado, se va tomando conciencia de la existencia de una nueva 

familia de materiales, cuya versatilidad permite su utilización en las más diversas aplicaciones. Los 

plásticos son materiales sintéticos formados por moléculas de grandes dimensiones denominadas 

macromoléculas, presentes en todos los polímeros, denominación genérica de un grupo de productos 

que incluyen tanto a los plásticos como a los elastómeros (cauchos) y a las fibras sintéticas. 



 

Los plásticos son combustibles (no son resistentes al fuego), sin embargo se pueden hacer 

auto-extinguibles, es decir, que en contacto con la llama se carbonizan, no se prende fuego, ni lo 

propaga. Hay una gran cantidad de aditivos para convertir las resinas comunes en auto-extinguibles. 

Cubierta de placas de plexiglás: éster del ácido poli-acrílico. Son placas plásticas transparentes 

como el cristal que se atornillan sobre la red de cables. Son resistentes y elásticas, lo que permite que 

se adapten a las deformaciones de la red. 

Tienen el inconveniente de la pérdida de resistencia del material bajo los efectos del calor (sol 

intenso), el plexiglás se reblandece y cuelga. 

Cubierta de plástico reforzado con fibra de vidrio: el empleo de este material abre una gran gama 

de posibilidades. Consiste en la combinación de una estructura resistente de fibra de vidrio común 

material plástico que actúa como aglomerante. 

El refuerzo de fibra de vidrio provee al compuesto: resistencia mecánica, estabilidad dimensional y 

resistencia al calor. Tiene gran resistencia a la tracción, flexión e impacto. 

Se puede  moldear en una amplia gama de formas y tamaños. 

Las propiedades de este material lo hacen apto como solución de cubiertas. En forma de chapas de 

P.R.F.V. (las más comunes son las onduladas traslúcidas). De tejas o placas. 

Permite realizar planchas de elevada resistencia y dureza, combinándolas con espumas plásticas se 

logran paneles opacos y con aislamiento o con entramados de perfiles se obtienen traslúcidos. 

Cubiertas de madera 

Cubierta de placas de fibras de madera: las placas de fibras de madera se fijan a la red de cables 

por ambos lados, con lo cual queda una faja de placas entre cada dos cuerdas portantes o entre cada 

dos cuerdas tensoras. 

Las placas se unen con pinzas de alambre, no solo unas con otras sino también directamente a las 

cuerdas. Por medio de estas ligaduras las cuerdas resultan trabadas unas con otras, especialmente en 

los puntos de cruce o nudos de la red. Los nudos llevan como máximo ligaduras de alambres en los 

puntos de cruce de las cuerdas. 

Se comienzan colocando dos fajas de placas por encima de la red sobre las cuerdas portante, después 

de estas fajas se deja una faja libre y luego se colocan dos fajas más, y así sucesivamente, con lo que 

quedan mallas libres de trecho en trecho, por las cuales se pasa la máquina de clavar o fijar las pinzas 

que clavan las tiras de arriba y abajo. Luego se hace el mismo procedimiento con las tiras faltantes. 



 

Las placas de fibras de madera se suministran a determinada medida por lo que la anchura de las 

mallas de la red debe regularse según esas medidas (anchura de malla igual a anchura de la placa más 

diámetro de las cuerdas). 

Como la curvatura en el espacio del techo exige que las mallas tengan anchura variable, las placas 

deben recortarse o recubrirse en parte. Las placas más delgadas se adaptan mejor a la curvatura de la 

cubierta. 

Detalles constructivos de distintas cubiertas de hormigón 

Cubierta de placas de hormigón ligero 

Sección de una red de cuerdas con un forjado consistente en una membrana de hormigón ligero para 

aislamiento: 

a) La membrana pasa por encima de la red, cuyas cuerdas quedan visibles desde el interior. 

b) La membrana cuelga de las cuerdas y las cubre. 

Referencias: 

1 - Cuerdas portantes 

2 - Membrana de hormigón 

3 - Hormigón ligero 

4 - Capa de intemperie 

 

 

Cubierta de placas prefabricadas de hormigón poroso 

Vista en planta de una junta aún abierta entre las placas colgadas. 

Sección a través de la cubierta perpendicular a las cuerdas portantes. 

Croquis de conjunto con parte de las placas colocadas. 



 

 

Referencias: 

Cuerda portante 

Cuerda tensora 

Brida de cruce de cuerdas 

Placa de hormigón poroso 

tela metálica de acero de construcción  

Manilla de acero 

Líneas de fractura, si se usan 

Mortero poroso de cal y asbesto 

Tela metálica 

Capa de revoque proyectado 

Velo de lana de vidrio 

Pasta bituminosa de cubierta 

Capa de tela 

Pintura de aluminio 

Revoque inferior 

 

Cubierta de placas de hormigón sobre nudos de chapa troquelada 

 

 

 

 

 

 

 

 



 

 

Planta del nudo de chapa y cubierta con vistas laterales 

 

 

 

 

Placas de hormigón entre cuerdas. 

 

 

 

Sección de una placa de hormigón con lucera circular de acristalamiento. 

 

 

 

 

Placas triangulares con líneas de ventanas que cruzan diagonalmente las cuerdas. 

 

Cubierta de ferrocemento de hormigón liviano (Sistema constructivo VELOX) 

El sistema consiste en la utilización de paneles de ferro-cemento de hormigón liviano de igual peso 

que la posible succión del viento, en sistemas estructurales de tracción de curvatura total NULA. 

Los módulos de cubierta son paneles de 40cm lado x 160cm lado x 5cm espesor. 

En este tipo de solución se utiliza la capacidad resistente del acero para solicitaciones de tracción 

mediante la conformación de la catenaria (carga distribuida sobre la curva). 

El equilibrio se logra con la colocación de los paneles de ferro-cemento, cuyo peso (80Kg/m2) se 

opone al de la succión del viento que puede llegar en ciertos casos a magnitudes de 70/80 Kg/m2. 

Es posible cubrir de esta manera luces de hasta 30mts para luces de más de 30mts será necesario 

utilizar un sistema adicional de tensión para evitar la succión (sistema de cables secundarios) y una 

cubierta más liviana. 



 

Ejemplo del Sistema VELOX - Cubierta para un estadio:  

Cables de acero de alta resistencia, haz de 7 alambres cada 80cm anclados en vigas de hormigón 

estructural.  

Cubierta: módulos de ferro-cemento con guías para alojarse sobre dos cables, dejando 40cm de cada 

lado que permitan trabarlos con las filas adyacentes. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Objetivos de la Unidad: Adiestrar al alumno en el manejo de los principios que rigen el dominio 
espacial y el comportamiento estructural de los tipos estructurales rígidos (estructuras laminares). 

 

 

 
 

 

UNIDAD DIDÁCTICA 3 



 

“Tipos estructurales con componentes superficiales rígidos” 

3.1. NOCIONES BÁSICAS 

 

“En este módulo nos dedicaremos a analizar los 

principios básicos que rigen el comportamiento de las 

estructuras superficiales rígidas, o láminas en general” 

 

 

Las estructuras laminares entran dentro de la clasificación de estructuras continuas, superficiales 

rígidas, en las que dos de sus dimensiones predominan sobre la tercera, que es el espesor. 

Esto significa que el espesor de las láminas es muy pequeño respecto de la superficie, aunque no por 

ello es despreciable. 

Geométricamente, en razón de su característica superficial, las láminas pueden ser planas o curvas. 

En las láminas, como en todas las estructuras, el equilibrio de las cargas externas las respuestas 

internas del material empleado, en este caso mediante esfuerzos normales (de tracción o compresión) 

y tangenciales. 

También se presentan otras solicitaciones (flexión, torsión y corte), pero tienen una influencia 

secundaria en el comportamiento de las láminas. 

 

 

 

 

 

 

 

Superficie media 

Dada una lámina de espesor no constante, se considera como SUPERFICIE MEDIA a la superficie 

interna (virtual), de la que equidistan todos los puntos de ambas caras de la lámina, conocidas como 

“intradós” (superficie interna), y “extradós” (superficie externa). 



 

Considerando que el espesor "e" de la lámina es variable en toda su superficie, la "superficie media" 

se halla siempre a una distancia equivalente a e / 2 de ambas caras. 

Si, por el contrario, se trata de una lámina de espesor constante, la superficie media equidista de 

ambas caras en todos sus puntos. 

Convencionalmente, todos los esfuerzos internos en las láminas están referidos a la superficie media, 

es decir, despreciando el espesor. 

 

Estado membranal 

Los esfuerzos normales (tracción y compresión) y tangenciales (T), que se producen en una lámina 

delgada son conocidos con el nombre de “esfuerzos internos de membrana”. Cuando el equilibrio de 

la carga externa se logra por medio de los esfuerzos internos de membrana únicamente, se dice que la 

lámina está en "estado membranal". 

No obstante bajo ciertos estados de carga, de configuración de la lámina o de condiciones de apoyo, 

no es siempre posible lograr el equilibrio total en estado membranal, por lo que suelen producirse en 

mayor o menor grado esfuerzos de flexión. 

El "estado membranal" exige el cumplimiento riguroso de ciertas condiciones de carga, 

conformación, vínculos, etc., para que las deformaciones resultantes sean compatibles con el 

equilibrio de la lámina. Cuando esto no se cumple aparecen "esfuerzos adicionales de flexión", como 

sucede en los bordes, lo que se conoce como "perturbaciones de borde de flexión secundaria". 

Un buen proyecto de una estructura laminar exige el aprovechamiento al máximo del estado 

membranal, para disminuir de esa manera la influencia de la flexión, puesto que no es la mejor forma 

de aprovechar la capacidad resistente del material, en el caso que nos ocupa, de las estructuras 

laminares. 
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Láminas delgadas 

La relación entre el espesor “e” de la lámina con el radio "R" de curvatura principal: 

C = e / R 

Varía según los materiales. 

A modo de ejemplo, damos el siguiente cuadro: 

Esta relación varía según los materiales, y a modo de ejemplo podemos establecer: 

 

Hormigón        

 

Madera   

 

Chapa - Acero 

 

 

C  = coeficiente de seguridad 

 

 

 

Sí por proyecto:  

( )
.hierroslosrecubrirpoderparaespesor

mayorunadoptasecmm,,mmltransversaluzR ∴==×∴= 40400040102010
 

 

Debajo de estas relaciones el espesor resulta tan pequeño que ya no tiene capacidad portante 

significativa a compresión y, por lo tanto, entramos en el dominio de las membranas, que se ubican en 

el ámbito de las láminas delgadas. 

Láminas gruesas 

Por arriba de aquellas relaciones, en cambio, el espesor toma una importancia creciente, debido a que 

la flexión comienza a colaborar cada vez más en el equilibrio general. Es el ámbito de las láminas 

gruesas, de aplicación en estructuras poco peraltadas, denominadas generalmente cáscaras o shells. 

A medida que aumentamos el espesor, el esfuerzo de flexión comienza a adquirir mayor importancia, 

y ya entramos al ámbito de las losas. 



 

Repasando, las láminas son elementos estructurales superficiales rígidos, de espesores relativamente 

pequeños en relación a la superficie que cubren, sin que lleguen a ser despreciables del todo. 

En general, las láminas se encuentran solicitadas a esfuerzos axiales y de corte. 

Las condiciones de borde influyen particularmente en le comportamiento resistente de las láminas, 

comportamiento que varía no sólo con la forma de sustentación, sino, especialmente, con las 

condiciones tensionales y de deformación de los elementos de borde. 

Clasificación de las estructuras laminares 

1. Láminas de curvatura total nula 

1.1. De traslación     PLEGADAS o PRISMÁTICAS 

       CÓNICAS 

1.2. De traslación     CILÍNDRICAS 

2. Láminas de curvatura total positiva 

2.1. De rotación     CÚPULAS 

2.2. De traslación      PARABOLOIDE ELÍPTICO 

3. Láminas de curvatura total negativa 

3.1. De traslación     CONOIDE 

PARABOLOIDE HIPERBÓLICO 

3.2. De rotación     HIPERBOLOIDE DE UNA HOJA 

3.3. De traslación y rotación simultanea  HELICOIDE 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comentario: 

Las condiciones de borde influyen particularmente en el comportamiento 

resistente de las láminas, comportamiento que varía no sólo con la forma de 

sustentación, sino, especialmente, con las condiciones tensionales y de 

deformación de los elementos de borde. 

 

 



 

“Tipos estructurales conformados con componentes superficiales 

rígidos” 

3.2. SISTEMA ESTRUCTURAL DE CURVATURA TOTAL NULA 

3.2.1 LÁMINAS PLEGADAS 

 

 

“En este módulo comenzaremos el estudio de las 

estructuras conformadas por componentes 

superficiales rígidos, circunstancia que, sumado al 

recurso formal, las hace apropiadas para resolver 

cubiertas de grandes luces con gran economía de 

material”. 

 

Definición 

Las estructuras laminares de curvatura total nula se generan a partir de una recta generatriz que se 

desplaza siguiendo una dirección que se la da una línea directriz, que puede ser otra recta, o 

cualquiera de las curvas ya estudiadas en la Unidad 1. 

Recordemos acá que las superficies generadas por rectas son conocidas como regladas, y pueden ser 

desarrollables y no desarrollables. Estas últimas serán estudiadas en los siguientes módulos. 

En el presente módulo estudiaremos el caso de las estructuras de superficie de curvatura total nula, 

dividido en dos capítulos: el primero, referido a las superficies cuya directriz es una recta, y en el 

segundo se verá el caso de las superficies cuya directriz es una curva. 

Entre las superficies cuya directriz es una recta se ubican los planos, propiamente dicho, y las 

superficies plegadas. Las estructuras que responden a este último tipo se conocen con láminas 

plegadas. 

Las superficies de directriz curva pueden ser cilíndricas o cónicas. Las estructuras de este grupo 

reciben el nombre de cáscaras cilíndricas o también cáscaras cónicas. 

Las láminas plegadas son superficies quebradas formadas por láminas planas que poseen determinada 

capacidad de carga.  



 

En la concurrencia de dos láminas a una arista se forma un diedro (ángulo diédrico) que, cuanto más 

agudo sea, mayor será la resistencia del conjunto de láminas y menor las deformación de las aristas. 

En consecuencia, las plegaduras cerradas son más favorables que las abiertas en lo que respecta a la 

indeformabilidad de las aristas. Con inclinaciones mayores de 40° se pueden despreciar las 

deformaciones de las aristas. 

Esto es así debido a que, a medida que la plegadura se cierra, más se asemeja a una viga, y su 

comportamiento se asimila al de una viga simplemente apoyada. 

En cambio, cuanto menor sea la inclinación, más se asemeja a una losa simplemente apoyada, y si 

comparamos ambos casos, comprobaremos que la relación altura / ancho es considerablemente 

diferente, a favor de la viga. 

Las láminas plegadas son estructuras que poseen gran rigidez. Es notorio el caso de una hoja de papel 

que, con una capacidad de absorción de fuerzas perpendiculares a su plano prácticamente nula, puede 

resistir cargas de una cierta magnitud luego de haber sido plegada (Figura 1). 

 

Figura 1 

 

 

Figura 2 



 

 

En los ejemplos que se ven en la Figura 1 podemos distinguir las partes constitutivas de las láminas 

plegadas, según el detalle de la Figura 2. 

 

Características  

La capacidad resistente de las cubiertas plegadas es muy elevada, lo que les permite salvar luces 

importantes con espesores relativamente pequeños. Desempeñan una doble función, como cubierta y 

como estructura resistente, al mismo tiempo. La capacidad portante de las cubiertas plegadas, que 

brinda la posibilidad de cubrir grandes luces entre sus puntos de apoyo, las hace muy convenientes 

para naves industriales, talleres, etc. 

Debido a que sus espesores son reducidos, se logra disminuir el peso propio (conveniencia estática) y, 

en consecuencia, hay una considerable economía de material (conveniencia económica) 

Por otra parte, desde un punto de vista constructivo, es muy sencillo de ejecutar el encofrado debido a 

la adaptación de las tablas de madera a las superficies regladas. 

En las láminas plegadas de hormigón armado, el espesor es mínimo, y en la mayoría de los casos 

depende sólo de que los hierros que constituyen la armadura queden bien recubiertos. 

Además, el empleo de tímpanos transversales, que desempeñan la función de apoyo en los extremos 

de la lámina, también favorece la disminución de las deformaciones de las aristas. 

 

Partes de una plegada triangular. 

a) Lámina 

Una lámina actúa como una viga que descansa en dos apoyos extremos. 

Aunque este tipo de cubiertas constituye, por su forma, una estructura tridimensional, su análisis 

puede realizarse por métodos sencillos de estática y resistencia de materiales. 

La carga aplicada, que incluye el peso propio, es resistida por dos acciones combinadas, en sentido 

transversal y longitudinal. En el sentido transversal la lámina funciona como una losa continua 

apoyada en los quiebres, suponiendo que éstos no se desplazan, de modo que los momentos y 

reacciones en dichos puntos serán similares a los de una losa continua. En el sentido longitudinal 

funciona como una viga simplemente apoyada, donde la proyección de la altura de uno de los 

faldones es considerada como la altura de la viga (Figura 3). 



 

 

Figura 3 

b) Tímpanos 

Los tímpanos son rígidos en su plano y capaces de recibir los esfuerzos tangenciales que le trasmite el 

plegado. Además, evitan la deformación longitudinal (ya que la plegadura es poco rígida en ese 

sentido). 

Los tímpanos pueden apoyarse, a su vez, tanto sobre columnas como sobre muros, transmitiendo así 

los esfuerzos al suelo. 

Se conocen muchos diseños de tímpanos: pueden ser macizos, inferiores o superiores a la lámina 

(Figura 4), o calados (vigas aporticadas) (figura 5). 

El tímpano macizo funciona en realidad como una viga de gran altura. En el caso de los tímpanos 

calados, éstos pueden estar constituidos por una viga de celosía (reticulado plano) o un pórtico 

(solución que no es muy conveniente pues es muy deformable debido a su gran elasticidad. 

Los tímpanos constituyen el apoyo del plegado total, pero cada lámina, por su parte, se apoya sobre 

las aristas laterales, y en los extremos sobre los tímpanos. 

 

 

 

 



 

 

 

 

 

 

 

Figura 4 

        

Figura 5 

 

c) Vigas de Borde 

Cuando los bordes de la lámina están libres, éstos son propensos a deformaciones críticas, por lo que 

preferentemente se utilizan vigas de borde. 

Si bien pueden resolverse las láminas con bordes libres, la presencia de estas deformaciones críticas, 

conocidas como perturbaciones de borde hace casi imprescindible la presencia de las vigas de borde. 

Esto es así, por cuanto estas vigas de borde colaboran acompañando las deformaciones específicas de 

la lámina en sus bordes; no obstante, no es cuestión de ubicarlas de cualquier modo, sino que interesa 

fundamentalmente la característica de la lámina plegada para optar por un modelo u otro de viga, en 

lo que hace a su posición relativa con respecto a la lámina. 

En primer lugar, tengamos presente que la viga de borde está para colaborar con la lámina en la 

resistencia para contener las resultantes de las cargas actuantes. Esto se produce en el apoyo que 

configuran la lámina y la viga en su unión, donde el problema se resuelve del mismo modo que un 



 

caso de descomposición de una fuerza en dos direcciones (una es la dirección de la lámina, y la otra, 

la de la viga). 

Esto nos enfrenta a la primera restricción en el diseño de la viga de borde: no podría resolverse la 

descomposición de la resultante en dos direcciones, si ambas direcciones (de la lámina y de la viga de 

borde) coincidiesen (Figura 6). 

 

Figura 6 

A continuación veremos, caso por caso, distintas soluciones de vigas de borde. 

a) Vigas de borde verticales: se emplean generalmente cuando los pliegues de la lámina son rebajados 

(menos de 45 °). Debido a su posición relativa con respecto de la lámina, la resultante 

PA es absorbida totalmente por la viga de borde. En este caso, la lámina se apoya sobre la viga de 

borde, perdiéndose el concepto de lámina (Figura 7). 

b) Vigas de borde horizontales: son utilizadas cuando los pliegues de la lámina son peraltados (más de 

45 °). En este caso, la colaboración de la viga de borde con la lámina evita la tendencia de ésta a 

curvarse hacia adentro como consecuencia de la componente horizontal (Figura 8). 

c) Viga normal a la superficie: cuando el pliegue de la lámina se encuentra en un entorno de los 45°, 

es conveniente utilizar vigas de borde normales a la dirección de la placa, lográndose de esta forma la 

máxima eficacia (Figura 9). 

 

Figura 7- Viga vertical Pliegue rebajado  Figura 8 - Viga horizontal Pliegue peraltado 

 



 

 
 

Figura 9 - Viga normal a la lámina 
 

 

 

 

 

 

 

 

Fábrica en La Habana, Cuba 

Proceso constructivo 

El material más común empleado en la construcción de estructuras laminares es el hormigón armado 

que varía entre 6 cm. y 8 cm aproximadamente, 

Debido al pequeño espesor necesario, resultante del cálculo, a menudo se recurre a la colocación de 

capas adicionales de recubrimiento de la armadura, lo que significa que es muy probable que el 

espesor final logrado sea notoriamente superior al requerido por el cálculo. 

No obstante, deben considerarse además otros recaudos, como la selección del tamaño del agregado 

grueso (debe restringirse a 1 cm como mínimo), para asegurar el recubrimiento adecuado y total de la 

armadura. 

Dadas estas características, no es posible el vibrado en la mayoría de los casos de estructuras 

laminares, por lo que en su construcción se deben ejercer controles de compactación que aseguren su 

efectividad. 

Se han realizado experiencias con otros materiales, a fin de lograr mayores performances en la 

eficacia de este tipo de estructuras, constituyendo los hormigones plásticos una solución rápida y 

adecuada al problema de las cubiertas laminares plegadas a partir de placas o paneles. 

Es prácticamente ilimitada la gama de formas estructurales que son posibles de fabricar con paneles 

ligeros y de bajo precio, plegados en bloques planos para su entrega y facilitar su almacenamiento. 



 

En todos los casos ensayados ha quedado demostrado que la rigidez de la estructura no depende en 

absoluto de la solidez de las articulaciones, debido a que está en función de la forma geométrica total. 

(*QUARMBY, A.: “Materiales Plásticos y Arquitectura Experimental”). 

Los techos autoportantes de chapa de acero doblada son un ejemplo de cómo las estructuras laminares 

plegadas pueden salvar luces importantes con un espesor mínimo. 

Esquema general de cálculo 

1. Acción Transversal: análisis de la estructura como losa, considerando la proyección 

horizontal de la placa. 

2. Acción Longitudinal: análisis de la estructura como viga simplemente apoyada. 

3. Tímpano: considerando la carga proveniente de la placa y el peso propio del tímpano. 

1.-Esquema de cálculo de una lámina plegada triangular - Acción transversal 

1.1. Análisis de carga 

1.2. Cálculo de Momento (M. Tramo y M. Apoyo) 

1.3. Cálculo de Cargas en las Placas (Reacciones) 

1.4. Verificación del espesor 

1.5. Dimensionamiento y Armadura (en el tramo y apoyo) 

2.-Acción longitudinal 

2.1. Análisis de Cargas 

2.2. Momento 

2.3. Verificación del espesor 

2.4. Dimensionamiento y Armadura. 

3.-Tímpano 

3.1. Cálculo de Carga 

3.2. Momento del Tímpano. 

3.3. Verificación a la Flexión. 

3.4. Armadura. 

3.5. Verificación a la Tracción. 

3.6. Armadura. 

 

 



 

Datos: que se dan generalmente para el cálculo de estas estructuras. 

δ = 2.400 kg/m3 (peso específico del H°A°) 

P = sobrecarga (kg/m2) 

l = luz en sentido transversal (m) 

L = luz en sentido longitudinal (m) 

F = flecha (m) 

α = ángulo de inclinación de la cubierta (°) 

D = altura de la placa (m)                                     

Ep = espesor de la placa (cm) 

Et = espesor del tímpano (cm) 

σa = tensión admisible del acero (kg/cm2) 

σb = tensión admisible del H°A° (kg/cm2) 

 

Desarrollo 

1. Acción transversal 

1.1. Análisis de carga: se toma una franja de 1 metro de ancho. Se determina el valor de la carga 

actuante. 

 

a. Peso Propio: 

 

 

 

 
b. Carga Total: 

 

 

 
 
 



 

c. Proyección Horizontal: 

 

1.2. Cálculo de Momento (M. Tramo y M. Apoyo) 

 

1.2. Cálculo de Momento (M. Tramo y M. Apoyo) 

Para el cálculo de momentos (como dijimos anteriormente) se asimila a una losa continua de dos 

tramos en proyección horizontal, con apoyos en A, B, C. Los momentos de tramos y apoyos se 

calculan por cualquier método de resolución para estructuras hiperestáticas y adoptamos el método de 

los coeficientes, de la misma manera obtenemos las reacciones de apoyo. 

 
d. Momento en el Tramo       

 

 

 

e. Momento en el Apoyo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 11 



 

 

1.3. Cálculo de Cargas en las Placas 
 
a. Reacciones 
 
 
 
 

 

 

 

 

 

 

 

 

 

1.4. Verificación del espesor 

 

 

Donde: b = 1m 

H = e - rec (2cm) 

z = 0.9 x h 

 



 

 

 

 

 

 

 

 
1.5. Dimensionamiento y Armadura (en el tramo y apoyo) 
 
a. Armadura 

 

 

 

 

 

 

 

 

2. Acción longitudinal (Se asimila a una viga simplemente apoyada de luz igual a L) 
 
2.1. Análisis de Cargas 
 
a. Cargas en las placas 

 

 

 

 

 

2.2. Momento 

 

 

 



 

2.3. Verificación del espesor 

 

 

 

 

 

 

 

 
2.4. Dimensionamiento y Armadura (en el tramo y apoyo) 
 
b. Armadura 

 

 

 

3. Tímpano 
 
3.1. Cálculo de Carga (Considerando la carga de la placa sobre el tímpano y el peso propio del 
tímpano) 
 
a. Carga de la placa sobre el tímpano: 

                                                                               

 

 

 

 
 
Luego se distribuye 
 
b. Peso propio del tímpano: 

 

 

 
 
 
 
 



 

c. Carga total del tímpano: 

 

 

 

 

 

 

 3.2. Momento en el tímpano 
 
d. Momento del peso propio: 

     

                                 

 

e. Momento de la Carga:                                                      

                                                        

 

 
 
f. Momento Total: 

     

 

  

3.3. Verificación a la flexión 
 
     
 
 
 
 
b = et (espesor tímpano) 
 
ht = f - rec (flecha menos recubrimiento) 

    

 

 

 

Figura 13 

Figura 14 



 

 

3.4. Armadura 

                                                                                   

 

 

 

3.5. Verificación a la tracción: se calcula con q h = q 3 x cos α 
 

 

 

 

3.6. Armadura 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Esquema de distribución de las armaduras en la placa plegada Triangular 

                    

 

 

 

 

 

 

 

 

 



 

“Tipos estructurales conformados con componentes superficiales 

rígidos” 

3.2. SISTEMA ESTRUCTURAL DE CURVATURA TOTAL NULA 

3.2.2. CÁSCARAS CILÍNDRICAS 

 

 

“En este módulo continuaremos el estudio de las estructuras 

laminares, basadas en superficies de curvatura total nula, 

donde la directriz es una curva, conocidas como cáscaras 

cilíndricas”. 

Introducción 

Al igual que las cáscaras plegadas, las cáscaras cilíndricas son estructuras laminares de doble 

curvatura total nula. Se caracterizan por ser regladas y desarrollables. 

Su forma responde a una recta, llamada generatriz, que se desplaza apoyada sobre una curva 

cualquiera (arco de círculo, parábola, catenaria, elipse, etc.), llamada directriz. 

Constan de tres partes fundamentales: 

la lámina propiamente dicha; 

los tímpanos; y, 

las vigas de borde o tensores de borde. 

La viga o tensor de borde es, en realidad, un ensanchamiento de la cáscara localizado en los bordes 

longitudinales, necesario para contener la armadura, y es recomendable que sus dimensiones se 

mantengan dentro de ciertos límites para evitar que se produzcan en ese sitio perturbaciones como 

resultado del trabajo membranal de la cáscara. 

 

 



 

A diferencia de la bóveda de cañón corrido, que salva la luz entre los muros sobre los que se apoya a 

modo de estribos, la cáscara cilíndrica se apoya en los tímpanos frontales, en el sentido longitudinal, y 

sobre la viga o tensor de borde, en el sentido transversal. 

De este modo, la bóveda es considerada como una sucesión de arcos independientes colocados uno al 

lado de otro; en cambio, en la cáscara cilíndrica la función de arco, en sentido transversal, es mínima 

y despreciable, en contraposición con la función de viga, en sentido longitudinal, puesto que el 

hormigón armado aporta su resistencia a la flexión para lograr soluciones más ligeras y complejas 

desde el punto de vista tensional. 

Siendo l  la luz entre las vigas de borde, en sentido transversal, y L  el largo total de la lámina, en 

sentido longitudinal, según las relaciones existentes entre ambas medidas, las cáscaras cilíndricas se 

clasifican en largas y cortas. 

Cáscaras largas: son aquéllas cuya luz longitudinal ( L ) es igual o mayor a 2,5 veces la luz transversal 

( l ). Este tipo de cáscaras se comportan como vigas simplemente apoyadas en los tímpanos. 

Cáscaras cortas: son aquéllas en que la relación entre L  y l  es menor a 2,5. Las cáscaras que 

responden a esta característica se comportan como arcos. 

Por otra parte, siendo h  la altura de la viga de borde, y f  la flecha correspondiente de la lámina, las 

relaciones que se prefieren son: 

5

l
fh =+  (Luz transversal) (1) 

10

L
fh =+  (Luz longitudinal) (2) 

De estos valores se toma el mayor, que generalmente es la relación (2). 

                           

 



 

                        

En las cáscaras largas se utiliza el método de la viga debido a la similitud existente entre los esfuerzos 

que se producen en aquéllas y los de una viga simplemente apoyada, cuya acción transversal fuera la 

misma que la de la lámina considerada. En este caso, se emplean las mismas fórmulas de flexión y 

corte. Su sección presenta, por su forma, una gran elástica. 

Cuando el peso de la viga de borde es muy grande (y ésta prácticamente cuelga de la cáscara), la 

deformación que sufre por flexión provocará perturbaciones en la lámina que, debido a su rigidez 

longitudinal, se deformará en menor proporción que la viga de borde. Estas perturbaciones de borde 

se transmiten hacia arriba y van disminuyendo en relación directa con el largo de la lámina: a menor 

largo, menores perturbaciones de borde. 

En el caso de cáscaras cortas, el ancho resulta ser superior al doble de la distancia entre los tímpanos. 

Generalmente, las cáscaras largas cubren luces entre 10 m y 40 m, aproximadamente, aunque también 

existen ejemplos de láminas de hasta 100 m de largo, pero esto exige proporcionalmente cáscaras de 

mucha altura. 

En cambio, el trabajo de las cáscaras cortas es similar al de las bóvedas. 

 

 

 



 

 

Si bien el cálculo de este tipo de estructuras permite lograr espesores mínimos, que van desde los 4 

cm, la experiencia advierte que no es conveniente, desde un punto de vista económico, usar espesores 

de menos de 6 cm en la lámina, siendo razonable actuar con criterios acordes con la realidad, es decir, 

teniendo en cuenta las dificultades de construcción de estas formas con hormigón, y la necesidad de 

destinar espacios adecuados para la colocación de las armaduras. Esto también rige para los tímpanos, 

al igual que en los bordes marginales, donde se recomienda no utilizar espesores inferiores a los 15 

cm. 

Uno de los inconvenientes comunes que se presentan al usar espesores muy pequeños, es la necesidad 

de extremar la calidad de terminación del encofrado, ya que cualquier imperfección podría perjudicar 

a la lámina. También la elección del agregado debe ser muy cuidadosa. 

Los tímpanos son los apoyos extremos de la cáscara, pero también existen casos en que se los utilizan 

como apoyos intermedios. 

Pueden ser macizos, en forma de arco o vigas aporticadas, montadas sobre la cáscara, siguiendo su 

forma externa. 

La armadura de flexión y los refuerzos que se coloquen deben seguir la dirección de los esfuerzos 

principales, aunque por cuestiones prácticas puede colocarse una retícula ortogonal adicional que 

aumente ligeramente el volumen de armadura. 

Procedimiento de cálculo para el dimensionamiento de las cáscaras cilíndricas 

Los pasos para el dimensionamiento son los siguientes: 

Lámina 

Análisis de las cargas 

Cálculo del momento flector máximo en sentido longitudinal 

Verificación a la compresión 

Dimensionamiento de la armadura 

Verificación al pandeo 

Tímpano 

Análisis de las cargas 

Verificación del tímpano como viga 

Dimensionamiento de la armadura debida al esfuerzo de flexión 



 

Dimensionamiento de la armadura debida al esfuerzo de tracción 

Datos 

β  = valor del ángulo en el que está inscripta la cáscara        

α  = ángulo que marca la posición del plano neutro 

b
β  = tensión admisible del hormigón 








2cm

Kg  

a
β  = tensión adm. del acero 








2cm

Kg  

 e  = espesor de la lámina ( )cm  

e′  = espesor del tímpano ( )cm  

ve  = espesor de la viga de borde ( )cm  

vh  = altura de la viga de borde ( )cm  

l  = luz transversal ( )m   

L  = luz longitudinal ( )m    

( )mf  = flecha 

3m

Kg400.2=δ �= peso específico del hormigón 









2m

Kgg  = sobrecarga 






′

m
Kgg = valor de la sobrecarga actuante por faja de un metro 

( )mR  = radio 

 

 

 



 

Tabla de valores aproximados de X e Ix para secciones de arco de círculo 

α X (cm) Ix (cm4) 

0° 0,36 x f 0,30 x f3 x espesor 
11° 15´ 0,36 x f 0,30 x f3 x espesor 
22° 30´ 0,36 x f 0,30 x f3 x espesor 
33° 45´ 0,36 x f 0,34 x f3 x espesor 
44° 50´ 0,36 x f 0,34 x f3 x espesor 
56° 05´ 0,36 x f 0,40 x f3 x espesor 
67° 20´ 0,36 x f 0,50 x f3 x espesor 

 

1. Lámina 

1.1. Análisis de las cargas 

1.1.1. Lámina 

   ( ) ( )mm3m

Kg
m

Kg
propio

PeP ××







=





 δ  

1.1.2.Viga de borde  

   ( )m
vv3m

Kg
m

Kg
propio

heP ××







=





 δ  

 

El total del peso propio será: 

bordedevigapropio
2

aminlápropiotímpanopropiototalpropio
PPPP ××+=  

 

El peso propio de la viga de borde se multiplica por 2 porque hay dos vigas de borde. 

El valor de sobrecarga se considera que está actuando distribuida en todo el perímetro, por faja de un 

metro de ancho: 

  m12m

Kggm
Kgg ×








=





′  

 



 

La carga actuante q (Kg/m) sobre la lámina, será la resultante de sumar el peso propio de la lámina, 

más el peso propio de las vigas de borde, más la sobrecarga: 

g
bordedevigaladepropio

P2
aminláladepropio

Pq ′+×+=  

 

1.2. Cálculo del momento flector máximo en sentido longitudinal 

( )
8

2m2Lm
Kgq

KgmM





×







=

 

1.3. Verificación a la compresión 

           '
admisiblebb

σσ                                         
( ) ( )








×=







4cmIx

cmXKgcmM
2cm

Kg
b

σ  

1.4. Dimensionamiento de la armadura 

 

( )
( )cmz2cm

Kg
b

KgcmM2cmA









=







σ
Nota: determinar la armadura en la tabla y repartir en las 

dos vigas de borde 

( ) ( )cmh9,0cmz ×=  
( ) ( )

( )
2

m
borde

h
mfmh −=  

 

 

 



 

1.5. Verificación al pandeo 

             2cm

Kg000.250
b

E =   (módulo de elasticidad del hormigón) 

 

              
bR

b
Ee02,0

2cm

Kg'
críticob

σσ 
××

=







 

2. Tímpano 

2.1. Análisis de las cargas 

 

 

2.2. Verificación del tímpano como 

viga 

 

8

2m2lm
Kgq

propiopesopor
M






×







=

 

( ) 





 ×−×=  Xi

Vi
N

2

l
a

RKgm
máx

M δ =
Vi

N
AT

R δ  

( )
máx

M
propiopeso

MKg
total

M +=  ( ) h9,0mz ×= z 

( )
c

F
b

F
a

FF +−=  

°
°××=

360

1102R
a

F
π   (superficie del sector circular) 

( )
2

hRm1

2

hb
b

F
−×=×=  

(superficie del triángulo AOB ) 

l
V

H
c

F ×=   (superficie sector vigas) 

( ) ( ) 




×′×








= 2mFme3m

KgKg
propio

P δ  

( ) m1Kg
propio

Pm
Kg

total
q ×=





 (carga actuando por 

faja de un metro) 

2.2.Verificación del tímpano como viga 

 



 

2.3. Dimensionamiento de la armadura debida al esfuerzo de flexión 

 

( )
admb3cmW

KgcmM
2cm

Kg
b

σσ 







=






  ( )
2
V

H
fmh ×=  

6

2fe3cmW
×′

=




  

( )

( )mz2cm

Kg
a

Kgcm
t

M2cmA

×







=







σ
 

2.4Dimensionamiento de la armadura debida al esfuerzo de tracción 

( )









=





 

2cm

Kg
a

Kg
VH

N2cm
tracción

A

σ
δ  (se distribuye en toda la altura del tímpano) 






 2cmF  eaF ×=  área 

( )m
n

Y   distinto al eje neutro 






 2m2

n
Y    






 4cmIx    






′ 3mS  n

YFS ×=′   






 3mS   ′S  sumar con su signo 

( )KgNδ  
Ix2

aSQ
N

××=δ  esfuerzo tangente 

( )Kg
H

Nδ  δδδ cosN
H

N ×=   

( )Kg
V

Nδ  δδδ senN
V

N ×=   

 

 

 

 

 



 

Algunos ejemplos 

 

 

Supermercado en La Habana, Cuba. 

 

 

 

Oficinas públicas en La Habana, Cuba. 

Procedimiento gráfico 

Dividir el tímpano en n partes iguales y tomar la viga de borde como una parte más. 

En cada sector Fi actúa un esfuerzo tangencial Nδ �que luego descomponemos en una componente 

vertical (NδV) y una horizontal (NδH). 

Con las NδV  calculamos el tímpano a la flexión. 

Con las NδH  calculamos el tímpano a la tracción. 

Q = Esfuerzo de Corte máximo igual a la reacción en el tímpano: Q (Kg) = (q x L) / 2 

S = Momento Estático que varía en cada sección. 

a = ancho de la sección Fi. 

Ix = Momento de Inercia total de la sección que es constante para todas las secciones e igual a Σ Ix. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Diseño del tímpano 

a) Macizo: trabaja a la vez como tensor y como viga (ver gráficos anteriores). 

Superior: la cáscara cuelga de él por lo que deberá soportar los mismos esfuerzos de flexión y de 

tracción. 

     

  

 

 

 

 

 

 

 

 

 

                

 

La armadura necesariamente deberá colocarse por sobre la cáscara pero en la parte inferior del 

tímpano.  

Pórtico:  

                    

  

 

 

 

 

   

 

 



 

Armadura del tímpano y Armadura de la lámina 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

“Tipos estructurales con componentes superficiales rígidos” 

3.3. TIPOS ESTRUCTURALES de CURVATURA TOTAL POSITIVA 

3.3.1. CÚPULA de REVOLUCIÓN - 

 

“En este módulo nos dedicaremos a analizar los 

principios básicos que rigen el comportamiento de 

las estructuras superficiales laminares 

específicamente “las cúpulas”. 

 

Analizando la superficie de una cúpula veremos los tipos estructurales basados en 

superficies de revolución de curvatura total positiva (ver cuadro de conformación de 

superficies), resultan de: 

 

 

 

CASO 1: La rotación de una curva 

plana (meridiano) alrededor de un eje 

situado en el mismo plano que la 

contiene ó,  

 

 

 

 

 

 

 

Figura 1 



 

CASO 2: trasladando una parábola generatriz sobre una directriz con curvas 

coincidentes, los planos que contienen las parábolas son perpendiculares entre sí. 

 

Para ver animación en 3D pulsa aquí 

 

 

 

 

 

Generalidades 

Para analizar este tipo de 

estructuras haremos uso de tus 

conocimientos previos; llamaremos MERIDIANOS a la curva generatriz de la cúpula; 

y PARALELOS a los anillos horizontales, determinados por el recorrido que hace un 

punto cualquiera (P) de la curva en un giro completo. 

Los Meridianos soportan siempre esfuerzos de COMPRESIÓN. 

Los Paralelos soportan siempre esfuerzos de TRACCIÓN o COMPRESIÓN según su 

ubicación respecto al eje neutro de la cúpula. 

 

 

 

 

 

 

 

 

Figura 2



 

 

La ubicación del eje neutro es una constante que surge del diagrama funicular de una 

cúpula esérica. 

El estado de equilibrio de la cúpula se logra mediante la interacción de éstos esfuerzos 

entre sus MERIDIANOS y PARALELOS. 

Por tratarse de cargas simétricas de revolución no hay esfuerzos de CORTE. 

En general las cúpulas necesitan un anillo de borde (que trabaja a la tracción) para que 

contrarreste los empujes horizontales que se producen en el apoyo de la estructura. 

Por efecto de la continuidad entre la  lámina y viga de borde, se determinan flexiones 

en los meridianos que producen una dilatación circunferencial, la que puede generar 

grietas radiales. 

En las cúpulas rebajadas (por sobre el eje neutro), el problema es aún mayor por el 

hecho de trabajar sus paralelos, sólo a la compresión. 

 



 

Para estas perturbaciones se usan armaduras especiales en el borde o contrafuertes, 

como en el caso del PALACIO DE LOS DEPORTES DE TURÍN (Pier Luigi NERVI) 

ó con aberturas. 

 

No hay cúpulas que trabajen a la 

compresión pura. 

 

Análisis de Cargas 

Las cargas se distribuyen en una superficie con forma de casquete esférico triangular 

en planta, y en corte es una curva. 

La determinación de la superficie se hace gráficamente. 

Se podría determinar la superficie de la esfera y la cantidad de sectores en que 

dividimos el casquete (meridianos) y aplicándole el valor de carga (dato), se obtiene la 

carga total. Pero nosotros necesitamos la carga distribuida por eso se lo hace 

gráficamente, para obtener la carga, sector a sector. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Principios de Cálculo 

En el dimensionamiento de láminas, se establecerá la hipótesis de que el hormigón sólo 

resiste esfuerzos de compresión, debiendo los de tracción ser absorbidos totalmente 

por el acero. 

En particular, para el dimensionado de los elementos de borde podrá considerarse que 

una zona contigua de la lámina forma parte del elemento. Las secciones resultantes se 

dimensionarán como pertenecientes al elemento de borde, por una parte, y la lámina 

por otra. 

 

Recomendaciones para el Hormigón 

La resistencia característica del hormigón utilizado en la construcción de láminas 

estará comprendida entre 200 y 400 kg/cm². 

Salvo justificación en contrario, no se construirán láminas con espesores de hormigón 

menores de los siguientes: 

Láminas plegadas 9 cm 

Láminas de simple curvatura 7 cm 

Láminas de doble curvatura 5 cm 

 

Rebajar dichos límites es posible en elementos prefabricados, pero nunca espesores 

menores de 3 cm (por el recubrimiento del acero) 

La ejecución del hormigón se ajustará a las normas de buena práctica, debiendo 

evitarse todo movimiento accidental de la lámina encofrada durante la ejecución. En 

general el espesor está determinado por condiciones de deformación, seguridad al 

pandeo, recubrimientos de armaduras, garantía de buena ejecución, etc. 

 



 

 

Recomendaciones para las Armaduras 

No deben desviarse más de 10º de la dirección de los esfuerzos principales para no 

originar efectos locales. 

Deberán ser colocadas en posición rigurosamente simétrica respecto de la superficie 

media de la lámina. 

Para un espesor superior a 7 cm se usan dos capas simétricas de φ del 8 cada 30 cm o 

dos mallas electrosoldadas.  

Para un espesor inferior se sustituye por hierros del φ del 6 cada 20 cm en la parte 

media. 

EN UNO U OTRO CASO 

ESTAS MALLAS SE 

DESCONTARÁN DE LAS 

ARMADURAS EXIGIDAS POR 

EL CÁLCULO 

La distancia entre las armaduras principales no será superior a: Tres veces el espesor de 

la lámina si se dispone una malla en la superficie media 

Cinco veces el espesor de la lámina si se disponen mallas junto a los dos paramentos. 

 

ESTAS RECOMENDACIONES 

SON FRUTO DE LA 

EXPERIENCIA EXISTENTE Y 

CONVIENE RESPETARLAS 

SIEMPRE, SALVO 

JUSTIFICACIÓN ESPECÍFICA 

 

 



 

Guía de trabajos prácticos - Cúpula de revolución de hormigón 

armado 

Resolver el predimensionamiento de una cúpula de hormigón armado gráficamente y 
con los siguientes Datos: 

                                  
 

 

 

 

 

Esquema de Cálculo 

Análisis de cargas 

Determinación de esfuerzos internos en los meridianos y paralelos 

Verificación del espesor 

Dimensionamiento de la armadura 

Análisis de cargas 

Para poder analizar las cargas debo saber la superficie sobre la que incide dicha carga. 

Dibujo, entonces, la cúpula en corte y planta, según los datos y determino el eje neutro. 

En corte determino el ángulo BETA = ángulo de los paralelos. 

( )
( )

( )

unidadesparaleloºn
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b
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=
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=

=

=
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paralelosºnR
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β
βββ =∴∴ ==  

 

Traslado a la planta los ángulos beta β y determino los sectores en que se divide el 

casquete esférico y los centros de gravedad de cada sector por donde pasaron los 

paralelos. 

Por último traslado los centros al corte y determino el punto de aplicación de la fuerza 

P. 

Cateto opuesto = diámetro de la cáscara / 

Hipotenusa  

 

    



 

Tenemos así el dibujo de la cúpula completo, y su casquete esférico triangular dividido 

en planta y en corte en sectores. Ver Dibujo. 

Determino la altura del sector analíticamente y verifico en gráfico de corte. Determino 

el perímetro de α y ß. 

 

 

( ) ( )mtorsecdelh
paralelosdeºn

2Per
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º180

R
.Per ==∴=

××
=
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β

ββ Π
 

 

 

Tomo los radios del gráfico. 

 

 

Determino la base de los sectores en planta. 

 

1
180

1 R
º

B ×α×Π=      2
180

2 R
º

B ×α×Π=  

 

 

 

R1 = m R4 = m 

R2 = m R5 = m 

R3 = m R6 = m 

Hipotenusa  

Es una constante

Es constante  



 

3
180

3 R
º

B ×α×Π=      Rn
º

n....B ×α×Π=
180

 

Superficie de los sectores. 

 

 






=×= 2m

2

h1B
1A     





=×






 −+= 2mh

2

1Bn2B
2A  

 






=×






 +

= 2mh
2

2B3B
3A             





=×






 −+

= 2mh
2

1BnBn
n...A  

  

 

 

Análisis de cargas propiamente dicho. 
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Hay que resolver cómo descarga esa fuerza sobre la lámina, produciendo tensiones 

internas que se canalizan hacia los apoyos. 

Sup. Sector 
triangular

Sup. Sector de arco circular 

dato 



 

En un sector cualquiera de la cúpula tendremos una carga P que se descompone en una 

tensión interna que actúa tangencialmente en el sentido de los meridianos y otra que lo 

hace horizontalmente, en el sentido de los paralelos (ya sea hacia adentro o hacia fuera, 

según se trate de un esfuerzo de tracción o de compresión). 

Esta última fuerza horizontal H actúa sobre la base media del sector correspondiente al 

meridiano considerado, reduciéndola en función del perímetro de esta base media a una 

fuerza horizontal H´ distribuida por metro. 

 

Teoría de la envolvente cilíndrica: 

“Una fuerza radial produce una tensión anular que es igual al producto de dicha fuerza 

por el radio de curvatura respectivo”. 

 

 

 

 

 

    

 Figura 8 

 

 

 

 

 



 

H´ = H / base media del sector (Kg/m) 

Tpn = H´n x radio del arco baricéntrico (Kg) 

 

 

Fig. 9 -Por sobre el plano neutro 

 

 

Fig. 10 -Por debajo del plano neutro 

 

 

Determinación de los esfuerzos internos en meridianos y paralelos 

Polígono Funicular 

Con paralelas a la tangente de la curva en los puntos de incidencia de cargas obtenemos 

los esfuerzos tangenciales en la lámina. 

Cada fuerza es la carga total de todos los sectores por encima de ese punto. Por lo que 

en el apoyo a la carga total = total de las cargas. 

En donde: 

o H1, 2, 3…es la Tensión en los paralelos 

o Hb es la tensión en el borde 

o T1, 2,… es la tensión en los meridianos 



 

                            

Fig. 11 -funicular de las cargas 

Vemos en determinado momento que las tangentes se superponen y eso determina un 

valor inverso de la acción de las fuerzas horizontales. O sea, que la fuerza horizontal ya 

no empuja hacia adentro sino hacia fuera. 

Si la sumatoria de fuerzas horizontales (H), según los principios de la estática, debe ser 

igual acero (0). Esto exige que haya una fuerza horizontal (Hb) que produzca un 

equilibrio y que será resistida, lógicamente, por el borde de la cáscara. 

En el punto de cambio de dirección de las fuerzas, el esfuerzo es nulo; es aquí por 

donde pasa el Eje Neutro (según el ángulo de 51° 49', constante en una cúpula 

esférica). 

b. Determinar los Arcos Baricéntricos (Bg1, . . .n) sobre los que actuarán las fuerzas, 

teniendo como datos los Radios Baricéntricos tomados del gráfico: r1, r2, r3, r4, r5 y 

h1, h2, h3, h4, h5 

Luego:   1R
º180

1Bg ×
×

=
αΠ

  2R
º180

2Bg ×
×

=
αΠ

 



 

( )
( )mBgn
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n...R
º180
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×

=
αΠ

 

c. Determino gráficamente la carga H que soportan los paralelos (tomados del 

funicular y en su escala de fuerza) 

 

d. Distribuyo la carga en Bgn (arco baricéntrico) 
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e. Tensión de los paralelos según la teoría de la envolvente cilíndrica 

 

)Kg(n...rn...HTpn 11 ×′=  

 

RECORDEMOS QUE: la fuerza P se descompone en una 

fuerza normal a la lámina (según la teoría de la envolvente 

cilíndrica) y que esta fuerza P está en función del radio. 

Esta es la tensión de los paralelos y hay que distribuirla en la 

base media (o arco baricéntrico) de cada sector. 



 

 

SECCIÓN POR ARRIBA DEL EJE NEUTRO 

 

SECCIÓN POR DEBAJO DEL EJE NEUTRO 

Figura 12 

Verificación del espesor 

• Hay que dividir la fuerza P por la sección correspondiente y el resultado debe ser 

menor a la tensión admisible del 

• Hormigón (�b adm) 



 

( )cm
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×
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• En los paralelos verificamos con la tensión máxima en la zona de compresión y 

con el �b adm 

• En la zona de tracción verificamos con la tensión admisible del acero (�a adm) y 

se distribuyen los hierros a lo largo del sector correspondiente. 

 

a. Verificación del espesor según el paralelo más solicitado 

 

 

 

2cm

Kg
bó

eh
pn

T

Paralelotrabajo
T =

×
=

 

 

 

4. Espesor en el paralelo  

 

 

SI LA TENSIÓN DE TRABAJO 

SUPERA LA TENSIÓN 

ADMISIBLE HAY QUE 

REDIMENSIONAR EL 

ESPESOR DE LA CÁSCARA. 

 

 

tensión en los 
paralelos 

(Buenas 
Condiciones)

tensión del paralelo en la zona 
de compresión máxima (según 

la Teoría de la  Envolvente 
Cilíndrica) 

altura del sector analizado 
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5. Tensión en los meridianos 
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6. Dimensionamiento de la armadura 

a. Armadura en cada uno de los paralelos 

 

  

b. Cálculo de anillos de borde 

 

 

 

 

 

 

 

 

 

 

 

             

dato que se obtiene del 
f i l
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C di i )

base del sector 
correspondiente a la Tensión

en el Meridiano máxima

distribución de 
cargas 

tensión de borde 

armadura de borde



 

 

 



 

“Tipos estructurales con componentes superficiales rígidos” 

3.4. SISTEMA ESTRUCTURAL DE CURVATURA TOTAL 

NEGATIVA 

3.4.1. PARABOLOIDE HIPERBÓLICO 

“En este módulo estudiaremos una familia muy 

particular de las estructuras laminares, 

principalmente por su aplicación en múltiples 

soluciones de cubiertas de grandes luces 

conformadas con superficies de curvatura total 

negativa: los paraboloides hiperbólicos”. 

 

Introducción 

El Paraboloide Hiperbólico (PH) es una superficie de doble curvatura negativa, 

generado por parábolas (generatriz y directriz), cuya característica principal está en la 

relación de éstas entre sí, al estar contenidas en planos normales entre sí, y cuyas 

concavidades son opuestas, lo que significa que los respectivos radios de curvatura, en 

el punto de confluencia de ambas curvas, están contenidos en cada uno de los sectores 

en que divide la superficie al espacio, respectivamente. 

El caso genérico de PH es aquél generado por dos parábolas iguales (generatriz y 

directriz). Si a la superficie así lograda, la intersectamos por dos planos normales entre 

sí, de tal manera que ambos formen, cada uno, un ángulo de 45° con respecto al plano 

base de la superficie, la traza o intersección entre ésta y los planos considerados será un 

sector del PH de planta cuadrada, conocido con el nombre de cuadrilátero Gausso (en 

relación con Gauss, quién fuera un científico estudioso de este tipo de superficies). 

Dada la característica muy particular de esta superficie, de ser generada 

indistintamente por rectas (parábolas) o rectas, el cuadrilátero Gausso no sólo se 

inserta un una planta cuadrada, sino que sus lados respectivos son rectas (precisamente 

las rectas que intervienen en la generación de la superficie). 



 

En la Unidad 1 ya hemos estudiado suficientemente esta superficie, por lo que 

entendemos que no hay razón para extenderse en ello, aún cuando el lector quiera 

abundar en detalle, puesto que tiene a su disposición los documentos cargados 

oportunamente en la plataforma. 

La construcción de un cuadrilátero Gausso es muy simple, partiendo de una planta 

cuadrada (ABCD), sobre la que se traza una cuadrícula. Se elevan dos de los vértices 

opuestos (A y C), mientras los otros dos (B y D) permanecen en su sitio, apoyados 

sobre el plano (Figura 1), de modo que el vértice A pase a la posición A' y el C a la C'. 

Luego se eleva la cuadrícula de la planta, haciendo que se apoye sobre los lados 

inclinados del cuadrilátero, logrando así la conformación de la superficie del PH. 

Las secciones de la superficie con planos normales a la planta y paralelos a las 

diagonales, son siempre parábolas con concavidades opuestas (positiva y negativa), 

correspondientes a la generatriz y la directriz, respectivamente, cuando construimos la 

superficie a partir de curvas en lugar de rectas. 

 

 

 

Figura 1 



 

Estas condiciones geométricas tan particulares de la superficie hacen posible la 

construcción de la estructura a partir de un encofrado relativamente sencillo resuelto 

con elementos rectilíneos aprovechando la dirección de las generatrices rectas. 

En el PH, las cargas se transmiten a los bordes en la dirección de las parábolas 

principales, en las que se destaca, por un lado un mecanismo de arco (parábolas 

comprimidas), y por el otro un mecanismo de suspensión (parábolas traccionadas). 

La resultante de las tensiones superficiales actúa en la dirección del borde, por lo que 

éste permanece libre de flexiones, soportando un esfuerzo de compresión que va en 

aumento desde el inicio del borde hasta el apoyo, donde la tensión es máxima. 

 

 

 

. 

Figura 2 

 

 



 

GUÍA DEL TRABAJO PRÁCTICO 

Procedimiento para el cálculo. 

1.  Análisis de Cargas. 

2.  Calculo de Tensiones: H, V y T. 

3.  Verificación de la compresión y dimensionamiento de la armadura. 

4.  Verificación y dimensionamiento de los bordes. 

5.  Dimensionamiento del tensor. 

Para el cálculo de esfuerzos se considera a la superficie del P.H. dividida en dos series 

de arcos parabólicos que siguen la dirección de las parábolas principales y forman un 

ángulo de 45° con las generatrices rectas. 

Cuando la relación entre la flecha y la luz de las parábolas principales está dentro de 

ciertos límites  

F/l £ 0,15 se puede considerar que la carga "q" (Kg./m2) de la cáscara, está 

uniformemente repartida en su proyección horizontal y, por lo tanto, las parábolas 

actuarán como forma de equilibrio de la carga. 

La carga se distribuye por mitades entre ambas series de parábolas (comprimidas y 

traccionadas), ya que ambas familias de curvas poseen igual curvatura. 

 

 

 

 

 

 

 



 

22 bal +=

Datos 

a = b = lado de la proyección en planta del  

paraboloide hiperbólico (m) 

�  = ángulo que forma el borde del P.H. con 

respecto a la horizontal 

f = flecha de las parábolas principales que, por 

tratarse de una superficie simétrica, es igual para 

cada una (m) 

e = espesor de la lámina (m) 

�a = tensión admisible del acero (Kg/cm2) 

�b = tensión admisible del hormigón (Kg/cm2) 

h = 2f = altura total del paraboloide hiperbólico 

que, por igual motivo anterior, es igual a dos 

veces la flecha (m) 

��= peso específico del hormigón (Kg/m3) 

sob = sobrecarga (Kg/m2) 

 

 

Análisis de cargas 

g (Kg/m2)= d (Kg/m3)  x  e (m) 

sob (Kg/m2) + g (Kg/m2)= "q" (Kg/m2)  x  1m = q (Kg/m) carga actuando por metro 

La carga q actuante sobre la cáscara, se reparte proporcionalmente en ambas 

direcciones: q1 (carga actuante sobre las parábolas comprimidas) y q2 (carga actuante 

sobre las parábolas traccionadas). 

 

En razón de que el paraboloide hiperbólico es simétrico, resulta: q1 = q2  = q/2 



 

 

 

 

 

 

 

 

 

 

 

Calculo de las tensiones 
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Verificación a la compresión 
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Figura 3 

Figura 4 



 

Dimensionamiento de la armadura: con respecto a la distribución de la armadura hay 

dos posibilidades, colocando los hierros siguiendo la dirección de las parábolas 

traccionadas o en dirección de los bordes. 

Si se ubica la armadura de tracción en forma paralela a los bordes se simplifica mucho 

el aspecto constructivo, ya que es más simple colocar hierros rectos que curvarlos en la 

dirección de las parábolas, sobre todo teniendo en cuenta el pequeño espesor de este 

tipo de estructuras. 

 ( ) ( )
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aF  se distribuye en una faja de 1 metro: 
m1

Fa  

°×== 45cosFFF aayax  

axF  y ayF  se distribuyen en una faja de 1 metro x cos 45°: 
°× 45cosm1

Fax  

m1

F

45cosm1

45cosF
FF aa

ayax =
°×

°×
==  

En definitiva, se está colocando igual sección de armadura, pero ahora en ambas 

direcciones. 

 

Si prestamos atención, este sistema de colocación de la armadura, siguiendo 

direcciones paralelas a los bordes, exige el doble de sección de hierro que en el caso de 

optar por colocar la armadura siguiendo la curvatura de las parábolas de tracción. 



 

 

 

 

 

 

 

 

 

 

 

Verificación y dimensionamiento de los bordes: 

En este tipo de P.H. los bordes pueden compararse a una columna solicitada a 

compresión, en consecuencia deben estar dimensionados para absorber dichas 

tensiones. 

Las fuerzas de compresión que se canalizan en el borde varían desde un valor cero en el 

vértice superior (donde la parábola de compresión es nula) hasta un valor máximo en el 

vértice inferior (donde la parábola de compresión es máxima). 

Calculamos el esfuerzo máximo de compresión en el apoyo y dimensionamos el borde. 

Analicemos ahora qué pasa en el borde: 

El esfuerzo de borde Tb es el resultado de la acción que le transmiten al mismo las 

parábolas de tracción en un sentido, y las de compresión en el otro. La resultante de 

ambas es una carga que se canaliza axialmente, comprimiendo el borde en un valor 

creciente desde el vértice superior hasta el apoyo.  

 

 

 

Figr 5 



 

  

 

 

 

 

 

 

 

 

 

Esto permite dimensionar el borde con sección variable desde un mínimo en el vértice 

superior hasta un máximo en el apoyo.  

Vemos como actúan los esfuerzos de Compresión (Tc) y de tracción (Tt) debidos a la 

concurrencia de ambas parábolas en el borde. 

Tratándose de una superficie simétrica, ambas parábolas son iguales y reciben la 

misma cantidad de cargas (según ya vimos en el análisis de carga realizado 

oportunamente).  

Estudiando el caso particular de la parábola máxima (correspondiente a la luz "L"), 

tenemos: 

 

 

Figura 6 

 

 



 

Para la parábola de compresión:  

Figura 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Y para la parábola de tracción: 

 

Figura 8 

Ubicamos estos gráficos en el Paraboloide. Para las distintas posiciones de cada 

parábola en su desplazamiento desde el centro hacia cualquiera de los extremos, la luz 



 

( )2
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2
bb HVT +=

varía entre 1 y 0, sabemos además, que mientras H  se mantiene constante (vale: 
f8

lq 2×
 

en cualquier punto de la parábola), V  varía entre un máximo (
2

lq
Vmáx

×
= ) y un 

mínimo ( 0Vmín = ). 

Consideremos ahora lo que sucede en un borde cualquiera del Paraboloide: 1H  y 2H  

se mantiene constante en todos los puntos, siendo  21 HH = . 

Es decir que la fuerza horizontal en el borde equivale a la fuerza horizontal de 

cualquiera de las parábolas principales, aplicada cada metro de borde. 

1V  y 2V   en cambio, varían linealmente desde un mínimo (0), en un vértice, hasta un 

máximo, en el otro, lo que podemos graficar de la siguiente manera: 

 

En el lado AB tenemos: 

 

 

 

Luego, bordeV  también se mantiene constante a lo largo de todo el borde. 

Componiendo bordeH  y bordeV  obtenemos:    

 Figura 9 

Longitud d orde



 

Esto significa que el valor de la tensión de borde ( Tborde) es igual a la tensión máxima 

en cualquiera de las parábolas principales pero distribuida por metro. De esta manera, 

podemos calcular el esfuerzo máximo del borde, en el apoyo, multiplicando 



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m
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Los esfuerzos 1bordeT  y 2bordeT  concurren al apoyo y se componen en una resultante 

máxbordeR  que actúa en cada apoyo. 

                               

 

( ) 2TT2TTKgR 2
máxborde

2
máxborde

2
2máxborde

2
1máxbordemáxapoyo ×=×=+=  

 



 

Siendo:  2máxborde1máxborde TT =  

Tenemos:  ( ) 2T2TKgR 2máxborde1máxbordemáxapoyo ×=×=  

 

Esta máxapoyoR  debe ser equilibrada con una reacción de igual intensidad y de sentido 

contrario, para lo cual existen varias soluciones: 

a) Con un contrafuerte que recibe las cargas y 

actúa en dos sentidos, conteniendo la acción 

de la componente vertical, transmitiéndola al 

suelo, y resistiendo la componente horizontal 

por rozamiento en su contacto con el terreno. 

b) Descomponiendo máxapoyoR  en dos 

componentes, una horizontal ( )horizontalR  y otra 

vertical ( )verticalR , de modo que esta última 

transmita la carga al terreno, mediante una 

base, y la primera sea absorbida mediante un 

tensor. 

Dimensionamiento del tensor 

Una vez calculados los esfuerzos en el apoyo, hemos visto que la componente vertical 

se absorbe con una base y la componente horizontal con un tensor. 

El dimensionamiento del tensor se realiza en función de la tensión admisible del acceso 

seleccionado para tal fin. 

Luego: 
adm

horizontal
tensor

R
F σ=  

 

 

 



 

ALGUNOS EJEMPLOS 

 

Club Deportivo en La Habana, Cuba 

 

Centro Multideportivo en La Habana, Cuba 

 

 

 

 

 

 



 

 “En esta segunda parte veremos en ejemplos de 

Paraboloides Hiperbólicos Combinados algunas 

de las posibilidades de diseño de esta estructura 

para solucionar Grandes Luces. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La acción de compresión en los 
bordes interiores produce un 
empuje en las columnas que 
debe ser contrarrestado con un 
tensor. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Objetivos de la Unidad: Adiestrar al alumno en el manejo de los principios 

básicos que r igen el dominio espacial y el comportamiento estructural de los 

t ipos estructurales r ígidos discontinuos, también conocidos como 

estéreoestructuras o reticulados espaciales. 
 

 

 

 

 

UNIDAD DIDÁCTICA 4 



 

“SISTEMAS ESTRUCTURALES LINEALES RÍGIDOS” 

4.1. NOCIONES BÁSICAS 

 

La necesidad de crear espacios cubiertos de dimensiones cada vez más grandes, y adaptarlos a las 

nuevas exigencias arquitectónicas, la inquietud por aliar la estabilidad a la estática, la obligación de 

lograr un arreglo entre los tres factores: vano, peso propio y sobrecarga, han llevado a la búsqueda de 

soluciones estructurales más ambiciosas, y condujeron a la utilización de sistemas estructurales 

basados en la triangulación del espacio. 

Bell, Torroja, Le Ricolais, Buckmister Füller, Makowski, Frei Otto, Wakchmann y otros, están 

íntimamente ligados entre sí gracias a este problema. 

Estas estructuras, llamadas TRIDIMENSIONALES, se basan en la configuración de tramas 

trianguladas, por lo que también se las identifica como sistemas discontinuos, reticulados o mallas 

espaciales.  

Los descubrimientos de la Química Orgánica a finales del siglo XIX influyeron notablemente en el 

desarrollo de los reticulados cuando se comprobó que la configuración tetraoctaédrica es la base de 

toda su organización estructural. Descubrimientos simultáneos en otros campos, hacen suponer que la 

estructuración de la naturaleza se logra por coordinación de crecimientos tetraoctaédricos. Por 

ejemplo: esferas de igual radio reunidas lo más compactamente posible forman tetraedros enteros o 

truncados y aglomeraciones de este tipo explican todas las formas de la estructura celular del tejido 

vivo. 

Estos reticulados se construyen a partir de barras (elementos de longitud pequeña, comparada con la 

de la estructura) unidas entre sí en sus extremos (nudos), dando origen a una red tridimensional en la 

que los elementos siguen determinados principios de organización y una disposición estructural 

preestablecida. 

Estos sistemas, en razón de su geometría y su isotropía, características en ellos, poseen una gran 

resistencia, poniendo en evidencia la relación de máximo rendimiento con mínima materia. 

Este problema es posible enlazarlo, por otra parte, con el de la “partición homogénea del espacio”. 

Las tramas que originan las redes tridimensionales se generan básicamente a partir de las figuras 

geométricas regidas por determinadas leyes de organización, mas más comunes parten de poliedros 

regulares que equiparticionan el espacio. 



 

La variedad de tipologías en lo que respecta a reticulados espaciales es prácticamente infinita y 

proporciona por sus características una excepcional libertad de diseño y una simplificación en el 

aspecto constructivo basado en la posibilidad de yuxtaposición de unidades prefabricadas. 

Es importante destacar el empleo de sistemas estructurales resueltos con componentes modulares, 

porque facilitan la evolución de nuevas formas de expresión arquitectónica, fundamentales para el 

desarrollo de toda una gama de elementos constructivos intercambiables, de diferentes formas y usos 

múltiples. 

Reticulados planos 

Topológicamente describimos un reticulado como una estructura discontinua compuesta de vértices 

(nudos) y aristas (barras), donde las caras se han convertido en huecos. 

Tres NUDOS unidos por tres BARRAS rectas constituyen un sistema indeformable, si agregamos 

dos barras por cada nudo obtendremos un sistema que se comportará en conjunto como una gran viga 

calada. En estos sistemas las barras coinciden con el plano de acción de las cargas. 

Las cargas actúan en los nudos y las barras están solicitadas sólo a esfuerzos axiales (tracción o 

compresión). 

El conjunto trabaja igual que una viga 

(flexión), aunque cada barra esté solicitada 

a un esfuerzo axial. 

Entre los reticulados planos cuyo uso es 

más frecuente, podemos mencionar las 

cabriadas y las vigas de celosía. 

Compuestos básicos 

Nudos: la función de estos es: 

1. La forma de los nudos estará en función de las barras concurrentes al mismo; éstas se unen 

generalmente por soldadura pudiéndose unir además por medio de bulones, tornillos o 

remaches. 

2. Garantizar la transmisión de esfuerzos a lo largo de la estructura; además, por considerar a las 

barras articuladas en los nudos, solo estarán traccionados o comprimidos a partir de las 

fuerzas que le transmiten las barras concurrentes. 

3. Facilitar el proceso constructivo de la estructura y absorber la inevitable dispersión en las 

longitudes de las barras con respecto a los valores teóricos de las mismas. 



 

Nudos: se deben tener en cuenta las siguientes recomendaciones: 

1. Las dimensiones de las barras deben ser preferentemente iguales para facilitar la normalización 

constructiva y el consecuente abaratamiento. 

2. Los ángulos de incidencia de las barras entre sí y en los nudos deben ser, en lo posible, iguales. 

3. Las longitudes de barras no deben ser excesivas para evitar problemas de pandeo. 

Sistemas espaciales reticulados 

También se denominan estereoestructuras o estructuras tridimensionales porque se componen de 

barras dispuestas según diferentes direcciones en el espacio. 

Partiendo de una configuración plana reticulada triangular, agregando tres barras concurrentes a un 

nudo entre sí, por un extremo, y a cada nudo de la configuración base, habremos obtenido una 

estructura indeformable espacial reticulada triangular. 

Las cargas que actúan en los nudos se distribuyen según 

diferentes direcciones en el espacio, coincidentes con las 

barras (resulta una distribución de fuerzas muy racional). 

Los reticulados espaciales están capacitados para salvar grandes luces y a una determinada escala 

resultan más económicos que los reticulados planos. 

El material usual es el acero (tubos o perfiles), aunque también pueden realizarse en aluminio y 

madera. 

Estas estructuras tienen la característica de ser altamente hiperestáticas dada la gran cantidad de 

apoyos. 

La estructura hiperestática tiene la ventaja sobre la isostática de que una pieza cargada se ayuda en su 

trabajo por las contiguas; es por eso que el hiperestatismo permite un aprovechamiento más integral y 

proporciona una mayor economía del conjunto. En caso de rotura de un elemento hay más margen de 

seguridad en una estructura hiperestática que en una isostática. En lo que sí es más exigente es en las 

condiciones de sustentación ya que un falso movimiento de un apoyo puede ocasionar la rotura (cosa 

que no ocurre en la isostática, que no altera su equilibrio por un falso movimiento de un apoyo). 

En estas construcciones tridimensionales, en las que la acción de las cargas exteriores se reparte en un 

gran número de elementos que siguen diferentes direcciones (las barras), la acción de una carga 

aislada que hace que una barra cualquiera se pandee, permite, gracias a la alta hiperestaticidad del 

sistema, que los otros elementos se repartan la carga evitando de esa manera la destrucción del 

conjunto. 



 

Esta igualación de tensiones que se produce en la mayor parte del sistema, constituye un campo de 

fuerzas homogéneo, sin puntos de sobrecarga grande, que le confiere a la estructura gran resistencia a 

las solicitaciones exteriores. 

Al ser menores las tensiones internas, disminuyen las secciones necesarias de los elementos 

(traccionados o comprimidos), lo que genera una importante economía de materiales. 

Un antecedente de los reticulados espaciales lo constituye la viga de celosía, que tiende a la 

triangulación como base de sus generaciones, por ser el triángulo la célula más rígida que puede 

encontrarse en el plano. 

Los reticulados más comunes son los formados por barras tubulares que han generalizan su uso en los 

últimos 10 años sobre todo en lo concerniente a la arquitectura colectiva que exige grandes luces con 

poco material. 

En las estructuras espaciales se busca la reducción de gasto de material por metro cúbico de espacio 

edificado. Este será porcentualmente mucho menos que el exigido por la construcción tradicional. 

La evolución de la arquitectura, desde la construcción tradicional de los sistemas de dos dimensiones 

(viga-columna) a los sistemas de tres dimensiones (reticulados espaciales), marca el progreso de las 

estructuras espaciales cuyas ventajas técnicas y económicas son notorias. Estas estructuras además 

del poco material que insumen por metro cúbico, correctamente diseñadas y calculadas son 

sumamente económicas. 

La posibilidad del empleo de acero en los reticulados espaciales, nos garantiza la resistencia a la 

rotura, características de este material. 

Por otra parte los progresos de la industria siderúrgica para mejorar sus productos, así como los 

aceros de alta resistencia que se fabrican actualmente, contribuyen notablemente el porvenir de estas 

estructuras. 

A las ventajas nombradas hay que agregar: 

El reducido peso de los elementos (barras y nudos) que le confiere gran ligereza a la estructura, 

corresponde a una tendencia de la construcción actual de reducir tanto el peso de los elementos como 

el de la estructura entera. 

La rigidez de la estructura y la mejor adaptación a leyes estáticas hace que las deformaciones sean 

menores que en las estructuras tradicionales equivalentes. 

La economía de materiales, sumada a la menor mano de obra que requieren y a la seriación de los 

elementos, permite pensar en un abaratamiento considerable. Comparando los sistemas de este tipo 

con los tradicionales la economía es ventajosa, sin embargo no hay que considerar sólo el costo de 



 

construcción, sino también el gasto de conservación, la vida útil, la facilidad de montaje y 

desmontaje, etc. 

La posibilidad de crecimiento o decrecimiento, ligada a la posibilidad de montaje de elementos y por 

otra parte al hecho de que los reticulados trabajan con todas las barras simultáneamente, repartiendo 

cualquier perturbación de una manera más uniforme a lo largo y a lo ancho de la estructura. 

Otra ventaja comparando con los sistemas tradicionales, es que al producirse un daño local en el 

reticulado, éste difícilmente conduzca al derrumbamiento de toda la estructura. La reacción en 

cadena, muy común en los sistemas tradicionales, no se producirá en los reticulados. 

La acústica mejora notablemente en los locales con estructuras reticuladas gracias a la 

compartimentación relativamente tupida de las barras (muy útiles en iglesias, salas de espectáculos, 

etc.) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

“SISTEMAS ESTRUCTURALES LINEALES RÍGIDOS” 

4.2. CLASIFICACIÓN 

 

Estructuras de barras o reticuladas 

La combinación de elementos resistentes lineales rígidos, da origen a una numerosa familia de 

estructuras llamadas de Barras o Reticuladas. 

Para una mejor comprensión de sus características resistentes las ordenaremos según tres aspectos 

diferentes: 

La Posición relativa de sus elementos en el espacio 

Bajo este aspecto podemos decir que los elementos resistentes que conforman la estructura pueden 

ordenarse en forma alineada, determinan direcciones predominantes, por lo que las clasificamos 

como bidireccionales, tridimensionales, tetradireccionales o multidireccionales (este último caso no 

es propio de las estructuras edilicias, peor puede presentarse en otro tipo de estructuras portantes). 

 

  

Bidireccionales Tridireccionales 
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3 2 



 

 

 

Tridireccionales Tetradireccionales 

 

 

Multidireccionales 

El dominio espacial de la configuración (Número de EULER) 

Este aspecto está referido a las relaciones existentes entre las partes entre sí (barras y nudos), de 

acuerdo al criterio sustentado por la constante de EULER para los individuos geométricos de una 

misma familia topológica (aquí no se consideran las regiones, puesto que estas son huecas debido a la 

discontinuidad de las estructuras reticuladas). Debido a la complejidad que adquiere, en función del 

infinito número de situaciones que pueden producirse a partir de la simple combinación de barras y 

nudos, no lo vamos a considerar en este trabajo. 

La apropiación que ésta hace del espacio que la contiene 

Por último, la apropiación del espacio que hace la configuración permite clasificarlas, dentro de os 

límites de nuestro mundo perceptible, en estructuras bidimensionales o planas, y tridimensionales o 

estéreos. 

De esta manera, ampliamos nuestra clasificación considerando los reticulados espaciales según se 

organicen en una capa, en dos capas o en forma múltiple. 

De una capa 
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caso a: Reticulado de una capa para cubierta a 
dos aguas. 

caso b: Reticulado de una capa para cubierta 
cilíndrica. 

  

caso c 

Reticulado de una capa para cubierta a cuatro 
aguas 

caso d 

Reticulado de una capa para cubierta en forma de 
cúpula 

 

De dos capas 

En estos reticulados las barras se disponen en dos capas paralelas entre sí separadas a una cierta 

distancia; en general son planas, aunque también pueden estar curvadas. 

Cada una de las capas forma una retícula de triángulos equiláteros, cuadrados (eventualmente 

rectángulos), o hexágonos en la que la proyección de los nudos de una capa puede coincidir o estar 

desplazada con relación a los de la otra, en cuyo caso se sitúan en el centro de los triángulos, 

cuadrados o hexágonos de la retícula. 

Las barras diagonales unen los nudos de ambas capas siguiendo diferentes direcciones en el espacio 

(esas direcciones coinciden con las aristas de los poliedros que dan origen al reticulado espacial). 



 

 
 

Planta Perspectiva 

                                                                                     

 

 

 

 

Capa superior Diagonales Capa inferior 

 

Del mismo modo, según su conformación externa (dado que en su conjunto definen espacialmente 
una superficie, aunque discontinua), podemos clasificar los reticulados según su curvatura total en: 
nulas, positivas o negativas. 

Curvatura total nula 
Los sistemas estructurales discontinuos de curvatura total nula, de una o de dos capas están 

representados por las estéreo estructuras y los sistemas reticulados plegados y cilíndricos. En este 

último caso cuando las dimensiones son grandes se debe tratar de aumentar el número de mallas 

(tramas más tupidas), utilizar dos capas unidas por barras diagonales o plisar el conjunto en el sentido 

longitudinal. 



 

 
     

Ejemplo de distribución de barras en reticulado 
cilíndrico de una capa 

Ejemplo de distribución de barras en reticulado 
plegado triangular de una capa 

 

 

 

 

Reticulados estéreos de dos capas, cuyas barras forman en un caso una retícula de triángulos 
equiláteros y en el otro una retícula de cuadrados. 

Curvatura total positiva 

El diseño y construcción de sistemas estructurales discontinuos de curvatura total positiva, de los 
cuales la cúpula constituye el ejemplo más representativo, se logran a partir de la división geodésica 
de la superficie de al esfera a través de la proyección en ella de poliedros o tramas poligonales 
regulares. 

   

Icosaedro 

Proyección del Icosaedro en una esfera. 

División de la superficie de la esfera por 3 redes de circunferencias máximas 



 

 

cara del icosaedro 
esférico 

 

 

frecuencia:  

es la división de la arista 
en “n” partes 

División geodésica de la esfera icosaédrica en base a diversas frecuencias que proporcionan 

variantes en la distribución de las barras 

 

 
 

División geodésica de la superficie de la esfera a partir de una trama de pentágonos y hexágonos 

 



 

 

Ejemplos de cúpula esférica de una sola capa, generada a partir de una disposición de las barras 

según una trama triangular 

 

Entre las cúpulas reticuladas una de las que más difusión alcanzó es la conocida como     cúpula 

Schwedler. En la figura inferior plantas de las principales cúpulas Schwedler. 

 

 



 

CURVATURA TOTAL NEGATIVA 

El uso de sistemas estructurales discontinuos de curvatura total negativa no es tan frecuente. 

Constructivamente dada la característica de superficie reglada del Paraboloide Hiperbólico y el 

Hiperboloide de 1 Hoja, es posible una distribución de barras en coincidencia con la recta generatriz 

que se despega en forma paralela a los bordes en el caso del Paraboloide Hiperbólico y apoyada en 2 

circunferencias directrices en el otro. 

 

 

 

 



 

ESTUDIO TOPOLÓGICO 

MODULO DE CRECIMIENTO 
Pirámide de Base Cuadrada + Tetraedro 

Unidades Intervinientes Módulo de Crecimiento  

 
 

1 TETRAEDRO  + ½ OCTAEDRO 

  

P – L + R = 6 – 11 + 7 = 2 

Configuración Continua 

P = 6  (vértices) 

L = 11 (aristas) 

R = 7  (caras) 

Configuración Discontinua 

P = 6  (vértices) 

L = 11 (aristas) 

R = 0  (caras) 

Con respecto a la indeformabilidad de sistemas espaciales tenemos: B = 3N – 6 

Aplicamos esta fórmula al módulo de crecimiento del retículo considerado. 

 

N = 6 (nudos) 

B = 11 (barras) 

R = 7 (regiones) 

Configuraciones 
Continuas 

N = 6 (nudos) 

B = 11 (barras) 

R = 0 (regiones) 

Configuraciones 
Discontinuas 

Reemplazando en 1:  11 =  3 * 6 – 6  

   11 < 12  = �(no se cumple la ecuación de indeformabilidad) 

Para que el módulo sea indeformable habría que agregar una barra triangulando la cara cuadrada 

(base de la pirámide). 

 



 

“SISTEMAS ESTRUCTURALES LINEALES RÍGIDOS” 

4.3. TECNOLOGÍA DE LOS SISTEMAS 

Tipos de nudo utilizados por los sistemas 

Nudo Trio-detic 

Este sistema originario de Canadá, es para un reticulado de tres direcciones. Las barras aplanadas en 

sus extremos se introducen a presión en ranuras dentadas que existen en los nudos. La característica 

principal es que la unión de las barras se realiza sin soldadura, sin pernos y sin remaches. 

La distribución de las barras que concurren al nudo nos determina la forma del mismo. 

 
Nudo de la cúpula Makowski 

Los nudos son casquetes metálicos a los que se sujetan las barras tubulares por medio de pasadores. 

 
Nudo Pyramitec 

Está formado por un cuerpo cilíndrico central, que puede 

recibir las barras de una capa de la malla, y por un tronco de 

cono, donde sueldan las barras diagonales. Este sistema es 

factible de hacerlo prefabricado. El montaje es fácil y se 

hace preferentemente en el suelo y levantándose luego del 

ensamblado.  

El sistema PYRAMITEC se caracteriza por el empleo de 

pirámides prefabricadas. 

Para comenzar se dispone la capa inferior sobre las cuales se 

ubican luego las pirámides prefabricadas (invertidas), tres 



 

pirámides ensambladas son estables  se pueden seguir agregando en cualquier sentido para construir 

una estructura continua. 

Estas estructuras utilizadas como cubiertas, pueden adoptar formas planas, inclinadas, ligeramente 

curvas y en ciertos casos pueden conformar cúpulas. 

1. Aplicación del sistema PYRAMITEC a tramas tridireccionales compuestas de pirámides de 

base triangular. 

2. Aplicación del sistema PYRAMITEC a tramas de base hexagonal, tridireccional. 

3. Aplicación del sistema PYRAMITEC a tramas de base cuadrada, bidireccional. 

Nudo Segmo 

Los nudos son de acero soldado, se componen de dos partes: una esférica y otra prismática. Las barras 

se fijan por soldadura o por otro medio mecánico cualquiera. 

Es una variante del anterior, los tubos tienen en sus extremos un vástago que se introduce en orificios 

existentes en el nudo. Permite la unión por remaches y bulones. El disco anular de ambas partes. 

            
Nudo Tubaccord 

Las barras tubulares se sueldan directamente o bien se fijan por medio de pasadores que encajan en 

ranuras ubicadas en los extremos de las barras y en un manguito soldado previamente a la barra de 

mayor diámetro concurrente al nudo. 

              



 

Nudo Bourquardez 

Esta compuesto por uno o varios toros, obtenidos por unión de dos codos de 180º y manguitos 

tubulares soldados a dichos toros. Las barras concurrentes en el nudo se unen a los manguitos por 

medio de roblonado. 

En la figura se representa un nudo preparado para mallas de una sola capa y un nudo para mallas de 

dos capas. 

 
Nudo Begue 

Este nudo está formado por un núcleo al que se atornillan las barras con extremidades troncocónicas. 

          
 

Nudo Chamayou 

Estos nudos pueden ser planos, con rebordes a lo largo de una línea poligonal cerrada, o tener forma 

cúbica o tetraédrica, con los mismos rebordes en cada una de las aristas. Los rebordes con sección 

cuadrada, poligonal o con la forma de una superficie de revolución (cilindro, toro, etc.), y a ellos se 

fijan las barras tubulares mediante mordazas. 

En la figura se representa a un nudo plano de forma hexagonal. 



 

                

 

Nudo Begue-kieffer 

Está formado por una esfera con unos arranques en los cuales hay dos ranuras destinadas a fijar los 

tubos. 

Esta fijación se realiza mediante un grupo hidráulico, situado en el suelo, que presiona un collar 

dispuesto alrededor del tubo y sobre las ranuras del arranque, previamente introducidas en él. Así 

queda encajada la barra en el arranque a través de las ranuras. 

 
Nudo Delacrix - glotin - monier - sejournet 

Este nudo está formado por uno o dos semitubos con aletas soldadas que indican las direcciones de las 

barras concurrentes. Estos (o este) semitubos se unen mediante roblonado o soldadura a la barra de 

mayor diámetro concurrente en dicho nudo. La fijación de las restantes barras se realiza aplastando 

sus extremos y uniéndolos, mediante soldadura o pasadores, a las aletas. 



 

  

Nudo Sarton 

El procedimiento para obtenerlo consiste en aplanar los tubos en los puntos correspondientes a un 

nudo, con el fin de poderlos cruzar cómodamente y colocar un pasador con rosca de fijación. 

 

Nudo Kieffer 

Está formado por un cilindro central macizo que hace de pasador de todo el nudo, el cual consiste en 

dos cilindros concéntricos, el exterior con ranuras que sujetan las nervaduras soldadas en los 

extremos de las barras concurrentes. 



 

Nudo Esférico 

Constituido por una esfera a la que se unen, por soldadura, barras en cualquier dirección. Para 

absorber diferencias en las longitudes de los tubos se sueldan en el nudo manguito de diámetro 

superior al de aquellos. La esfera suele rellenarse de mortero como seguridad a posibles pandeos de la 

misma. 

 
 
Nudo Bitubular 

Está constituido por dos tubos, unidos paralelamente, a los cuales van soldadas las barras 

concurrentes. 

 
 
 
 
 
 
 
 

 



 

Nudo Tesep 

Las barras concurrentes en el nudo se unen directamente por soldadura a la de mayor diámetro o 

mediante el atornillado de nervaduras, soldadas en sus extremos, a una pletina asimismo soldada y 

perpendicular al tubo central. 

 
Nudo Unistrut 

Consiste en la utilización de dos piezas de chapa plegada que se superponen y a las que se unen las 

barras mediante pasadores. 

Las barras son perfiladas y los nudos de chapa estampada. En este sistema todos los elementos 

utilizados tienen la misma longitud y van unidos por dispositivos idénticos. 

 

 
 

 

 

 



 

Nudo Mero 

El sistema estructural Mero se emplea en construcciones tubulares de acero para obras fijas y de tipo 

provisional (naves fijas, estructuras aporticadas, andamios, soportes, et.). Está formado por 

octógonos, inscriptos en una esfera, en cada uno de los cuales puede roscarse una barra previamente 

preparada. 

El sistema MERO fue utilizado por Mengeringhausen antes de la Segundo Guerra Mundial. 

Sus 2 elementos básicos son: las esferas de conexión en las que se encuentran inscriptos 18 

octógonos con 1 agujero roscado por cada uno y las barras que se insertan a rosca en dichos agujeros. 

Las barras deben ser de igual longitud. 

Cada nudo puede agrupar sin excentricidad los extremos de las 18 barras. Es un sistema ligero que 

permite un máximo de prefabricación y en el montaje no es necesaria la presencia de personal 

especializado. 

 
 

Las mallas usuales son:  

• Las cuadradas de 0,5; 1,0; 2,0 m de lado y las correspondientes diagonales. 

• Las formadas por triángulos equiláteros de 0,7; 1,4 o 2,8 m de lado. 

Resultan con ello ángulos de 45º, 60º o 90º respectivamente, entre las barras. 

Las estructuras Mero pueden ser ensambladas rápidamente con mano de obra no especializada. El 

transporte de los elementos es fácil y poco costoso. El sistema es muy flexible en cuanto a la variedad 

de formas geométricas que permita adoptar. 

Nudo Tridimatec 

Compuesto por un sistema en cruz de donde parten cuatro manguitos a los que se sueldan otras tantas 

barras.  

Con un accesorio formado por dos placas cruzadas se aumenta el número posible de barras 

concurrentes en este nudo. 



 

 

 

 
 
 
 
 
 
 
 
Nudo S.D.C. 

Nudos para mallas de una sola capa, preparados para el ensamblaje y soldadura de las barras 

concurrentes. Se han empleado también en mallas de dos capas, uniendo las barras diagonales a los 

caparazones. 

Las barras de tubos son soldadas a los nudos después del ajuste del conjunto de la estructura. 

 

Nudo Wupperman 

Se utiliza en sistemas espaciales reticulados de una capa, está formado por un hexágono al que se 

atornillan las barras concurrentes en seis direcciones posibles. Las barras son perfiladas. 




